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Abstract

In this set of notes, a complete, pedagogical tutorial for applying mean field theory to
the two-dimensional Ising model is presented. Beginning with the motivation and basis
for mean field theory, we formally derive the Bogoliubov inequality and discuss mean
field theory itself. We proceed with the use of mean field theory to determine a magnet-
isation function, and the results of the derivation are interpreted graphically, physically,
and mathematically. We give a new interpretation of the self-consistency condition in
terms of intersecting surfaces and constrained solution sets. We also include some more
general comments on the thermodynamics of the phase transition. We end by evaluating
symmetry considerations in magnetisation, and some more subtle features of the Ising
model. Together, a self-contained overview of the mean field Ising model is given, with
some novel presentation of important results.
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1 Introduction

The Ising model is a model of the lattice of particles constituting the atomic structure of a
magnetic metal. The model takes a metallic element as being composed of a d-dimensional
regular lattice A of atoms, and these atoms as being composed of protons and neutrons. It then
models the magnetic properties of certain metals as arising from a nuclear magnetic moment,
where spin is a quantum mechanical property of particles [1] that creates a magnetic dipole
[2, 3, especially chapter 3]. Spin s in the Ising model comes in values of either ‘up’ or ‘down,’
and each atom (lattice site) has its own individual value of spin, denoted by +1 and —1,
respectively. This integer spin matches that of Bose-Einstein statistics. Details on the nature
of spin and its role in the quantum electrodynamical theory of magnets are out of the scope
of this article, but roughly speaking, the particle has a charge existing over some volume; this
volume ‘rotates’ on account of the particle’s spin, and the moving charge generates a magnetic
moment. The alignment of spins creates a strong magnetic moment by amplifying it.

Devised in 1920 by Wilhelm Lenz, Ernst Ising’s doctoral supervisor, the model was given to
Ising and solved by him in 1925 [4]. Ising’s task was presumably to study the properties of the
model by solving it, or, to find the model’s dynamics from its Hamiltonian. A crucial feature
of these dynamics is that the Ising model exhibits a phase transition [5, chapters 5 and 6],
wherein the ‘phase’ of the model changes depending on the heat flow into the model. In this
case, the Ising model shows a loss of magnetisation as a temperature variable T increases, cor-
responding to a real-life phenomenon in which magnets lose their magnetic properties when
heated. Ising did eventually solve a one-dimensional model, calculating an expression for the
behaviour of a chain of spins from its partition function and determining the spin-spin cor-
relations and free energy [6]. The solution is simple, but unfortunately, there is no phase
transition in one dimension, making the classical one-dimensional Ising model uninteresting.
In two dimensions, we observe the previously mentioned phase transition from a paramag-
net—disordered spins, no magnetisation—to a ferromagnet, at temperatures below a critical
point T,. However, in two dimensions, the interactions become too complex to solve for ana-
lytically with any ease. In three dimensions, the model is still unsolved.

The Ising model is one of the most commonly used models in statistical mechanics, due
both to this phase transition and the richness of the model as a statistical mechanical sandbox;
as such, it is important to understand it, despite the challenges it can pose. With respect to
its utility in modelling phase transitions, at least, the model has the ability to describe the
dynamics of a large number of seemingly quite different transitions. The Ising model thus
comprises a particular universality class [7], which describes the grouping of many different
systems according to some key common features in their phase transitions [8]. The Ising model
has been used for diverse purposes, from describing the liquid-gas critical point to representing
various features of string theory [9-12]. This is remarkable for such a simple model. Indeed,
the simple appearance, but non-trivial dynamics, of the model make it valuable to statistical
mechanics for other reasons than just universality—in particular, the ability to probe difficult
statistical phenomena using intuitive equations.

Statistical mechanics is—from one point of view—a science that relates microscopic things
to macroscopic things, as in collective phenomena of many-body systems. It does so by simpli-
fying the characterisation of difficult problems with many interacting components, using prob-
abilistic descriptions of the dynamics of these systems. In addition to fundamental notions like
ensemble properties, thermal equilibrium, entropy, Boltzmann distributions over states, and so
forth, one such statistical method is mean field theory (MFT). MFT constructs a mean field by
simplifying the description of a system to an average. Formally, MFT is a way of approximating
intractable systems with a simpler model that captures the relevant dynamics of the system. In
any stochastic system, each possible state of some variable is observed with some probability,
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drawing from a distribution described by a variance around some mean. Likewise, each mi-
crostate of the system is observed with a certain probability, such that the configuration of the
system admits thermal fluctuations centred around the mean of some distribution describing
the microstates. Thus, assuming the so-called relevant dynamics are contained in the spatial
average of the system, we can average out rapid fluctuations by assuming they vanish. In so
doing, we reduce the degrees of freedom of the system, and are left with a mean field. If these
fluctuations are caused or amplified by interactions, then this mean field reduces the original
theory to an uncoupled field, or a one-body problem. MFT is the primary device of statistical
mechanical enquiry in [13], especially chapter five, where the focus is on gaseous bodies of
interacting particles. It is closely related to the idea of the renormalisation group, which re-
duces degrees of freedom by defining a lowermost spatial scale-of-interest, thus constructing
an effective field at a particular spatial or energy scale [14]. In both cases, we simplify the
problem by restricting ourselves to some notion of a ‘relevant’ physics.

The simplifications we can make using MFT are inherently an approximation of the true
system, and even if useful, they are not always accurate. In fact, renormalisation group meth-
ods are a more reliable way to approximate many systems—in the Ising model, for instance,
when d < 4 or T = T, [15], the fluctuations we have neglected become too large to actu-
ally neglect [16, chapter 12.13]. In the latter case, this leads to a breakdown in the mean
field. Mean field theory is known to be inaccurate around such divergences in the order para-
meter [17]. On the other hand, however, at and above the ‘upper critical dimension’ d., a
system is so large that the mean field approach gives exact results (e.g. the predicted critical
exponents). Notably, these results are only analytically exact for d > d,, with logarithmic cor-
rections to the mean field required at d = d.. These are numerically small and thus difficult
to detect, but are evident in analysis by renormalisation group. Finite size effects are another
problem for the mean field, since MFT implicitly assumes the size of A is effectively infinite. As
such, small corrections are needed when A is bounded, due to the finite size of the lattice [18].
Whilst for d > d. these finite-size effects are still not trivial [19], mean field results still hold
there in general. Along these lines, it has been proven that the dynamics of an Ising model in
d dimensions necessarily converge to those of a mean field as d — oo [20]. We have already
stated that the solution to the Ising model is particularly difficult, and methods to exactly solve
it are often lengthy or require ingenuity [21]. With that said—it is clear that, even though MFT
is an approximation, it is a principled and useful method, and it holds for many large systems.
We will see that, crucially, we can quantify the effects of our approximation by the Bogoliubov
inequality.

As outlined, the Ising model exhibits a phase transition, describing the loss of magnetisa-
tion that occurs when magnetic materials are heated. Here, we discuss this phase transition,
and use MFT as a way of relating the complex microscopic dynamics of spin to the emergent,
macroscopic variable of magnetisation. We begin by stating the statistical theory supporting
mean field theory, by proving the Bogoliubov inequality. We follow this by focusing on the
most formal application of the mean field technique to the Ising model, using the foundation
built by the previous formal techniques; later, we will interpret the result that we arrive at.

2 Mean Field Theory

2.1 Proving the Bogoliubov inequality

MFT is formalised by applying the Bogoliubov inequality to a variational Hamiltonian. Broadly,
this states that the choice of a simpler model, and the statistics it yields, can be made formally
based on minimisation of a variational term. We explore the Bogoliubov inequality below.
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MFT relies on a factorisation of the Hamiltonian into easy and difficult parts. Such per-
turbative methods are commonly used in physics when a problem is intractable. To treat a
system perturbatively, we take a simpler, exactly solvable model, and ‘perturb’ it with some
additional terms to describe the more complicated problem that interests us. In general, these
are composed of a solvable expression A, and an expansion in some control parameter A, such
that a full equation A is approximated by the series:

ANAP :A0+A.A1+12A2...A,HAH.

The Bogoliubov inequality operates on one such perturbative method, and is used to justify
MFT. Say we were trying to find the free energy F of a system, given by —% In{Z}, where this
calculation was not tractable due to computational or analytical difficulty. We may separate
the system into two components such that one has ‘easy’ statistics and the other is more com-
plicated, with the caveat that together they must approximate the true Hamiltonian of the
system. Free energy is an important statistic, as many fundamental quantities can be derived
from it; so, it is natural to ask the question: how good is our approximation of the system’s dy-
namics? The Bogoliubov inequality answers these questions for both statistical and quantum
mechanical systems.

Suppose we begin with a simple, unperturbed Hamiltonian H, and perturb it with a more
complicated expression H; to get Hp = Hy + AH;. We want to approximate the behaviour
of the true system as best as possible, based only on our choice of the second term. This is
a variational problem—we are attempting to identify the minimum difference between the
dynamics of our perturbative Hamiltonian Hp and those of our true Hamiltonian H by varying
our perturbative components. In fact, we will see the second term doesn’t matter at all, and a
judicious choice of trial Hamiltonian H, will provide a close match to the actual free energy,
which we then improve by minimisation.

In the Bogoliubov inequality, the statistics we reproduce are free energy related. The
Bogoliubov inequality ensures the effect an approximation has on the free energy can be given
a rigorous upper bound, Fy,. Given that the full free energy F is a concave function of our
control parameter A, i.e.,

¥F<0
daz = 7’
forall A, such that F is indeed bounded above, the Bogoliubov inequality gives us the following:

F < Fo+ (H—Hp)o, 1)

with the term Fy+(H—H,), equalling F,,. The task of this section will be to prove and interpret
this result.

Deriving the Bogoliubov inequality can be made as simple as observing what happens when
we have our perturbative Hamiltonian in the partition function. Say we are able to define this
perturbation as an intentional collection of simple and difficult terms, such that Hp is equal to
H , 1.e.,

AR, = AAA = A—H,.

Then, the energy approximation truncates, and the partition function Z is
Z e BHK — Z o~ B(Hoxt+AAH,) ) )

with summation over energy levels, or states H, of H. Such an energy level is given in quantum
mechanics by solving H [1) = Ej [1)).

Ideally, the term AAH is small, and can be treated as a perturbation in the typical fashion.
In this way, it is important to pick the most complicated trial Hamiltonian we can work with.

4


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.35

SCIl SciPost Phys. Lect.Notes 35 (2022)

Such a trial Hamiltonian is often chosen so that higher-order terms vanish, or interactions
between the objects in the system factorise [22, chapters 2.11 and 3.4].

We further transform (2) using some basic algebra, with the intention of reducing it to the
form of a free energy:

Z e~ B(Hox+AAH,) ZOZ o~ BAAH Zo—l e—PHox
= ZO (e_ﬂAAH>0 . (3)

The first step in the above set of equations is a simple expansion of the summand, decomposing
this exponential term into separate terms for H, and AAH. Note that Z, is the partition
function for H,. The second step, however, uses the mean with respect to the Gibbs distribution
to simplify to (3). In particular, we note the mean

( e—ﬁ)&AH )0
is the mean of exp{—BAAH,} with respect to a Gibbs distribution over states of the trial H,

ie—ﬂﬁo,k )
Zo
In this case, it is clear to see how we arrive at (3).

We now use Jensen’s inequality, to try and confidently bound calculations on our partition
function by something which is easier to work with. A useful general result on convex func-
tions, Jensen’s inequality states that, when a function f of a variable x is convex, e.g., f”/ > 0,
the mean (f (x)) is always greater than or equal to f ({x)). Here, since e is convex, we apply
Jensen’s inequality to (3) to get

and simplify to
In{Z} <In{Z,} + B(AAH),,

using that Zy(e =P AR )o is equal to our partition function Z, proven earlier by simplifying (2)

into (3). Multiplying by —kz T, this is equivalent to

—kpTIn{Z} < —kp T In{Z,} + (AAH),
F<Fy+(H—Hp),

since F = —kg T In{Z}. As such, we recover the bound given in (1), the Bogoliubov inequality.

The term F, + (H — Hy), is called our variational free energy, denoted by Fy, and is the
resulting free energy from our perturbative or variational model. This is easier to perform
calculations on by construction—F, is the free energy of our simpler H,, and we will see that
the perturbative terms are not so difficult to work with. It is, in general, greater than or equal
to the actual free energy of the system—we only have equality when there is no perturbative
component, and H = H,. In other words, our partition function with respect to our trial
Hamiltonian must be our actual partition function. Clearly, that defeats the purpose of using a
perturbative method in the first place. We can, on the other hand, assume that Fy, is some curve
lying above F, and minimise it when the term depends on some parameter A, to approximate
F as closely as possible. We will demonstrate this in the Ising model now.
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2.2 Deriving a mean field model by variational methods

The Ising model Hamiltonian H is given by the following expression:
—JZSiSj—hZSi, (4)
i.j i

a measurement of the total energy of the system as contributed by all individual spin-spin
interactions. We have each s as an atomic spin, either up or down, and J as a coupling term,
along with the influence of a magnetic field h on each spin. The lattice sites in A are indexed
by i’s and j’s, and so the first term indicates a sum over pairs of interacting spins. Suppose we
use the trial Hamiltonian

H :—Z m;s;, (5)
:

rather than (4), with states I-Alo,k being different combinations of spins across i € {1,...,N}.
This is a system with no interactions, whose spins experience only an effective magnetic field
m;, perhaps from neighbouring or coupled spins. In fact, we can further simplify to an isotropic
magnetic field m—in other words, the same in each direction. The term Fy, in our earlier
Bogoliubov inequality, (1), becomes

Fy =Fy+ (—JZsisj—thi)—(—sti) .
ij i i 0

We will proceed to simplify the variational free energy so as to calculate its minimum with
respect to m.

First, we distribute the expectation into the sums inside. This does not use the previously
mentioned Jensen’s inequality, because expectation is a linear operator and sums are not con-
vex functions. This yields

Fy=Fy+ —JZsisj —thi + sti
iJ i i o
:FO_JZ<5i5j>0_hZ(5i>0+m2(5i>0
i i i
=FO—JZ<sisj>o+(m—h)Z(si)0. (6)
ij i

We now take the derivative of (6) with respect to m, intending to minimise the variational

free energy by setting %‘{ = 0. By the reasoning in the end of Section 2.1, this will yield the
best possible approximation of the actual magnetisation function. This derivative is

JOF d
Fm = om (F ‘JZU. i57)o * (’"_h)zi (si”’)
oF, 0 Z d Z
za—rs—%(J = <5151>0)+%((m_h) i <Si)0) .
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We evaluate these terms separately.

JFy _8 In{Z,}
om am

_ Dusie m s )
N Zk e_mZiSi
= (51')0-

S: (s
=—JZ(—83<;30(51‘)0+<51)0 ;,;)0) 8

((m WD sido) =D {si)o+ (m— h)%
:<5i)0+(m_h)%-

In the first differentiation we use the trial free energy as defined from the trial partition
function, given by the Hamiltonian in (5):

Zy= Z e PHo

We use our assumption that the partition function is non-interacting, allowing us to use the
thermal average of spins in what might otherwise be an intermediate step, identified in (7).
We choose to convert the equation to this form, rather than finish the calculation. See the end
of this section, especially equations (12) and (13), for more remarks on the thermal average.

In the second differentiation we have used another implication of spins being uncorrelated,
namely, that (s;s;) = {s;){s;). This allows us to use the ‘product rule’ in the derivative in (8).
We also use an effective field that only influences a single neighbour, rather than both. Thus,
one of the derivatives vanishes. This is a reasonable assumption within the mean field regime,
given the set-up of our lattice and our non-interacting spins.

In the third and final differentiation we have simply applied the product rule and then
reduced the sum over the thermal average to the single thermal average that exists for the
system. Our final equation looks like:

oF a(s;) 9 (si)
a—n‘;Z—(Si)o—Jle:( am0<5j>0)+(5i)0+(m_h)a—mo' ©)

We simplify (9) to

OF
a_n: —(—JZ Yo+ (m— h)) (10)

7
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where the two thermal spin averages cancel and the partial derivative % factorises. Now,
solving (10) for %LTX =0, we have
3 (si)o
0= arln —Jizj:(sj)o +(m—~h)
= ( J D )0+ (m h)) :
L,j

which yields

m:JZ(sj)0+h. (11)

Finally, we rewrite (11) by using an expression for the thermal average (s;)o. Let A,

indicate a possible state of H, indexed by i. In general, the thermal or ensemble average of a
statistical variable is a weighted sum over the possible states given by H,

_ ZAk e_ﬁHk

W=

Clearly, one may also define this using a partition function, which we will use now to simplify
(sj)o. A state H  is given by a particular combination of spins

mESi;
i

such that, for a given (fixed) k, a state I—AIO’k is the sum of individual spin states I—AIO’k(si). This
holds, more generally, for any non-interacting Hamiltonian; in fact, the same logic can be found
in the definition of the thermal average used in (7). Using this fact to rewrite our definition
of Z, and using that sums in exponents decompose multiplicatively, we have

7 = —B Zi Hk(si)
Zk:e
— —BH(s1) —BH(s2) . —BH(sn)
(o)) e
-7 (Z e—/mkm) , (12)
i k

Since individual H,(s;) are given by ms;, when using (12) on the partition function of H,, we
consider the two possible spin states: +1 and —1. Doing so, we have

()

i k
= l_[ (e PmUD) 4 AmCD)Y (13)
i

Any reader familiar with hyperbolic functions will recognise (13) as

l_[2cosh([3m),
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and using this in our thermal average, it becomes

1 A A
N N =B 2 Hoxls;)
()0 = 5o 2 ostspe P B

1 . R . .
- —BHo k(s1) ) —BHox(s;) —BHo k(sn)
_ZO(Ze )H()(Z )(Z )

k k
_ (+1)e—/5m(+1) + (_1)e—f5m(—1)
N 2cosh(m)
_ 2sinh(fim)
~ 2cosh(fm)
= tanh(fm).

Going from line two to three, we have implicitly used the cancelling of factors from the thermal
average with factors from Z,. The only factor that does not cancel is

55 (Z e—ﬁﬁk(s,-)) ,
k

for some j € {1,...,N}, by virtue of the additional term for spin; this expression simplifies as
we have shown in (13). Using what we have arrived at, we can define the model found in
(11) as such:

m :JZ<Sj>O +h
L,j

=J > tanh(Bm)+h. (14)
L,J

Since (14) is a sum over neighbouring spins, carried through from our initial (4), it cannot
be removed by considering the effective field as we did previously; however, because of this
effective field, it can be reduced to multiplication by the number of neighbours z. Note that, in
various places in this derivation, we observe something similar—a somewhat misleading sum
over indices that do not exist in the summand. This is an artefact of the sum more properly

being the trace of a matrix of spin entries.
Multiplying by the ‘coordination number’ z, our final mean field model of magnetisation is

m =gzJtanh(fm)+h.

3 Magnetisation

3.1 Magnetisation in mean field theory

For a graphical analysis, it is typically good to reduce the number of free variables that we
would have to plot. Here, we have two variables of import: m and T. Since the constant z.J
can be absorbed into the argument of the function, 8 = kBLT, and we can realistically assume
zero external field h, we have the self-consistent equation

T.m
m=tanh( T ) (15)

Whilst this clearly suggests that T, = %, this is still a difficult equation to make sense of, since
there is no obvious way to isolate m. In fact, because hyperbolic equations are transcendental,

9
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Figure 1: The magnetisation function of the Ising model. The surface

f(T,m) =tanh ( TCTm) is plotted here for x = T and y = m. An interactive version of
this figure can be found at https://www.geogebra.org/m/uta3kjox.

there is no way to solve for m algebraically. However, if we rearrange (15) as

T
tanh( Cm)—sz,
T

we then have the intersection of the magnetisation value with the magnetisation equation in
dimensions T, m, and f (T, m). This is our self-consistency condition: trivially, the intersection
between two surfaces is defined by the set of points at which the functions are equal, such that
f(x,y)—g(x,y) = 0. Thus, we define our self-consistent solution as (15), which also serves
as the projection of the intersection of the two surfaces onto the m and T axes. In other words,
it projects the intersection of the two surfaces in f (T, m) to m(T), shown in Figure 2. As such,
our magnetisation m(T) is this curve, demonstrating the importance of the self-consistency
condition.

In order to obtain an expression for magnetisation in terms of temperature, we need to use
the previously mentioned self-consistency condition from (15), which evaluates to the inter-
section of the function f (T, m) = tanh ( Tch) with f (T, m) = m. The self-consistency condition
constrains the possible solutions to m as the temperature changes, such that

f(T,m)=m= tanh(TCTm) holds. By applying the self-consistency condition to constrain the
evolution of magnetisation in the temperature space, we recover the magnetisation curve for
the Ising model.

3.2 The thermodynamics of magnetisation

We will explore the physical meaning and intuition for magnetisation in this section. Recall
the definition of actual free energy, in statistical mechanical terms:

—%m{z}.

We want to expand this into thermodynamical terms, so that we can study state variables
in a more concise or apparent way, rather than looking at their underlying statistical structure.

10
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Figure 2: Plotting magnetisation for temperature using self-consistency. The

surface in grey is y = m and the blue surface is f(T,m) = tanh(TCTm). The locus
of points where f(T,m) = m, necessarily given by their intersection, is in the
subspace (T,m(T)). Indeed, the black curve is the well-known plot of the mean
field magnetisation function. An interactive version of this figure can be found at
https://www.geogebra.org/m/cjgaepxq.

Beginning with this statistical structure, we use a generalisation of Boltzmann’s famous law
for ensemble entropy as being proportional to the number of microstates W,

S = kB ln{W} .

In a system coupled to a heat bath we must generalise to the Gibbs entropy, which is the
Boltzmann entropy for microstates without equal likelihood. This becomes

S=—kg Zpi In{p;}, (16)

which is clearly the Boltzmann equation when p; is uniform across microstates, e.g., p; = W ™.
We condense the probability of energy states into the Boltzmann distribution

e BE:

Z J

bi=
yielding
§=—ky Y p;(—BE;—In{Z})
for (16). Distributing the sum over the probability of each state i, we get
S=kp(B(E) +1n{Z}),

from the definition of expectation, (f (x)) =Y. f(x)p(x). This now gives the following:

S=@+k31n{2}

TS = (E) + ky T In{Z}
F=(E)—TS.

Thus, we have arrived at the macroscopic or Helmholtz free energy. There is an alternate way
to do so by using the Laplace transform of an integral over phase space, but that is unnecessary

11
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here. Now, we can analyse what happens to the Ising model, macroscopically, during a phase
transition.

Specific to our evaluation of the Ising model, and the simplest consideration of the issue, is
that as temperature decreases, entropy contributes increasingly less to the system. This should
seem correct, because entropy is reflected in disorder and thermal fluctuations cause disorder.
As entropy decreases, our system becomes more ordered. We can look further at this by using
the following fact: stable configurations of a system minimise free energy. In that case, we
can see by the above that as the entropic contribution to free energy decreases, F ~ E. Since
the Hamiltonian is a measurement of the total energy of the system, we evaluate this directly,
and see that when spins align to +1 (in the ferromagnetic case), the system is in the lowest
possible energy state. We may calculate this using H, remembering that the sum occurs over
individual multiplicative pairs of spins i and j:

HA=—J Zsisj .
i,

So, for the lowest possible energy state to occur, every pair of spins must be positive, since this
yields a set of positive numbers s;s; multiplied by a negative number —J. These multiplicative
pairs can only be positive when both spins are positive, and hence, every spin must be positive.

This still leaves one question unaddressed: why, in principle, do we expect free energy
to be minimised in a stable system? It is as simple as the definition of stability: a stable
system does not change, and free energy is the capacity for a system to do work—or, enact
change. Thus, when a system does not change, its free energy is minimised. In fact, free
energy is generally minimised in an equilibrium system, which defines the stable state it can
take—even disordered ones. This may seem confusing, but we can also use this to define the
tendency to destabilise, and allow entropy to affect spin configurations, in terms of Jaynes’
maximum entropy [23]. E T Jaynes defined most results in statistical mechanical dynamics as
arising from the natural tendency to maximise entropy, which itself is a simple consequence
of the second law of thermodynamics and related phenomena. For high temperatures where
F ~ —TS, clearly, maximising entropy is equivalent to minimising free energy.

We can define a coherent picture for the energy in this system as follows: the Ising model
is attached to a temperature bath, which it is in thermal equilibrium with. We use the fol-
lowing definition of macroscopic entropy: AS,,;, = —T 'Q. The change in energy towards
equilibrium is described by a conservation law, where the heat flow is equivalent to the en-
ergy leaving the bath and entering the lattice: Q = —AE;,;, = AEpy. As such, the change in
entropy towards equilibrium is given by the following:

T

where Q is the heat flow and AS is the change in lattice entropy. We translate this insight from
entropy into free energy as follows:

T
—AEp + TASy,

T
—A (Epg — TSim)
T

—AF

T
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Since AS = 0,

AF
— <0.
T
So, regardless of the temperature of the system, an equilibrium state at any T is defined by
minimum actual free energy. Once again, at low temperatures, this is accomplished by redu-
cing the actual energy of a configuration, which occurs only when spins are positively aligned.
It also allows for stable states at high temperatures, where minimum free energy will come

from high entropy.

3.3 Broken symmetry and spin configuration

We note one final important consideration for magnetisation and for phase transitions in gen-
eral. We have previously made reference to a non-zero order parameter as characterising a
phase transition. This phenomenological description of the change in macroscopic qualities
characterising the phase arises naturally in taking the mean field, but it hides some richer
structure than that. In defining what ‘order’ means, for instance, we are prompted to consider
the configuration of the system, and thus symmetry. In a more fundamental sense, an order
parameter is a measurement of the breaking of symmetry induced by the phase transition. In
zero external field, the Ising Hamiltonian is symmetric under the Z, transformation s — —s, a
total rotation:

I:.\[ :_ZJU(_SI)(_SJ) — H :_ZJijsisj'

This is obviously true, and yet, the ground state of H is not symmetric—all spins must align
upwards due to the very energy considerations that previously yielded symmetry. To solve
this apparent controversy, we re-characterise the phase transition in terms of an order para-
meter. An order parameter is a measurement of how the physics of a system changes in a phase
transition. We can demonstrate that the thermal average of the order parameter vanishes if
the symmetries of the Hamiltonian are obeyed. If not, then the order parameter becomes
non-zero, and we have broken the symmetry we began with. We saw this directly with mag-
netisation: m = 0 before the phase transition and m = 1 afterwards, which is given by the
change in configuration from disordered spins to long-range order, the latter of which implies
no symmetric mixture of states.

This leads directly to another question, which is more difficult to answer—how is the mag-
netised state chosen in the non-interacting case, with no symmetry breaking magnetic field
h? This presents an interesting problem for the mean field approximation, which assumes
non-interacting spins, and for a more realistic model where J’s are not homogeneous, and the
penalty for magnetising ‘incorrectly’ is not clear. In this case, it is chosen randomly, due to
fluctuations at criticality. However, when both states are equally likely, and therefore (m) = 0,
but we expect symmetry to still be broken, a paradox is evident. Indeed, we must ask how we
can prove the Ising model will magnetise at all, and what value it is expected to take.

The special case h = 0 demands a more sophisticated look at the definition of magnetisa-
tion. Degenerate ground states in quantum systems, such as a superposition, or coherence, of
possible low energy states, present just this same problem; luckily, there are many methods
for describing such systems. The simplest technique for doing so consists of applying the ther-
modynamic limit N — oo to a perturbative expansion of our degenerate magnetised ground
state. For a lattice of size N, e.g. the number of sites in A, and positive magnetisation, this
method formalises the calculation of the following (non-commuting) double limit:

hli)n(}+ nggo my(h). 17)
The simplest thing we could do is prove why the limit takes this form. We can do this mathem-
atically by showing that the partition function is a sum of smooth (in fact, analytic) functions

13
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e‘ﬁﬁk, so for finite N, the partition function is also smooth. As such, for h = 0, symmetry re-
quires that magnetisation m(h) is continuously zero everywhere. On the other hand, an infinite
sum of continuous functions is not necessarily continuous itself, and so admits a discontinuity
in m(h) in the case of h — 0%. In particular, we have m(h) > 0 for h — 0 from above. Indeed,
a phase transition is defined as a point at which the free energy density becomes non-analytic
in the thermodynamic limit, and (17) is the definition of spontaneous magnetisation by sym-
metry breaking. All of this is summarised by the order parameter becoming non-zero after the
critical point.

In addition to proof, it is possible to calculate the perturbative expansion of the ground
state of the Hamiltonian. We would see that degenerate ground states couple, or mix, at order
N, due to N spin-flip corrections in the expansion. Thus, we take N — o0, so that we have
no mixture of ground states in any finite order of the series. The full calculation makes use of
quantum field theory and is not quite as trivial as it sounds; in fact, it comes close to solving
the Ising model in full. This calculation would eventually take the form of two-point correl-
ation functions, the use of which is one way of finding magnetisation analytically [24, 25].
We can even define spontaneous symmetry breaking in terms of the correlation functions, by
showing the existence of off-diagonal long-range order, a hallmark of spontaneous symmetry
breaking. We could otherwise define magnetisation as a quasi-average [26], but this also uses
some very sophisticated techniques. Clearly, there is more to the story than the mean field
approximation—however, these other techniques are very involved. This is a common theme
in statistical mechanical systems: knowing anything precisely is often difficult or impossible,
and calculations of quantities that are more than approximately known are nearly intractable.
This difficulty can even escape the realm of statistical mechanical methods—N N Bogoliubov,
responsible for the method of quasi-averages, said, “In modern statistical mechanics, all newly
developed methods involve obtaining an understanding and use of the methods of. .. quantum
field theory." This means that principled approximations like mean field theory are incredibly
useful for understanding and working with statistical mechanical objects.

4 Conclusion

We have derived, from first principles, a mean field theory as a valid approximation for the
two-dimensional Ising model. We began by justifying MFT using the Bogoliubov inequality,
and then calculated this mean field theory. We then analysed the meaning of these results, and
built an intuition for what the mean field magnetisation equation indicates and why the Ising
model magnetises at all. We have explored some typical results in a very important statistical
mechanical model, and set the stage for even more involved investigation of the Ising model,
phase transitions, and statistical mechanics itself.
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