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Abstract

Standard statistical mechanical or condensed matter arguments tell us that bulk prop-
erties of a physical system do not depend too much on boundary conditions. Random
tilings of large regions provide counterexamples to such intuition, as illustrated by the
famous ’arctic circle theorem’ for dimer coverings in two dimensions. In these notes, I
discuss such examples in the context of critical phenomena, and their relation to 1+1d
quantum particle models. All those turn out to share a common feature: they are in-
homogeneous, in the sense that local densities now depend on position in the bulk. I
explain how such problems may be understood using variational (or hydrodynamic) ar-
guments, how to treat long range correlations, and how non trivial edge behavior can
occur. While all this is done on the example of the dimer model, the results presented
here have much greater generality. In that sense the dimer model serves as an opportu-
nity to discuss broader methods and results. [These notes require only a basic knowledge
of statistical mechanics.]
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1 The limit shape phenomenon

Perhaps one of the greatest strength of theoretical physicists is their ability to make simpli-
fying assumptions which are obviously not true. These untrue assumptions are then used to
make powerful predictions, some of which can be confirmed by experiments or even proved
mathematically. For example, band theory assumes periodic boundary conditions to get a well
defined momentum, and explains why certain materials are conductors, insulators or even
topological insulators. To take an even older example, the hydrodynamic description of a
glass of water relies on well defined conserved quantities such as mass density or momentum
density. This is obviously not true, since the boundary breaks momentum conservation. How-
ever far from the boundary this assumption is much more reasonable to the leading order,
which is why nobody is (and should) be worried about this.

Similar assumptions are routinely made in classical statistical mechanics. For example,
Onsager famously solved [1] the 2d Ising model, and found an exact formula for the free
energy. What he did was assume periodic boundary conditions (or translational invariance),
which simplify the calculations considerably. Then, his results for the free energy holds for
any reasonable large chunk of the square lattice, since the free energy is well-known not to
depend on boundary conditions. This simple but important observation is taught in any course
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on statistical mechanics. It also motivates introducing the dimer model, which we will discuss
at great length in the lectures. One of the most striking property of the dimer model is that it
totally violates the previous well-known fact of life. The free energy of the dimer model does
depend, heavily, on boundary conditions.

1.1 Domino tilings and boundary conditions

Let us introduce the dimer (or domino tiling) model, on the square lattice. Edges connect
nearest neighbors. Dimers are entities that cover edges of the lattice. The model then asks to
cover the lattice with dimers, while following the constraint that each lattice site be touched by
exactly one dimer. We then call dimer covering a valid configuration of dimers on the lattice.
For example, all 5 possible coverings of the 4× 2 square lattice are shown below.

We are of course interested in the thermodynamic limit, that is, dimer coverings of large
M × L lattices. As we shall see shortly the dimer model is exactly solvable; for example, the
partition function has been computed by Kasteleyn [2] and Temperley and Fisher [3]. They
found that the corresponding free energy is

F = −
1

LM
log Z (1)

→−
C
π

(2)

in the limit L→∞, M →∞, L/M fixed. C is the Catalan constant, C/π ' 0.29156. Hence
the number of possible coverings grows extremely fast when L, M are increased.

Examples of dimer coverings on an L × L grid are shown in figure 1. In each picture, a
dimer covering is picked uniformly at random, and drawn using a color code that we explain
now. The lattice is bipartite, which means one can label lattice sites with two colors, black
and white, in such a way that each black (white) lattice point has all its nearest neighbors of
the opposite color. Then, we draw a vertical dimer in blue (resp. yellow) if its bottom part
touches a black (resp. white) vertex. Similarly green (resp. red) dimers have their left part
that touches a black (resp. white) vertex. At this stage the only purpose of this convention is
to make the pictures look nicer. For the same reason we also make the dimers much thicker,
so that they fill all space, and the underlying lattice cannot be seen anymore.

Figure 1: Thermodynamic limit

Dimer configuration chosen uniformly at random, in the set of all possible coverings of
the L × L square lattice {(x , y) ∈ N2, x < L, y < L}. From left to right, L = 16,64, 256.
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Much later, in 1991, Ref. [4] studied dimer coverings of a peculiar region

AL = {x , y ∈ Z+ 1/2 , |x |+ |y| ≤ L}, (3)

which they called Aztec diamond. They showed using combinatorial methods that the partition
function, or number of dimer coverings, is given by the remarkably simple formula

Z = 2L(L+1)/2 . (4)

Therefore, there are much less available dimer coverings on the Aztec diamond that there
would be on a regular square grid with the same area. We will see in the following that this
is an effect of boundary conditions, so free energy does depend on boundary conditions for
dimers.

Even more remarkable is the following observation. Draw for reasonably large L a dimer
covering out of the 2L(L+1)/2 available ones, uniformly at random, as we did before. The
corresponding pictures are shown in figure 2. The covering appears only random inside a
region which looks roughly like disk for large L. Outside of the disk the orientations appear
deterministic, with red dimers on the left, blue dimers at the bottom, etc. This is one of the

Figure 2: The arctic circle theorem in action

Dimer coverings of an Aztec diamond of order L, chosen uniformly at random. From
left to right, L = 16,128, 1024. As L increases, dimers appear totally frozen outside a
region, which looks like a disk. There are, however, non trivial long range fluctuations
inside the disk.

most famous instance of what is called the limit shape phenomenon. We will give a more
precise definition of limit shape later on, but for now, let us just introduce the terminology
that we will use in these notes. In the deterministic region dimers are essentially frozen, so
it is called frozen region. In contrast, dimer orientations fluctuate in the fluctuating region,
sometimes also called liquid region. We will see later that correlations functions decay as
power-laws, so the liquid region is critical. The interface between the frozen and liquid region
is called an arctic curve. In the case discussed above, Ref. [5] proved that the arctic curve
becomes an exact circle in the limit L →∞, a result which now goes under the name arctic
circle theorem.

There is no a priori reason why the arctic curve should be a circle or even smooth in this
particular case, this just comes out of a long calculation. Lattice symmetries, however, do
impose that the arctic curve be invariant under rotations by π/2. To illustrate this last point,
one can generalise the model to include “interactions” between dimers. The simplest way to
do that is to put weights favouring (or disfavouring) aligned dimers on a given plaquette [6,7].
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In that case the partition function may be written as

Z =
∑

C
eλNpar , (5)

where Npar counts the number of plaquettes with two dimers parallel to each other, that is,
plaquettes of the form:

or
(6)

Positive (negative) λ corresponds to attractive (repulsive) interactions between the dimers.
For λ 6= 0 the arctic curve is not known analytically, but simulations shown in figure 3 clearly
suggest that the arctic curve is very different from a circle. In fact, a closely related six vertex
model has arctic curves which can be computed [8, 9] and they are not even algebraic in
general. See the bottom part of figure 3 for examples.

To finish this section let us mention that the pictures can be generated using a simple
Markov chain Monte Carlo algorithm, which goes as follows in the free case. Start from any
simple configuration, and then repeat the following lots of times:

(i) Pick a plaquette uniformly at random.

(ii) If it has two horizontal (resp. vertical) dimers such as shown in (6), flip them to get
vertical (resp. horizontal) dimers. Otherwise do nothing.

After lots of updates, the Markov chain will thermalize and show typical configurations, which
were shown above. Of course, the number of necessary updates increases quickly with system
size, so generating the best pictures might take a while for large L. There are more complicated
(but more efficient) algorithms, see e. g. [10,11] for this geometry, and [7] for more general
boundary conditions.

1.2 Detour: a one-dimensional classical Coulomb gas model

The limit shape phenomenon may be illustrated by the following simple 1d model, which
contains the basic ingredients needed to get a inhomogeneous density profile with frozen
region. We consider N particles living in a box B = [−1, 1]. The probability of having the
particles at positions x1, . . . , xN ∈ B is given by

P(x1, . . . , xN ) =
1

ZN (β)

∏

1≤i< j≤N

�

�x i − x j

�

�

β
, (7)

where β is a positive real number. This probability density function may be interpreted as a
Boltzmann weight P(x1, . . . , xN ) =

1
ZN (β)

e−βE(x1,...,xN ), where β is now inverse temperature.
The energy

E(x1, . . . , xN ) = −
1
2

∑

1≤i< j≤N

log(x i − x j)
2 (8)

is the electrostatic energy of a gas of N particles with 2d Coulomb interactions. For this reason
it is often called Coulomb gas1. We will consider two versions of the model:

• The first is the model as stated, with partition function

ZN (β) =

∫

BN

d x1 . . . d xN e−βE(x1,...,xN ). (9)

1By 2d we mean what would be the Coulomb potential, V2(r1, r2) = log 1
|r1−r2 |

, corresponding to solving the
Poisson equation in two dimensions. Unfortunately we live in three dimension, so the real Coulomb potential is
V3(r1, r2) =

1
|r1−r2 |

, even when the particles are stuck to a lower dimensional region.
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Figure 3: Interacting dimers and six vertex model

Interacting dimers on an Aztec diamond of size L = 1024. Left: repulsive interactions
eλ = 0.4. Middle: free dimers eλ = 1. Right: attractive interactions eλ = 3.

Interacting dimers on the Aztec diamond with interaction set only on plaquettes of the
even sublattice. This model can be mapped to the integrable six vertex model with
domain wall boundary conditions (in which case a = b = 1 and ∆ = 1− eλ) [4]. Left:
∆ = 0.4, middle ∆ = 0, right ∆ = −6. The arctic curve is known but complicated
away from the free point ∆ = 0, where we are back to a circle. Here we show in
blue even flippable plaquettes, or odd empty plaquettes (this corresponds to c vertices
in six vertex language). Note the appearance of a third region for negative ∆, where
most vertices are of c type, and correlation functions decay exponentially. This region
is usually called gas.

This is well known from random matrix theory, where it is called (a limit of) the Jacobi
ensemble.

• In the second we impose that the allowed positions for the particles be discrete. The
particles now live in BL = {−1+ 2 j

L−1 j = 0, 1, . . . , L − 1}. The partition function reads

ZN (β) =
∑

x1∈BL

. . .
∑

xN∈BL

e−βE(x1,...,xN ). (10)

This type of models usually go under the name discrete beta ensembles.

We are interested in the average distribution of the charges, in the limit N →∞. In the second
model, we further impose a fixed density d = N/L. Formally, the first may be recovered from
the second by considering a low density limit d → 0. We study the density profile in both
models separately.
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Before proceeding let us point out the following important fact: the interaction is long
range so energy is of order N2, while entropy fluctuations are expected to be of order N .
This is not the standard situation in thermodynamics, where there is typically a competition
between energy and entropy. Here energy dominates, which means the average density profile
(limit shape) can be obtained just by minimising energy. Hence, the precise value of β does
not matter here. Of course, fluctuations on top of the limit shape are still there. They are more
complicated, especially in the discrete case.

1.2.1 The continuous gas

The continuous gas may be treated using standard techniques [12]. Introducing the density
ρ(x) =

∑N
i=1δ(x − x i), the energy may be rewritten, up to an unimportant additive constant

as

E(x1, . . . , xN ) = −
1
2

∫

B2

d xd x ′ log(x − x ′)2ρ(x)ρ(x ′). (11)

[The singularity along the diagonal in the previous equation is integrable]. In the thermody-
namic limit, ρ is expected to become a smooth function. Therefore, finding the equilibrium
distribution of the charges boils down to minimizing the energy functional

E[ρ] = −
∫

B2

d xd x ′ log(x − x ′)2ρ(x)ρ(x ′) (12)

subject to the constraint
∫

B
ρ(x)d x = N . (13)

Handling the constraint can be done by introducing a Lagrange multiplier λ. We consider the
functional

L[ρ,λ] = E[ρ] +λ
�

1−
∫

B
d xρ(x)

�

, (14)

and write down the Euler-Lagrange (EL) equations

δL
δρ(x)

= 0, (15)

∂L
∂ λ

= 0. (16)

The second equation gives back the constraint, while the first reads
∫

B
d x ′ log(x − x ′)2ρ(x ′) +λ= 0. (17)

One can check that ρ(x) = λ
2π log 2

1p
1−x2 is a solution to the above linear integral equation.

Typically, uniqueness is guaranteed by the convexity of the energy functional, which is the
case here. Finally, normalization of ρ yields λ= 2N log2. Hence we get the density profile

ρ(x) =
N

π
p

1− x2
. (18)

This density, called the arcsine law, is integrable but unbounded near x = ±1. This means the
particles tend to accumulate near the two boundaries, a non trivial effect of the long-range re-
pulsion between them. Let us finally mention that this type of problem has been studied for a
very long time, in relation to potential theory as well as orthogonal polynomials. For example,
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Stieltjes observed back in 1885 [13, 14] that the positions of the particles that minimizes the
electrostatic energy (8) on B = [−1, 1] coincide with the zeroes of known orthogonal polyno-
mials2. In this context, the limiting distribution (18) was probably known even before. See
also exercise 1.3.

Figure 4: Limit shapes for the continuous gas
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Top: a typical configuration for N = 16 particles on B. Bottom: density profile for
N = 16 particles (Monte Carlo simulation) and comparison with the thermodynamic
limit (18).

1.2.2 The discrete gas

The discrete model can be treated using a similar method. Introducing the particle den-
sity ρx =

∑

i δx ,x i
, we expect that it becomes a continuous function ρ(x) normalized to

∫

B ρ(x) = 2d in the limit L → ∞, N → ∞, with fixed total density N/L = d. We still
have to minimize the energy functional E[ρ] of (12) with the constraint (13). However, due
to the discrete nature of the problem, density cannot exceed one, since two particles cannot
sit on the same site. This means we get a second constraint

ρ(x)≤ 1 , ∀x ∈ [−1,1]. (19)

This extra constraint is typical for discrete models. The previous solution (18) is unbounded,
which means a new analysis is needed. The solution to minimizing (12) with the constraints
(13) and (19) was found in Ref. [17]. Let us first give the result and comment on it later. The
limit shape is given by

ρ(x) =

¨

2
π arcsin

�

dp
1−x2

�

, |x |<
p

1− d2

1 ,
p

1− d2 < |x |< 1
. (20)

2More precisely, the equilibrium positions for the pdf
∏N

i=1(1+ x i)a(1− x i)b
∏

j>i(x i − x j)β on BN are the N

roots of the polynomials P(2βa−1,2β b−1)
N (x), where the P(p,q)

N are the Jacobi polynomials, which are orthogonal on B
with respect to the measure dµ(x) = (1+ x)p(1− x)qd x (p, q > −1). The interested reader may consult [15] and
references therein for a broader overview. The case α= β = 0 which we are dealing with here is degenerate [16],
since the measure is not integrable; in this case the equilibrium positions of the particles are the zeroes of the
polynomial (1− x2)P(1,1)

N−2 (x).
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As in the continuum the Coulomb interaction wants to make the density very large close to
the edge. This is not possible, due to the constraint (19). Hence, the system compromises by
having the maximum allowed density over a larger region [−1,−

p
1− d2]∪ [

p
1− d2, 1]. In

this region the position of the particles become deterministic, we call this the frozen region in
analogy to dimers. The other region is fluctuating. See figure 5 for an illustration.

Figure 5: Limit shapes for the discrete model

0
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Top: typical configurations for N particles on L = 64 sites. (a) N = 48 (b) N = 32 (c)
N = 16. Bottom (d): Corresponding density profiles and expected limit shapes (20) in
the thermodynamic limit.

Let us now explain heuristically how to find the solution. The crucial point is that the
second constraint (19) may be temporarily lifted by assuming that the density equals one in
a given region x ∈ [−1,−r] ∪ [r, 1] close to the edges. Then, we have to minimise the new
functional

Er[ρ] = −
∫ r

−r
d x

∫ r

−r
d x ′ log(x − x ′)2ρr(x)ρr(x

′) +

∫ r

−r
ρr(x)V (x)d x + Er , (21)

where the potential

V (x) = −

�

∫ −r

−1

+

∫ 1

r

�

d x ′ log(x − x ′)2 (22)

simply comes from the interaction of the charges in [−r, r] with the charges in the frozen
region (in (21) there is also an additive constant Er which accounts for self-interaction in the
frozen region). The constraint on the new equilibrium measure now read

∫ r

−r
ρr(x)d x = 2d − 2(1− r), (23)

ρr(x) ≤ 1. (24)
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Now, depending on the value of r, the solution of the minimization problem without imposing
the second constraint may well satisfy (24) anyway (e. g for r close to one it does not, while for
r = 1− d it trivially does, since there is no mass left in ρr). The solution to the minimization
problem (21) with only constraint (23) can be found by writing down the Euler-Lagrange
equation once again. Denoting by ρr the solution, we choose the value

r0 = sup{r ∈ [0,1] , ρr(x)≤ 1 ∀x ∈ [−r, r]} . (25)

In words, this is the largest r such that extra constraint is automatically satisfied. The solu-
tion to the minimization of (21) with constraint (23), (19) is then ρ(x) = ρr0

(x) if |x | < r,
ρ(x) = 1 otherwise. This yields (20). For a rigorous proof, we refer to [17].

To finish this section, let us finally mention that some examples of limit shape problems in
2d statistical mechanics can also be mapped to a similar discrete Coulomb gas problem in 1d,
as was pointed out in [18]. In the following we will not pursue this direction, however, and
aim for a more general hydrodynamic theory.

Plan of the rest of the lectures. It looks like a good idea to try and apply the general ideas
we used to solve the discrete Coulomb gas model. However, it is not clear at this stage what
we should minimize exactly to obtain the limit shapes in general. This question is addressed in
section 2, where we introduce the height mapping and use that to understand which functional
to minimize. Then, we actually compute this in section 3, for dimers on the hexagonal lattice.
We use the transfer matrix formalism, and a mapping onto free fermions (see appendix A for
a description of free fermions techniques, if need be). The choice of the hexagonal lattice
is motivated by technical simplicity. The square lattice is similar, and left to the reader (see
exercises 4.4 and 4.5). Then we use that to find the limit shapes in section 4. Section 5 deals
with exact lattice calculations, which allows to recover the arctic curves in a few selected cases.
Finally, we discuss a few related and more complicated problems in section 6, and conclude.

EXERCISE 1.1 COVERINGS OF AN AZTEC DIAMOND [4]

Try (and perhaps fail) to show that (4) is correct.

EXERCISE 1.2 FRACTIONAL QUANTUM HALL EFFECT

Laughlin famously guessed [19] that the experimental observation of fractional plateaus
by Tsui et al [20] may be understood by the model wave function
Ψ(z1, . . . , zN ) =

∏

1≤i< j≤N (zi − z j)β/2e−
1
2

∑

|zi |2 where β/2 is a positive integer, the
zi ∈ C, and they got the Nobel prize after that.

1. By interpreting |Ψ(z1, . . . , zN )|2 as a pdf for the N particles, what is the limit shape
in the limit N →∞?
2. The N particles are now constrained to live on the sites of a L× L square lattice with
mesh a = 1 (the origin z = 0 is set at the barycenter). What is the limit shape in the
limit N →∞ with fixed density d = N/L2 when d is not too large? What happens at
higher densities?
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EXERCISE 1.3 ZEROS OF ORTHOGONAL POLYNOMIALS [STIELTJES 1885]

Consider the electrostatic energy considered before, with two extra charges at positions
±1, E(x1, . . . , xN ) = −

∑

i< j log |x i − x j| − a
∑

i log |1 + x i| − b
∑

i log |1 − x i| on B for
a, b ≥ 0. For large N , the limit shape does not depend on a, b.

1. Why? In the following, we set a = b = 1/4.
2. Write down a system of equations satisfied by the positions y1, . . . , yN that minimise
the electrostatic energy.
3. Let pN (x) =

∏N
i=1(x − yi). Show that the previous system is equivalent to

2
p′′N (yi)
p′N (yi)

+ 1
1−yi
− 1

1+yi
= 0 ∀i = 1, . . . , N .

4. Show that (1− x2)p′′N (x)− x p′N (x) = −N2pN (x). Show that pN (cosθ ) = cos(Nθ ).
5. Find the zeroes of pN and recover the limit shape (18) in the limit N →∞.

2 Variational principle

We show in this section that the right quantity to minimise is a variant of the free energy. To
understand this, we first introduce an important ingredient, the height mapping.

2.1 The height mapping

Consider the dimer model on the square lattice. Remember the lattice is bipartite, which means
one can label sites with two colors, black and white, in such a way that each black (white)
lattice point has all its nearest neighbors of the opposite color. To each dimer configuration we
associate a height configuration, as follows. Heights are discrete numbers (integers in some
units, see figure 6) which live on plaquettes (or the dual lattice, which is also square). We pick
a reference point, say the leftmost bottom plaquette, and set its height to zero. Then, turning
counterclockwise around a black (resp. white) vertex, the height picks up +3 (resp. −3) when
crossing a dimer, −1 (resp. +1) otherwise. A dimer configuration with the corresponding
height configuration is shown in figure 6 on the left. Recall the colour code used in these
notes. We draw a vertical dimer in blue (resp. yellow) if its bottom part touches a black (resp.
white) vertex. Similarly green (resp. red) dimers have their left part that touches a black
(resp. white) vertex. Hence crossing a blue dimer from left to right, the height always picks
−3, etc.

At the very end and for later convenience, all heights are remultiplied by π/4: in the
remainder of these notes, heights are therefore elements of π4Z. The mapping is one to one,
and has many nice properties that we will investigate in the following. For the moment let
us just say that mapping to discrete heights has a long history in statistical mechanics, which
dates back to Ref. [21,22]. In fact, the model studied in these references can be mapped onto
dimers on the hexagonal lattice, which we will study later on.

2.2 Minimizing the free energy

From the height mapping, we know that dimers like to be in configurations where the height
gradient is close to zero. A good example is provided by a rectangular domain, as illustrated
in figure 6 on the left. Boundary conditions might spoil that, however. The reader can easily
check that the Aztec diamond geometry of figure 2 can be cooked up by imposing the following
boundary condition
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Figure 6: The height mapping for dimers on the square lattice
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Height mapping on the square lattice, in units of π/4. Left: heights corresponding
to a dimer configuration picked uniformly at random. Observe the heights remain on
average quite close to zero. Right: heights corresponding to an alternating boundary
condition with zigzag blue dimers. Some other vertical dimer occupancies are auto-
matically set as a result, those are shown in lighter blue. The corresponding mean
horizontal slope is maximal, ∂xh = π/2. The gradient in the vertical direction is also
automatically set to ∂yh= 0. In fact, in general the slopes satisfy |∂xh|+ |∂yh|< π/2.

at the bottom, and a similar one at the top. The “half-dimers” in the above picture mean that
the edge above is not occupied by a dimer. In that case the slopes are maximal along the Aztec
diamond, and alternate −π/2,π/2,−π/2,π/2 from one boundary to the other.

These extreme boundary conditions play an important role, and are, as we shall see, respon-
sible for the appearance of the arctic circle. Indeed, the number of available dimer coverings
in a given region strongly depends on the average slopes imposed at the boundary, as can
already be guessed by looking at the right part of figure 6.

A way to see this is to use the fact that all possible slopes are allowed when covering a
torus with dimers, as can be seen in figure 7. So consider a `× ` torus (` even), and associate
a weight a = eµ for yellow dimers, 1/a for blue dimers, b = eν for green dimers, 1/b for red
dimers. The corresponding partition function may be written as

Z(µ,ν) =
∑

r

∑

s

Zr,s e
`2
π (rµ+sν). (26)

Above, Zr,s precisely counts the number of dimer coverings in the (r, s) sector, where r is the
mean horizontal slope 〈∂xh〉 and s the mean vertical slope 〈∂yh〉. The total number of dimer
coverings is Z(0,0). Hence Z(µ,ν) encodes all the information about the Zr,s. For example,
the generating function reads for a 8×8 torus (311853312 coverings in total, we will explain
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later how to calculate this):

Z(µ,ν) = 153722916+ 33490432
�

a+
1
a
+ b+

1
b

�

+ 5427224
�

ab+
a
b
+

1
ab
+

b
a

�

+ 550928
�

a2 +
1
a2
+ b2 +

1
b2

�

+ 31232

�

a2 b+
a2

b
+

b
a2
+

1
a2 b
+ ab2 +

a
b2
+

1
ab2
+

b2

a

�

+ 1536
�

a3 +
1
a3
+ b3 +

1
b3

�

+ 6

�

a2 b2 +
a2

b2
+

b2

a2
+

1
a2 b2

�

+ 4

�

a3 b+
a3

b
+

b
a3
+

1
a3 b

+ ab3 +
a
b3
+

1
ab3
+

b3

a

�

+
1
a4
+ a4 +

1
b4
+ b4. (27)

The corresponding free energy is, in the thermodynamic limit,

Figure 7: A possible height gradient on the torus

0 −1 0 3 4 3 4 7 8

1 −2 1 2 5 6 5 6 9

0 −1 0 3 4 7 4 7 8

−3 −2 1 2 5 6 5 6 5

−4 −1 0 3 4 3 4 3 4

−3 −2 1 2 1 2 1 2 5

−4 −1 0 −1 0 −1 0 3 4

−3 −2 −3 −2 −3 −2 1 2 5

−4 −5 −4 −1 0 −1 0 3 4

A dimer covering of the 8×8 torus, and its height configuration (in units of π/4). The
fact that dimers can wrap around the torus means both r and s can be non zero. The
slopes in this example are r = (8/8)π/4= π/4, s = (−4/8)π/4= −π/8. The dimer
configuration drawn here contributes to the a2/b term in (27). Note that we refrain
from identifying the bottom/top and leftmost/rightmost plaquettes here, for the sake
of the argument.

F(r, s) = − lim
L→∞

1
`2

log Zr,s. (28)

The crucial point is that once r and s are fixed, the resulting free energy does not depend
anymore on the details of the boundary conditions. So we are back to the situation discussed
in the introduction for the Ising model, provided r and s are fixed. This free energy (or ’surface
tension’) has many fascinating properties, and will play a central role in the following. For now
let us just mention that it is minimum at (r, s) = (0, 0); in most cases it is also a convex function.

With the free energy F(r, s) as a given, one way to understand the limit shape phenomenon
is to consider a very large lattice, say L × L, and cut it in several much smaller (say square)
cells of size `× `, where ` is still much larger than the lattice spacing (= 1 for us). Namely,
our system is macroscopic, and we look at it at mesoscopic scales where (i) it can be described
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in the continuum (ii) it is uniform. The total system is then considered to be a collection of
smoothly connected uniform cells, each with its own average boundary gradient ~∇h, which is
imposed by the surrounding cells.

The system will then try to minimize total free energy (maximize number of dimer cover-
ings), by choosing the appropriate slopes in each mesoscopic cell. Hence we need to minimise
the functional (or action)

S0[h] =

∫

D
d xd yF(∂xh,∂yh) (29)

over some domain D. The Euler-Lagrange equations for this variational problem read

∂

∂ x
F (10)(∂xh,∂yh) +

∂

∂ y
F (01)(∂xh,∂yh) = 0, (30)

where we have introduced the notation

F (i j)(r, s) =
∂ i

∂ r i

∂ j

∂ s j
F(r, s), (31)

for the partial derivatives of F , and h = h(x , y). It also possible to add extra constraints in a
similar fashion to what we did in section 1.2.

On physical grounds this variational (or hydrodynamic) principle is expected to hold under
very general conditions, and has been used for a long time in the context of crystal surfaces in
statistical mechanics (see e.g. [22,23]). For dimers the situation is even more favorable, since
the validity of the variational principle is now a theorem [24].

Therefore, the limit shape is given by the solution to the PDE (30) with appropriate bound-
ary conditions. Computing exactly the free energy can also be done [22, 24], we will explain
in the following section how to. It should be stressed, however, that even with an exact ex-
pression for the free energy, solving the PDE for arbitrary conditions is in general a difficult
problem.

2.3 Fluctuations and free field theory

We have so far only discussed the limit shape, which gives the average height field at position
x . There are of course fluctuations on top of that, which are, we argue here, described by a
massless free field theory. Those fluctuations are in particular responsible for the power-law
decay of correlation functions.

Homogeneous case. To discuss fluctuations, let us first consider the simpler case of the
rectangular geometry (or really, any simply connected finite planar domain), for which ∇h is
close to zero on average (see figure 6), and the slopes in the neighborhood of (r, s) = (0, 0)
dominate. Due to lattice symmetry considerations F(±r,±s) = F(r, s) and F(r, s) = F(s, r), so
F (10) and F (01) both vanish, and to lowest non trivial order we have

F(r, s) = F(0,0) +
r2 + s2

2πK
+ o(r2, s2). (32)

So, neglecting higher order corrections, the free energy is determined up to a single unspecified
parameter K > 0. K has many names3, in the following we call it the Luttinger parameter. The

3The inverse of K may be interpreted as a stiffness, for this reason κ = 1/(2K) is called the stiffness. The
terminology compactification radius R2 = 1/K comes from string theory.
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Euler-Lagrange equations for the average height take a simple form in that case:
�

∂ 2
x + ∂

2
y

�

h=∇2h= 0, (33)

so h is a harmonic function with appropriate boundary conditions on ∂ D. The solution is
sometimes called the classical part of the field, and noted hcl. In fancier terms hcl(x , y) is the
harmonic extension of h∂ , its value at the boundary, to D. On top of that, fluctuations may be
handled by writing

h= hcl +
δh
2

, (34)

where δh satisfies Dirichlet boundary conditions on ∂ D (the factor 1/2 is set to match standard
conventions later on). Plugging in (32) and dropping F(0,0) yields an action

S[h] = S0[hcl] + Sfluc[δh] , (35)

where the linear term drops out due to the Euler-Lagrange equations, combined with the fact
that δh obeys Dirichlet boundary conditions (integrate by parts). The action for the fluctua-
tions is

Sfluc[φ] =
1

8πK

∫

D
d xd y (∇φ)2. (36)

The path integral formulation reads

Z = e−S[hcl]

∫

[Dδh]e−Sfluc[δh], (37)

where δh satisfies Dirichlet boundary conditions, or, equivalently,

Z =
∫

[Dh]e−S[h], (38)

where h= hcl at the boundary.
The above is the Euclidean action of a massless free (or Gaussian) scalar field in two di-

mensions, in the following we will simply refer to it as the free field4. It is always desirable to
visualize things, see figure 8 for two realizations of the discrete height field for dimers. The
reader can then try to imagine what this becomes in the continuum limit.

Before heading to the inhomogeneous case several important remarks are in order.

• The argument we just provided is quite standard [25]; in fact, the very reason field
theory techniques may be applied to statistical or condensed matter systems is that this
type of reasoning often just works, and provides exact results for critical exponent and
long range correlation functions. However, a proper derivation from a concrete lattice
model is very often a difficult task.

• As can be seen from the figure, height field configurations look wilder and wilder as
system size is increased. In particular, its variance at any point can be shown to diverge
as ≈ log L. The free field is, in fact, a singular object. On a simply connected bounded
planar domain D a possible mathematical definition is as follows. Consider (minus)
the Laplacian −∇2 on D with Dirichlet boundary conditions. We write its normalized

4It has many other names: free (compact or not) boson, bosonic string, (Tomonaga-)Luttinger liquid, c = 1 con-
formal field theory. In mathematics the names massless Gaussian field, Gaussian free field or the related Gaussian
multiplicative chaos can also be found.
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Figure 8: Discrete height field
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6

Discrete height configuration corresponding to a uniform random covering on an L× L
square lattice (free boundary conditions, which means the average slopes are zero).
Left: L = 16. Right: L = 64. At a given point the variance of the field can be shown to
grow like ≈ log L.

eigenfunctions as uk(x , y) and the corresponding eigenvalues as λk (they are all strictly
positive). Then introduce

ϕ(x , y) =
∞
∑

k=1

ξk uk(x , y), (39)

where the ξk are independent centered Gaussian random variables with variance
E[(ξk)2] = 1/λk. This implies that E[ϕ(x , y)ϕ(x ′, y ′)] =

∑

k
1
λk

uk(x , y)uk(x ′, y ′) is
the Green’s function for the laplacian on D with Dirichlet boundary conditions, which
means E[ϕ(x , y)ϕ(x ′, y ′)] = 〈δh(x , y)δh(x ′, y ′)〉, where the braket on the right de-
notes expectation value with respect to the path integral (37). At the level of correlations
functions, δh and ϕ are the same object.

The series (39) in fact, converges almost nowhere. Therefore, the free field has to be seen
as a random distribution, not a random function5. The interested reader can have a look
at References [26–31] for a mathematical treatment of the free field. For computations
what matters is to be able to integrate against smooth test functions, so this is not a
problem. It is, however, nice to keep in mind that the free field is fundamentally a
singular object.

• For the dimer model we will see that K = 1, and relate this to the fact that dimers map to
free fermions. Adding local interactions (say on plaquettes, as described earlier) affects
the free energy and changes the Luttinger parameter over a wide range in parameter
space [6, 7]. This result is proved [32, 33] for sufficiently small (but finite) interaction
strength. When interactions are too strong, the system typically undergoes a roughening
transition [21,34] of Berezinsky-Kosterlitz-Thouless (BKT) type [35,36] to a phase where
the height field becomes regular. In that case long range power law correlations are lost.

• The reader might be tempted to point out that the boundary heights are flat on average
for the dimer model in a rectangular domain, so that it is reasonable to impose Dirichlet

5This follows from the Kolmogorov’s three-series theorem for convergence of random series. A necessary condi-
tion for convergence of

∑

k Xk in our case is that
∑

k var Xk <∞, which is not the case since the eigenvalues of the
laplacian decay as k−2/d in d spatial dimensions. The analogous construction in one spatial dimension converges
almost surely, and defines a brownian bridge (Brownian motion on [0, 1] conditioned to come back to its starting
point) on [0,1]. So things get worse in higher dimensions.
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boundary conditions h∂ = 0, and safely conclude that hcl(x , y) = 0 ∀x , y ∈ D since this
is the only harmonic function satisfying the boundary conditions. This is not quite true,
in fact the correct boundary average heights alternate (±π/8), and this slight change has
an impact on some observables in the continuum limit. hcl is calculated in exercise 2.2.

• The action (36) is one of the simplest example of a conformal field theory. This becomes
transparent when rewriting the action in terms of complex coordinates z = x + i y ,
z̄ = x − i y , in which case S = 1

4πK

∫

dzdz̄(∂zφ)(∂z̄φ). One can easily check that the
action is invariant under any transformation z 7→ g(z), z̄ 7→ ḡ(z̄), where g ( ḡ) is any
holomorphic (antiholomorphic) function. All such transformations preserve angles lo-
cally, they are conformal. The action (36) is then conformaly invariant. Conformal field
theory is a vast subject, we will barely scratch the surface in these notes. We refer
to [37–39] for reviews.

Inhomogeneous case. The inhomogeneous case is slightly more complicated, due to the
fact that the classical solution solves a more complicated PDE (30). The free energy is still
expected to be a strictly convex function, at least over a wide range of slopes. This means the
determinant of the Hessian matrix is strictly positive. This allows to still define the Luttinger
parameter, as

1
πK(r, s)

=
Æ

det H[r, s], (40)

where H is the Hessian matrix

H[r, s] =

�

F (20)(r, s) F (11)(r, s)
F (11)(r, s) F (02)(r, s)

�

. (41)

The (inverse) of the Luttinger parameter tells us how convex free energy is, so still measures
stiffness. The smaller the K the more energy slope fluctuations on top of the classical solution
will cost. By repeating the same arguments as before, we get

S[h] = S0[hcl] + Sfluc[δh], (42)

with

S0[hcl] =

∫

D
d xd yF(∂xhcl,∂yhcl) (43)

and

Sfluc[φ] =
1
8

∫

d xd y(∂xφ ∂yφ)H[∂xhcl,∂yhcl](∂xφ ∂yφ)
T . (44)

This can be written in covariant form as

Sfluc[φ] =
1

8π

∫ p

det g
K

gab(∂aφ)(∂bφ) , (45)

where g = H−1 is an emergent metric. It is a priori non flat, since H = H[r, s] depends on x , y
through r = ∂xhcl(x , y), s = ∂yhcl(x , y). What we just wrote is an action for the fluctuation
δh in a curved metric, which itself is determined from the limit shape hcl(x , y). A sample of
the discrete height field is shown in figure 9, and illustrates what we just said.

• In the covariant form of the action (45) K = K(∂xhcl(x , y),∂yhcl(x , y)), so the Luttinger
parameter depends on position in general. This has important conceptual consequences,
in particular it means that conformal invariance is broken in the general inhomogeneous
case. For dimers we will see in fact that K = cst = 1, and explain this as a general
property of models that map to free fermions.
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Figure 9: Discrete height field on the Aztec diamond

Discrete height configuration on a Aztec diamond of order L = 72. Left: front view.
Right: top view. The average height is of order L, while fluctuations are of order≈ log L,
as before.

• The argument leading to (44) is appealing but oversimplified, for the following reason.
As in the homogeneous case, we have used the EL equations to get rid of the linear term
in the expansion. However, it is important to keep in mind how all those terms scale with
L. The quadratic term is subleading (by 1/L) compared to the linear one, and EL only
implies that the leading part of the linear term vanishes, but does not tell us anything
about the lower order part, which would potentially break the quadratic nature of the
action. As explained in Ref. [40], a more precise argument considers the dependence of
the free energy on higher derivatives ∂ 2h of the height field. Then, redoing the previous
steps leads to a quadratic action identical to (44), albeit with an extra (1/L subleading
compared to the limit shape) contribution to the average of the height field. This is not
shocking if one compares to the homogeneous case, where the limit shape is zero to
leading order, but the classical solution hcl is O(1) and still matters.

• This is as far as we can go without knowing the specific form of the free energy. We
compute it in the next section in the simplest example, that is dimers on the honeycomb
lattice.

• Of course, obtaining exact expressions for correlations on the lattice are also very much
desirable, to check our hydrodynamic assumptions and their limitations. This approach
is discussed in section 5.

EXERCISE 2.1 SAMPLE OF THE FREE FIELD

Using your favorite programing language, draw an (approximate) sample of the free
field on a rectangle [0,π]2 with Dirichlet boundary conditions.

EXERCISE 2.2 THE EVEN-ODD EFFECT [INSPIRED BY [41–45]]

We consider interacting dimers on the Lx × L y square lattice, in the rectangular (fig-
ure 6) and cylinder geometries. Lx is assumed to be even, while L y can be either even

(“even case”) or odd (“odd case”). We wish to compute R(α) = Z(Lx ,L y )Z(Lx ,L y )
Z(Lx ,L y+1)Z(Lx ,L y−1) for
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even L y in the limit Lx , L y → ∞ with fixed aspect ratio α = L y/Lx . To do that we
assume that the only relevant contribution to the ratio of partition functions is that of
the classical part e−S0[hcl], with the action (43), meaning contributions from fluctuations
are the same for even and odd.
1. Explain R(α) = O(1) from physical arguments. Surprisingly, it turns out that
R(α) 6= 1, see below.

We deal with a cylinder of circumference Lx and height L y first.
2. What are the possible height differences between top and bottom contributing to
Z(Lx , L y) for even L y? Same question for odd L y .
3. For each case, find the set of harmonic functions on the cylinder, that implement
these height differences. [Hint: those are really simple functions.] Show then that

Rcyl(α) =

∑

n∈Z e−πn2/Kα

∑

n∈Z e−π(n+1/2)2/Kα
.

We now treat the (more technical, use Maple/Mathematica) case of a rectangle.
5. Compute the average heights on all sides in the even and odd case.
6. Show that the real and imaginary parts of a holomorphic function are harmonic.
7. Show that the Dirichlet energy

∫

D d xd y(∇he)2−(∇ho)2 is invariant under conformal
maps.
The conformal map from the upper-half plane H = {z, Im z > 0} to D is given by the
Schwarz-Christoffel map w(z) =

∫ z d tp
1−t2

p
1−k2 t2 , 0 < k < 1, where k = k(α) depends

on α. The points z = −1/k,−1,1, 1/k are mapped to the top left, bottom left, bottom
right, top right vertices respectively.
8. Find the harmonic functions φe,o(u, v) in the upper-half plane that implement the
boundary conditions along the real axis. [Hint: with z = u+ iv, arg z = Im log(z)]

9. Show that S[he] − S[ho] =
1

4K log 1−k
1+k , which means [Rrect(α)] =

�

1+k(α)
1−k(α)

�1/(4K)
.

Working out k(a) from the map w(z) leads to

Rrect(α) =

� ∑

n∈Z e−παn2

∑

n∈Z(−1)ne−παn2

�1/(2K)

.

For free dimers (K = 1) the result can also be extracted from the lattice [41].
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3 Transfer matrix for dimers

We show here how the dimer model is equivalent to a system of free fermions, through the
transfer matrix formalism. Before explaining the mapping a few remarks are in order. First,
the method we present is not the only one. The most widely used for dimers relies on work
of Kasteleyn [2], who was the first to solve the model, expressing e.g. the partition function
for dimers on planar graphs as Pfaffians (see also [3]). In particular, many results on the
mathematical side rely almost exclusively on Kasteleyn theory. The two methods are not that
different, see e.g. Ref [46], and lead to essentially the same results. Our choice has the
advantage of connecting to techniques better known to physicists, in particular free fermions,
similar to the (simplified version [47,48] of) the Onsager transfer matrix [1] of the Ising model.
This choice is also motivated by possible generalizations to interacting integrable systems such
as six vertex model, where the transfer matrix method cannot really be avoided. The first
mapping of dimers onto free fermions is due to Lieb [49]. The version we present here is
slightly different, and leads in a transparent way to a Hermitian transfer matrix with conserved
number of particles, in the spirit of Refs. [7, 50, 51]. For simplicity, we mainly focus on the
dimer model on the hexagonal lattice. The square lattice is similar, and worked out in exercise
4.4.

3.1 Reminder on the transfer matrix formalism

In this whole section we generalise the honeycomb dimer model slightly by putting alternating
weights . . . , 1,u, 1, u, . . . for horizontal dimers along a given horizontal line (see figure 10,
where the lattice is drawn as a brick wall). The first important observation is that a given dimer
configuration on the lattice is uniquely determined by the occupancies along vertical edges, so
we may completely ignore the occupancies of horizontal ones. Put now a 0 on vertical edges

Figure 10: Transfer matrix for dimers on honeycomb

|011001〉

〈101010|

T

T ′

T

T ′

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

(L = 6)× (M = 4) hexagonal lattice. An example of dimer covering (dimers are thick
blue lines). We see the occupancy of the top and bottom vertical edges as imposed. In
thinner dark red are drawn the vertical edges not occupied by dimers, those become
particles (1) in the following, while real dimers are holes (0).

occupied by a dimer (shown in thick blue on the figure), and a 1 otherwise (thinner darkred).
We see the ones as a collection of particles propagating upwards, from bottom to top. We then
associate a basis vector to the vertical dimers occupancies along a given horizontal line. For
example for L = 6 in the picture, to the bottom line configuration 011001 we associate the
vector |011001〉. The scalar product is 〈C|C′〉 = 1 if the two line configurations C and C′ are
the same, zero otherwise. There are 2L possible line configurations.
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Imagine now that it is possible to find a 2L × 2L matrix T , called the transfer matrix, such
that 〈C|T |C′〉= un if the configurations of two successive horizontal lines are compatible when
stitched together –meaning they form a valid dimer covering– and zero otherwise. Here n is
the number of horizontal dimers with a u weight when stitching the two horizontal lines.
Then the partition function on the L × M lattice is simply Z = 〈top|T M |bottom〉, where 〈top|
and |bottom〉 are the bras and kets corresponding to the the top and bottom configurations
respectively.

Proof. 〈top|T M |bottom〉=
∑

C1,...,CM−1
〈top|T |CM−1〉 〈CM−1|T |CM−2〉 . . . 〈C1|T |bottom〉. Each

element in the sum is one for valid configurations, zero otherwise, so this just counts the
number of dimer coverings compatible with the top and bottom boundary condition. It is also
possible to require the bottom and top boundaries to coincide (periodic boundary conditions),
in which case Z = Tr T M .

Here we actually need two transfer matrices T and T ′, since the rule changes depend-
ing on the parity of the row considered. Let us again consider the example in the figure.
With a natural labeling of the edges 1, . . . , L = 6 from left to right, the bottom configura-
tion is |bottom〉= |011001〉, and T |011001〉= |010101〉+ |011001〉+ |001101〉, but we have
T ′ |011001〉= |011001〉+|101001〉+|110001〉+|011010〉+|101010〉+|110010〉 6= T |011001〉.

3.2 Dimers as free fermions

It is important to realize that both transfer matrices (TMs) preserve the number of particles,
so those are block diagonal, each block indexed by the number of particles (or ones).

Transfer matrix in the zero particle sector. One can easily check that T, T ′ act as identity
in this sector, namely T ′ |00 . . . 0〉= |00 . . . 0〉= T |00 . . . 0〉.

Transfer matrix in the one particle sector. This one is not much more difficult. The corre-
sponding matrix elements are Ai j = δi, j + uδi, j+1, A′i j = δi j + uδi+1, j , where

Ai j = 〈0 . . . 0 1
︸︷︷︸

i

0 . . . 0|T |0 . . . 0 1
︸︷︷︸

j

0 . . . 0〉 . (46)

Here i, j are the indices corresponding to the position of the (unique) one. A′ is similar.

Full Transfer matrix. For more particles the rules become more cumbersome, due to the
dimer hardcore constraint, which prevents two 1 from occupying the same site. This is where
the power of the free fermion formalism comes in. The reader not well acquainted with these
techniques is invited to have a look at the self-contained introduction in appendix A, which has
everything needed to understand the present lectures. If you already know (174), however,
chances are you don’t need to read it.

First, let us represent vectors |C〉 using the fermion formalism. We use fermions operators to
represent all states. For example for L = 4, we have |1101〉= c†

1c†
2c†

4 |0〉, where |0〉= |0000〉 is
the fermion vacuum. For any dimer configuration C, the associated ket reads |C〉= c†

i1
. . . c†

in
|0〉,

where the i1 < . . . < in are the positions of the n particles (the n ones) in the configuration
C. Note that since fermions anticommute, applying the operators in a different order might
generate undesirable minus signs, e.g. c†

1c†
2 |0〉= −c†

2c†
1 |0〉.

The previous results read T |0〉 = |0〉 and Tc†
i |0〉 =

∑

j A jic
†
j |0〉. Now the main claim is
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(see e.g. [25])

T = exp

 

L
∑

i, j=1

(log A)i jc
†
i c j

!

(47)

provided the logarithm of A makes sense. [For T ′ just replace A by A′ in (47)]. Hence both TMs
are the exponential of a Hamiltonian that is quadratic in the fermions operator, a free fermions
Hamiltonian.

Sketch of the proof. It goes in two steps. First, let us show that a sufficient condition for a
good TM is that

T |0〉= |0〉 , (48)

Tc†
i =

 

L
∑

j=1

A jic
†
j

!

T. (49)

This obviously works for n = 0,1 particles. One then needs to determine the action on states
c†

i1
. . . c†

in
|0〉, i1 < . . .< in in the n-particle sector, for n= 2, . . . , L. It is obtained by commuting

T successively with all fermions operators using (49), and then using (48):

Tc†
i1

. . . c†
in
|0〉=

∑

j1,..., jn

A j1 i1 . . . A jn in c†
j1

. . . c†
jn
|0〉 . (50)

The sum generates all possibilities for the particles to go upward-left or upward right. The
jumps are not independent however, if two particles go to the same site i, the corresponding
contribution is proportional to c†

i c†
i = 0, which means fermion operators effectively enforce

the dimer hardcore constraint. [This observation also justifies the terminology free fermions:
the particles interact only through the Pauli exclusion principle, which prevents two fermions
from being in the same state (occupy the same site). In that sense free fermions are as free
as fermions can ever be.] Importantly, nonzero contributions to the sum in (50) are still all
ordered, since only nearest neighbor jumps are allowed in A. Hence all valid configurations
are counted with the correct (+) sign.

The second step is to realize that (47) satisfies (48), (49). This is essentially formula (171)
in appendix A, go there for the proof.

Various subtleties.

a) The reader might be worried that the matrices A, A′ contain Jordan blocks, so are not
diagonalizable. While the derivation does not require A, A′ to be diagonalizable, this is
still a nuisance. An easy fix is to consider T ′T and call it the transfer matrix. Using the
identity (173) we have

T ′T = exp

 

∑

i, j

(log B)i jc
†
i c j

!

, B = A′A. (51)

B (and log B) are now symmetric, so the Hamiltonian inside the exponential is a legiti-
mate quantum mechanical Hermitian operator. In particular, one can use standard band
theory techniques to examine its long range properties. All of them are solely determined
from T ′T , which can be considered to be the true transfer matrix. In the following, we
call T ′T the transfer matrix for the dimer model.

22

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.26


SciPost Phys. Lect.Notes 26 (2021)

b) Care must be taken when implementing periodic boundary conditions. Indeed,
Tc†

L |0〉 = (c
†
L + c†

1) |0〉, but it is incorrect to write Tc†
2c†

L |0〉 = (c
†
2 + c†

3)(c
†
L + c†

1) |0〉, since
this equals c†

2c†
L |0〉− c†

1c†
2 |0〉+ c†

3c†
L |0〉− c†

1c†
3 |0〉. Indeed, remember the correspondence

with the stat mech model imposes that fermion operators be applied in order. PBC spoil
that natural order when the number of particles is even. Hence the transfer matrix has
to satisfy, Tc†

L =
�

c†
L + (−1)N̂−1c†

1

�

T , where N̂ =
∑L

j=1 c†
j c j is the total fermion number

operator. In practice, this means it is necessary to consider separately even and odd
fermion sectors, in order to keep the quadratic nature of the Hamiltonian.

c) Diagonalization. As explained in appendix A.3, diagonalizing T ′T boils down to diago-
nalizing the L × L matrix B, which is a huge simplification. We obtain

T ′T = exp

�

−2
∑

k∈Ω
ε(k) f †

k fk

�

, (52)

where the ε(k) are the eigenvalues of −1
2 log B, Ω is the set of labels for those, and

f †
k =

L
∑

j=1

v jkc†
j , (53)

where v jk are the normalized eigenvectors of B,
∑

j v jkv jq = δkq. This implies

{ fk, f †
k′}= δkk′ , { fk, fk′}= { f

†
k f †

k′}= 0. (54)

For dimers on the honeycomb lattice with open boundary conditions (OBC) as described
in this section, it is possible to get them explicitly. One possibility is to make the Ansatz
v jk∝ sin(k j+γ), and check that those provide unnormalized eigenvectors of B provided
γ= 0 and sin[k(L+1)]+u sin[kL] = 0. Ω is then the set of the L solutions to the previous
equation in the interval (0,π), and

ε(k) = −
1
2

log
�

1+ u2 + 2u cos k
�

. (55)

The minus signs in (52),(55) are here to mimic usual band theory, where one wants to
minimize energy and look for ground states, the factor 2 to remember that our transfer
matrix T ′T moves by two steps. The case of periodic boundary conditions (PBC) turns
out to be easier, and the reader can check that the set of allowed momenta is

Ωα =
§

(2m+α)π
L

, m= −L/2, . . . , L/2− 1
ª

, (56)

where α= 1 for even N̂ and α= 0 for odd N̂ . This will be used in section 3.5.

3.3 Hamiltonian limit and quantum spin chains

We have just seen that dimers on the honeycomb lattice can be understood as a free fermion
system, with dispersion (55). A similar result holds for the square lattice. For 0 < u < 1, the
dispersion relation is analytic in [−π,π] so leads to a local Hamiltonian, that is, the hoppings
decay exponentially fast with distance. Let us write T (u) = T ′T the corresponding transfer
matrix. It is easy to see that

lim
u→0

T (u)1/u = exp (−H) , (57)
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where H is a free fermion Hamiltonian with dispersion ε(k) = − cos k, that is a tight binding
model with only next nearest neighbor hoppings. As is well known, this model also corre-
sponds to the spin-1/2 XX chain [52]. Eq. (57) is called a Hamiltonian (or Trotter) limit, so
the XX chain is a Hamiltonian limit of dimers on the honeycomb lattice (this works for the
square lattice too, see figure 11).

A way to think of this limit is to consider a finite L×M lattice, and notice that u essentially
controls the hopping rates to the left and right. Then multiply the vertical size by an integer
p and divide u by p. We have a L × (pM) lattice with hopping rate u/p. The limit p→∞ is
nontrivial because while the hopping rate goes to zero, dimers are given more opportunities
to hop since the number of application of the transfer matrix increases. It is also convenient
to make the lattice spacing in the vertical direction proportional to 1/p, so that the distance
between top and bottom stays the same in that limit.

The Hamiltonian limit is in a sense intermediate between discrete and continuous. The
horizontal direction stays discrete, but the vertical one becomes continuous. Hamiltonian
limits are key to the application of integrability techniques to quantum spin chains [53, 54].
To finish this section let us mention the two most important examples of Hamiltonian limits:
the XXZ spin chain is the Hamiltonian limit of the six-vertex model (interacting dimers), while
the Ising chain in transverse field is the Hamiltonian limit of the 2d classical Ising model.

Figure 11: Hamiltonian limit of square dimers

Illustration of the Hamiltonian limit u → 0 for dimers on the square lattice. In that
case u corresponds to the weight of all horizontal dimers. Top left: u = 1. Top right:
u= 1/2. Bottom left: u= 1/4. Bottom right u= 1/8. In this limit the vertical direction
becomes continuous, but the arctic curve x2 + y2 = R2/(1+ u2) stays a circle.

3.4 Connection to the height mapping

The height mapping for dimers on the honeycomb lattice is very similar to that of the square.
Turning counterclockwise around black (resp. white) vertices, the height picks a factor +2
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(resp. −2) when crossing a dimer, −1 (resp. +1) otherwise. As before, we use a color code
to make the mapping more readable: vertical dimers always belong to the same sublattice, so
we color them all in blue. Horizontal dimers are shown either in red or green. The rules are
illustrated in figure 12. For future convenience, we also remultiply all heights by π/3 at the
end, so that heights are integer multiples of π/3.

The relation to the free fermion mapping is as follows. First, notice that the minimum slope
in the horizontal direction correspond to all edges occupied by vertical dimers, so ∂xh= −2π

3 .
The corresponding fermion density is nx = 0. The maximal slope is ∂xh= π

3 and corresponds
to fermion density nx = 1. In the vertical direction, the minimum slope is −π2 while the
maximal is π

2 . Notice again that the two slopes are not independent, ∂yh takes values in
[−kF , kF ], where kF = ∂xh+ 2π/3.
∂xh is simply related to the fermion density, but how do we control ∂yh? The simplest way

to do that is to assign different weights to red and green dimers: starting from now we assign
a weight b to red dimers, and a weight b−1 to green dimers. It is easy to see that the power of
b in the expansion of the partition function allows to determine ∂yh. Then, the corresponding
transfer matrix has dispersion ε(k+iν), where b = eν. Due to ε(−k) = ε(k) the transfer matrix
is still normal and real, but not symmetric anymore.

Figure 12: Height mapping for dimers on the honeycomb lattice
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Height mapping for dimers on honeycomb, drawn as a brickwall. Heights are shown in
units of π/3, as explained in the text. Recall that particles (fermions) are vertical edges
not occupied by a dimer.

The information about heights can also be extracted in a more algebraic way, directly from
the transfer matrix. The operator c†

x cx codes fermion density, and the knowledge of all on-site
densities for all x trivially allows to reconstruct all heights along a given horizontal line, and
the average slope ∂xh. This seems less obvious for ∂yh, but there is nevertheless an operator
which allows to do so. Assuming OBC for simplicity, it is defined as

Jx =
L
∑

i, j=1

Γ
(x)
i j c†

i c j , Γ
(x)
i j =

L
∑

l=x

�

δilδl j − Bil(B
−1)l j

�

. (58)

Using (171), (172), one can show that it satisfies the identity

b
∑

x=a

�

T ′Tc†
x cx(T

′T )−1 − c†
x cx

�

= Jb+1 − Ja (59)

for all a, b ∈ {1, . . . , L}, b ≥ a. This is similar to a continuity equation: the difference in total
fermion number on the segment [a, b] from one horizontal line to the next can be interpreted
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as a current of particles flowing through the endpoints of the segment. Jx is also local, in the
sense that for any analytic dispersion, the Γ (x)i j decay exponentially fast with both |i − x | and
| j − x |. Hence we call Jx the local current.

It is also possible to make global versions of these operators. The particle density
ρ = 1

L

∑

x c†
x cx gives access to the average slope ∂xh, and becomes for L→∞

ρ =

∫ π

−π

dk
2π

c†(k)c(k), (60)

with conventions explained in appendix A.5. The current density J = 1
L

∑

x Jx simplifies for
large L to6

J =

∫ π

−π

dk
2π

iε′(k+ iν)c†(k)c(k), (61)

and gives access to the average ∂yh, as we shall check in the next subsection. Looking at
(61), we immediately see that a non-zero ν is necessary to get a real non-zero current in any
eigenstate of H.

3.5 Torus partition function and exact free energy for free fermions

We have now all the ingredients needed to compute the free energy. The generating function
for all slopes on the L ×M torus is given by

e−2M Lµ/3Z(µ,ν) = Tr
�

e−M
∑

k[ε(k+iν)+µ] f †
k fk
�

. (62)

This can be evaluated in closed form, using formula (170), and being careful about the point
discussed in c). We find

e−2M Lµ/3Z(µ,ν) =
1
2

�

Z+0 − Z−0 + Z+1 + Z−1
�

, (63)

where
Z±α =

∏

k∈Ωα

(1± e−M[ε(k+iν)+µ]) , (64)

where recall that Ωα is given by (56). The reader can check that Ω1 (resp. Ω0) allows to
generate all eigenvalues in the even fermion sector (resp. odd fermion sector). The leading
asymptotic behavior may be determined by picking any7 of the four terms (64). It is then easy
to see that the only terms that matter are those for which the argument of the exponential is
strictly positive. Hence setting M = L for convenience, we obtain

f (µ,ν) = − lim
L→∞

Z(µ,ν)
L2

(65)

= −
2µ
3
+

∫

FS

dk
2π
[ε(k+ iν) +µ] . (66)

6For an infinite system we may analogously define the current operator as Jx =
∑

i, j∈Z Γ
(x)
i j c†

i c j , with

Γ
(x)
i j =

∑∞
l=x

�

δilδl j − Bil(B−1)l j

�

. Now B is an infinite matrix, which can easily be inverted. This leads to the

integral representation Γ (x)i j =
∫ π

−π
dq
2π

∫ π

−π
dq′

2π e−iqi eiq′ j eix(q−q′) 1−e−ε(q+iν)+ε(q′+iν)

1−ei(q−q′) . Then, equation (61) follows from the

identity
∑

x∈Z Γ
(x)
i j =

∫ π

−π
dq
2π e−iq(i− j)iε′(q + iν) which is obtained by applying the L’Hôpistal rule to the previous

equation.
7Except e. g. when u= 1, ν= µ= 0 where Z−0 vanishes identically, since one of the ε(k) is exactly zero. It can

only happen to one term at a time, so does not matter.
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The Fermi sea FS is the set of k for which the real part of the integrand is negative, in our case
it is a single symmetric interval [−kF , kF ]. Therefore, the generating free energy is simply the
ground state energy corresponding to the dispersion ε(k + iν) + µ. One can check that it is
real.

The last step to get the asymptotic behavior of Zr,s is to choose µ,ν in such a way that
the term eµr+νsZr,s dominates in Z(µ,ν). In the thermodynamic limit the corresponding free
energy F(r, s) is given by

F(r, s) = f (µ,ν)−
µr
π
−
νs
π

, (67)

where µ and ν are determined from

∂µF(r, s) = 0, (68)

∂νF(r, s) = 0. (69)

That is, F(r, s) is the Legendre transform of f (µ,ν), with r (resp. s) conjugate to µ (resp. ν).
We finally obtain the following fundamental result

F(r, s) =

∫ kF

−kF

dk
2π
ε(k+ iν)−

νs
π

, (70)

where kF and ν are determined from (r, s) through

r = kF −
2π
3

,

s = −Imε(kF + iν).

(71)

(72)

Hence, the free energy is solely determined from the dispersion relation, extended to the strip
[−π,π] + iR of the complex plane. From this formula it is also obvious that (70) is not spe-
cific to the honeycomb lattice, but applies to any one-band fermion problem, that satisfies
ε(−k) = ε(k). s is also proportional to the mean current 〈J〉 in a Fermi sea eigenstate, since
∫ kF

−kF

dk
2πε

′(k+ iν) = i
π Imε(kF + iν), further justifying the discussion in section 3.4. The result

can also be generalized to several bands problems, but we do not investigate this here. Let us
now compute this in two important examples.

XX chain in imaginary time. Let us start with the simplest, which is the PNG droplet, or
XX chain in imaginary time. The dispersion relation is ε(k) = − cos k, which makes explicit
computations easy. We find

F(r, s) =
s
π

arcsinh
� s

cos r

�

−
1
π

p

cos2 r + s2. (73)

It is shown in figure 13 on the left. Now r = kF − π/2 –notice the difference compared to
dimers– so r ∈ [−π/2,π/2], while s ∈ R. The constraints between r, and s are relaxed in this
limit, except for the fact that the free energy is infinite when r = ±π/2, s 6= 0.

27

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.26


SciPost Phys. Lect.Notes 26 (2021)

Dimers on honeycomb. In this case integration is a little bit more tedious. We obtain after
some algebra

2πF(r, s) = Im
�

Li2(−ueikF−ν) + Li2(−u−1eikF−ν)
�

− kF log u− (kF + 2s)ν, (74)

where recall ν solves (72) and Li2(α) = −
∫ α

0
log(1−t)

t d t is the dilogarithm. The free energy is
shown in figure 13 on the right. To our knowledge, all explicitly known free energies can be
expressed in terms of such dilogarithms [22,24,55].

Figure 13: Examples of free energies

Left: free energy for the XX chain. Right: free energy for dimers on the hexagonal
lattice, shown as a function of kF , s, for u= 3/5).

3.6 K = 1 for free fermions

We are now in a position to compute the Hessian of the free energy, and check our previous
claim that K = 1 in general for free fermions. The calculation presented below is essentially
that of [56]. The first partial derivatives are

F (10)(r, s) =
ε(z) + ε(z̄)

2π
, (75)

F (01)(r, s) =
i(z − z̄)

2π
, (76)

where we have introduced z = kF + iν. Eq. (72), or 2s = i(ε(z)−ε(z̄)) was also explicitly used
to derive the second equation. Now for the second derivatives:

F (20)(r, s) =
(∂rz)ε′(z) + (∂r z̄)ε′(z̄)

2π
, (77)

F (02)(r, s) =
i∂s(z − z̄)

2π
. (78)

F (11) can be computed in two ways, either ∂r F (01)(r, s) or ∂sF
(10)(r, s), so

F (11)(r, s) =
i∂r(z − z̄)

2π
(79)

=
(∂sz)ε′(z) + (∂sz̄)ε′(z̄)

2π
. (80)
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Hence

F (20)F (02) − F (11)F (11) =
i

4π2

�

∂r(z + z̄)
��

(∂sz)ε
′(z)− (∂sz̄)ε

′(z̄)
�

(81)

=
i

2π2
∂s [ε(z)− ε(z̄)] (82)

=
1
π2

, (83)

where we have again used (72) to get the last line. So K = 1, independent on r and s. This
identity holds for any statistical mechanical model which can be mapped onto free fermions.
For more complicated models such as interacting dimers or the six vertex model, K generically
depends both on both r and s (see e. g. [33,40,53]).

EXERCISE 3.1 THE LOG GAS WITH FREE FERMIONS

Letψ(x1, . . . , xN ) =
1

p

ZN

∏

i< j

(x i − x j)e
− 1

2

∑

i V (x i) be a normalized wave function on the

real line, x i ∈ R.

1. Consider the state |Ψ〉 = 1p
ZN

f †
1 . . . f †

N |0〉, where f †
m =

∫

R d x xm−1e−V (x)/2c†(x) and

{c(x), c†(x ′)}= δ(x− x ′). Show thatψ(x1, . . . , xN ) = 〈0|c(x1) . . . c(xN )|Ψ〉. Check that
〈Ψ|Ψ〉= 1.

2. Let d†
k =

∫

d x pk(x)e−V (x)/2c†(x) where pk(x) is a polynomial in x of degree at most
k − 1. Under which condition do we have {dk, d†

q} = δkq for k, q ∈ {1, . . . , N}? We
assume it is satisfied in the following.

3. Show that |Ψ〉= d†
1 . . . d†

N |0〉.

4. Show that 〈Ψ|c†(x)c(x ′)|Ψ〉=
∑N

k=1 pk(x)pk(x ′).
5. Show that E(ρ(x1) . . .ρ(xn)) = det1≤i, j,≤n(〈Ψ|c†(x i)c(x j)|Ψ〉), where the expecta-
tion value E is taken with respect to the pdf |ψ(x1, . . . , xN )|2

4 Solving the minimization problem

From the previous sections, we have now all the necessary ingredients to solve the variational
problem.

4.1 Complex Burgers equations

Recall the EL equations are
∂x F (10) + ∂y F (01) = 0, (84)

which read for free fermions, using (70,71,72),

∂x
ε(kF + iν) + ε(−kF + iν)

2π
− ∂y

ν

π
= 0, (85)

where kF and ν depend on position x , y . It is possible to express kF ,ν in terms of r, s but this
is not necessary. A convenient way to proceed is to introduce

z = z(x , y) = kF + iν, (86)
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as we did before. In terms of those, the EL equation reads

∂x(ε(z) + ε(z̄)) + i∂y(z − z̄) = 0. (87)

Since r, s are by definition partial derivatives of the height field, we also have the continuity
equations ∂y r−∂x s = 0 which may be rewritten as ∂y(z+ z̄)− i∂x(ε(z)−ε(z̄)) = 0. Combining
with (87) yields the (conjugate of each other) equations [56]

i∂yz + ∂xε(z) = 0,

−i∂y z̄ + ∂xε(z̄) = 0.

(88)

(89)

For ε(k) = k2/2 (free Fermi gas), this PDE is called complex Burgers equation, in the following
we refer to (88) as a complex Burgers-type equation. An alternative but equivalent point of
view is discussed in section 4.5.

The interpretation of these equations is very nice. Think of a free fermion system described
by a (boosted) Fermi sea [−kl , kr], where kl,r are the left (or right) Fermi momenta. The

particle density is ρ = kr+kl
2π , while the current is ε(kr )−ε(kl )

2π . Under unitary time evolution,
they satisfy the continuity equations ∂t kl,r + ∂xε(kl,r) = 0. Since ∂xε(k) = (∂x k)ε′(k), this is
essentially the statement that each quasiparticle with momentum k moves at a speed given
by the group velocity v(k) = ε′(k). Now z and z̄ are the (respective) analytic continuations
of kl , kr to the complex plane, in which case the continuity equations are continued by Wick
rotation t = −i y , leading to (88,89). Hence (88,89) can be seen as Wick-rotated continuity
equations.

In fact Ref. [56] proceeds in exactly the reverse order as we just did. Eqs. (88,89) are just
assumed to hold in imaginary time, as the only sensible analytic continuation of the real time
continuity equations. Then, it is possible to find the simplest lagrangian

L= − 1
4π
(z − z̄)(ε(z)− ε(z̄)) +

∫ z

−z̄

dk
2π
ε(k), (90)

for which (88,89) are the EL equations. The reader can easily check that this is exactly the
free energy (70). Here we derived all that starting from the lattice model.

4.2 Complex characteristics

Such equations may be “solved” by the method of complex characteristics. Without entering
too much into specifics (see e.g. [57]), the solution z satisfies

G(z) = x + iε′(z)y, (91)

where G is an analytic function. This result is nothing more than a (nice) parametrisation
of the whole set of solutions. As with all PDE’s, it is very important to specify the boundary
conditions; here those turn out to be enough to determine the desired analytic function G. Said
differently, to each boundary condition (bc) there corresponds an analytic function. However,
finding it from a given bc is, in general, a difficult task. At this stage the reader might be worried
that we did not achieve much from a practical perspective: we mapped the difficult problem
of finding the limit shape onto the difficult problem of determining the analytic function.

Fortunately the situation is not that bad, since there are a few interesting examples where
G can be guessed. Those include the emptiness formation probability setup [56] (see also
exercise 4.1), but the method can also be adapted to a domain wall geometry, as is discussed
below. Note also that in this approach, if the density profile along any horizontal or vertical
slice is known, then G is known, so everything is known.

30

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.26


SciPost Phys. Lect.Notes 26 (2021)

4.3 Introducing the domain wall geometry

A simple way to generate limit shapes is to look at a ’domain wall geometry’ similar to the one
we used to generate the Aztec diamond for square lattice dimers. We consider lattice fermions
on the infinite line Z, and impose the configurations |ψ〉=

∏

x<0 c†
x |0〉 at the bottom and top

boundaries. In height language these boundary conditions correspond to the maximum slopes
∂xh = π

3 for x < 0, ∂xh = −2π
3 for x > 0. The boundary conditions are shown in figure 14 on

the left, while a typical configuration is shown on the right.

Figure 14: Domain wall geometry for dimers on the hexagonal lattice

|ψ〉

〈ψ|

|ψ〉

〈ψ|

T
T ′
T
T ′
T
T ′
T
T ′
T
T ′
T
T ′

y

R

0

−R

Domain wall geometry (left). Right: typical configuration with domain wall boundary
conditions. The particles (fermions) are shown in yellow.

Specific examples with this geometry are worked out in the next subsection. We will see
in particular that the corresponding arctic curve is an ellipse.

4.4 Examples

Here we discuss two examples with boundary conditions that correspond to a domain wall
initial state. We focus on the X X chain first, and then proceed to dimers on the hexagonal
lattice (assuming u< 1).

The XX chain in imaginary time (or PNG droplet [58, 59]). Here ε(z) = − cos z, which
gives ε′(z) = sin z. One can check the right solution for the domain wall geometry takes the
form

R cos z = x + i y sin z. (92)

[This corresponds to G(z) = R cos z]. It is sufficient to check that the boundary conditions are
correct. Indeed, those are set at y = ±R, and read (for y = R)

Re−ikF (x ,R)+ν(x ,R) = x . (93)

The rhs is real, so this imposes kF (x > 0) = 0 and kF (x < 0) = π, which is exactly the density
corresponding to the domain wall boundary conditions. (92) is a quadratic equation, so can
be easily solved. Provided x2 + y2 < R2 it has two simple roots z and −z∗, with

z = arccos
x

p

R2 − y2
− iarctanh

y
R

. (94)
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From this we can compute essentially everything, as we demonstrate now. The density inside
the arctic circle is simply given by ρ(x , y) = ∂x h

π +1/2= 1
πRe z = 1

π arccos xp
R2−y2

, the current

being −Imε(z) = y
p

R2−x2−y2

R2−y2 . The height profile is given by

h(x , y) = −
Æ

R2 − x2 − y2 − |x |arcsin
|x |

p

R2 − y2
, (95)

and the corresponding (minimal) free energy is

F(∂xhcl(x , y),∂yhcl(x , y)) =

p

R2 − x2 − y2

�

−R+ y arcsinh
�

yp
R2−y2

��

π (R2 − y2)
. (96)

See figure 15 for pictures. The total free energy is S0[hcl] =
∫

d xd yF(∂xhcl(x , y),∂yhcl(x , y))
= −R2/2, which means the partition function scales as Z(R) ∼ eR2/2. In fact, we will see in
section 5 that Z(R) = eR2/2 exactly for all R.

Figure 15: Minimisers for the XX chain

Density profile, current, free energy in the fluctuating region, (minus the) height profile
corresponding to the minimiser of

∫

D d xd yF(∂xh,∂yh).

Looking at the edge behavior is also worthwhile. Except near x = 0, y = ±R, the density
profile vanishes with a square-root singularity. The height field in turn vanishes as x3/2, a
result which is known more generally as the Pokrovsky-Talapov law [60].

Hilbert transform and dimers on the hexagonal lattice. For a general dispersion relation
ε(z) = −

∑

p ap cos pz, v(z) = ε′(z), it is easy to see that the right generalisation of (92) reads

−Rṽ(z) = x + i yv(z) , (97)
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where ṽ is obtained from v(z) =
∑

p pap sin pz, by replacing all sin pz by − cos pz. This trans-
formation is called Hilbert transform. Applying this to the dispersion (55) leads to

ṽ(z) = −
u(u+ cos z)

1+ u2 + 2u cos z
. (98)

We also get a quadratic equation, whose solution is

z = arccos

�

(1+ u2)x − Ru2

u
p

(R− 2x)2 − y2

�

− iarctanh
� y

R− 2x

�

(99)

inside the arctic ellipse X 2 + y2 < R2, where X = 1−u2

u x + Ru. It is also possible to compute
everything as we did before, but we refrain from doing so.

Figure 16: Minimisers for dimers on the honeycomb lattice

Density profile 1
π∂xh+ 2

3 , current ∂yh, free energy in the fluctuating region and (minus
the) corresponding height profile.

4.5 Algebraic geometry

Recall the free energy may be put into the form

F(r, s) = f (µ,ν)−
µr
π
−
µs
π

, (100)

where

f (µ,ν) =

∫ π

−π

dk
2π
[ε(k+ iν) +µ] , (101)

and µ,ν are determined from (71,72), namely, as the (double) Legendre transform of the
generating function f (µ,ν). Let us take the honeycomb dimer model as an example. There
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is an alternative (equivalent) way of accessing the generating function, using the Kasteleyn
approach [22,42], which leads to the more symmetric expression

f (µ,ν) =

∫ π

−π

dk
2π

∫ π

−π

dq
2π

log
�

�P(eµ/π+ik, eν/π+iq)
�

� , (102)

where P(z, w) = z + w + 1. The reader can check that the two expressions match, using
∫ π

−π
dθ
2π log(α + βeiθ ) = log max(|α|, |β |). In a sense, the transfer matrix approach does the

integral over q for free in (102), but depending on context, the symmetric form can be nicer,
and this is the way free energy is calculated in the mathematical literature, see e.g. [24].
The polynomial P essentially encodes the lattice, more complicated ones leads to higher order
polynomials, for example P(z, w) = 1+z+w−zw for the square lattice. In Kasteleyn’s approach,
P is related to the determinant of the Kasteleyn matrix.

In algebraic geometry context, f (µ,ν) as defined is (102) is called the Ronkin function
of the polynomial P(z, w) = z + w + 1, and the free energy F(r, s) is then its Legendre dual.
The dual takes values inside a polygon of allowed slopes, which is the Newton polygon of the
polynomial P. One can also define the Amoeba of the algebraic curve P(z, w) = 0, as the set

A(P) = {(log |z|, log |w|) ∈ R2, P(z, w) = 0}, (103)

namely, the projection of the algebraic curve (in C2) P(z, w) = 0 to R2 by the map
(z, w) 7→ (log |z|, log |w|).

Now, from general algebraic geometry machinery, the Ronkin function is convex, and linear
in the complement of the Amoeba. The complement is an union of disjoint simply connected
pieces, which correspond to frozen regions [22]. Under the Legendre duality each component
of the complement is mapped to a single point of the Newton polygon. One can also show
that the Hessian of the Ronkin function is constant detHess(R) = π2 for any point inside the
Amoeba. This is interpreted as a Monge-Ampère equation. By Legendre duality this implies
Hess(F) = 1/π2, so K = 1 in the fluctuating region. This result happens to be a characterisa-
tion of algebraic curves known as Harnack curves, so the algebraic curves one gets from dimer
models are always Harnack. The interested reader may have a look at references [57,61,62]
for a much more precise discussion.

Hence, the statement “The free energy of the dimer model is the Ronkin function of a
Harnack curve, so satisfies a Monge-Ampère relation for any point in the Amoeba” translates
for us into the statement “Dimers map to free fermions, so bosonising the fermions we get
K = 1 in the fluctuating region”. A nice illustration of the two different types of jargons.

4.6 Edge behavior

The hydrodynamic solution gave z = z(x , y) = kF+iν from which the limit shape follows. Our
aim is to provide a heuristic derivation of the universal edge behavior near the arctic curve. To
do that, we look at the particular case where ν (or the current) is zero, which occurs at least in
the middle at y = 0 in all the examples we discussed. Let us emphasize that the argument we
present here may be generalized to ν 6= 0. However, the discussion would involve left/right
ground states of non-Hermitian Hamiltonians, which would obscure the argument slightly. We
now assume that z(x , y) = kF (x , y) is known from the hydrodynamic solution and happens
to be real. The first claim is that the correlations around a given point (x , y) are those of the
ground state of the Hamiltonian

H =

∫ π

−π

dk
2π

�

ε(k) +µ
�

c†(k)c(k), (104)

where µ is set such that ε(kF ) = −µ, to ensure that kF be the Fermi momentum.
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Close to the arctic curve the density goes to 0 or 1, let us focus on the case of vanishing
density. This means kF goes to zero, and it is possible to expand the dispersion around k = 0.
Since ε(−k) = ε(k), we have ε(k) = ε(0) + 1

2ε
′′(0)k2 +O(k4), and we get the effective edge

Hamiltonian

Hedge =

∫

R

dk
2π

1
2
ε′′(0)

�

k2 − k2
F

�

c†(k)c(k). (105)

Now how does kF depend on x , y close to the edge? The edge corresponds to the case where
two (or more) solutions zs and −z∗s to the hydrodynamic equation

x + i yε′(z) + Rε̃′(z) = 0 (106)

coalesce, so that we get a double root or higher. Generically this root will be only double,
meaning ε′′(0) 6= 0. Writing xa(y, R) for the arctic curve, and setting x = xa − x̃ , we get that,
generically

kF (x)∼ α

√

√ x̃
R

(107)

for some coefficient α that depends on xa/R. (for example for the domain wall XX chain
α=
p

2). Therefore, k2
F behaves linearly in x̃ , close to the edge.

Now what are free fermions with k2 dispersion? This is just a free Fermi gas in the con-
tinuum, sometimes encountered via its relation to the Tonks-Girardeau gas in cold atom sys-
tems [63]. Making crudely the substitution k → −i d

d x̃ and undoing the Fourier transform
yields the Hamiltonian

Hedge∝
∫

R
d x̃ c†( x̃)

�

−
d2

d x̃2
+
α x̃
R

�

c( x̃), (108)

that is free Dirac fermions {c( x̃), c†( x̃ ′)} = δ( x̃ − x̃ ′), in a linear potential. The change of
variables x̃ = (R/α)1/3u leads to

Hedge∝
∫

R
du c†(u)

�

−
d2

du2
+ u

�

c(u). (109)

Therefore, a non trivial Hamiltonian emerges at distances ∼ R1/3 from the edge. We ex-
pect correlations on such distance to be that of the ground state of (109). This is still a free
problem, so diagonalizing Hedge boils down to solving the single-particle eigenvalue equation
�

− d2

du2 + u
�

f (λ, u) = λ f (λ, u). The solutions are well-known to be Airy functions. It is an
exercise to show that the (Dirac sea-like) ground state propagator for this Hamiltonian is

〈c†(u)c(u′)〉=
∫ ∞

0

dλAi(u+λ)Ai(u′ +λ), (110)

which is known as the Airy kernel.
Let us now look at a region A = [s,∞) of the infinite line. It is another nice exercise to

compute the generating function Υ (α) = 〈eα
∫∞

s c†(u)c(u)du〉, and show that it is given by the
infinite series

Υ (α, s) = 1+
∞
∑

n=1

(eα − 1)n

n!

∫ ∞

s
du1 . . .

∫ ∞

s
dun det

1≤i, j≤n

�

〈c†(ui)c(u j)〉
�

. (111)
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Now define the emptiness formation probability E(s) = limα→−∞ Υ (α, s), which is, as its name
indicates, the probability that the interval A= [s,∞) be empty of particles. We have from the
previous formula the exact series representation

E(s) = 1+
∞
∑

n=1

(−1)n

n!

∫ ∞

s
du1 . . .

∫ ∞

s
dun det

1≤i, j≤n

�

〈c†(ui)c(u j)〉
�

. (112)

One can show that E(s) is smooth, positive, strictly increasing, and lims→−∞ E(s) = 0, while
lims→∞ E(s) = 1. E(s) gives us information about the last (or rightmost) particle. Indeed
E(s+ds)− E(s) is proportional to the probability that the rightmost particle lies in the interval
[s, s + ds]. Hence p(s) = dE

ds is actually the probability density function for the rightmost
particle, so E(s) may be interpreted as the cumulative distribution for the rightmost particle.

The distribution that has the rhs of (112) as a cumulative distribution has a name. It is
called the Tracy-Widom (T-W) distribution [64]. We finish with a few remarks:

• Exact series such as (112) or the one above are called Fredholm determinants. They are
the continuum analog of the regular determinant, for operators. See e.g. (180,181) for
a discrete analog.

• Proving that the distribution of the rightmost fermion does converge, after proper rescal-
ing, to the T-W distribution requires of course more work than the heuristic argument
we just gave. However, it still illustrates the physical mechanism through which T-W
emerges, that is free fermions in a linear potential. We will see in the next section an-
other mechanism through which T-W occurs.

• Convergence to T-W has been proved in all the models we considered so far. For the X X
chain this was done by Praehoffer and Spohn [59], while dimers have been treated by
Johannson (honeycomb [18] and square [65]).

• The attentive reader might have spotted a physical flaw with the argument we just made.
We have implicitly assumed separation of scales throughout. This is fine in the bulk, but
it is not clear that it still holds at the edge. In fact, one can show that the edge is exactly
borderline with respect to separation of scale, since the density varies on distances that
are comparable to inter particle distances. In that sense T-W is smoothly connected to
the bulk, where separation of scale does hold. This also justifies the need for exact
calculations starting from the lattice, see section 5.

• The word generic near (107) is important. It is necessary for the density to vanish as
square root to get a k2 dispersion and a linear potential for the fermions, so R1/3 behavior
and T-W. If the arctic curve has cusps for example, edge correlations near (generic) cusps
are described by a higher order kernel known as Pearcey kernel. We refer to [66] for a
discussion of all these kernels. Another example of higher order kernel can be found in
exercise 4.3.

• Below is a plot of the T-W probability density function. As can be observed it superficially
resembles a gaussian, but it is slightly skewed.

• T-W scaling is part of a broader subject, which goes under the name Kardar-Parisi-Zhang
(KPZ) equation [67] and KPZ universality class. Roughly speaking, the KPZ equation is
a stochastic PDE that models interface growth [68, 69], and it turns out the long time
limit of this equation with certain initial conditions is exactly the T-W distribution. We
refer to [25,70–73] for reviews on this equation, the KPZ universality class, and related
topics in random matrix theory.
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Figure 17: Tracy-Widom distribution
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EXERCISE 4.1 EMPTINESS BOUNDARY CONDITIONS [56]

We consider fermions with dispersion ε(z) = − cos z. We have seen in the text, that
solutions to complex Burgers may be put under the form cos z = G(x + i y sin z), where
G is analytic. We wish to find the limit shape corresponding to emptiness boundary
conditions, that is (i) vanishing density on an interval x ∈ [−`,`], y = 0 of the full
complex plane and (ii) density 1/2 at infinity.

1. What is the correct function G to implement those boundary conditions?
[Hint: the full density profile is shown in the picture below for `= 1]
2. Where do you expect Pokrovsky-Talapov-Tracy-Widom behavior?

0

0.2

0.4

0.6

0.8

1.0

EXERCISE 4.2 REVERSE ENGINEERING OTHER SOLUTIONS

By playing with simple functions, find other solutions to the complex Burgers equation
and interpret them.
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EXERCISE 4.3 ANOTHER HIGHER ORDER EDGE KERNEL [74,75]

We consider the Hamiltonian

H =

∫ π

−π

dk
2π

�

ε(k)−µ
�

c†(k)c(k)

where, semiclassically, µ depends position as µ = µ(x) = x/R for large R. The disper-
sion relation is ε(k) = − cos k+ 1

4 cos(2k).

1. Where is the location of the right edge?
2. On which scales to you expect the distribution of the righmost fermion to be?
3. Compute the associated edge kernel and edge distribution.

EXERCISE 4.4 THE AZTEC ARCTIC CIRCLE (I: TRANSFER MATRIX)

The aim of this exercise is to work out the transfer matrix for dimers on the square
lattice. This will be used in exercise 4.5 to recover the arctic circle shown in figure 2,
and discussed at length in the introduction.

The mapping to fermions goes as follows. With the conventions of section 2, we define
a fermion as a blue dimer, or an empty vertical edge of the even sublattice, shown by
a zizag line see below. As we shall see, one complication compared to the honeycomb
lattice is that the transfer matrix is invariant with respect to translations of two lattice
sites. We are therefore dealing with a two-band problem, in fermion language.

Rectangle Aztec diamond

Similar to the honeycomb lattice, we need two transfer matrices T and T ′, and assume
periodic boundary conditions in the horizontal direction.
1. Show Tc†

2 j T
−1 = c†

2 j , Tc†
2 j+1T−1 = c†

2 j + c†
2 j+1 + c†

2 j+2, and T |0〉= |0〉.
2. Show T ′c†

2 j T
′−1 = c†

2 j−1 + c†
2 j + c†

2 j+1, T ′c†
2 j+1T ′−1 = c†

2 j+1, and T ′ |0〉= |0〉.
3. Show

(T ′T )

�

a†
k

b†
k

�

(T ′T )−1 =

�

1 2cos k
2 cos k 1+ 4 cos2 k

��

a†
k

b†
k

�

where a†
k =

∑L/2
j=1 ei2k jc†

2 j , b†
k =

∑L/2
j=1 ei(2k+1) jc†

2 j+1 and properly quantized momenta k
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in [−π/2,π/2].
4. Show (T ′T ) f †

±(k)(T
′T )−1 = λ±(k) f

†
±(k), where f †

+(k) = cosθ (k)a†
k + sinθ (k)b†

k,
f †
−(k) = − sinθ (k)a†

k + cosθ (k)b†
k, λ+(k) = cot2 θ (k), λ−(k) = tan2 θ (k) and

cot2θ (k) = cos k

5. Show

T ′T = exp

�

−2
∑

k

ε(k) f †(k) f (k)

�

, (113)

where the k’s are now quantized in [−π,π],

ε(k) = − log
�

cos k+
p

1+ cos2 k
�

, (114)

and find an expression for f †(k). [Hint: cot2(α+π/2) = tan2α]

EXERCISE 4.5 THE AZTEC ARCTIC CIRCLE (II: HYDRODYNAMICS)

The fact that the transfer matrix can be put under the form (113), (114) means we can
apply the framework explained in the present chapter. In particular, (91) still holds in
the hydrodynamic limit.
6. Show that the hydrodynamic equation

x + i y
sin z

p
1+ cos2 z

= R
cos z

p
1+ cos2 z

(115)

does implement the correct boundary conditions Re z = 0 ∀x > R− |y| and Re z = π
∀x < |y| − R.
7. We introduce the map z 7→ ζ(z) = arctan[ 1p

2
tan z], initially defined for any z

in the strip Re(z) ∈ [−π/2,π/2]. We then extend it to Re z ∈ [−π,π] by requiring
ζ(z ±π) = ζ(z)±π. Show that (115) may be rewritten as

x + i y sinζ=
R
p

2
cosζ. (116)

Show that (116) has two solutions ζF and −ζ∗F , with ReζF ∈ (0,π), provided x and y
satisfy x2 + y2 < R2/2.
8. For y = 0 and x2 < R2/2, show that ζF is real, and

〈c†
2 j+σc2 j+σ〉=

∫ zF

−zF

dk
π

�

1
2
+ (−1)σ

cos2θ (k)
2

�

=
zF

π
+
(−1)σ

π
arctan(sinζF )

where σ = 0,1.
9. Compute the probabilities for vertical dimer occupancies along the horizontal line
y = 0 in the scaling limit.
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5 Exact lattice calculations

The approach we have taken so far was variational or hydrodynamic: we showed how comput-
ing the limit shape boils down to solving PDEs, and found a few cases where this could be done
explicitly. It turns out those precise cases can often be treated with other more direct methods.
That is, computing explictely the two point function, and then recover our previous results by
a careful asymptotic analysis. This approach is often more technical, but nicely complements
hydrodynamics, by confirming its prediction, and also providing more information.

Our aim is to give a flavor how this can be done, on one of the simplest examples. We refer
to [51,76,77] for similar calculations. We take the transfer matrices from before, and we try
to compute the two point function for fermions in the domain wall geometry, where the top
and bottom boundary are domain wall-like, with all particles packed to the left of the origin,
set at x = 0. This is the precise geometry in which the hydrodynamic problem was solved in
terms of Hilbert transform (section 4).

Of course as always in a free fermion calculation, if we know the propagator then Wick’s
theorem allows to reconstruct all higher order correlations. However, as we shall see, comput-
ing the two point function is more difficult than in standard condensed matter theory setups.

Let us now specify some notations. We take lattice sites to be half-integers, that is x ∈ Z+1/2.
We focus on the special case where operators are measured at the same imaginary time y , but
generalisation is straightforward. We wish to evaluate

〈c†
x(y, R)cx ′(y, R)〉=

〈ψ|e−(R−y)H c†
x cx ′e

−(R+y)H |ψ〉
〈ψ|e−2RH |ψ〉

, (117)

where expectation values are taken in the domain wall state |ψ〉=
∏

x<0 c†
x |0〉. We also have

H =
∫ dk

2πε(k)c
†(k)c(k), and recall c†

x =
∫ π

−π
dk
2π e−ikx c†(k), c†(k) =

∑

j∈Z+1/2 eik jc†
j . Using

eε(k)c
†(k)c(k)c†(k)e−ε(k)c

†(k)c(k) = eε(k)c†(k), this may be rewritten as

〈c†
x(y, R)cx ′(y, R)〉=

∫ π

−π

dk
2π

∫ π

−π

dq
2π

e−ikx+iqx ′e−(R−y)ε(k)+(R−y)ε(q)GR(k, q), (118)

with

GR(k, q) =
〈c†(k)c(q)e−2RH〉
〈e−2RH〉

. (119)

This remaining term is unusual, and illustrates the extra layer of complexity associated to
imaginary time problems –for a real time calculation, just set y = i t and R = 0. It is very
difficult to evaluate (119) in general; however, the special form of the domain wall state in
which averages are taken allows for a small miracle.

5.1 A nice bosonization trick

Let us work out the case of nearest neighbor hoppings, for which ε(k) = − cos k. The main
player in the calculation will be the operator

b =
∑

x∈Z+1/2

c†
x cx+1. (120)

Obviously, H = −(b+ b†)/2. Think of a finite-size regularisation of the chain, e. g. with sites
from −l to l. The commutator of b with b† is given by a telescopic sum, which simplifies to

[b, b†] = c†
−l c−l − c†

l cl , (121)
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which means 〈ψ|[b, b†]|ψ〉 = 1. Now expand e−2RH in power series. It is easy to check that
〈ψ|[b, b†]H p|ψ〉= 〈ψ|H p|ψ〉 provided l > p. Hence for any term in the power series, we can
always choose l sufficiently large such that the commutator is scalar.

For any finite R the series is expected to converge quite fast, which means we are allowed
to assume [b, b†] = 1 throughout. Hence the operator b is, effectively, a boson. It also happens
to annihilate the domain wall state, b |ψ〉= 0. Now, recall the following formula

eα(b
†+b) = eαb†

eαbe
α2
2 , (122)

which is a special case of the Baker-Campbell-Hausdorff identity8. Using this formula both in
the numerator and denominator with α = R combined with eαb |ψ〉 = |ψ〉, 〈ψ| eαb†

= 〈ψ|,
yields

GR(k, q) = 〈c†(k)c(q)eRb†
〉 . (123)

The last trick is to take derivative. Computing the commutator

[c†(k)c(q), b†] =
�

e−iq − e−ik
�

c†(k)c(q), (124)

we obtain
∂RGR(k, q) = (e−iq − e−ik)GR(k, q). (125)

Integrating back we finally obtain

GR(k, q) = eR(e−iq−e−ik)G0(k, q). (126)

5.2 General dispersion relation

The case of general dispersion relation ε(k) = −
∑

n≥1 hn cos(nk) can be handled in a similar
fashion. One introduces the set of operators

bn =
∑

x

c†
x cx+n , n≥ 1 , (127)

which effectively satisfy the commutation relations

[bn, b†
m] = nδnm , [bn, bm] = 0= [b†

n, b†
m]. (128)

Using this one can show in a similar fashion

〈e2RH〉= e(
∑

n nh2
n)R

2/2, (129)

and
GR(k, q) = eR

∑

n hn(e−inq−e−ink)G0(k, q). (130)

The propagator finally reads

〈c†
x(y, R)cx ′(y, R)〉=

∫ π

−π

dk
2π

∫ π

−π

dq
2π

e−ikx+iqx ′+y(ε(k)−ε(q))−iR(ε̃(k)−ε̃(q))G0(k, q) , (131)

where ε̃(k) is the Hilbert transform of ε(k). Let us insist again that this only holds for expec-
tation values in the domain wall state. All what is left is to compute G0(k, q). We get from a
direct calculation

G0(k, q) =
1

2i sin
�

k−q
2 − i0+

� . (132)

8A proof of the general formula es(A+B) = esAesBe−(s
2/2)[A,B], valid in case [A, B] commutes with A and B may be

obtained by (i) showing that e−sBAesB = A+ s[A, B] (take derivative) (ii) show that both rhs and lhs of the formula
satisfy the same first order differential equation with the same initial data (again take derivative).
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5.3 Asymptotic analysis

The general method to evaluate the double integral in the limit R→∞, x/R, x ′/R, y/R fixed
is the stationary phase, or steepest descent method. The argument inside the exponential can
have very large real and imaginary parts. Writing

θ (k) = kx + i yε(k) + Rε̃(k), (133)

one expects the integral to be dominated, after proper contour deformation, by the region
close to the points kc (resp. qc) where the phase θ (k) (resp. −θ (q)) becomes stationary. The
stationary points are the solution of the equation

θ ′(k) = x + i yε′(k) + Rε̃′(k) = 0, (134)

whose solution we denote by z and −z∗. This equation is, in fact, identical to (97), which we
obtained from the hydrodynamic approach. A full asymptotic analysis falls outside the scope
of these lectures. However, let us just mention that what matters is the taylor expansion of the
phase around the saddle points, that is the expansion

θ (k) = θ (z) +
1
2
θ ′′(z)(k− z)2 + o((k− z)2). (135)

Essentially computing the asymptotics boils down to computing a gaussian integral. The case
of coinciding points x ′ = x is more tricky, since the k and q saddle points might coincide. In
that case one has to take into account the pole at k = q. See e.g. [78] for the details.

Let us briefly comment on the edge behavior. The arctic curve corresponds to the points
where the two solutions (assuming there are two) z and −z∗ become equal. This means the
second derivative θ ′′(z) vanishes, and it becomes necessary to expand to third order

θ (k) = θ (z) +
1
6
θ ′′′(z)(k− z)3 + o((k− z)3). (136)

This naturally leads to the Airy kernel, since Airy functions may be alternatively defined as
Ai(x) =

∫

R+i0+
dk
2π eikx+ik3/3. The subject would require longer exposition, but we have illus-

trated the two equivalent through which the Airy kernel emerges. Either with fermions in a
potential that becomes linear in a Hamiltonian point of view, or through coalescence of two
saddle points.
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EXERCISE 5.1 BOSONIZING TOEPLITZ DETERMINANTS [76,79,80]

A semi-infinite Toeplitz matrix is a matrix T = (Ti j)i, j∈N whose elements depend only on
the difference i− j, Ti j = gi− j . It is convenient to interpret the gl as Fourier coefficients
of a periodic function, sometimes called symbol:

g(k) =
∑

l∈Z
eikl gl , gl =

∫ π

−π

dk
2π

e−ikl g(k) (137)

We assume that g is sufficiently smooth, has a well-defined logarithm which we
denote by ε(k) = log g(k), and also that

∫ π

−π
dk
2πε(k) = 0. Consider the free

fermions Hamiltonian H =
∫ π

−π
dk
2πε(k)c

†(k)c(k), with conventions (183), which reads

H =
∑

j∈Z
∑

p>0 εp(c
†
j+pc j + h.c) in real space, where the εp are the Fourier coefficients

of ε(k). We introduce a similar domain wall state |φ〉 =
∏∞

j=0 c†
j |0〉 as in the text,

where notice the fermions are now located on nonnegative integers.

1. Show using bosonization that 〈φ|eH |φ〉= exp
�

1
2

∑∞
p=1 pεpε−p

�

.

2. Show that Ti j = 〈0|c je
H c†

i |0〉 and (T−1)i j =
〈φ|c†

i eH c j|φ〉
〈φ|eH |φ〉

.

3. Show using bosonization that

(T−1)i j =

∫ π

−π

dk
2π

∫ π

−π

dq
2π

e−i(ki−q j)g−1
+ (k)g

−1
− (q)

1
1− e−i(k−q−i0+)

,

where the g±(k) = exp
�∑

±n>0 εneikn
�

are the Wiener-Hopf factors of g(k).

We now look at a finite 2N × 2N truncation of T , which we note TN . We want to eval-
uate det TN = det0≤i, j≤2N−1(gi− j) in the limit N →∞. For this purpose, we introduce
the state |ψN 〉 =

∏

|x |<N c†
x |0〉 where the sites are now put on the half-integer line

x ∈ Z+ 1/2.
4. Show using Wick’s theorem that det TN = 〈ψN |eH |ψN 〉.
Let us introduce the ‘right modes’ rn =

∑

x>0 c†
x cx+n as well as the ‘left modes’

l†
n =

∑

x<0 c†
x cx+n for n ∈ N∗.

5. Under which condition on n, m, N do we have [rn, bm] = 0? [rn, r†
m] = nδnm?

[ln, l†
m] = nδnm?

6. Bosonize and show that when N →∞ the determinant should converge to

lim
N→∞

det TN = exp

 

∞
∑

p=1

pεpε−p

!

provided the series inside the exponential converges sufficiently fast. This result was
first found by Onsager-Kaufman [79], and proved by Szegö [80] shortly thereafter (both
used different techniques).
7. You are Onsager and Kaufman, and you just realized that the spin-spin correlations
〈σ0,0σn,n〉 along the diagonal of the classical isotropic Ising model on Z2 are given by a

n× n Toeplitz determinant with symbol g(k)2 = 1−αe−ik

1−αeik , where 1/α = sinh2(βJ). This
holds below the critical temperature, Jβ > Jβc = arcsinh1. What is the magnetisation
exponent of the 2d Ising model?
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6 Conclusion and related problems

We finish with a discussion of a few selected topics that go beyond the lectures, but still fit
well with the spirit of the notes. We first examine the effects of interactions (section 6), how
this (does not) affect the edge behavior in section 6.2, and finally explore the intricacies of the
Wick rotation, section 6.3.

6.1 Interactions

For interacting systems, i.e. systems that cannot be mapped onto free fermions, the logic of the
present notes still applies. The difference is that no exact formula for the free energy exists
in general anymore. There are however deformations of the dimer model for which some
analytical progress is possible. Those models are called integrable.

A discussion of all the intricacies of integrable models falls well outside the scope of the
present notes, see [53, 54, 81] for reviews. We consider the case of the six vertex model, or
even plaquettes interacting dimers, as explained in section 1. We parametrize the interaction
term as eλ = 1−∆ or eλ = 1− cosγ, depending on convenience. The only result that we need
here is the following fact: in the same way that the free energy at the free fermion point could
be determined from a simple ground state energy with some current,

F(r, s) =
∑

|k|<kF

ε(k+ iν)− νs , (138)

where ν and kF are determined from r, s, a similar expressions holds true for half-interacting
dimers (or the six vertex model). Namely, the free energy is determined from the biggest
eigenvalue of the transfer matrix (with appropriate particle number and current). The latter
is given by [40,82]

Λ= e−Lν
N
∏

j=1

sinh(λ j + iγ)

sinhλ j
+ eLν

N
∏

j=1

sinh(λ j − iγ)

sinhλ j
. (139)

The λ j play a role similar to momenta for free fermions, and N/L controls r. The big difference
is that the quantization condition is much more complicated. It is given by a set of equations

�

e−2ν sinh (λi + iγ/2)
sinh (λi − iγ/2)

�L

=
N
∏

j 6=i

sinh(λi −λ j + iγ)

sinh(λi −λ j − iγ)
, (140)

called Bethe equations9. The free case corresponds to γ = π/2 for which the rhs simplifies to
1, and the λk can be obtained explicitely. The reader can easily imagine that solving the Bethe
equations is in general extremely difficult. The fact that (away from the free fermion point)
the rhs is a complicated product over the positions of the particles has an important physical
consequence, which usually goes under the name dressing: changing the number of particles
(N) affects all the rapidities, as illustrated in figure 18.

Dressing severely complicates asymptotic analysis, since any
∑

j f (λ j) becomes in the ther-

modynamic limit
∫

f (λ)ρ(λ)dλ, where ρ is the density of Bethe roots. Now comes the big
problem: the root density is only known in the case of zero current ν = 0, in which case it
is a solution to a linear integral equation over a segment of the real line [53]. In the case of
nonzero current these aspects have been investigated numerically in Ref. [40], and one finds
that the Bethe roots condense on some non trivial curve in the complex plane.

9The standard Bethe equations for the six vertex model, or its Hamiltonian limit the spin-1/2 XXZ chain, corre-
spond to the case ν= 0. Here we need a slight generalisation to induce some imaginary current.
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Figure 18: Dressing

Illustration of dressing. Left: Case ∆ = 0.6, L = 32. Black circles are half the Bethe
roots for N = 12, red crosses for N = 16. Right: same for the free case ∆ = 0 or
γ= π/2.

A particular case that can be treated exactly is the so-called five vertex model, obtained
from the six vertex model by setting one of the vertex weights to zero –it can also be seen
as an (half-plaquettes) interacting version of the honeycomb dimer model [83]. This model
is related to stochastic processes such as TASEP. The exact free energy can be computed, and
limit shapes are also parametrized by analytic functions [55]. This is to date one of the most
complicated model in which the variational/hydrodynamic program has been applied. This
model is also the only one for which one can show that the Luttinger parameter K is not
constant.

For the full six vertex model the hydrodynamic program has not been completed, the
main bottleneck being determining the exact curve on which the roots densify. However,
the arctic curve has been determined analytically, using the lattice approach. In a series of
papers [84, 85], Colomo and Pronko, and Colomo-Pronko-Zinn-Justin managed to compute
exactly the lattice emptiness formation probability, which gives the distribution of the last par-
ticle. They managed to determine the precise location where this probability goes to zero in
the thermodynamic limit. This location coincides with the arctic curve. Except at special val-
ues where γ/π is a rational number, this curve is non algebraic. Later, an attractive tangent
method was also introduced to get the arctic curve in a slightly simpler way [86]. This method
was also recently used to provide a proof [87] of the Colomo-Pronko formula for the curve in
the special case ∆= 1/2, the so-called combinatorial point.

6.2 Tracy-Widom at the edge

Tracy-Widom scaling is, in fact, also expected at the edge, for the following simple physical
reason: near the edge the particle (or hole) density goes to zero, hence particles (holes) are di-
luted. For local interaction such as the plaquette terms we discussed previously, it is reasonable
to assume that interactions become weaker and weaker. Hence particles become effectively
free near the edge, and we expect the arguments presented in section 4.6 to hold, and T-W
scaling at the edge. One can check numerically that this is the case: in figure 19 we show
Monte Carlo simulations in interacting dimers and the six vertex model. We compute the lat-
tice emptiness formation probability numerically, rescale appropriately, and compare to the
T-W distribution. As can be seen the agreement is quite good. We also compute the skewness
of the discrete distribution, and compare it to T-W, with excellent (and improving for larger L)
agreement. Other similar checks in inhomogeneous quantum chains can also be found in [75],
or with anharmonic chains in thermal equilibrium [88].

Showing this analytically in some generality in integrable models is not easy, despite the
fact that the lattice emptiness formation probability is known exactly in the six vertex model.
Note that the argument above does not assume integrability. However, the dilution argument
can nicely be illustrated in Bethe-Ansatz integrable models, such as six vertex. Indeed looking
back at the Bethe equations (140), the edge diluted limit corresponds to N � L, for which the
rhs can be considered a constant. Hence in this limit dressing disappears, and we are back to
free fermions.
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Figure 19: Tracy-Widom scaling with interactions
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Numerical check of Tracy-Widom scaling for interacting dimers and half-plaquette inter-
acting dimers (aka six vertex model). Left: rescaled distribution for interacting dimers
(eλ = 2) and N = 64, 256,512, compared to the centered T-W distribution (thick red
line). Right: skewness sk = E[(s −E[s])3] as a function of N−2/3, for both interacting
dimers, and six vertex model in which case we show the corresponding value of∆. This
is compared to the T-W value sk ' 0.22408. The thickness of the lines are the Monte
Carlo error bars. The exact lattice skewness is also shown for comparison at the free
fermions point ∆= 0 (bullets).

On the rigorous side, stochastics processes such are ASEP appear to be more tractable. For
example, a proof of T-W scaling is known for ASEP with step initial conditions [89].

6.3 Wick rotation and inhomogeneous quantum quenches

We have seen that the expectation value of an observable Ox in imaginary time is given by

〈Ox〉=
〈ψ|e−(R+y)HOx e−(R−y)H |ψ〉

〈ψ|e−2RH |ψ〉
, (141)

with either R and y discrete (dimers models, etc) or R and y continuous (XX chain in imag-
inary time). Our starting point will be the latter case. The reader interested in quantum
models might have spotted a similarity between the previous expression and regular time evo-
lution steming from the Schrödinger equation. Indeed, for a quantum system prepared in
a state |ψ〉, and let evolve in time with the Hamiltonian H, the wave function at time t is
|ψ(t)〉= e−iHt |ψ〉, and the expectation value of Ox at time t becomes

〈Ox(t)〉= 〈ψ(t)|Ox |ψ(t)〉 (142)

= 〈ψ|eiHtOx e−iHt |ψ〉 . (143)

Formally the real time evolution may be recovered from setting y = −i t in (141) and taking
the limit R→ 0+. This procedure is the famous Wick rotation.

This observation can be useful for two reasons.

a) First, exact calculation in the spirit of section 5 or using integrability techniques are
quite algebraic in nature. For this reason they are often valid for any value of R, y ∈ C,
which means the Wick rotation is perfectly justified for any finite time t. We can use this
to derive exact highly nontrivial expressions for out of equilibrium quantities in a few
selected case.
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For example, the partition function Z(R) = 〈ψ|e−RH |ψ〉 of the six vertex model with
domain wall boundary conditions is known exactly from the work of Korepin [90] and
Izergin [91] (see also [92]). We can then take the Hamiltonian limit, perform the Wick
rotation, and get an exact expression [93] for the amplitude 〈ψ|ei tHXXZ |ψ〉, where HXXZ
is the Hamiltonian of the XXZ spin chain, an integrable generalisation of the XX chain.
The modulus square of the amplitude is called return probability, or Loschmidt echo.
This exact result is difficult to get from more direct approaches [94], which makes this
method worthwhile.

b) At a more speculative level, it is tempting to try and Wick-rotate results already in the
thermodynamic limit, following [95]. Of course, there is no mathematical justification
for this. The statement that this can lead to wrong results is called Stokes phenomenon.
Let us go back to our quench from a domain wall state. Hydrodynamics ideas can also
be applied to out of equilibrium quantum integrable sytems, as was established recently
[96, 97]. This subject goes under the name generalized hydrodynamics. For a quench
from a domain wall state a small miracle occurs, and it is possible to get the density
profile exactly [98]. What is nice is that the Wick rotation of the arctic curve gives back
precisely the location of the front, the simplest example being the free fermion point
arctic circle x2 + y2 = R2 which becomes x = ±t after Wick rotation.

This does not work for all observables, though. For example the return probability or the
density profile have the crazy property of being highly non regular as a function of ∆ in
the thermodynamic limit, which is clearly not the case in the original statistical problem.
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A Self-contained reminder on free fermions techniques

A.1 An explicit construction of lattice fermions

Two level system. The two level system is obviously the most important genuine quantum
system ever, so let us start from this one. We consider the Hilbert space H ' C2, and take the
most down to earth approach, which is to work with two by two matrices (dimH = 2). We

choose the two basis vectors |0〉 =
�

0
1

�

and |1〉 =
�

1
0

�

. |1〉 is interpreted as the presence

of a particle, |0〉 as the absence of a particle (vacuum state). Pure states (or wave functions)
are of the form

|ψ〉= α |0〉+ β |1〉 , (α,β) ∈ C2. (144)
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Now let us introduce the two main heroes,

c =

�

0 0
1 0

�

(145)

and

c† =

�

0 1
0 0

�

. (146)

† denotes hermitian conjugate. We use bra/ket notations, e.g. the bra 〈0| = (|0〉)† = (0 1)
is a line vector. We have c† |0〉 = |1〉, c |1〉 = |0〉. Since c |1〉 = |0〉, c destroys the particle, so
we call it the annihilation operator. c† |0〉 = |1〉 creates a particle from the vacuum, so c† is

the creation operator. We also have c† |1〉 = c |0〉 =
�

0
0

�

= 0, so that it is not possible to

create two particles, or destroy a non existent particle. The zero vector is not to be confused
with the vacuum. The rightmost hand side of the previous equation involves a slight abuse of
notations; in the following we keep on writing 0 any vector/matrix that has all elements equal
to zero.

Note also c†c =

�

1 0
0 0

�

, and c†c + cc† = I2 =

�

1 0
0 1

�

, which will be useful in the

following. Obviously, any matrix in M2(C) can be written as a linear combination of c, c†, c†c
and cc†.

A collection of L two level systems. We now consider the Hilbert space H ' (C2)⊗L , where
L is an integer ≥ 2. H has dimension dimH = 2L . We want a set of (Dirac) fermionic
operators, that is, a set of 2L × 2L matrices ci , c†

i for i = 1, . . . , L that satisfy

cic
†
j + c†

j ci = δi j I (147)

cic j = −c jci , (148)

where I = I2 ⊗ . . .⊗ I2 is the identity operator. ⊗ denotes tensor product, given by

�

a0 b0
c0 d0

�

⊗
�

a1 b1
c1 d1

�

=







a0a1 a0 b1 b0a1 b0 b1
a0c1 a0d1 b0c1 b0d1
c0a1 c0 b1 d0a1 d0 b1
c0c1 c0d1 d0c1 d0d1






. (149)

The fact that it satisfies
(A⊗ B)(C ⊗ D) = (AC)⊗ (BD) (150)

is more important than the explicit formula (149).
The relations (147) and (148) are called canonical anticommutation relations (CAR), since

they involve the anticommutator {A, B}= AB+BA, instead of the commutator [A, B] = AB−BA.
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An explicit construction, due to Jordan and Wigner [99] 10 is given by:

c†
1 = c† ⊗ I2 ⊗ . . .⊗ I2

︸ ︷︷ ︸

N−1 times

(151)

...

c†
k =

�

−1 0
0 1

�

⊗ . . .⊗
�

−1 0
0 1

�

︸ ︷︷ ︸

k−1 times

⊗ c† ⊗ I2 ⊗ . . .⊗ I2
︸ ︷︷ ︸

N−k times

(152)

...

c†
N =

�

−1 0
0 1

�

⊗ . . .⊗
�

−1 0
0 1

�

︸ ︷︷ ︸

N−1 times

⊗ c† . (153)

The chain of k−1 tensor products of (−1)c
†c = eiπc†c in (152) is called a Jordan-Wigner string.

One can readily check that the CAR (147), (148) are satisfied, using (150) lots of times.
Of course, in practice, one often just uses the CAR without caring about an explicit rep-

resentation. However, in the context of classical statistical mechanics, the above explicit con-
struction turns out to be very useful.

A.2 Summary of useful fermions properties

Starting from now, we start droping the identity matrix in the equations, and simply treat it
as a scalar. The CAR now read

c†
i c j = δi j − c jc

†
i , cic j = −c jci , c†

i c†
j = −c†

j c
†
i . (154)

In particular cici = 0= c†
i c†

i . The following properties all follow rather straightforwardly from
(154) and the existence of a vacuum state |0〉= |0〉⊗ . . .⊗|0〉 annihilated by all ci , i = 1, . . . , L:

• 〈0| is annihilated by all c†
i , 〈0| c†

i = 0, ∀i ∈ {1, . . . , L}.

• Commutation relations for quadratic forms:

[c†
i c j , c†

kcl] = δ jkc†
i cl −δil c

†
kc j . (155)

In particular,
[c†

i ci , c†
kck] = 0. (156)

• Exponentiation [follows from the fact that c†
i ci is idempotent, (c†

i ci)2 = c†
i ci]:

exp
�

τc†
i ci

�

= 1+ (eτ − 1)c†
i ci . (157)

• Time evolution [take derivative]:

eτc†
i ci c†

j e
−τc†

i ci = eτδi j c†
j . (158)

10This result is often used when studying quantum spin chains, which are modeled using Pauli matrices. The
construction goes σαj = I2 ⊗ . . .⊗σα ⊗ I2 . . .⊗ I2, for α = x, y, z, where σx = c† + c, σy = −ic† + ic, σz = 2c†c − I2

are the Pauli matrices. The “Pauli matrices acting on site j” are related to fermions through the Jordan-Wigner

transformation σz
j = 2c†

j c j − I , σx
j + iσ y

j = 2c†
j

∏ j−1
l=1

�

I − 2c†
l cl

�

= 2c†
j (−1)

∑ j−1
l=1 c†

j c j .
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A.3 How to diagonalize a free fermions Hamiltonian?

A free (lattice) fermions Hamiltonian is a 2L × 2L matrix that is quadratic in the fermions cre-
ation and annihilation operators (we assume hermiticity here, which is not necessary, strictly
speaking):

H =
L
∑

i, j=1

�

Ai jc
†
i c j + Bi jc

†
i c†

j + B∗i jc jci

�

, (159)

where A and B are L × L matrices (A is a Hermitian). This is of course a specific class of
Hamiltonians, since we have at most 2L2 free parameters while the Hilbert space size is 2L .
In this context, free really means quadratic in the fermion operators.

In the following we explain how to diagonalise H in the special case B = 0, for simplicity.
The procedure described below can be generalized to treat cases where B is a non zero matrix.
Hamiltonians of the form

H =
L
∑

i, j=1

Ai jc
†
i c j (160)

conserve the number of particles, which means applying it on n-particle states c†
i1

. . . c†
in
|0〉

returns a sum over n particle states (any fermion destroyed by c j is immediately created back
by c†

i ). A is a hermitian L × L matrix, so can be diagonalized in an orthonormal basis. The
corresponding eigenvalue equations read (assume no multiplicities for simplicity)

L
∑

j=1

Ai ju jk = εkuik , k = 1, . . . , L. (161)

The eigenvalues are the εk and the u jk are orthonormal, meaning
∑L

j=1 u∗jku jq = δkq. Now
introduce a new set of fermions as

f †
k =

L
∑

j=1

u jkc†
j , k = 1, . . . , L , fk = ( f

†
k )

†. (162)

Then it is easy to show { fk, f †
q }= fk f †

q + f †
q fk = δkq and { fk, fq}= fk fq + fq fk = 0, so the new

set of operators also obey the CAR. In terms of these the Hamiltonian reads

H =
L
∑

k=1

εk f †
k fk. (163)

Obtaining the spectrum becomes quite easy now. Obviously H |0〉= 0. Using the anticommu-
tation relations, H f †

k |0〉= εk f †
k |0〉. By induction, we obtain

H f †
k1

f †
k2

. . . f †
kn
|0〉= (εk1

+ . . .+ εkn
) f †

k1
f †
k2

. . . f †
kn
|0〉 . (164)

To get a nonzero eigenvector, the ki have to be pairwise distincts. Also, any permutation of
the kis gives back the same eigenvector up to a sign. Hence the spectrum is

n
∑

i=1

εki
, {k1, . . . , kn} subset of {1, . . . , L}.

There are
�L

n

�

linearly independent eigenvectors in the sector with n particles, so the total

number of eigenvalues is
∑L

n=0

�L
n

�

= 2L = dimH, as should be.
An eigenstate with smallest eigenvalue is obtained by choosing all single particle energies

εk that are negative, |Ω〉 =
∏

k,εk<0 f †
k |0〉 (irrespective of the order in which the product is

taken).
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A.4 More elaborate properties

Here is a collection of results that are very useful in practice. Almost all free fermions calcula-
tions make use of several of those at some point. We start with the most famous one.

a) Wick’s theorem [100]. Let the f j be linear combinations of the ci , c†
i for j ∈ {1, . . . , 2n},

and H be a free fermion Hamiltonian. Then the thermal average

〈 f1 . . . f2n〉β =
Tr
�

f1 . . . f2ne−βH
�

Tr
�

e−βH
� (165)

may be expressed as

〈 f1 . . . f2n〉β = Pf
1≤i, j≤2n

�




T [ fi f j]
�

β

�

, (166)

where T [ fi f j] equals fi f j if i < j, 0 if i = j, and − f j fi if i > j. Pf is the Pfaffian. For an
antisymmetric matrix A= (Ai j)1≤i, j≤2n, it is defined as

Pf A=
1

2nn!

∑

σ∈S2n

(−1)σAσ(1),σ(2) . . . Aσ(2n−1)σ(2n), (167)

where the sum runs over all permutations σ of {1, . . . , 2n}, and (−1)σ is the signature
of the permutation. The Pfaffian can be shown to be a square root of the determinant.

The factor 1/(2nn!) may also be removed by imposing the ordering σ(2i) < σ(2i + 1),
and σ(2i)< σ(2 j) for j > i. As an example, the theorem yields

〈 f1 f2 f3 f4〉β = 〈 f1 f2〉β 〈 f3 f4〉β − 〈 f1 f3〉β 〈 f2 f4〉β + 〈 f1 f4〉β 〈 f2 f3〉β . (168)

We refer to [101] for a proof of (166). Note that as a particular case, expectation values
in any ground state may be obtained by taking the limit β →∞.

b) Wick’s theorem (no pairings). We consider the special case where H is of the form (160),
while for j = 1, . . . , n the f j are linear combinations of the c†

i only, and the f j+n = g j are
linear combinations of the c j only. Then

〈 f1 . . . f2n〉β = det
1≤i, j≤n

�

〈 fi g j〉β
�

. (169)

We will need only this particular case in the limit β →∞ in these notes.

c) Trace of exponential.

Tr e−β
∑

i, j Pi j c
†
i c j = det(1+ e−βP). (170)

Proof : diagonalize the quadratic form in the exponential.

d) General time evolution.

e
∑

i, j Pi j c
†
i c j c†

l e−
∑

i, j Pi j c
†
i c j =

∑

m(e
P)ml c

†
m, (171)

e
∑

i, j Pi j c
†
i c j cl e

−
∑

i, j Pi j c
†
i c j =

∑

m(e
−P)lmcm . (172)

Proof : diagonalize the quadratic form in the exponentials.
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e) Product of exponentials.

e
∑

i, j Pi j c
†
i c j e

∑

i, j Q i j c
†
i c j = e

∑

i, j log(eP eQ)i j c
†
i c j . (173)

Proof : use the Baker-Campbell-Hausdorff formula.

f) Average of an exponential. Let P = (Pi j)1≤i, j≤L be a L × L matrix. Then in any state
where Wick’s theorem applies we have

¬

e
∑

i, j Pi j c
†
i c j
¶

= det(I + (eP − I)C). (174)

C is the L × L matrix with elements Ci j = 〈c
†
i c j〉, I the L × L identity. Of course, it

is also possible to combine (174) with (173) to compute the average of a product of
exponentials.

The formula gives the full counting statistics as byproduct: for any subset Aof {1, 2, . . . , L}:
D

eλ
∑

j∈A c†
j c j

E

= det
i, j∈A

�

δi j + [e
λ − 1] 〈c†

i c j〉
�

. (175)

Proof : just pick Pi j = λδi jδi∈A in (174) and check that only the block i, j ∈ A contributes
to the determinant.

Proof of (174): Introduce a new set of fermions dk, d†
k that diagonalise the quadratic form in

the exponential on the lhs, as in section A.3. Denote by εk the corresponding eigenvalues of
P. The dk, d†

k also satisfy the CAR. Then

D

e
∑L

i, j=1 Pi j c
†
i c j

E

=
¬

e
∑L

k=1 εkd†
k dk
¶

, (176)

=

® L
∏

k=1

eεkd†
k dk

¸

, (177)

=

® L
∏

k=1

�

1+ [eεk − 1]d†
kdk

�

¸

, (178)

=

*

L
∑

n=0

∑

k1<...<kn

n
∏

α=1

(eεkα − 1)d†
kα

dkα

+

, (179)

=
L
∑

n=0

∑

k1<...<kn

det
1≤α,β≤n

�

[eεkα − 1] 〈d†
kα

dkβ 〉
�

, (180)

= det
1≤k,q≤L

�

δkq + [e
εk − 1] 〈d†

kdq〉
�

. (181)

We have used in succession (156), (157), expanded the product over k, Wick’s theorem, and
recognised the Cauchy-Binet identity. Writing P = U∆U†, where ∆ = diag(ε1, . . . ,εL), (181)
reads

D

e
∑L

i, j=1 Pi j c
†
i c j

E

= det(I + (e∆ − I)U†CU). (182)

Finally, multiplying by U on the left and U† on the right does not change the determinant, and
gives (174).
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A.5 Infinite lattice or continuum limit

So far we have introduced lattice fermions as 2L×2L matrices, where L is the number of lattice
sites. It is however very useful to consider generalisations where the matrices become infinite
or operators in the continuum. The case of the infinite lattice, e. g. Z can easily be dealt
with by considering a finite lattice j ∈ {−l,−l+1, . . . , l} computing observables 〈O〉l and then
taking l →∞.

We often make use of the following notation

c†(k) =
∑

x∈Z
eikx c†

x , c†
x =

∫ π

−π

dk
2π

e−ikx c†(k) (183)

for the Fourier transform on the infinite lattice, where k ∈ [−π,π], in the main text. The obey
the anticommutation relations {c(k), c†(k′)}= 2πδ(k− k′).

It is of course also possible to consider continuous real space fermions, in which case we
use the notation c†(x), which obeys the anticommutation relations {c(x), c†(x ′)}= δ(x − x ′).
In the main text, k and q always refer to momentum while x and y always refer to position,
so it is not possible to get them confused.
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