SC|| SciPost Phys. Lect.Notes 31 (2021)

Bogoliubov quasiparticles in superconducting qubits

Leonid I. Glazman' and Gianluigi Catelani®3*

1 Departments of Physics and Applied Physics, Yale University,
New Haven, Connecticut 06520, USA
2 JARA Institute for Quantum Information (PGI-11),
Forschungszentrum Jiilich, 52425 Jiilich, Germany
3 Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA

* g.catelani@fz-juelich.de

/>M Part of the Quantum Information Machines

ECOLE DE Session 113 of the Les Houches School, July 2019

Egﬁ'ﬁh’é published in the Les Houches Lecture Notes Series
Abstract

Extending the qubit coherence times is a crucial task in building quantum information
processing devices. In the three-dimensional cavity implementations of circuit QED, the
coherence of superconducting qubits was improved dramatically due to cutting the losses
associated with the photon emission. Next frontier in improving the coherence includes
the mitigation of the adverse effects of superconducting quasiparticles. In these lectures,
we review the basics of the quasiparticles dynamics, their interaction with the qubit
degree of freedom, their contribution to the qubit relaxation rates, and approaches to
control their effect.
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1 Superconductivity in an isolated metallic island

1.1 Electron pairing and condensate

Exposition of the theory of superconductivity conventionally starts with considering electrons
freely propagating as plane waves in an ideal, translationally-invariant medium [1]. The elec-
tron energy spectrum is then continuous. The number of electron states per unit volume per
unit energy, usually referred to as the density of states, is a function of energy, with some finite
value v, at the Fermi level. To give a bit different perspective on the subject, let us consider,
instead, a medium confined to some large (in units of Fermi wavelength) box and containing
finite density of impurities which scatter electrons. Confinement to the box renders electron
spectrum discrete, while scattering off randomly-positioned impurities would remove any ac-
cidental degeneracy of the levels. Under these conditions, the average density of energy levels
&, of one-electron states a in the vicinity of the Fermi energy is Vv,, with } being the vol-
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ume of the box. The typical spacing between the adjacent energy levels then is e = 1/Vv,.
Taking for a crude estimate v, = 1 (eV-A®)™!, we find for an island of volume V = 1072 um?
the average density of levels 10'° eV ™!, yielding a tiny level spacing of e = 1071%eV ~ 1 uK.
Hereinafter the term “average” means average over an energy interval which includes many
levels, but still very small compared to the Fermi energy E; (typically a few eV in a con-
ventional metal). The Kramers theorem indicates that in the absence of magnetization each
discrete electron level in a normal-metal island is doubly-degenerate, forming a Kramers pair.
This statement is unaffected by the spin-orbit coupling, as it does not break the time-reversal
symmetry. For simplicity, however, we will dispense with the spin-orbit coupling and associate
the pair of states with the spin-up and spin-down electrons having the same orbital part of
the wave function v ,(r) (this is an excellent approximation for light elements, such as Al). In
terms of these states, the second-quantized form of the Hamiltonian is (for brevity, we do not
include the spin-triplet channel for the interaction which does not change the conclusions)

H= Z Encl cno + Z Hklmnc,ITcacmlch. €))

n,o=1,| klmn

Here operators CI » and ¢, create and annihilate electrons with energies £, (measured from
the Fermi level), and

Hitmn = f drydryV (1) — 1) (1) Y] (1) (1) (11) (2)

are the matrix elements of interaction, written in terms of the single-particle eigenfunctions.
These are strongly oscillating in space, and there is little correlation between the oscilla-
tions of the wavefunctions of different states. As a result, there is a strong hierarchy in
the matrix elements H;,,,: those with pairwise-equal indices are by far the largest ones.
We will illustrate it using an example of a contact interaction, V(r) = (A/v,)6(r), charac-
terised by dimensionless interaction constant A. In this example, the double-integral in the
right-hand side of Eq. (2) is reduced to an integral over a single variable r with the inte-
grand (A/vo); ()Y (1), (r)y,(x). For generic k,l,m,n the product of wave functions is
rapidly oscillating as a function or r thus suppressing the value of the integral (the charac-
teristic length scale for the oscillations is set by the Fermi wavelength) and making it zero
on average. Having k = n, l = m or k = m, [ = n reduces the product of wavefunctions to
[ (1)|?]4;(r)|? which is non-negative, no matter if the one-particle wave functions real- or
complex-valued. A non-negative integrand leads to matrix elements H;;, and H;; which
only weakly depend on k and [, having non-zero average ~ Ade. In the presence of a mag-
netic flux piercing the island wavefunctions the time-reversal symmetry is broken, and ), (r)
are complex-valued. To the contrary, time-reversal symmetry allows one to choose real-valued
eigenfunctions 1,(r) = ;(r). That brings yet another paring, k = [, m = n, yielding a
non-negative product [v (r)12[v,,(1)]%.

The said three types of parings correspond, respectively, to the Hartree term, Fock term,
and the Bardeen-Cooper-Schrieffer (BCS) term. These three interaction types are the leading
ones, regardless the details of V(r), including its range and sign. Accounting for the Coulomb
long-range component of V(r) generates the charging energy out of the Hartree term, while the
Fock term induces exchange interaction (which is safe to ignore in the case of a nonmagnetic
material); these two interactions are insensitive to breaking the time-reversal symmetry. The
BCS term is responsible for the formation of a superconducting state, once V(r) contains a
short-range attraction component. Therefore, neglecting the exchange interaction and level-
to-level fluctuations, the interaction term in the island Hamiltonian Eq. (1) takes a universal
form,

Hine = Ec(N® —Np)* + (16€)070, (3)

3
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independent on the details of the electron wavefunctions in the island. Here

Ne = Z ChorCno 4

n,o

is the operator of the number of electrons, and accounting for

0= Z CniCnt (5)

1€nl <hcop

allows one to consider superconductivity in case of the attractive interaction between electrons
with energies within some range |, | < fiw, (for the phonon mechanism of superconductivity,
wp is of the order of phonon Debye frequency). The superconducting phase transition is asso-
ciated with the appearance of a macroscopically-large value of (070) defeating the smallness
of the factor Ade in Eq. (3).

The electron number N¢ is conserved in an isolated island, so the included in Eq. (3)
polarization charge N, ¢ for now reflects only the level from which all energies are measured.
Now we consider fixed even N° and therefore fixed charging energy represented by the first
term in Eq. (3), and concentrate on the ground state of an isolated superconducting island
described by Hamiltonian

Hoe= D EnCl oo +(A5€)00. ©)
n,o

The term OO in Eqgs. (3), (6) is the counterpart of the BCS interaction term conventionally
written [1] in the basis of plane waves,

0’6 = Z Cor nl Z mlCmT‘:>( Z C;;Tcikl) Z C_pllpt |- 7

|€nl<hep |Em|<hewp 1€xl<hewp 1€p|<heop

Either side of Eq. (7) preserves the total electron number and describes coupling involving
large number of singlet pairs: in the case of an island, a pair on a level n is coupled with
~ Hwp /b€ other pair states labelled by m. Such type of coupling provides a motivation for
applying a mean-field treatment for determining the ground-state energy and thermodynamics
of the system. In the mean-field approximation, one introduces the average,

A=(25e)(0) = (A5€) D (cmiCmt)» ®)
|€ml<hewp
to replace the quartic term in Eq. (6) by a bilinear one. After the simplified Hamiltonian,

-\
HBCS_Zgn no nU"_A Z CmiCm T+A Z mT T'nl E; C))

|£m|<ﬁwD |£m|<th

is diagonalized, one evaluates the average (...) in the right-hand side of Eq. (8) in terms of
A, forming this way a self-consistency equation for A. This routine for an island is essen-
tially identical to the one for a bulk superconductor. The bilinear mean-field Hamiltonian is
diagonalized by the Bogoliubov transformation,

Cnr = =u n'nt + vnYnl (10)
C:‘ll =—ViYm+ unYnl (11)
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Here le »» Yno are creation and annihilation operators for quasiparticle excitations with spin
o =T,l. The Bogoliubov amplitudes are complex numbers; for convenience, we may de-
fine gauge by taking u, = u’, v, = |v,|e'? with ¢ being the phase of the order parameter,

A = |Ale!?. To preserve canonical commutation relations, their magnitudes satisfy the con-
straint

1
|vn|2=1—|un|2=—(1—é), (12)
2 n
where €, = /&2 +|A|? is the quasiparticle excitation energy. The ground state |GS) of the
mean-field Hamiltonian is defined by the condition y,,|GS) = 0. The order parameter A is
found self-consistently as

A =(A8€) Y (1= (rlevar) = (7l 1ar)). (13)

Please note that the right-hand side here remains finite in the macroscopic limit 6¢ — 0.
Finally, the Hamiltonian in Eq. (9) is transformed into the Hamiltonian for quasiparticle exci-
tations:
Hap = Z €nY oY no- (14)
n,o

Thermal averages present in Eq. (13) are evaluated over the Gibbs ensemble with the Hamilto-
nian Eq. (14). The self-consistency equation defines the absolute value of the order parameter
|A(T)|, leaving its phase ¢ arbitrary; the ground-state energy, excitation spectrum, and ther-
modynamic potential of an island are independent of ¢. The zero-temperature solution of
Eq. (13) yields |A| ~ 2hwp exp(—1/A). It remains finite in the limit ¢ — 0; for islands of a
typical size, 6 € < |A| < hwp. The ground-state wave function of the mean-field Hamiltonian
(9) with a given A is

1Y,) zl_[(un+vnc;Tc;l)|0), (15)

n

where |0) is the vacuum for electronic excitations, c,,|0) = 0. The subscript ¢ indicates
that the phase of A enters this definition via the Bogoliubov amplitudes. One can verify that
this expression satisfies the condition y,,[1,) = 0 defining the ground state for quasipar-
ticle excitations (cf. Sec. 2.3). Clearly, the defined by Eq. (15) functions are 27m-periodic:
|¢ap> = |¢Lp+27’t)'

While being an eigenstate of the BCS Hamiltonian, [1),) is not an eigenfunction of the
electron number. It is rather a coherent superposition of states with different numbers of elec-
tron pairs, so the number of pairs is not defined. The ground-state energy and the excitations
spectrum are independent of ¢, which provides a relief: out of |+,,) functions, we may form
a linear combination

27 d(p '
[Yn,) =f —— e MNP y,) (16)
0 2T

corresponding to a definite number of electron pairs Np. The relation (16) is gauge-invariant
(i.e., invariant with respect to an arbitrary phase shift, ¢ — ¢ + ¢;). The wave function (16)
is an excellent approximation to the ground state of the Hamiltonian (6), which conserves the
electron number. The associated with the finite level spacing 6€ corrections to A of Eq. (13)
and to the corresponding ground-state energy of Hamiltonian (6) scale to zero proportionally
to e with the increase of island volume (see [2] for details and further references).

The condensate wavefunctions [1),) and [1)y,) form two bases in the Hilbert space of
many-body paired electron states. We may view the Np and ¢ representations as dual ones,
similar to X and p representations in the single-particle quantum mechanics. (The most im-
portant difference is that ¢ varies between 0 and 27, making it a compact variable.) In the Np
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representation, the operator of number of electron pairs N (measured from some large integer
corresponding to the filled Fermi sea in the island) acts as a multiplication operator, N = N-.
Now we establish its form in the ¢ representation:

27 27

NWJN):NJ d(Pe N@lw(p):f d(p (ld_e N¢)|¢gp) 17)
0 0 ¥
:Jznd(pe_in (_lih/) )) .
0 dp "Y
That is, N = —id/d . It is important to remember that the functions |7,b¢) are 2m-periodic,

so the spectrum of —id/d y is the set of integers (N = 0 means no extra electron pairs on the
island). Conversely, the operator

T=>IN+1)(N| (18)
N
increasing the number of pairs by 1 is a multiplication operator in the ¢-representation:
27 27
Wn1) = J dpe W2y ) = J dpe ¥ (eN?lp,)) (19)
0 0

so that T = e~'¥. Therefore in the space of states we considered here, variable N is a conjugate
to the compact variable ¢. The two satisfy the appropriate canonical commutation relation

[1\7, e_i"a] = e P, (20)

invariant with respect to the basis.

1.2 Thermodynamics of a superconducting island

The electron condensate in an isolated island accommodates an even number of particles. If
the number of electrons on the island is even, they all reside in the condensate ina T = 0
equilibrium state. Under the same conditions, an odd electron in the island does not have a
pair and occupies the lowest-energy quasiparticle state, thus raising the energy of the island
by |A|. At higher temperatures, ionization of the Cooper pairs results in a higher number
of equilibrium quasiparticles, diminishing this even-odd effect. To see this we evaluate and
compare the partition functions Z, and Z; for the even and odd numbers of electrons, respec-
tively [3]. In the “even” case the states of the island are parametrized by the number 0, 2,4, ...
of quasiparticles and their quantum numbers, so we write:

B 1 €n, +en2 1 €n, +en2 —I—en3 +en4
ZO_1+§ZeXp(_T +ZZeXp — T +... (21)

: np,ng ny...ng

(hereinafter we disregard the negligible probability of double-occupancy of any state). The
series here is easy to sum up:

Z, = coshz(T,5¢€,A), (22)

z2(T,6e,A) = Zexp (—6—;) ~ (4/ 2nT|A|/8e)e AT, (23)

n

Similarly in the “odd” case the island contains 1,3, 5, ... quasiparticles, and the partition func-
tion equals

B €n 1 €n, T €n, +€pn, L
Z; = Zexp (—?) + 3 Z exp (_f +---=sinhz(T, ¢, A). 24)

n " ny,ng,ng
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One can easily recognize nqy, = 2z(T,5€,A)/V as the quasiparticle density in the bulk at
T < A (the factor of 2 accounting for spin). It is convenient to normalize ng, by the “density
of Cooper pairs" ncp,

Ngp = NcepXgps  NMcp = 2VA. (25)

In equilibrium, xq, = v/ 27T /|A|exp(—|A|/T).

The difference between the thermodynamic potentials of the even and odd states, namely
T In(Zy/Z;), becomes substantial (order-of-A) once on average there is less than one thermally
excited quasiparticle on an island, i.e., z < 1. This happens at T below the scale set by the
V-dependent Cooper pair ionization temperature

T" = |Al/In(ncpV) ~ |Al/In(|A]/G€). (26)

The logarithm in the denominator here is pretty big, it is about 14 for an Al island of a typical
volume V = 10~ 2um3. As a result, one expects - on the grounds of thermodynamics — no
broken Cooper pairs in such island at T < T* = 0.14K. In our example, we find x, ~ 1.9- 1077
at T = T* and may expect a minuscule xg, ~ 2.1 10723 at a typical for qubit experiments
temperature T = 40mK. However, numerous measurements find Xgp = 1077 —107° at these
temperatures. The origin of the excess quasiparticles is not known and remains under scrutiny.
Meanwhile, it is worth assessing how harmful they are for the qubits operation and look for
ways to mitigate their unwanted effects.

2 Linking the islands

2.1 Josephson junctions phenomenology and a model of a single-junction qubit

Upon linking the islands, electrons may flow from one island to another. However, at ener-
gies low compared to the gap |A| in the excitations spectrum, only Cooper pairs facilitate the
electron transfer. The corresponding Hamiltonian #; of a link between two islands (L and R)
therefore is a function of the products YA"RT Ty and ”.IA"]]L Ty [cf. Eq. (18)],

oo
H; =Z(CHTQ"TL”+C:TZ"T£)+const. 27)

n=1
This Hamiltonian captures the coherent, non-dissipative tunneling of pairs of electrons; each
term of the sum corresponds to transfer of n Cooper pairs in a single tunneling event. For
a conventional tunnel junction, electron transmission coefficient is small, so one may safely
keep only the lowest-order term (n = 1) in the sum. Furthermore, time-reversal symmetry for
tunneling through a non-magnetic insulator dictates C} = C;. Using the phase representation
(¢, @) for the operators T; and Ty and omitting the phase-independent const term, we

obtain

Hy=—Ejcosp, @=pr—¢p. (28)

The connected islands at ¢ = O constrain the motion of a Cooper pair less than each island
separately, so the ground-state energy of the entire system is reduced by the link; it means that
in Eq. (27) the only remaining coefficient C; < 0, and therefore E; > 0 in Eq. (28). We note in
passing that the Josephson energy E; and the normal-state conductance of the junction G do
not have to be small compared, respectively, to A and e?/h, as the smallness of transmission
coefficient may be compensated by a large area of the junction. Later on, we will evaluate E;
microscopically and relate it to G.

One more remark is due here: we tacitly assumed that the ground state of the system is non-
degenerate. Tunneling via a quantum dot carrying an uncompensated electron spin provides
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a counter-example, as the Kramers degeneracy is preserved at sufficiently weak tunneling [4].
The presence of the localized spin results in E; < 0, so that the lowest energy of the junction
is reached [4] at ¢ = m. Formation of a 7t-junction in tunneling through a quantum dot was
demonstrated, e.g., in Ref. [5].

Transfer of N Cooper pairs across the junction creates a charge dipole between the islands.
The corresponding electrostatic energy [cf. Eq. (3)] in terms of the operator N = (1/i)d/d ¢,
reads

1d 2
H-=4E, (—_——n ) . (29)

Here charging energy E. = e2/2C takes into account the junction capacitance as well as any
capacitance shunting the junction; n, is the static charge (in units of 2e) induced by a biasing
gate, background charges, and unpaired electrons. Out of the three contributions only the first
one is controllable; the two others fluctuate on some large time scale. The contribution stem-
ming from unpaired electrons is discrete, and changes by £1/2 upon a quasiparticle tunneling
across the junction; the background charge may vary continuously.

A single-junction qubit is described by the Hamiltonian H; + H acting in the space of
periodic functions, ¥(¢) = Y (¢ + 27). Clearly, its spectrum is discrete, non-equidistant, and
depends on n, periodically with period 1. The n,-dependence is detrimental for the qubit co-
herence, due to the uncontrolled variations of n,. In transmons [6], the unwanted sensitivity
to n, is countered by increasing the ratio E;/E¢. At E;/E; > 1, one may separate the quan-
tum dynamics of the phase difference ¢ into small fluctuations around the minima (¢ = 2nn
with integer n) and discrete phase slips by £27. The former correspond to the dynamics
of an anharmonic oscillator having non-equidistant levels needed for a qubit operation. The
latter brings the unwanted sensitivity of the levels (o< d¢,cos 2mng) to the uncontrolled vari-
ations of n,. The probability amplitude of a phase slip is exponentially small at E;/E; > 1,

6¢&, o< exp(—+/8E;/E). This allows one to effectively suppress the influence of n, without
affecting the qubit energy levels (the relative anharmonicity a, scales as a power law of E-/E;,
a, >~ v/ E-/8E;, see Ref. [6]).

A wide variety of experiments demonstrated the prominence of discrete +1/2 jumps (com-
monly referred to as e-jumps) in the spectrum of fluctuations of n,. Its average value, 1., can
be controlled by a gate electrode in a properly-designed transmon. There are two special
values of the gate voltage for which n, = 1/40r3/4, making the transmon energy levels in-
sensitive to the +1/2 jumps. To see this, let us consider, e.g., n, = 1/4. An e-jump changes
this initial value of n, to n, = 3/4. Due to the periodicity of the spectrum with 7, the energy
levels of the qubit Hamiltonians with ﬁg = 3/4 and ﬁg = —1/4 in Eq. (29) are identical to
each other. Lastly, we may change ¢ — —¢, as the Josephson energy Eq. (28) is even in ¢;
this change would return the charging energy Hamiltonian after an e-jump to its initial form
prior to the jump (n, = 1/4). The data for the qubit transition frequency, accumulated over a
large series of sequential measurements, clearly shows the reduced sensitivity to the e-jumps
at the said special values of n,, see Fig. 1(a) and Fig. 1(b).

In a fluxonium qubit [7], the protection is achieved by shunting the junction with a high-
inductance loop. The loop — superinductor — is actually a chain of n; ~ 100 Josephson junctions
with sufficiently large Ef/E. so that the phase slips probability amplitude in the superinductor
is negligible. This allows one to dispense with the periodicity of ¢)(¢) function and approxi-
mate the Hamiltonian of the superinductor by

1
Hp = EEL(¢ —271®,/®)°. (30)

The inductive energy E; = Ej/n; = (®/ 2m)? /L, with &, = rtfic/e being the quantum of flux,
accounts for the loop inductance L; we also allowed for an external flux &, threading the loop

8
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Figure 1: Panel (a) copied from Ref. [8]. Spectroscopy of a qubit as a function of
gate-induced charge n,. For each pixel, a Gaussian pulse (o = 20 ns, corresponding
to a pulse on resonance) is applied at the indicated frequency and the qubit is imme-
diately measured. Each pixel is an average of 5000 repetitions (50 ms). Darker pixels
correspond to higher homodyne readout voltages that are proportional to the prob-
ability of the qubit in the excited state. An “eye”-shaped pattern indicates charge-
e jumps associated with the tunneling of nonequilibrium quasiparticles. Panel (b)
copied from Ref. [9]. Normalized two-tone spectroscopy measurements of the 0 — 1
transition versus the offset charge.

formed by the superinductor and the qubit junction. The form of the Hamiltonian (30) dictates
the boundary conditions for the wave function (¢ — £o00) = 0. This, in turn, allows one
to eliminate n, from the Hamiltonian H; + H; + H¢, by a simple gauge transformation. The
inclusion of the shunt makes the energy levels of this Hamiltonian independent of ng, while
allowing for their control by ®,.

To summarize, Hamiltonian

1d

2
L 1 A
?d__ng) —EJcoscp+§EL(cp—27T<I>e/‘I’o)2: (31
'

H, =4k (
describes a wide variety of superconducting qubits (see Fig. 2). In the absence of the su-
perinductor (E; = 0) Hamiltonian (31) acts in the space of periodic functions; if E; # 0
then the proper boudary condtion is 1(£00) = 0, which allows one to gauge out the n,-
dependence. Hamiltonian (31) acts in the low-energy subspace, meaning that it is good for
describing energy levels well below the quasiparticle continuum,; that, in turn, sets the require-
ment E;,E-, E; < A.

In metallic islands, screening length is very short (it is about the interatomic distance)
and the energy of plasmon is extremely high (typically of the order of Fermi energy). As a
result, quantum fluctuations of charge N governed by Eq. (31) lead merely to the fluctuations
of the potential of an entire island; the associated with the fluctuations electric fields do not
penetrate the bulk of an island. Fluctuations of the potential are benign for the gauge-invariant
Hamiltonian (6) and do not affect its excited states and their occupations. Therefore, as long
as quasiparticles do not tunnel and thus are not exposed to the potential difference between the
islands, their presence is inconsequential to the dynamics of the qubit degree of freedom ¢. To
elucidate the interaction of quasiparticles with ¢ we need to go beyond the phenomenology
of Egs. (27) and (28).
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S
=

Figure 2: (from Ref. [10]) (a) Schematic representation of a qubit controlled by a
magnetic flux, see Eq. (31). (b) Effective circuit diagram with three parallel elements
— capacitor, Josephson junction, and inductor — characterized by their respective ad-
mittances.

2.2 Tunneling Hamiltonian and the normal-state conductance of a junction

Consider two normal-state leads separated by an insulating barrier. Electrons can tunnel
through the barrier, and we model this system using the Hamiltonian:

%:HL"I‘HR'i‘HT, (32)

where H,, a = L, R are the Hamiltonians of the left/right lead, and

Hr = Z (tnLnRC:;LaCnRa"'h-c') (33)

np,ng,o

is the tunneling Hamiltonian, describing transfer of an electron from a state ny in the right lead
to a state n; in the left one, and a transfer in the opposite direction; ¢, . is the corresponding
tunneling matrix element. If voltages V,, are applied to the leads, their Hamiltonians take the
form

Ho(Vy) =Ho —eVNE, (34)

where H, and the number operators N are given by the proper generalizations of Egs. (1)
and (4) to two leads. In the absence of tunneling, the particle number is conserved separately
for the two leads, [#H,, N_] = 0. Tunneling allows the current to flow through a voltage-biased
junction. This current is dissipative in the case of normal leads. There are many ways to
evaluate it, below we present one of them.

It is convenient to change the representation, so that the excitation energies are measured
from the respective electrochemical potential of each lead. For a generic, time-dependent
unitary transformation U(t), the transformed Hamiltonian 7 is given by

LoU

H=UHU—-ihUT—. (35)
Jt

Here we take U in the form

U(t) =exp [iqu(t)NLe + i¢R(t)N1§] , PLr(t) = % J VL,R(t/)d t’ + bLR (36)

(the specific value of constants ¢ z here is inconsequential). Clearly, U commutes with the
lead Hamiltonians, [#,(V,), U] = 0, while [, U] # 0. In the new representation, we have
Hy=MHo(V,=0), N6 =N¢, and

Hy = Z (fnLnRei[¢L(t)_¢R(t)]CILUCnRa n t:LnRe—i[qsL(r)—mt)]C-r Cw) _ (37)

ngo
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A constant-in-time bias V = V; — Vi leads to ¢ (t) — ¢r(t) = eVt /h, and the tunnel Hamilto-
nian takes form

Y ieVt/h —ieVt/h
He = Z (tnLnRele / CZLaCnRo‘H:;LnRe feve/ CzRoano)- (38)

n,ng,o

In the used representation, this is a periodic-in-time perturbation of the Hamiltonian 7{; +Hz,
which results in the absorption of energy quanta 2 = eV by the system. To find the absorption
power P in the weak-tunneling limit, we may use the Born approximation for the tunneling
amplitudes and then apply Fermi’s Golden Rule to evaluate the transition rate; lastly, we mul-
tiply it by the energy quantum eV to obtain:

p= %eV D tn gL (En) = (80 )] (En, — Eny + V). (39)

np,ng

We replaced the averages of C;Cm over the Gibbs distributions with the Hamiltonians H; 5
by the respective Fermi functions fr(&,, »,).- This required neglecting the electron-electron
interaction in the leads, which is fine for the conventional tunnel junctions between normal-
state metallic electrodes; the extra factor of 2 in Eq. (40) accounts for the summation over the
spin variable. One may worry that we applied a formalism developed for isolated islands to
two leads attached to a voltage source. Indeed, the charge transfer in the DC regime between
two otherwise isolated islands is not sustainable over an arbitrarily long time. On a technical
level, the difficulty arises in the derivation of Fermi’s Golden Rule, which we used in Eq. (39),
for the transitions between the discrete spectrum levels, as one would end up with inter-level
Rabi oscillations instead. A formal way around this difficulty is to consider a slightly broadened
tone Q which would compensate for the discreteness of the energies & - and allow one to
use the standard derivation [11] of the Fermi’s Golden Rule. (That derivation involves the
consideration of the initial regime of linear growth of the perturbation [11]). After that, one
takes the limit V;  — oo keeping the products V; Vg|ty, n, |? finite, and then returns to a fixed
nQ = eV. To proceed with the derivation of DC conductance Gy, we use the relation P = Gy V2
to find
2 2|t 2
Gy = 4%1@ VRVLVR|tnL,nR|2 = 47;: %
(we prefer the latter form of this relation for its compactness). In derivation of Eq.(40) we also
assumed low temperature, T < Er and denoted an average over the states i, ny close to Fermi

(40)

energy by [t,, ,.|2. In an alternative standard derivation of Eq. (40), one uses momentum
eigenstates for two clean infinite-size leads, see e.g. [12].

The microscopic properties of the junction are encoded in the matrix elements ¢, , of the
tunneling Hamiltonian and abbreviated to a single parameter, conductance, by Eq. (40). The
same value of Gy can be achieved by enlarging the cross-sectional area X of the junction or by
increasing the transmission coefficient |tg|? of the tunnel barrier. The conductance of a large-
area junction can be estimated as Gy ~ (e?/h)(Z/ A%)ltBIZ. The second factor here represents
the cross-sectional area of the junction in units of the Fermi-wavelength-squared and can be
viewed as the (large) number of independent electron modes fitting into the junction’s area.
Equation (40) will allow us to express various quantities of interest in the superconducting
state in terms of the normal conductance Gy.

11
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2.3 Josephson energy and current

We define current operator [ as a time derivative of eN¢,

. dNg  dNE e
I:ed_tR:ed_tRz h[ R’%T] (41)

ie
== (fnLnR iL¢(O-dr(D] T

nj,ng,o

—er eniloO-elet o,
L

nLa ngo nLnR TlRO'

At zero bias, the phase difference entering in Eq. (41) is independent of time,
¢ (t) — Ppr(t) = ¢ — ¢g, cf. Eq. (36). We may introduce the “superconducting” phase
difference ¢ = 2(¢; — ¢r) and, by inspecting Egs. (37) and (41), establish the relation

= (2e/M)oH/ 8(,0 between the current operator and tunneling Hamiltonian. Next we
may account for H; and #l being independent of ¢, in order to arrive at the exact relation,
I = (2e/h)37/2 p, between the current operator and the full Hamiltonian (35). In equilib-
rium, i.e., with no bias applied, we may average the latter relation over the Gibbs distribution
for the entire system and find for the current

2e d
ﬁd

I

(Iy= =—F(¢), F(¢)=—TInTre "H&IT, (42)
We removed the tilde sign in Eq. (42), as the trace there is gauge-invariant. A finite phase
difference ¢ for the electron states across the barrier may be introduced by including the
junction in a conducting loop and threading a magnetic flux through it. This causes a current
running in the loop in equilibrium (known as persistent current) even if the entire system is in
the normal state. This mesoscopic effect, however, vanishes in the limit 6¢ — 0 and turns out
quite hard to measure in normal-metal rings [13]. On the contrary, in the superconducting
state, the Josephson current (42) remains finite at 6¢ — 0, i.e., in the limit of macroscopic
leads.

We are interested in the Josephson current I;(¢) and energy at temperatures T < A,
so we may replace the free energy F(y) with the ¢-dependent part 6E;(¢) of the ground-
state energy. We will evaluate 6 E; perturbatively to the lowest non-vanishing order (tn nR)
in tunneling and within the BCS mean field approximation. In the “tilde” basis the phase
dependence is delegated to H, so the defined in Eq. (8) mean-field order parameters of the
leads are purely real, A — |A] g|. Alternatively, we may use the original basis, in which case
the ¢, r dependencies are carried by A p. For definiteness, we use the latter gauge.

We now write the tunneling Hamiltonian #H, Eq. (33), in terms of the quasiparticle oper-
ators; using the Bogoliubov transformation, Eq. (10), we find

Hy=Hy +Hb (43)

H(%p = Z tn, ng (unLuiR —Vp, V:R) YZLaYnRa +h.c (44)
ng,ng,o

H = Z Oty (Un, Vg Vi Ung ) Ty 0V g +11C (45)
ng,ng,o

where for simplicity we assumed no bias (V = 0), and the presence of time-reversal symme-
try resulting in real-valued tunneling amplitudes, ¢, ,, = t;‘; nps We also adjusted the gauge,

multiplying u, and v, by e™1%/2 compared to the definitions in Section 1.1. Here we have sep-
arated the terms accounting for single quasiparticle tunneling, ”H%p, from that describing pair
breaking and recombination, HIT’. It is convenient to show explicitly the phase dependence of

12
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the Bogoliubov amplitudes:

_ * el/2 _ —ip/2
Up, unR Vi Vg = |Un, un Vi, vnR e
_ ip/2 —ip/2
Up, Vi, + Vi, U, = |unLvnR| el?/2 4 |anunR| e /2 (46)

where ¢ =2(¢ — ¢g).
Obviously, the zeroth-order average (Hy)y = 0; in the next order one finds

[(AH7IGS)I?
5 (A GSIE

6EGS = EA

47)

where the sum is over all possible excited states |A) of energy E, determined from the proper
generalization of quasiparticle Hamiltonian Eq. (14) onto two leads. The only non-zero contri-

bution comes from the first term in the RHS of Eq. (45). Then |A) = |n nzo) =71, ,7, 51GS)
and E; =€, + €,,. Evaluation of Eq. (47) yields:
6Egs = —Eo(Ar, Ap) —E; (A, Ag)cos g, (48)
o P [enn|
Ey = Z nyng [1_lﬂ] B, = Z nng| 1AL |AR|.
np,ng enL + enR enL enR np,ng enL + enR EnL enR

Trading the summations here for the integration over the energies over the corresponding
states and dispensing with the dependence of the tunneling matrix elements on n;, ng we find

| nn de;de €€
E — L R L R L*R
o(Az> Ar) €;8e €; +e€ 2_ 2 [ 2 2’ (49
€LO€R Ja, Ja, €L TER \/EL AL \/eR |Ag|
E (A A )_ | TanR J J deLdeR |AL||AR| (50)
J\AaL, Ar) = .
O€LO€R |4, €, t€g \/Ef—lAle\/Eﬁ—mRP

The latter simplification made the integral in Eq. (49) ultraviolet-divergent; the dependence
of t on n; and ny provides one with a model-dependent cut-off at some energies of the order
of Er. The meaningful in the context of superconductivity part of Eq(A;,Ag), however, is
model-independent. It can be evaluated with the help of the following regularization,

Eo(Ap, AR) = Eo(AL, Ag) — Ey(0,0),

which makes the integral convergent at €, p ~ A}  and provides a way to express const in
Eq. (27) in terms of A p and Gy. The integral in the Josephson energy (50) is convergent.
Its evaluation at |A;| = |Ag| = A yields

|tn;n 1 1
SEgg = —4—= A Acos&p dx dy
o be beg 1/x2—1\/y2—1x+}’
= —nzMA cos (5D
b€ 0ep v

The applicability of the perturbation theory used in the derivation of Eq. (51) requires the
smallness of the matrix elements t,, , , which in turn means that the transmission coefficient
|tg|? across the tunnel barrier must be small. As we discussed at the end of Section 2.2,
the small factor |t5|? < 1 in the conductance Gy can be compensated by a large number of
electron modes %/ AIZ, fitting in the junction’s cross-sectional area. A similar compensation

13
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happens also for the Josephson energy Eq. (51). In fact, it can be expressed in terms of Gy
and A. Comparing Eq. (51) with Eq. (40) and using Eq. (42) at T — 0 we conclude:

Gy A e? e d
0Egs(¢)=—Ejcosgp, EJZG—Qg, GQ:F; J(‘P)—?d

6Egs(¢p). (52)
The expression of E; in terms of A and Gy may be viewed as a version of the Ambegaokar-
Baratoff formula. We may convert it to the familiar [1] form, eI.Ry = (71/2)A, by introducing
the critical current of the junction I, = max,{I;(¢)} and its resistance Ry = 1/Gy in the
normal state.

2.4 Real part of the AC admittance of a junction

Josephson energy E; is one of the main parameters defining the energy spectrum of an ideal
qubit, see Eq. (31). In the previous Section, we related E; to the normal-state conductance
of the junction. Dissipation in the Josephson junction is one of the factors limiting the qubit
coherence. To quantify the dissipation, this Section develops the theory of the AC admittance
of a junction; we will focus on its real part.

Similar to our discussion of the DC conductance in Section 2.2, the shortest way to get the
dissipative part of AC admittance, Re Y (w, ¢), is to evaluate the absorption power P of bias
V(t) = V cos(wt) applied across the junction. In contrast to a fixed bias, the alternating one
does not cause winding of the phase difference ¢; (t) — ¢r(t) in Eq. (37). Instead, this differ-
ence exhibits small oscillations around a finite value, ¢ (t) — ¢pr(t) = ¢ /2 —eV s1n(wt)/hco
The smallness of V allows us to expand H; = Hy(¢) —[2eV sin(wt)/fw]d, Hr (@) to the
linear order in V. The oscillatory term in the expansion drives the transitions in which energy
quanta fiw are absorbed. For finding P in the second order in V and second order in ¢, , we
may apply Fermi’s Golden Rule to the perturbation —[2eV sin(wt)/ hw]@wﬁT(cp) and proceed
similar to the derivation of Eq. (39). Next, we find the dissipative part of admittance by casting
the result of calculation in the form

p= %Re[Y(w; 0) V2. (53)

This program works equally well for the tunnel junctions with normal or superconducting
leads. In the former case, the result is independent of ¢. We find Re Y (w) = Gy for a junction
between two normal leads with energy-independent electron density of states, cf. Eq. (40).
The limits w — 0 and V — 0 of the absorbed power do not commute in general; this is exempli-
fied by the evaluation of the DC dissipative conductance of an SNS or Josephson junction [ 14].
In the following we concentrate on the case of a finite w.

Considering superconducting leads, we use Egs. (43)-(45) in order to derive the appropri-
ate form of the perturbation —[2eV sin(wt)/ hw]a(p?:lT(go) in terms of the
quasiparticles creation and annihilation operators. This is achieved by replacing
Uy, = U, explip/2+ie [ dt'V(t)/h], vy, — vy, expl—i@/2—ie [ dt'V(t')/h] in Eq. (44);
the gauge invariance of the observables allows us to assign all the phase dependence to lead
L. The operator structure of the ’HIT) and H(}p parts of the perturbation is quite different: the
former one describes creation or annihilation of pairs of quasiparticles, while the latter term
corresponds to the quasiparticle tunneling. Therefore, absorption processes originating in 7—[}%
are effective only at frequencies exceeding the threshold, ficw > 2A. Ultimately, we are in-
terested in the interaction of quasiparticles with the qubit degrees of freedom evolving with
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frequencies well below A/k. Therefore, we focus on the terms in P stemming from H(%p

5H(t) = —[2eV sin(wt)/hw]d,H (9) = Hac (' —e "), (54)
eV )
Hac = 27‘7.(,() Z Enyng (u”Lun + Vn, vnR) YT’:lLO'YnRU —h.c. (55)
np,Mg,0

Power P then is found by multiplying the energy quantum by the transition rate:

P=2mw Y ([(AlHacIn)? [6(Er — E, — hew) — 5(Ex — E,) + heo) gy
A

Double angular brackets denote averaging over the initial (not necessarily equilibrium) quasi-
particles states |n) with energy E, ; sum is over possible final quasiparticle (qp) states |A) with
energy E,. The two terms in square brackets account for energy absorbed and emitted by
quasiparticles, respectively. Performing the averaging and using Egs. (40) and (53) we find
for the dissipative admittance of the Josephson junction:

A
Re[¥y(w; )] = 5 JdaLJng (e 22 Bl o)

x {f(er)[1—f(e,)][6(e, —er—Mw)—b(e, —egp + Aw)]+ (L <> R)}. (56)

The quasiparticle distribution functions here do not have to be equilibrium ones; they merely
represent occupation factors of various energy states. An assumption of L/R symmetry allows
us to simplify Eq. (56):

2Gy de e(e +hw)+ A2cos
hw [ (e+hw)?—A2/e2—
x[f(e)1—f(e+hw))—f(e+hw)(1—f(e))].

The p-dependence here comes from the interference between two processes of charge-e trans-
fer across the barrier: the first one consists of forwarding an electron as a quasiparticle across
the barrier; the second process involves forwarding a Cooper pair accompanied by return-
ing an electron. The involvement of the condensate makes the result of interference phase-
dependent; the closer the quasiparticle energy € to the gap, the stronger the relative effect of
interference, cf. the numerator of the integrand in Eq. (57).

Now assume that the microwave energy quantum fiw and the characteristic value T.g of
quasiparticle energy measured from the gap edge, € — A, are small, iiw, Tor < A. Then, by
changing the variable of integration in Eq. (57) via € = A(1 + x) we find

Re[Y;(w;¢)]= (57)

1+ cosp
2

Under an additional assumption T < Aw, the quasiparticle admittance here is

Re[Y;(w; ¢)] = Re[Yqp(w)] . (58)

2032
) Xep. (59)

Re[ Yyp(w)] = GN ( —

The dimensionless quasiparticle density

= f (A(l +x)) (60)

is introduced here consistently with Eq. (25); it represents the density of quasiparticles
Ngp = NcpXgp normalized by the density of Cooper pairs ncp = 2v3A and assumes symmetric
junction (vy = v; = vg).
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The factor x4, in Eq. (59) accounts for the fact that all low-energy quasiparticles can absorb
energy and hence contribute to dissipation. In equilibrium, x4, is controlled solely by the ratio
T /A, as the chemical potential u of quasiparticles is pinned to zero. The simplest model of a
non-equilibrium distribution allows for some u # 0 and effective temperature T, and treats
Xqp and Teg as independent parameters. Leaving a more detailed discussion of the quasiparticle
kinetics for Section 5, we mention here that there are reasons to expect T = T, as a single
quasiparticle may relax its energy by emitting a phonon. On the contrary, in order to recombine
that quasiparticle has to meet another existing quasiparticle. Therefore, the recombination
rate is smaller by a factor x4, <1 than the rate of quasiparticle energy relaxation.

Assuming the quasiparticle distribution is described by a Fermi function with some u and
effective temperature T, the imaginary part of the quasiparticle admittance Y, can be re-
covered using Kramers-Kronig transform. This would account for the effect of itinerant quasi-
particles, but miss the main contribution to the imaginary part of the junction admittance Y;,
which originates from the response of the condensate (or, equivalently, from the contribution
of Andreev bound states). We refer to Ref. [10] for a discussion of these points. In the next
section we will relate the transition rates in superconducting qubits to the admittance of the
Josephson junction.

3 Qubit transitions driven by quasiparticles

3.1 Qubit interaction with quasiparticles

For a Josephson junction shunted by an inductive loop, Fig. 2, the low-energy effective Hamil-
tonian can be written as
H=H,+Hgyp+HT. (61)

The first term determines the dynamics of the phase degree of freedom in the absence of
quasiparticles, see Eq. (31). The contribution from pair tunneling, Eq. (45), is taken into
account by the E; term in Eq. (31).

The second term in Eq. (61) is the sum of the BCS Hamiltonians for quasiparticles in the

leads
Hop= >, HE, (62)
a=L,R

with ng of Eq. (14). The last term in Eq. (61) is the single quasiparticle tunneling Hamiltonian
defined in Eq. (44) with a caveat: now the phase entering in ’H(%p is an operator,

AP __
HT - Z tnLnR(

np,ng,o

u, u*

i¢/2 _
ng "ng e

*
Vo, Vo

e_iwz) Yh oYmo +hc. (63)

This way, H(}p becomes a Hamiltonian of the quasiparticles-qubit interaction. This way of
accounting for the interaction is fine, as long as the dynamics of the condensate involves fre-
quencies w/2m much smaller that A/nh. Fortunately, this is the case for the typical devices
controlled by microwaves (with frequency < 10 GHz, while A/mh ~ 100 GHz in Al).

Within the described model, we can calculate the transition rate I;; between qubit states |i)
and |f) (i.e., eigenstates of the Hamiltonian H,,) associated with tunneling of a quasiparticle
across the junction similarly to the calculation of admittance in Sec. 2.4. That is, we treat H‘%p
as a perturbation and evaluate the transition rates using Fermi’s Golden Rule:

27
., ==—

if — i (<|(f,A|H;1~p|l: 7)>|2 o (El _E'r] _hwif)»qp) (64)

A
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where hw;; = E; — E; is the difference between the energies of the two qubit states. After
averaging over initial quasiparticle states |n) and summing over final quasiparticle states |A),
and assuming |A;| = |Ag| = A, we find

16E
T =MAJ Ldef(e)[1—f(e+hwif)] (65)

e(e +hw;) + A2
|:\/€2—A2\/(6 +hw; )2 — A2
(e +hw;)— A2
i Ve2— A2, /(e +hwi)? — A2

2

1

It is important to note that the transitions between the qubit states are accompanied by the
charge-e transfer across the junction. In some cases, see Section 3.5, that helps one to single
out the qubit transitions driven by quasiparticles.

For generic states and flux bias, the matrix elements of sin(¢/2) and cos(¢/2) have sim-
ilar orders of magnitude; then, at low effective temperature of quasiparticles (T < A) the
cos /2 contribution to Eq. (65) is suppressed by a small factor ~ fiw; /A. Important excep-
tions are (quasi)elastic transitions (see Sec. 3.5) and transitions at special values of flux bias
fine-tuned to suppress the sin ¢ /2 matrix element (see Sec. 3.4).

[(F15in £

\ AT
|(F1eos Z11)

3.2 Qubit energy relaxation

Here we focus on the relaxation rate from the first excited, |i) = |1), to the ground, |f) = |0),
state in a generic setting, therefore neglecting the cos /2 contribution, see the last line in
Eq. (65).

With the assumptions discussed above, the qubit relaxation rate due to quasiparticle tun-
neling can be expressed as

9]
[0 = ‘(Olsm 5|1>‘ Sep(wi0), (66)
where

16E,
hnA

e(e +Hw) + A2
g . " 67
L SO e ey 2

Sgp(w) =

is the quasiparticle current spectral density, see the first two lines in Eq. (65). The quasiparticle
states occupation factors f (€) typically are small for all allowed energies, whether quasipar-
ticles are at equilibrium or not, f(e) < 1. This allows us to replace 1 — f(e + iw) — 1 in
Eq. (67). Then, at low effective temperatures and frequencies, T, i < A, the quasiparticle
current spectral density takes the form

8E, 2A

E.qu P w>0. (68)

Seplw) =
By comparing this formula to Eq. (59), we find the relation
w1
Sqpp(w) =——ReY  (w). 69
(@) 7 G (@) (69)
For a quasi-equilibrium distribution of quasiparticles with some x4, and T, it may be viewed
as a particular case of more general fluctuation-dissipation relations [10]. That allows one to

conclude that
Ty, =Ty e Tw10/ Test (70)
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indicating that I} > I}, as T > O (there are no reasons to expect an inversion in the energy
distribution of quasiparticles).

Relations (66) and (68) may allow one to link the magnitude of the junction dissipation
(the real part of Yg;) to the qubit relaxation rate. In the next sections we explore similarities
and differences between the phase dependence of the admittance, see Eq. (58), and the varia-
tion of the relaxation rate with the external flux which controls the qubit and implicitly enters
in Eq. (66).

3.3 Energy relaxation of a weakly anharmonic qubit

The last two terms (the “potential energy”) in Eq. (31) in general possesses multiple minima,
whose positions ¢, are solutions of

E;singy+ E; (pg—279,/®) =0. (71)

So long as the external flux is tuned away from half-integer multiples of the flux quantum and
phase fluctuations are small, we can treat the potential energy in the harmonic approximation,

1
H, %prz) =4ECN2+§(EL+EJ cos 90) (¢ — 9o)? . (72)
The assumption of small phase fluctuations corresponds to the condition
Ec
<1, (73)
h_.(l)lo
where
wig = \/SEC (EL +EJ COS (‘00)/17 (74)

is the qubit frequency in the harmonic approximation. For the transmon [6], E; = 0 and
Yo = 0, the condition (73) corresponds to the requirement of a large ratio between Josephson
and charging energy, E;/E- > 1, which also enables us to neglect the dimensionless voltage
ng of Eq. (31).

Within the harmonic approximation, it is straightforward to calculate the matrix element
in Eq. (66) by expanding sin ¢ /2 to linear order around ¢,. This way we find

2 E- 1+cos
‘(Olsin%ll)‘ ik 75)

N ﬁ(l)lo 2
Substituting this expression into Eq. (66), and using Eq. (69) and the definition of the charging

energy, we arrive at
1+ cos g

2

Therefore, the qubit relaxation rate is given by the inverse of the classical RC time of the
junction, where 1/R is identified with the real part of its flux-dependent admittance [ is
identified with the phase difference ¢ in Eq. (58)]. This result seems to indicate that, as it is
often the case, the behavior of the quantum harmonic oscillator is analogous to that of its clas-
sical counterpart. However, the analogy has its limitations, set by the form of the perturbation
causing the relaxation: the selection rules for matrix elements of an operator sin (/2 are less
restrictive than for ¢. That opens a possibility, e.g., of a direct decay from the second level to
the ground state; the corresponding rate is [10]

1
[0 = ERE qu(wm) (76)

1 1—cosyq Ec
I = =ReY ,(2wig)————.
20 C qp( 10) 2 hwlo

The dependence on phase/flux in this expression clearly differs from that in Eq. (58). More-
over, we remind that Eq. (76) is restricted to fluxes away from half-integer multiples of the flux
quantum, so the relation to Eq. (58) does not necessarily hold at arbitrary flux — we explore
this issue further in the next section.

(77)
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3.4 The cosy problem

The result for the real part of the junction admittance, Eq. (58), shows that as the phase differ-
ence approaches 7, dissipation is suppressed. This is a manifestation of quantum mechanical
interference: a quasiparticle is a coherent superposition of electron and hole-like excitations
[cf. Eq. (10)], and these two components interfere during a tunneling event in a way that can
preclude the absorption of energy. The exact cancellation at ¢ = 7 is expected only in the
limit of small temperature; more generally, one can write

1+ ecosyp

Re[Y;(w;¢)]= >

Re[ Yy, (w)], (78)
where ¢ > 1as T — 0, see [15] and Ch. 2.6 in Ref. [12]. In the latter reference, experimental
attempts to determine ¢ in the 1970s are summarized, and the discrepancy between theory
and experiments was termed “the cos ¢ problem".

It is interesting to consider the behavior of the admittance when the junction is part of a
loop, so that the flux ® biases the junction, ¢ = 27f with f = &/®,. Expanding Eq. (78)
around f = 1/2 we find

_ 2
Re[Y;(w;2nf)] ~ [1—28 + em? (f - %) ]Re[qu(w)] . (79)

A fluxonium qubit consists of a small junction shunted by an inductor (the latter can be either
an array of junctions or a superconducting nanowire). The qubit transition frequency w;o(f)
depends on the external flux; moreover for this qubit, assuming € = 1, one can show that the
relaxation rate near f = 1/2 takes the form [15]

F? 1/2
__wlo( / )Re

[0 = 7 16, [Y;(wq0(1/2);2nf)], (80)

10%¢

cl)ext / CD0

Figure 3: (from Ref. [15]) Empty circles: experimental data for T, at different val-
ues of external flux &.,. Solid lines: theoretical rates calculated from Eq. (80)
with Re[Y;] of Eq. (79), for a few values of € and F chosen to bound the data at
cI)ext/“I)O =1/2.
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where the dimensionless prefactor F can be calculated given the qubit parameters E, E;, and
E;. With regard to the flux dependence, this expression extends the validity of Eq. (76) to
the region near half flux quantum. Being a consequence of fluctuation-dissipation relations
[cf. Eq. (69)], Eq. (80) can be expected to hold also for ¢ # 1. Therefore, measuring the flux
dependence of the relaxation rate makes it possible to estimate the value of ¢. The result of the
measurements together with theoretical curves for different values of ¢ are shown in Fig. 3;
conservatively, one can estimate £ > 0.99.

3.5 Quasiparticles-driven e-jumps in a transmon

A qubit without an inductor is described by Hamiltonian (31) with E; = 0 acting in a space of
2m-periodic wave functions. If the ratio E;/E is not too large (typically, less than about 25
for a transmon), the dependence of the energy levels on n, is well-resolved in experiments.
As we already discussed in Sec. 2.1, n, exhibits uncontrollable jumps by +1/2 associated with
the quasiparticle tunneling (e-jumps). Therefore, at a given 17, a transmon is not a two-level
system, but in fact is a four-level system: two states differing by the charge parity represent the
logical ground state, and another pair forms the logical excited state. Quasiparticle tunneling
results in the parity-changing transitions within the four levels. The relaxation rates between
the logical states considered in the previous section are one example of the e-jumps, but tran-
sitions which do not change the qubit logical state while changing its parity are also possible,
see Fig. 4. In our notations, see Eq. (65), these rates are I}y, and I';, for the transitions within
the logical ground and excited states, respectively; they are also known as parity switching
rates.

Rates I’ and I}); contribute to the energy relaxation rate 1/T; of the qubit. The presence
of finite rates I,; and I;; contribute to the qubit dephasing. The dephasing manifestation de-
pends on the type of experiment. Suppose first the phase evolution of a qubit may be measured
over time intervals shorter than 1/(I}y+1I731), followed by averaging over many measurements.
The energy levels of the qubit E; and E, would fluctuate from one measurement to another
due to the e-jumps occurring between the measurements (cf. Section 2.1) and therefore the

NAA

cven

1
—-0.5 0.0 0.5
ng

Figure 4: (adapted from Ref. [19]) Two lowest energy levels of the transmon qubit.
The “even” and “odd” labels mark states of opposite charge parity.
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frequency w; would fluctuate by some 6w = (6E; + 6Ey)/h . The averaged over the mea-
surements result then would yield the phase relaxation time T ~ 1/6w, in analogy with the
inhomogeneous broadening [16] of magnetic resonance (assuming we identify 6w with the
spread of the magnetic resonance frequencies caused by static disorder in a solid). In a further
analogy with the solid-state magnetic resonance, this relaxation mechanism is successfully
countered by the echo technique [17], if the time 1/(T},, + I};) is long enough to allow for the
echo pulse sequence. In the opposite case of high rates I}y, and Iy;, fast e-jumps would lead
to the phase diffusion with the diffusion constant D, ~ (5Ef /T11+6 Eg/ Too)/H2.

In this Section, we evaluate all four rates, I, [, [ho, and I; for a transmon. We as-
sume the quasiparticle distribution is described by an effective temperature T < A and the
dimensionless density x4, < 1, which may or may not correspond to zero chemical potential.

Aiming at the most realistic case, we take T < iw;g, which allows us to use Eq. (68) in
Eqg. (66). Furthermore, disregarding small anharmonicity we utilize Egs. (74) and (75) with
E; =0 and ¢, = 0, respectively, to find the qubit matrix element,

2 E
‘(Olsinzll)‘ ~\| ==, (81D
2 8E,

entering Eq. (66). As a result, the latter equation leads to

16E, [ E. [ A
Iig=—\| — . 82
10 hn 8EJ 2770)10 qu ( )

Generalization to arbitrary T.g;/hw;, amounts to multiplication of the right-hand side of
Eq. (82) by v 4hwq g/ mtTegrexp(hiwqo/2Tesr)Ko(fiw10/2Tesr), Where Ky(z) is a modified Bessel
function, see [18]. Rate I;;; can be obtained from Egs. (82) and (70).

Within the harmonic approximation, the level-preserving transitions (0 —» 0 and 1 — 1)
occur between states which, up to exponentially small corrections [10], have the same parity
of the wave function 1(¢). Therefore, rates I}y, and I';; come only from the (i| cos(¢/2)]i) ~ 1
term in Eq. (65). A straightforward evaluation [18] yields

16E; Togt
X -
hm 2nA” P

Tho~ T ~ (83)
In the derivation of these rates we accounted for the near-degeneracy between the states con-
nected by the transitions. Indeed, the corresponding energy difference (divided by h) is at
most a few MHz, so it satisfies the condition fiw < T, even is we assume that quasiparticles
equilibrate at the fridge temperature (10 mK ~ 200 MHz).

Comparing Egs. (82) and (83), we find the ratio of the rates,
11 /T = (8E;/E)Y? - (HewyoTee/ mA2)Y/2. The first factor here is large, while the second
one is small. For parameters of a typical transmon, the second factor wins the competition, so
that I, /T}¢ < 1; therefore it is unlikely for e-jumps to cause any phase diffusion.

4 Photon-assisted e-jumps

4.1 Generation of quasiparticles by photons

So far we have considered transitions in a qubit due to quasiparticles, but neglected any effect
of the external environment. In general, a qubit is coupled to the environment via a cavity or a
waveguide resonator which support a number of modes; in other words, the qubit is coupled to
photons whose frequencies w, depend on the geometry of the device. We can distinguish two
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kinds of photons: those with frequency lower than the pair-breaking energy, w, < 2A/H, can
be absorbed or emitted during a tunneling event of a quasiparticle already present, similarly to
the absorption/emission of the qubit energy by the quasiparticles. Assuming that only a small
number of such low-frequency photons are present in the cavity, this type of photon-assisted
tunneling can only contribute a small correction (which we neglect) to the rates calculated
in the previous section. In contrast, higher frequency photons, w, > 2A/hk, can always be
absorbed, even in the absence of quasiparticles, as they have enough energy to break a Cooper
pair and thus create two quasiparticles. The photon wave length, even at the photon energy
somewhat exceeding 24, is still comparable to the size of the qubit. Therefore it is fair to
assume that the alternating voltage generated by a photon is applied across the junction. Thus
breaking of a Cooper pair generates two quasiparticles, one on each side of the junction. Here
we consider the e-jump rates associated with such pair-breaking events.

4.2 Theory of photon-assisted e-jumps

The inclusion of the qubit-photon interaction in our model can be accomplished [20] by adding
to Eq. (61) the Hamiltonian for the photon (we focus on one mode of a cavity here for sim-
plicity)

Heay = bl b, (84)

where bl: and b, are the creation and annihilation operators for the photon, and by replacing

¢ —>p+¢,(b,+bl) (85)

in Egs. (46). Here ¢, is the amplitude of zero-point fluctuation of the phase due to the electric
field £,(0) at the junction position:

_ 2ed,&,(0)

how, (86)

v

with d, being the effective dipole length that relates the electric field to the voltage drop
U, across the junction, U, = d,£,(0). With these definitions, one can recognize that the
replacement in Eq. (85) originates from the relation between phase and voltage in Eq. (36),
see also the text preceding Eq. (53).

For our purposes, it is sufficient to perform the replacement (85) in Eq. (45) and then
consider the first term in the expansion over the small parameter ¢, < 1. In this way, we
obtain the following quasisparticle-qubit-photon interaction term:

6HT - l(zv (bv + bl’) Z OtnLnR (\unLvnR| ei% - |anunR| e_i%)YZLoY:;Ré
nyngo
+h.c. 87

Using as before Fermi’s golden rule, we can find the transition rate l“l.p between the initial

state with qubit in state |i), no quasiparticles, and one photon in the cavity, and the final state
with qubit in |f), two quasiparticles, and no photon:

h gp . 2 h-.(,() +h(,()f . (‘0 . 2 h(,l) +h(,l)f
I =Fv[<flcos§|l) s_(% +\<f|sm5|z> Sl——=— |- ®®
where 5
rv:%cpﬁEJ (89)
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can be related to the coupling strength between qubit and cavity [20], and

yz£1
S (x)=fd sz o6(x—y—2) (90)
R Ve Ve
—2 1¥1 —2
:(x+2)E(x )—4X+ i K(x )
x+2 x+2 x+2

with E and K the complete elliptic integrals of the second and first kind, respectively. These
structure factors have the following properties: S, (x) = 0 for x < 2, S.(x) ~ x for x > 2,
and

S (x)~m[l+(x—2)/4] 91
S_(x) ~ m(x—2)/2 (92)

for x —2 < 2. Note the similarities between Egs. (65) and (88): in both there are a prefactor
that accounts for the coupling strength, and the squared matrix element of sin ¢ /2 and cos ¢ /2
multiplied by qubit-frequency-dependent structure factors. The latter additionally depend on
the quasiparticle distribution function in Eq. (65) or on the photon frequency in Eq. (88);
this difference relates to the different physical origin of the transitions: those with rates in
Eq. (65) require quasiparticles to be present but no photons, while those in Eq. (88) require
the presence of photons but not quasiparticles.

Let us consider again the case of a single junction transmon; then using Eq. (88) we find
for the parity switching, relaxation, and excitation rates:

h hwv

I~ rvs_( N ) (93)
ph ~ EC hew +h(.l)10

1y~ | s (2 99
h E Hw, —hAw

Fgl A Fv\ ﬁs_’_(VTlO) . (95)

The relaxation and excitation rates are generally close: for w;¢ < min{w, —2A/k,2A/h} we
find

hwyy Ty
1— <—x1, 96
2A I‘f(})l 96)

with the lower bound saturated as w, — 2A/k and the upper one for w, — oo. This is in
contrast to “cold” quasiparticles, in which case Fgf / qug < 1.
Finally, the ratio between parity switching and relaxation rates can be large, since

Tt 8E
Fe\ > (97)
Mo C
for w, > 2A/h. On the other hand, for photons near the pair-breaking threshold,

hw, —2A < A, we find
™ T2E (n
Lh PR P’ (& _ 2) (98)
I, Ec \ A

and the large prefactor on the right hand side can be compensated by the small, final factor
originating from S_(x).
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Figure 5: (adapted from Ref. [21]) Symbols with error bars: experimental data for
T, Ty, and Te.q,, Vs temperature. Dashed line: theoretical T; time calculated using
Eq. (99).

4.3 Comparison with experiments

Various experiments have reported measurement of qubit rates for transitions that can be
caused by quasiparticles. In the work introducing the 3D transmon architecture [21], the
T; time was measured as function of temperature T. At low temperatures, this time was
roughly independent of T, while it became quickly shorter at higher temperature, see Fig. 5.
A possible explanation of this behavior is that at low temperatures there are non-equilibrium,
cold quasiparticles with the density xq, ~ 3 - 1077, This value is exceeded by the density xflg
of equilibrium thermally-activated quasiparticles at T 2 120mK. Consistently with that, the
relaxation time drops quickly upon the further increase of temperature. The quasiparticle-
driven relaxation rate scales linearly with the quasiparticle density, so we may separate the
contributions of x4, and xgg to1/T,,

1 11
=t 99)
T, T T

Alternatively, 1/T 10 could be dominated by a different, non-quasiparticle mechanism. One may
attempt to distinguish between the mechanisms by measuring T; as a function of flux [15]
or attempting to separate the relaxation processes involving e-jumps from those preserving
the charge parity [22]. The fluxonium experiment indicates the presence of quasiparticle-
driven relaxation at low temperatures and yields xq, ~ (1 —32)- 1077. In the transmon
experiment [22] temperature-independent relaxation was dominated by mechanisms other
than e-jumps.

A more recent experiment [19] in a similar setting (low E;/E. ratio) extracted all the
six transition rates between the four qubit states. We show in Fig. 6 the parity-changing, e-
jump rates. Again we see that they are independent of temperature at low temperatures, and
quickly increase at higher temperatures. Moreover, I},/T; ~ 1, giving a strong evidence for
the photon-assisted e-jumps. In fact, except for I7;, we can fit the data assuming that the
rates are given by the sums of the contributions stemming from thermal quasiparticles and
photon-assisted e-jumps calculated in the previous two sections:

_ 1ap ph
Fl-]-—r‘l.j +1“ij . (100)
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Figure 6: (data points from Ref. [19]) Symbols: experimental data for the transition
rates vs temperature. Dashed lines: theoretical rates calculated using Eq. (100) and
the parameters given in the text.

Some parameters (E. ~ 355MHz, E;/E; ~ 22.8, w,y/27™ = 4.400 GHz) are obtained from
independent measurements; then we are left with three fit parameters: A/27 ~ 49.1 GHz,
hw,/A ~ 2.8, and T, ~ 7.7kHz. The result of the fit is shown by the solid lines. The dis-
agreement between theory [18, 20] predicting I'; /I, < 1 and experiment [19], showing
I11/Too ~ 1.3 is currently unexplained.

5 Quasiparticle dynamics

5.1 Energy relaxation, recombination, and trapping

While multiple experiments indicate a low-temperature saturation of the quasiparticle density
at a level xg, ~ 1077 — 107°, the source of such non-equilibrium population is not uniquely
identified. Monitoring of the occupation of the fluxonium states [23] over a ~ 10 min time
span indicates that quasiparticles arrive in bunches, which leads to a non-Poissonian statistics
of the quantum jumps between the qubit states. The qubit temperature (measured by the
relative occupation of the states |0) and |1)) remains low, favoring the assumption that the
non-equilibrium quasiparticles are also cold, T.g ~ 40 — 60 mK, see Figs. 7(a) and 7(b).
Quasiparticles may relax their energy in a superconductor by emitting phonons. Recom-
bination is also accompanied by emission of a phonon that carries away the energy (~ 2A)
released in the annihilation of two quasiparticles (in this discussion, we focus on the zero-
temperature limit and low quasiparticle densities). Recombination requires a meeting of two
quasiparticles, therefore the corresponding rate equation has the form dx,,/dt o< —xép. The
recombination rate per quasiparticle scales as 1/7, o< xg,. The relaxation rate, on the other
hand, is independent of x4, but has a strong dependence on the energy E of the quasiparticle
measured from the gap. The electron-phonon relaxation rate in metals is strongly affected by
disorder. For thin films, the “dirty limit” in which the superconducting coherence length ex-
ceeds the electron elastic mean free path, is an adequate approximation. The theory of these
rates is beyond the scope of these lectures; its summary can be found in Ref. [24]. The same
work provides a detailed theory of the relaxation (1/75) and recombination (1/7,) rates for
quasiparticles in superconductors (with or without applied magnetic field). Using the results

25


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.31

SCIl SciPost Phys. Lect.Notes 31 (2021)

"o Ground state e Excited state

ié)/ 0.4 :
* 0.2k
[(a) 333% , , : : :
¢ op ' gsg o 40MKT ' ' ]
0.3[ (b) . 46 mK 260 MK . ) ]
0 1 2 3 4 5 6

Time (minutes)

Figure 7: (adapted from Ref. [23]). (a) Measurement of the average time spent by
the qubit in the ground (blue) and excited (red) states vs time. There are significant
fluctuations in these values over the course of minutes. (b) Polarization of the flux-
onium qubit vs time. The dashed blue line marks the average polarization, which
corresponds to a temperature of 46 mK, and the gray dashed lines are markers for
40 and 60 mK. Note that the qubit temperature is not correlated with the fluctua-
tions between the quiet and noisy intervals. The qubit polarization o, is defined in
analogy to a spin-1/2 polarization.

of [24] [specifically, Egs. (57) at zero field, T4 < A, and E < A] we find

1 3 (5)9/2 1 1 Ty
A 3

N——— . 101
T, 2t5(A) AP (101)

g TNn(A)

Here 1/75(A) is the rate of relaxation of an electron with energy A (measured from the Fermi
level) in the normal state. It depends, among other parameters on the electron mean free
path. We extract the estimate 1/7,(A) = 4-108s™! for Al with electron diffusion constant
D = 20 cm?/s from the data of Ref. [25]. In finding the rates, we considered, respectively,
relaxation of a quasiparticle by a spontaneous phonon emission and recombination of a quasi-
particle with a background quasiparticle distribution characterized by x,, and T We also
assumed that the thickness of the superconducting film exceeds the wavelength of a phonon
with energy E; violation of that condition reduces [24] by 1 the exponent of the E/A factor
inl/7g.

Comparing the two rates of Eq. (101), we find that despite the precipitous drop of 1/7g
with energy, this rate still exceeds by an order of magnitude the recombination rate 1/7, at
E = Ty = 35 mK and xg, = 107%. The recombination rate may be further reduced by the
re-absorption of phonons in the superconductor, recreating pairs of quasiparticles [26]. That
provides one with the grounds for assuming for quasiparticles a Gibbs distribution with a finite
chemical potential and T, = T. This assumption is further justified by the expectation that
qubit manipulation with microwaves does not heat the quasiparticles [27].

The considered above processes may occur regardless the presence of macroscopic inho-
mogeneities in a superconductor. Inclusion of inhomogeneities, however, brings about two
more elements of the quasiparticle dynamics, i.e., their diffusion and trapping. Experiments
with qubits have opened new ways to investigate these processes, based on monitoring the
relaxation rate of a qubit. Indeed, an excess density of quasiparticles created by a AC bias
jolt applied to the junction affects the qubit relaxation rate, see Egs. (66) and (68). The total,
time-dependent relaxation rate I'(t) of a transmon qubit can be written in the form

T(t) = vxqp(0,t) + T, (102)
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0.5mm

Figure 8: Top: (adapted from Ref. [30]) Optical image of a qubit used to measure
quasiparticle trapping due to vortices. Bottom: schematic diagram of the simplified
model used in the text to calculate the quasiparticle density decay rate; it represent
one half of a symmetric device with a wire of length L attached to a pad of area S.

where x4,(0, t) is the time-dependent excess quasiparticle density at the position of the junc-
tion, while T}, accounts for all other relaxation mechanisms (including relaxation due to a
possibly finite steady-state quasiparticle density). Using Eq. (75) with ¢, = O for the matrix
element of a transmon, we have y ~ 4/2Aw;o/h/7 for the constant in Eq. (102). In the next
sections we consider first the effect of vortices, which hints at the possibility of affecting the
dynamics and thus improve qubit performance. Motivated by these results, we then study the
stronger effect of a normal-metal quasiparticle trap.

5.2 Single-vortex trapping power

When a thin superconducting film is cooled below its critical temperature in the presence of
a perpendicular magnetic field, vortices are trapped in the film if the field is higher than a
certain threshold. For a strip of width W, this threshold is of the order ®,/W?, see Ref. [28]
for a detailed discussion (further discussion of a ring and disk geometries can be found in
Ref. [29]). The threshold field is usually small, amounting to a few milliGauss for a strip
or disk with a width of few tens of microns. This implies that vortices can be avoided or
permitted in certain regions of a superconducting circuit by properly choosing the dimensions
of its features. For example, for the qubit design in Fig. 8, top panel, at sufficiently low field
the vortices will only be trapped into the large square pads at the ends of the long and thin
antenna wire.

In the presence of a vortex, the superconducting order parameter is suppressed over a core
region of radius ~ &, with & the coherence length. In this region, a quasiparticle can loose
energy (e.g., by emitting a phonon), since there are states available with energy below the bulk
gap, and thus get trapped in the vortex core. Experiment [30] revealed the effect of a single
vortex on the quasiparticle dynamics and measured the relevant quantity, the trapping power
P of a vortex, which is an intrinsic property of a vortex, independent of the device geometry.

At a phenomenological level, we expect the dynamics of the quasiparticle density to be
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governed by the following generalized diffusion equation:

Oxqp(r, t)

N
P = quvzxqp(r,t)—PZE(r—ri)xqp(r,t), (103)

i=1
where Dy, is the (temperature-dependent) quasiparticle diffusion constant, P is the “trapping
power” of a single vortex, and the sum is over all the N vortices at positions R;. The trapping
by vortices leads to an exponential decay of the density; we calculate this decay rate in a
simplified model of a (quasi-)1D wire of length L and width W < L attached to a square
pad of area S (see bottom panel of Fig. 8). The diffusion equations in the wire and pad are,
respectively:

Ixgp(y, t) 32x,(y, t)
qp qp
- 1
at P Fy2 (104)
Oxqp(r, t) N
Cl;t :quvzxqp(r,t)—PZ(S(r—rl-)xqp(r,t)’ (105)

i=1

with the boundary condition V | x4, = 0 at the boundaries (here V| denotes the gradient in
the direction perpendicular to the boundary). While Eq. (104) can be easily solved analytically,
this is not possible for Eq. (105). However, so long as the diffusion rate D,/S inside the pad
is fast compared to the density decay rate, the density within the pad can be taken to be
approximately uniform and we can derive from Eq. (105) a boundary condition for Eq. (104)
by integrating the former over the pad area to obtain

Oxgp(L,t) Ixqp(y,t)
Tl R _
s—= WDyp—3- |, ~PNxgp(L,0). (106)

The solution to Eq. (104) can be written in the form:
xep(y,t) =e*facos(ky), (107)

where s = quk2 is the density decay rate (i.e., the total trapping rate), and the boundary
condition at the origin is satisfied.! Then, using the boundary condition Eq. (106), we have
the following equation for k:

S
ztanz+A—22—N—=O, (108)

with z = kL, Ay, = WL the wire area, and 7 = L2 /Dgp the diffusion time along the wire.
There are two distinct limits for the solution of Eq. (108).

In the limit of small number of vortices of weak trapping power, NPt /A, < 1, we have
22 ~ NPtp /A, where A= S + Ay, is the total device area. In this regime, the density decay

rate s is then
NP (109)
S —,
A

which is proportional to the number of vortices. It is the vortices which provide the bottleneck
for the quasiparticle evacuation from the vicinity of the Josephson junction. The measured in
experiment rate s exhibited step-wise increase with the external field, see Fig. 9. Each step
corresponds to entering of a vortex in a pad. The step height allowed one to extract [30] the
trapping power of a single vortex, P ~ 0.067 cm?/s.

!The vanishing of the density derivative at the junction position is equivalent to considering a symmetric device
with the same number of vortices in both pads; generalizations to more complex geometry and unequal vortex
number can be found in Ref. [30].
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Figure 9: (adapted from Ref. [30]) Left: quasiparticle density decay rate (or trapping
rate) vs cooling field for two devices . Right: trapping rate times area vs field for three
devices; at low field, the stepwise increase of the rate is evident.

Comparing this finding with a theory remains to be a challenge. A crude estimate of the
electron-electron interaction effect within the vortex core yields [30] trapping power smaller
than the observed value by a factor ~ 102. The additional effect of the periphery of the
vortex was considered in [24]. At the vortex periphery, the gap is suppressed compared to
its nominal value; a propagating quasiparticle may emit a phonon and get trapped in that
region. The additional rate associated with such process does not resolve discrepancy with the
experiment, but indicates an interesting and yet unexplored temperature dependence of the
trapping power.

As the number of vortices increases, the bottleneck shifts to the diffusion along the wires
connecting the junction to the antenna pads. In terms of Eq. (108), it means the existence of
an upper limit for the solution: z ~ /2 for NPt /Ay, > 1. In this case, the density decay
rate is determined by the diffusion rate:

712

SN — 110
47Tp (110)

with diffusion coefficient D, ~ 20 cm?/s. Along with the stepwise increase of the decay rate

for small vortex number, an upper bound for the decay rate was also measured, see Fig. 9.

5.3 Normal-metal traps

The core of a vortex can be thought of as a small (size £2) normal-state region inside a super-
conductor. Since quasiparticles can be trapped there, one can expect that an actual normal-
metal island can also act as a quasiparticle trap. Here we consider the case of such an island in
tunnel contact with a superconductor — that is, the normal and superconducting layers are sep-
arated by a thin insulating barrier, so that the contact has low transparency. In this situation,
we have again a generalized diffusion equation for the quasiparticle density:

Ixgp(r, t)
q;—t - DqPVZXQP(r’ t)— a(r)reffxqp(r’ t). (111

In the last term, the function a(r) is unity in the normal-metal/superconductor contact region

and zero elsewhere. The effective trapping rate [ accounts for the competition of three ef-
fects (see Fig. 10): a quasiparticle in the superconductor can tunnel into the normal metal at
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Figure 10: (from Ref. [31]) Left: a normal-metal layer N of thickness dy is in tunnel
contact with a superconductor S of thickness dg. Right: depiction of the processes
determining the effective trapping rate: tunneling into the normal metal with rate T},,
relaxation to below the gap A with rate I}, and escape back into the superconductor
with rate T,.(¢). While the normal-metal density of states is featureless (top), the
superconductor’s one is peaked at the gap and zero below it (bottom).

rate Ii,; once in the normal metal, the excitation can relax to states with energy below the gap
atrate I}, or it can escape back to the superconductor at rate I,..(€). The latter is energy depen-
dent because in calculating such a rate via Fermi’s golden rule, the bare (energy-independent)
tunneling-out rate I, is enhanced by singularity of the (normalized) BCS density of states,

€

1—‘esc(e) = Fescﬂ , €>A. (112)

Identifying the quasiparticle effective temperature with T, we can distinguish two limiting
regimes (see Ref. [31] for details) for the effective trapping rate Ig: if relaxation is fast,
[, > T,/ A/T, then the “bottleneck” process is tunneling into the normal metal and T¢ ~ I;;
if relaxation is slow, I, S I.;.+/ A/ T, then relaxation is the bottleneck and

LT,
T & Fr L T/A. (113)

esc

For both the slow and fast relaxation regimes, according to Eq. (111) the dynamics of the
density is determined by diffusion and effective trapping rate. Similarly to the case of vortices,
we can gain a qualitative understanding of the dynamics by studying a simplified model, see
Fig. 11. Let us consider a superconducting strip of length L + d and width W < L, with the
region —d < y < 0 in contact with normal metal and the region 0 < y < L free; then Eq. (111)
simplifies to

atxqp(.y: t) = qua}%xqp(}’, t) - 9(_y)reffxqp(y> t) > (114)
with the boundary condition dx.,/dy =0 at y =—d, L. So long as the trap is small, d < Ay,
compared with the trapping length defined as A, = 1/Dgp/Te, we can treat the trap in the
same way as we treated the pad in the previous section, and from integrating over the trap
area obtain an effective boundary condition at y = 0:

0:x4p(0, 1) = (Dgp/d)3, Xgp(¥ )= — TefsXgp(0, ) - (115)
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Figure 11: (adapted from Ref. [31]) a: simplified geometry used to study the dynam-
ics of quasiparticle density in the presence of a normal-metal trap. The trap region
(orange) goes from —d to 0 and the superconductor without trap (yellow) from 0
to L. b: optical image of one of the devices used in the experiments. c: zoomed-
in image of the copper traps (orange) deposited over aluminum (yellow) near the

junction.
Taking the solution in the region y > 0 to be of the form x,, = e™acos[k(y — L)] with
s = qukz, and using this boundary condition, we arrive at
d d
ztanz+—zz—ﬁ—=O, (116)
L° 21,

with z = kL and [, = 7Dy, /2T = Ttktzr/ 2L. Up to different parameters, this equation for z
has the same form as Eq. (108);? therefore, we find again two regimes, one for small, weak
traps with the density decay rate given by

SR

7 +LFeff 117)

valid for d < [, and one for large/strong traps (d > l,) in which the decay rate is limited by
diffusion, see eq. (110).

The cross-over between the weak and strong trapping regime can be studied by increasing
the trap length d while keeping everything else equal. Such experiments were carried out with
transmon qubits of design similar to that used in the vortex experiments, see Fig. 11. In Fig. 12
we show the (normalized) density decay rate vs (normalized) trap length: after an initial
linear increase with length, the decay rate saturates. From the linear part, one can extract the
effective trapping rate, which turns out to increase with increasing fridge temperature. This
finding (as well as independent measurement of the relaxation rate) is in qualitative agreement
with the expectation of slow relaxation in the normal metal being the bottleneck for trapping,
see Eq. (113).

A more accurate modelling of the qubit geometry was considered in Ref. [32], where opti-
mization in the number and position of traps was also studied, together with the other advan-
tages of using traps (increase in the steady-state T; time and reduction of its fluctuations over

2in the regime d < A,, < L, for the slow modes one can neglect the second term in Eq. (116), which then
reduces to the expression found in Ref. [31].
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Figure 12: (from Ref. [31]) Quasiparticle density decay rate s = 1/7,, (normal-
ized by the inverse of the diffusion time t; = 4tp/m?) vs trap size (normalized
by lo = Dy, /2T L). The parameters t; and [, depend on temperature via the T-
dependence of the quasiparticle diffusion constant Dy, and I defined in Eq. (113).
The blue“x” (red “+”) symbols are for experiments performed at a fridge temperature
of 13 mK (50 mK), at which the parameters t; ~ 184 us (t; ~ 125us) and [ ~ 41 um
(ly ~ 46 um) where estimated. The solid line is obtained from a numerical solution
of Eq. (116) when neglecting the second term.

long time scales). It should be noted that normal-metal traps can also introduce new dissipa-
tion mechanisms for the qubit. For example, the inverse proximity effect broadens and soften
the superconducting gap, introducing subgap states into which the qubit can loose energy;
this effect weakens exponentially with the ratio between junction-trap distance over coher-
ence length and can be neglected [33]. Current within the normal metal and the tunneling
current through the barrier between the normal metal and superconductor can also dissipate
energy. While the contribution of the latter to qubit relaxation is negligible, the former one
imposes some constraints on trap design which are not relevant to current qubits, but could
be limiting for qubits with improved coherence [34]. Such limitations of normal-metal traps
can be largely sidestepped by using instead gap-engineered traps, obtained by good contacts
between two different superconductors [35].

5.4 Quasiparticle trapping in Andreev levels

At the end of Section 2.2 we mentioned that the normal-state conductance scales propor-
tionally to the product of the junction’s cross-sectional area ¥ and the electron transmission
coefficient |tg|? of the tunnel barrier, Gy o< ©-|tg|2. In discussing the Josephson effect in Sec-
tion 2.3 and thereafter, we concentrated on the low-transmission, large-area tunnel junctions
with Gy ~ e2/h. One may ask, if any new effects appear in smaller-area junctions, where
the same value of Gy is achieved by increasing |t|2. The answer is affirmative, due to the
increasing prominence of the sub-gap Andreev levels associated with a junction.

Phase biasing of a junction of any |tg|? leads to the Andreev levels appearance. We may
illustrate it with a simple example of a point contact with |tz|?> < 1. In terms of tunneling
Hamiltonian (33), a contact of an area ¥ < /11% is modeled by a matrix t, , having only one
non-zero eigenvalue (i.e., only a single electron mode may go through the junction). Without
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loss of generality, we may take (voV)t,, ,, = tp independent of n;,ng [here V and v, are,
respectively, the volumes of and the electron density of states in the two leads which we assume
identical, cf. Eq.(40)]. At |tg| < 1, we concentrate on a single-quasiparticle sector, keep only
the term (44) and dispense with other terms (which do not conserve the quasiparticle number)
in the tunneling Hamiltonian (43). Furthermore, expecting shallow bound states just below
A at small [tg|, we replace unLun —Vn, vn in Eq. (46) by isin(y/2) and therefore simplify
Eq. (44) to:

%qp = 1— sm( ) Z YHLO'YHRO' (118)
ng,ng,o
Now we perform a canonical rotation into a new quasiparticle basis defined by the operators
Yoot = (1/vV2)(¥no % i¥n,0)- In new variables, the Hamiltonian for low energy
(e,~A+¢& fl /2A) quasiparticles in two identical leads linked by the junction takes the form

H= Z (A+ _)YT‘[O':EYHO':E-i_ Z I:iWSIH(i)]Yjinmgi. (119)

n,o,x n,m,o,x

In the continuum limit, we may replace the summation over n here with integration over &,
thus relaxing the requirement for the leads to be microscopically identical,
> = V) f d&{...}. It is instructive to compare the resulting Hamiltonian of one
of the fermion species (+ or —) with a Hamiltonian of free particles in one dimension subject
to a potential —U&(x) with U > 0, written in momentum representation:

’Hfree=Jdp —c c +depjdkc Ck - (120)

The comparison allows us to identify 1/m with Vv,/A and U with the “potential”, either
+4/ Vyotgsin(p/2) or —4/ Vvt sin(e/2), for one of the species which has a negative poten-
tial at a given value of ¢. A &-function well creates a localized state at any U > 0. Likewise,
a localized Andreev state with energy

E,(p) = A—2E;sin®(¢/2)=A—E; +E;cosp (121)

is formed at any ¢ # 0. In writing Eq. (121), we expressed the binding energy (o< |tg|?) in
terms of the Josephson energy (51) evaluated for the same parameters of tunneling Hamilto-
nian, E; = |t5|?A/4.

A remarkable property of the phase dispersion E4(¢) is that it is exactly opposite to the
phase dispersion of the ground-state energy 6 Egs(¢), cf. Eq. (51). We derived it for a point
contact with transmission coefficient |tgz|> < 1. In fact, this property is preserved for any
value of the transmission coefficient, as long as (i) the time-reversal symmetry (at ¢ = 0)
is preserved, and (ii) electrons acquire a negligible phase while traversing the junction. The
latter condition is satisfied even for a ballistic point contact (|t5|> — 1) as long as its length is
small compared to the superconducting coherence length. At arbitrary transmission,

Ex(9) = Ay/1—|tp2sin2(/2). (122)

This relation, and the respective modification of 6 E;s(¢), can be obtained in multiple ways,
including a non-perturbative treatment of the tunneling Hamiltonian (43) and the use of scat-
tering matrix formalism [36]. A short, wide-area junction can be viewed as a set of parallel
quantum channels characterized by their respective transmission coefficients |t]i3 |2. each of the
channels creates an Andreev bound state with energy Ej\(go) obtained from Eq. (122) by re-
placing ty — t;. The phase-dependent part of the ground-state energy is modified compared

to Eq. (51), E;(1—cosp) — — >, EL ().
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Figure 13: (from Ref. [37]) Left panel: a sketch of the Andreev levels dispersion
with ¢ in a single-mode highly transparent junction. Its length is assumed to some-
what exceed the superconducting coherence length, allowing for two Andreev levels.
The level degeneracy at ¢ = 0 is the manifestation of time-reversal symmetry; the
degeneracy at ¢ = £ is due to the symmetry with respect to the product of time re-
versal and spatial inversion transformations. At other values of ¢, Kramers doublets
are split due to the combination of a finite Josephson current and present spin-orbit
coupling. Various dashed arrows indicate transitions involving promotion of a quasi-
particle from a lower to higher-energy Andreev state. Right panel: spectroscopic
lines corresponding to the indicated transitions. The lines intersection at ®/®, = 0
reflects the ¢ = 0 Kramers degeneracy.

The described spectrum of Andreev levels and their relation to the phase dependence of
the ground state energy is specific for short junctions and requires time-reversal symmetry to
be present at ¢ = 0. Violation of any of these two conditions modifies the Andreev levels
and breaks down their relation to the ground-state properties. The phase of an electron wave
function accumulated in the course of propagation through a finite-length junction reduces
the energy of an Andreev level: its energy is E4, < A even at ¢ = 0. A longer junction
may host more than one Andreev level; the levels retain their Kramers degeneracy, at least
at ¢ = 0. Regardless the junction’s length, Zeeman effect associated with an applied magnetic
field breaks time-reversal symmetry and lifts the spin degeneracy even at ¢ = 0. A phase bias
¢ # 0 across the junction leads to a Josephson current and is another source of time-reversal
symmetry breaking. In the presence of spin-orbit coupling, a finite Josephson current may
cause the spin splitting of an Andreev level. Such spin-split structure of Andreev levels in a
finite-length, high-transmission junction is sketched in the left panel of Fig. 13.

The Andreev levels lie below the edge of the quasiparticle continuum, and therefore are
prone to trap quasiparticles. In terms of occupation factors nj;x of the Andreev levels, the
corresponding correction to the energy of the junction is §E(¢) = >, nI‘;\EA(cp). At each given
time, the set of factors {n}} is drawn from integers 0 and 1 (we assign different superscripts
to the components of a degenerate level). The set {n};x} changes from time to time, due to the
inelastic relaxation of quasiparticles interacting with phonons. Based on Egs. (101) and the
discussion in the beginning of Section 5, we expect their rate to be slower than 1/7,(A). The
rate is reduced further by low total average number of trapped quasiparticles, in which case
we also may expect the energy relaxation to occur faster than the recombination.

At fixed {n};‘}, the trapped quasiparticles affect the inductance of the junction. If the latter
is a part of an LC-circuit, trapping shifts down its resonance frequency. This shift provides one
with a measurable “fingerprint” of {”};1}' This kind of experiment was performed [38] with an
Al nanobridge which may be considered as a short junction of a cross-section passing about

34


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.31

SCIl SciPost Phys. Lect.Notes 31 (2021)

ﬂ\ r 0-5% Taxios
\pt= ot | o g0l 3 v la
250 = L D S oa ) 2 °
150 - oo . ! i } *- 1
s : , -1 28 , .
T (mK) 4.681 4682 4,683 8IO 12IO 1I60 2(I)O
f (GHz) T (MK)

Figure 14: (from Ref. [38]) Left panel: resonance traces of an LC circuit containing
an Al nanobridge. The estimate number of quantum modes propagating through
the bridge is ~ 700. Traces are averaged over many measurements spanning time
interval exceeding the time needed for the rearrangement of the set of occupation
factors n};‘. At low temperatures, two shoulders are clearly seen on the low-frequency
side of the main resonance. The shoulders correspond to the shifts of the resonance
frequency caused by quasiparticle poisoning, respectively, of one or two Andreev
states. Right panel: the average number of trapped quasiparticles (left axis, black
circles) and x4, (right axis, red squares) extracted from experiment.

700 electron modes. Under applied phase bias, each mode with a particular value of |t]ig|2
gives rise to an Andreev level with energy Ej\ given by Eq. (122). At a given bias ¢, resonance
traces of the reflection amplitude were accumulated over time exceeding the evolution time
of the {nfq} set. The averaged trace therefore corresponds to an average over all configura-
tions {n}}, weighted by their probabilities. As flux bias grows, energies Ej,(¢) drop, and so
the likelihood of a quasiparticle trapping in an Andreev state grows. The left panel of Fig. 14
shows the averaged traces at ¢ = 0.4647 for a set of temperatures. At the lowest temperature,
multiple shoulders on the low-frequency side of the main resonance are resolvable, indicat-
ing multiple quasiparticle trapping numbers. The most prominent shoulder corresponds to a
single quasiparticle trapped by an Andreev level associated with one of the modes. Its width
comes from the range of the Ej\(cp) values of ~ 700 Andreev levels. It is quite remarkable that
quasiparticle “poisoning” of one out of 700 quantum modes is traceable in the experiment. A
weaker feature in the trace appearing further away from the main resonance peak corresponds
to trapping of two quasiparticles. At higher temperatures, first the 2-quasiparticle and then
the 1-quasiparticle shoulder shrink, leading to a Lorentzian resonance at T ~ 150 mK. The
extracted from experiment temperature dependence of the average number of trapped quasi-
particles n;,q, is shown in Fig. 14. At T < 170 mK, the number 7n;,,, grows as temperature is
reduced; this is characteristic for a non-equilibrium population.

Microwave technique was recently also applied to studying Andreev levels in atomic point
contacts [39,40] and in proximitized semiconductor wires [37,41-43]. Such junctions carry
only one or a few electron modes which allows one to perform spectroscopy of individual levels.
There is a simple rule of thumb for assessing the odds of quasiparticle poisoning of an Andreev
level at low temperature T and small, temperature-independent xg,. Assuming Boltzmann
distribution of the quasiparticles in energy, we find their chemical potential (measured from
the edge of the quasiparticle continuum), u = (T/2) ln(xgpA /2nT). The justification for the
use of Boltzmann distribution is the inequality between the relaxation and recombination rates,
1/t > 1/7,. This, in turn, requires small occupation factors of the quasiparticle states. Once
the energy E4(¢)— A of an Andreev level drops below u, one may expect its high occupation.
This condition was clearly satisfied in experiments [37], where all the detected transitions, see
Fig. 13, had nz =1 in the initial state.
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6 Conclusions

Constructing a quantum information device calls for finding elementary building blocks capa-
ble of maintaining quantum coherence over extended time periods. Superconductors provide
one with a head-start in the race for a perfect device: the superconducting ground state locks
together a macroscopic number of degrees of freedom, leaving a small number of collective
variables to build a qubit from. The coherence distributed over many particles is inherently
more robust than that of a single spin or atom. This robustness allows one to shorten the prepa-
ration and readout times for a superconducting qubit. However, some hazards come along
with the macroscopic dimensions of a qubit. Many of them are defeated by now ubiquitous
circuit QED architecture [44—46]. That sharpened the attention to the unwanted influences of
superconducting quasiparticles in the “conventional” circuit QED devices [47] and in putative
topological qubits [48]. It is clear by now that the observed low-temperature quasiparticle
density by far exceeds its equilibrium values in a broad variety of devices. Their sources are
still not fully identified, with photons [20], phonons [49,50], and even cosmic rays [47,51,52]
being contenders. Meanwhile, superconducting qubits have provided one with an unrivaled
technique for time-domain experiments. In many cases, it is by far the most sensitive tool for
investigation of elementary processes in quasiparticle dynamics. It is this tool that allowed one
to resolve such subtle effects as the tiny dissipative cos ¢-component of the Josephson current
and quasiparticle trapping rate by a core of a single vortex line. Improving the qubit perfor-
mance goes hand-in-hand with the ever-increasing capability of the techniques they provide
for physics research.
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