
SciPost Phys. Lect. Notes 5 (2018)

Efficient numerical simulations with Tensor Networks:
Tensor Network Python (TeNPy)

Johannes Hauschild1? and Frank Pollmann1

1 Department of Physics, TFK, Technische Universität München,
James-Franck-Straße 1, D-85748 Garching, Germany

? johannes.hauschild@tum.de

Abstract

Tensor product state (TPS) based methods are powerful tools to efficiently simulate
quantum many-body systems in and out of equilibrium. In particular, the
one-dimensional matrix-product (MPS) formalism is by now an established tool in con-
densed matter theory and quantum chemistry. In these lecture notes, we combine a
compact review of basic TPS concepts with the introduction of a versatile tensor library
for Python (TeNPy) [1]. As concrete examples, we consider the MPS based time-evolving
block decimation and the density matrix renormalization group algorithm. Moreover,
we provide a practical guide on how to implement abelian symmetries (e.g., a particle
number conservation) to accelerate tensor operations.

Copyright J. Hauschild and F. Pollmann
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 08-05-2018
Accepted 27-09-2018
Published 08-10-2018

Check for
updates

doi:10.21468/SciPostPhysLectNotes.5

Contents

1 Introduction 2

2 Entanglement in quantum many-body systems 3
2.1 Area law 4

3 Finite systems in one dimension 5
3.1 Matrix Product States (MPS) 6
3.2 Canonical form 8
3.3 Time Evolving Block Decimation (TEBD) 10
3.4 Matrix Product Operators (MPO) 14
3.5 Density Matrix Renormalization Group (DMRG) 15

4 Infinite systems in one dimension 18
4.1 Infinite Time Evolving Block Decimation (iTEBD) 19
4.2 Infinite Density Matrix Renormalization Group (iDMRG) 21

5 Charge conservation 22
5.1 Definition of charges 22
5.2 Basic operations on tensors 24

1

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
mailto:johannes.hauschild@tum.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysLectNotes.5&domain=pdf&date_stamp=2018-10-08
http://dx.doi.org/10.21468/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

6 Conclusion 27

References 28

1 Introduction

The interplay of quantum fluctuations and correlations in quantum many-body systems can
lead to exciting phenomena. Celebrated examples are the fractional quantum Hall effect
[2, 3], the Haldane phase in quantum spin chains [4, 5], quantum spin liquids [6], and high-
temperature superconductivity [7]. Understanding the emergent properties of such challeng-
ing quantum many-body systems is a problem of central importance in theoretical physics. The
main difficulty in investigating quantum many-body problems lies in the fact that the Hilbert
space spanned by the possible microstates grows exponentially with the system size.

To unravel the physics of microscopic model systems and to study the robustness of novel
quantum phases of matter, large scale numerical simulations are essential. In certain systems
where the infamous sign problem can be cured, efficient quantum Monte Carlo (QMC) meth-
ods can be applied. In a large class of quantum many-body systems (most notably, ones that
involve fermionic degrees of freedom or geometric frustration), however, these QMC sampling
techniques cannot be used effectively. In this case, tensor-product state based methods have
been shown to be a powerful tool to efficiently simulate quantum many-body systems.

The most prominent algorithm in this context is the density matrix renormalization group
(DMRG) method [8] which was originally conceived as an algorithm to study ground state
properties of one-dimensional (1D) systems. The success of the DMRG method was later found
to be based on the fact that quantum ground states of interest are often only slightly entangled
(area law), and thus can be represented efficiently using matrix-product states (MPS) [9–11].
More recently it has been demonstrated that the DMRG method is also a useful tool to study the
physics of two-dimensional (2D) systems using geometries such as a cylinder of finite circum-
ference so that the quasi-2D problem can be mapped to a 1D one [12]. The DMRG algorithm
has been successively improved and made more efficient. For example, the inclusion of Abelian
and non-Abelian symmetries, [13–17], the introduction of single-site optimization with density
matrix perturbation [18, 19], hybrid real-momentum space representation [20, 21], and the
development of real-space parallelization [22] have increased the convergence speed and de-
creased the requirements of computational resources. An infinite version of the algorithm [23]
has facilitated the investigation of translationally invariant systems. The success of DMRG was
extended to also simulate real-time evolution allowing to study transport and non-equilibrium
phenomena, [24–29]. However, the bipartite entanglement of pure states generically grows
linearly with time, leading to a rapid exponential growth of the computational cost. This limits
time evolution to rather short times. An exciting recent development is the generalization of
DMRG to obtain highly excited states of many-body localized systems [30–32] (see also [33]
for a different approach). Tensor-product states (TPS) or equivalently projected entangled pair
states (PEPS), are a generalization of MPS to higher dimensions [34,35]. This class of states is
believed to efficiently describe a wide range of ground states of two-dimensional local Hamil-
tonians. TPS serve as variational wave functions that can approximate ground states of model
Hamiltonians. For this several algorithms have been proposed, including the Corner Trans-
fer Matrix Renormalization Group Method [36], Tensor Renormalization Group (TRG) [37],
Tensor Network Renormalization (TNR) [38], and loop optimizations [39].

A number of very useful review articles on different tensor network related topics appeared

2

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

over the past couple of years. Here we mention a few: Ref. [11] provides a pedagogical intro-
duction to MPS and DMRG algorithms with detailed discussions regarding their implementa-
tion. In Ref. [40], a practical introduction to tensor networks including MPS and TPS is given.
Applications of DMRG in quantum chemistry are discussed in Ref. [41].

In these lecture notes we combine a pedagogical review of basic MPS and TPS based al-
gorithms for both finite and infinite systems with the introduction of a versatile tensor library
for Python (TeNPy) [1]. In the following section, we motivate the ansatz of TPS with the area
law of entanglement entropy. In section 3 we introduce the MPS ansatz for finite systems and
explain the time evolving block decimation (TEBD) [24] and the DMRG method [8] as promi-
nent examples for algorithms working with MPS. In section 4 we explain the generalization
of these algorithms to the thermodynamic limit. For each algorithm, we give a short exam-
ple code showing how to call it from the TeNPy library. Finally, we provide a practical guide
on how to implement abelian symmetries (e.g., a particle number conservation) to accelerate
tensor operations in section 5.

2 Entanglement in quantum many-body systems

Entanglement is one of the fundamental phenomena in quantum mechanics and implies that
different degrees of freedom of a quantum system cannot be described independently. Over the
past decades it was realized that the entanglement in quantum many-body systems can give
access to a lot of useful information about quantum states. First, entanglement related quan-
tities provide powerful tools to extract universal properties of quantum states. For example,
scaling properties of the entanglement entropy help to characterize critical systems [42–45],
and entanglement is the basis for the classification of topological orders [46,47]. Second, the
understanding of entanglement helped to develop new numerical methods to efficiently sim-
ulate quantum many-body systems [11,48]. In the following, we give a short introduction to
entanglement in 1D systems and then focus on the MPS representation.

Let us consider the bipartition of the Hilbert space H = HL ⊗HR of a 1D system as illus-
trated in Fig. 1(a), where HL (HR) describes all the states defined on the left (right) of a given
bond. In the so called Schmidt decomposition, a (pure) state |Ψ〉 ∈H is decomposed as

|Ψ〉=
∑

α

Λα |α〉L ⊗ |α〉R , |α〉L(R) ∈HL(R), (1)

where the states {|α〉L(R)} form an orthonormal basis of (the relevant subspace of) HL (HR)
and Λα ≥ 0. The Schmidt decomposition is unique up to degeneracies and for a normalized
state |Ψ〉 we find that

∑

αΛ
2
α = 1.

An important aspect of the Schmidt decomposition is that it gives direct insight into the
bipartite entanglement (i.e., the entanglement between degrees of freedom in HL and HR)
of a state, as we explain in the following. The amount of entanglement is measured by the
entanglement entropy, which is defined as the von-Neumann entropy S = −Tr

�

ρR log(ρR)
�

of
the reduced density matrix ρR. The reduced density matrix of an entangled (pure) quantum
state |ψ〉 is the density matrix of a mixed state defined on the subsystem,

ρR ≡ TrL (|ψ〉 〈ψ|) . (2)

A simple calculation shows that it has the Schmidt states |α〉R as eigenstates and the Schmidt
coefficients are the square roots of the corresponding eigenvalues, i.e., ρR =

∑

αΛ
2
α |α〉R 〈α|R

(equivalently for ρL). Hence, the entanglement entropy can be expressed in terms of the
Schmidt values Λα,

S ≡ −Tr
�

ρR log(ρR)
�

= −
∑

α

Λ2
α logΛ2

α. (3)

3

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 1: (a): Bipartition of a 1D system into two half chains. (b): Significant quan-
tum fluctuations in gapped ground states occur only on short length scales. (c): 1D
area law states make up a very small fraction of the many-body Hilbert space but
contain all gapped ground states. (d): Comparison of the largest Schmidt values of
the ground state of the transverse field Ising model (g = 1.5) and a random state for
a system consisting of N = 16 spins. The index α labels different Schmidt values.

If there is no entanglement between the two subsystems, S = 0, the Schmidt decompositions
consists only of a single term with Λ1 = 1. The entanglement spectrum {εα} [49] is defined in
terms of the spectrum {Λ2

α} of the reduced density matrix by Λ2
α = exp(−εα) for each α.

2.1 Area law

A “typical” state in the Hilbert space shows a volume law, i.e., the entanglement entropy grows
proportionally with the volume of the partitions. In particular, it has been shown in Ref. [50]
that in a system of N sites with on-site Hilbert space dimension d, a randomly drawn state
|ψrandom〉 has an entanglement entropy of S ≈ N/2 log d − 1/2 for a bipartition into two parts
of N/2 sites.

In contrast, ground states |ψ0〉 of gapped and local Hamiltonians follow instead an area
law, i.e., the entanglement entropy grows proportionally with the area of the cut [51]. For a
cut of an N-site chain as shown in Fig. 1(a) this implies that S(N) is constant for N ¦ ξ (with
ξ being the correlation length). This can be intuitively understood from the fact that a gapped
ground state contains only fluctuations within the correlation length ξ and thus only degrees
of freedom near the cut are entangled, as schematically indicated in Fig. 1(b). A rigorous proof
of the area law in 1D is given in Ref. [10]. In this respect, ground states are very special states
and can be found within a very small corner of the Hilbert space, as illustrated in Fig. 1(c).

In slightly entangled states, only a relatively small number of Schmidt states contribute
significantly. This is demonstrated in Fig. 1(d) by comparing the largest 20 Schmidt values of
an area law and a volume law state for a bipartition of an N = 16 chain into two half chains.

As an example of an area law state, we considered here the ground state of the transverse
field Ising model

H = −
∑

n

σz
nσ

z
n+1 + gσx

n , (4)

withσx
n andσz

n being the Pauli operators and g > 0. ThisZ2 symmetric model with a quantum

4

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 2: (a) Diagrammatic representations for a vector v, a matrix M , and the co-
efficients of a general wave function |ψ〉 =

∑

j1, j2... jN
ψ j1 j2... jn | j1, j2, . . . , jN 〉. (b) The

connection of two legs symbolizes a tensor contraction, here (M v)a =
∑

b Mabvb. (c)
Diagram for the overlap 〈φ|ψ〉=

∑

j1, j2... jN
φ j1 j2... jNψ j1 j2... jN of two wave functions.

phase transition at gc = 1 has two very simple limits. For g = 0, the ground state is twofold
degenerate and given by the ferromagnetic product state (symmetry broken), and at g →∞
the ground state is a product state in which all spins are polarized by the transverse field in
x-direction (symmetric). For intermediate values of g, the ground states are area law type en-
tangled states (except at the critical point). As shown in Fig. 1(d) for a representative example
of g = 1.5, the ground state has essentially the entire weight contained in a few Schmidt states.
Generic states fulfilling the area law show a similar behavior and thus the above observation
provides an extremely useful approach to compress quantum states by truncating the Schmidt
decomposition. In particular, for all ε > 0 we can truncate the Schmidt decomposition at some
finite χ (independent of the system size) such that

|ψ〉 −
χ
∑

α=1

Λα |α〉L ⊗ |α〉R
︸ ︷︷ ︸

|ψtrunc〉

< ε (5)

This particular property of area law states is intimately related to the MPS representation of
1D quantum states, as we will discuss in the next chapter.

The situation is very different for a highly entangled (volume law) random state: All the
Schmidt values are roughly constant for all 2N/2 states and thus only little weight is contained
in the 20 dominant states (assuming an equal weight, we find Λ2

α ≈ 1/2N/2 per Schmidt state).

3 Finite systems in one dimension

In this chapter, we consider a chain with N sites. We label the local basis on site n by | jn〉
with jn = 1, . . . , d, e.g., for the transverse field Ising model we have spin-1/2 sites with
the (d = 2) local states |↑〉 , |↓〉. A generic (pure) quantum state can then be expanded as
|ψ〉=

∑

j1, j2,... jN
ψ j1 j2··· jN | j1, j2, . . . , jN 〉.

Before we proceed with the definition of MPS, we introduce a diagrammatic notation,
which is very useful for representing tensor networks and related algorithms and has been
established in the community. In this notation, a tensor with n indices is represented by a
symbol with n legs. Connecting two legs among tensors symbolizes a tensor contraction, i.e.,
summing over the relevant indices. This is illustrated in Fig. 2.

5

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

3.1 Matrix Product States (MPS)

The class of MPS is an ansatz class where the coefficients ψ j1,..., jn of a pure quantum state are
decomposed into products of matrices [9,52,53]:

|ψ〉=
∑

j1,..., jN

∑

α2,...αN

M [1] j1α1α2
M [2] j2α2α3

. . . M [N] jNαNαN+1
| j1, j2, . . . , jN 〉 (6)

≡
∑

j1,..., jN

M [1] j1 M [2] j2 . . . M [N] jN | j1, j2, . . . , jN 〉 . (7)

Here, each M [n] jn is a χn×χn+1 dimensional matrix, i.e., we have a set of d matrices for each
site, which we usually group into a tensor of order 3 as shown in Fig. 3(a). The superscript
[n] denotes the fact that for a generic state we have a different set of matrices on each site.
The indices αn of the matrices are called “bond”, “virtual”, or “auxiliary” indices, to distin-
guish them from the “physical” indices jn. The matrices at the boundary are vectors, that is
χ1 = χN+1 = 1, such that the matrix product in eq. (7) produces a 1× 1 matrix, i.e., a single
numberψ j1,..., jn . In that sense, the indices α1 and αN+1 are trivial and always 1; yet, introduc-
ing them leads to a uniform layout of the MPS such that we do not need to take special care
about the boundaries in the algorithms. To become more familiar with the MPS notation, let
us consider a few examples.

A product state |ψ〉 = |φ[1]〉 ⊗ |φ[2]〉 ⊗ · · · ⊗ |φ[n]〉 can easily be written in the form of
eq. (7): since it has no entanglement, the bond dimension is simply χn = 1 on each bond and
the 1× 1 “matrices” are given by (see Fig. 3(b))

M [n] jn =
�

φ
[n]
jn

�

. (8)

Concretely, the ground state of the transverse field Ising model given in eq. (4) at large field
g � 1 is close to a product state |← · · · ←〉 ≡

�

1p
2
|↑〉 − 1p

2
|↓〉
�

⊗ · · ·⊗
�

1p
2
|↑〉 − 1p

2
|↓〉
�

, which
we write as an MPS using the same set of matrices on each site n,

M [n]↑ =
�

1p
2

�

and M [n]↓ =
�

−1p
2

�

. (9)

For the Neel state |↑↓↑↓ . . .〉, we need different sets of matrices on odd and even sites,

M [2n−1]↑ = M [2n]↓ =
�

1
�

and M [2n−1]↓ = M [2n]↑ =
�

0
�

(10)

for n= 1, . . . , N/2.
As a first example of a state with entanglement, we consider a dimerized product of sin-

glets
�

1p
2
|↑↓〉 − 1p

2
|↓↑〉

�

⊗ · · · ⊗
�

1p
2
|↑↓〉 − 1p

2
|↓↑〉

�

on neighboring sites. This state can be
written with 1× 2 matrices on odd sites and 2× 1 matrices on even sites given by

M [2n−1]↑ =
�

1p
2

0
�

, M [2n−1]↓ =
�

0 −1p
2

�

, M [2n]↑ =

�

0
1

�

, M [2n]↓ =

�

1
0

�

. (11)

Spin-1 AKLT state. Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed an exactly
solvable Hamiltonian which reads

H =
∑

j

~S j~S j+1 +
1
3
(~S j~S j+1)

2 = 2
∑

j

�

PS=2
j, j+1 −

1
3

�

(12)

where ~S are spin S = 1 operators and PS=2
j, j+1 is a projector onto the S = 2 sector of the spins on

sites j and j + 1. This model is in a topologically nontrivial phase with remarkable properties
of the ground state. To construct the ground state, we note that the projector PS=2

j, j+1 does not

6

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 3: (a) In an MPS, the amplitude of the wave function is decomposed into a
product of matrices M [n] jn . The indices α1 and αN+1 are trivial, which we indicate
by dashed lines. (b) A product state can be written as a trivial MPS with bond di-
mensions χ = 1. (c) The MPS for a product of singlets on neighboring sites, with
M [1], M [2] given in eq. (11). (d) Diagrammatic representation of the AKLT state. The
S = 1 sites (grey circles) are decomposed into two S = 1

2 that form singlets between
neighboring sites. With open boundary conditions, the S = 1

2 spins on the left and
right are free edge modes leading to a four-fold degeneracy of the ground state. (e)
The AKLT state can be represented by an MPS with bond dimension χ = 2.

give a contribution if we decompose the S = 1 spins on each site into two S = 1
2 spins and form

singlets between spins on neighboring sites, as illustrated in Fig. 3(d) [54]. While the ground
state is unique on a ring with periodic boundary conditions, in a chain with open boundary
conditions the S = 1

2 spins on the edges do not contribute to the energy and thus lead to a 4-
fold degeneracy of the ground state. Given the structure of the ground state, we can construct
the corresponding MPS as shown in Fig. 3(e): We start by writing the product of singlets with
the matrices of eq. 11 and add arbitrary spin-1

2 states φL and φR on the left and right. We
apply the projectors PS=1 to map the two spin-1

2 onto the physical spin-1 site, and contract the
three tensors on each site to obtain the MPS structure. For sites 1 < n < N in the bulk, we
obtain

M [n]+1 =

√

√4
3

�

0 0
1p
2

0

�

M [n]0 =

√

√4
3

�1
2 0
0 −1

2

�

M [n]−1 =

√

√4
3

�

0 − 1p
2

0 0

�

. (13)

Here, we included the factor
q

4
3 to normalize the MPS.

7

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 4: (a) The representation of an MPS is not unique. (b) This freedom is used
to define the canonical form, where the Λ[n] are diagonal matrices containing the
Schmidt values. (c) The canonical form allows to easily read off the Schmidt de-
composition (1) on each bond, here exemplary on bond n = 3. (d) Orthonormality
conditions for the Schmidt states.

In general, any state in a finite system can be decomposed exactly into the MPS form of
eq. (7). The caveat is that for a generic state (with a volume law entanglement) the required
bond dimension χmax := maxnχn increases exponentially with the number of sites N . How-
ever, by linking the MPS representation with the Schmidt decomposition (1), we will see that
we can approximate area law states very well (in the sense of eq. (5)) by MPS with a finite
bond dimension χmax [55, 56]. This link is given by the so-called canonical form of an MPS,
which we introduce now.

3.2 Canonical form

The MPS representation (7) is not unique. Consider the bond between sites n and n + 1,
which defines a bipartition into L = {1, . . . , n } and R = {n+ 1, . . . , N }. Given an invertible
χn+1 ×χn+1 matrix X , we can replace

M [n] jn → M̃ [n] jn := M [n] jn X−1, M [n+1] jn+1 → M̃ [n+1] jn+1 := X M [n+1] jn+1 (14)

and still represent the same state |ψ〉, see Fig. 4(a). This freedom can be used to define a
convenient “canonical form” of the MPS, following Ref. [57, 58]. Without loss of generality,
we can decompose the matrices M̃ [n] jn = Γ̃ [n] jnΛ̃[n+1], where Λ̃[n+1] is a square, diagonal
matrix with positive entries Λ̃[n+1]

αn+1αn+1
on the diagonal. Performing partial contractions gives a

8

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

representation looking very similar to the Schmidt decomposition (1):

|ψ〉=
∑

j1,..., jN

M [1] j1 . . . M [n−1] jn−1 Γ̃ [n] jnΛ̃[n+1]M̃ [n+1] jn+1 M [n+2] jn+2 . . . M [N] jN | j1, . . . , jN 〉

=
∑

α̃n+1

Λ̃
[n+1]
α̃n+1

|α̃n+1〉L ⊗ |α̃n+1〉R , where (15)

|α̃n+1〉L =
∑

j1,..., jn

�

M [1] j1 . . . M [n−1] jn−1 Γ̃ [n] jn
�

1,α̃n+1
| j1, . . . , jn〉 , (16)

|α̃n+1〉R =
∑

jn+1,..., jN

�

M̃ [n+1] jn+1 M [n+2] jn+2 . . . M [N] jN
�

α̃n+1,1 | jn+1, . . . , jN 〉 . (17)

However, for general M and Γ̃ [n], the states |α̃n+1〉L/R will not be orthonormal. Note that we
can interpret the X in eq. (14) as a basis transformation of the states |α̃n+1〉R in eq. (17).
The idea of the canonical form is to choose the X in eq. (14) such that it maps |α̃n+1〉R to the
Schmidt states |αn+1〉R. Using the Schmidt values Λ[n+1]

αn+1αn+1
on the diagonal of Λ̃[n+1]→ Λ[n+1],

we find that eq. (15) indeed gives the Schmidt decomposition. Repeating this on each bond
yields the canonical form depicted in Fig. 4(b),

|Ψ〉=
∑

j1,..., jN

Λ[1]Γ [1] j1Λ[2]Γ [2] j2Λ[3] · · ·Λ[N]Γ [N] jNΛ[N+1] | j1, . . . , jN 〉 . (18)

Here, we have introduced trivial 1× 1 matrices Λ[1] ≡ Λ[N+1] ≡
�

1
�

multiplied to the trivial
legs of the first and last tensor, again with the goal to achieve a uniform bulk. While the
canonical form is useful as it allows to quickly read off the Schmidt decomposition on any
bond, in practice we usually group each Γ with one of the Λ matrices and define

A[n] jn ≡ Λ[n]Γ [n] jn , B[n] jn ≡ Γ [n] jnΛ[n+1]. (19)

If we write an MPS entirely with A tensors (B tensors), it is said to be in left (right) canonical
form. In fact, all the examples given in eq. (8)-(13) are in right-canonical form. If we consider
the bond between sites n and n+1, we can write the MPS in a “mixed” canonical form with A
tensors up to site n and B tensors starting from site n+ 1, as depicted in Fig. 4(c) for n = 2.
The A and B tensors transform the Schmidt basis from one bond to the next:

|αn+1〉L =
∑

αn, jn

A[n] jnαnαn+1
|αn〉L ⊗ | jn〉 , |αn〉R =

∑

jn,αn+1

B[n] jnαnαn+1
| jn〉 ⊗ |αn+1〉R . (20)

Therefore, the orthonormality conditions 〈αn|L |ᾱn〉L = δαnᾱn
= 〈αn|R |ᾱn〉R translate into the

very useful relations shown in Fig. 4(d).
One great advantage of the canonical form is that these relations allow to evaluate expecta-

tion values of local operators very easily. As shown in Fig. 5, this requires only the contraction
of a few local tensors. If needed, we can easily convert the left and right canonical forms into
each other, e.g., A[n] = Λ[n]B[n]

�

Λ[n+1]
�−1

; since the Λ[n] are diagonal matrices, their inverses
are simply given by diagonal matrices with the inverse Schmidt values1.

As mentioned above, we can represent any state in a finite system if we allow an arbitrary
bond dimension χmax; but to avoid a blowup of the computational cost (exponentially in N),
we need to truncate the matrices to a moderate bond dimension χmax. Consider the bond
between sites n and n+1. It turns out that the simple truncation of the Schmidt decomposition
is optimal in the sense of minimizing the error ε in eq. (5). In the (mixed) canonical form,

1 If Λ[n+1]
αn+1αn+1

= 0 for some αn+1, we can remove the corresponding columns of B[n] and rows of B[n+1] before
taking the inverse, as they do not contribute to the wave function.

9

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 5: Due to the orthogonality conditions depicted in Fig. 4(d), evaluating the
expectation value 〈ψ|O[n]|ψ〉 of a local operator O[n] requires only a contraction of
local tensors.

we can therefore simply discard2 some rows of A[n] jn , diagonal entries of Λ[n+1] and columns
of B[n+1] jn+1 (namely the ones corresponding to the smallest Schmidt values). To preserve the
norm of the wave function, we renormalize the Schmidt values on the diagonal of Λ[n+1] such

that
∑

αn+1

�

Λ[n+1]
αn+1αn+1

�2
= 1.

3.3 Time Evolving Block Decimation (TEBD)

In the TEBD algorithm [24], we are interested in evaluating the time evolution of a quantum
state:

|ψ(t)〉= U(t) |ψ(0)〉 . (21)

The time evolution operator U can either be U(t) = exp(−itH) yielding a real time evolution,
or an imaginary time evolution U(τ) = exp(−τH). The latter can be used to evaluate (finite
temperature) Green’s functions or as a first, conceptually simple way to find the ground state3

of the Hamiltonian H through the relation

|ψGS〉= lim
τ→∞

e−τH |ψ0〉
‖e−τH |ψ0〉‖

. (22)

The TEBD algorithm makes use of the Suzuki-Trotter decomposition [59], which approximates
the exponent of a sum of operators with a product of exponents of the same operators. For
example, the first and second order expansions read

e(X+Y)δ = eXδeYδ +O(δ2), (23)

e(X+Y)δ = eXδ/2eYδeXδ/2 +O(δ3). (24)

Here X and Y are operators, and δ is a small parameter. To make use of these expressions,
we assume that the Hamiltonian is a sum of two-site operators of the form H =

∑

n h[n,n+1],
where h[n,n+1] acts only on sites n and n+ 1, and decompose it as a sum

H =
∑

n odd

h[n,n+1]

︸ ︷︷ ︸

Hodd

+
∑

n even

h[n,n+1]

︸ ︷︷ ︸

Heven

. (25)

Each term Hodd and Heven consists of a sum of commuting operators, therefore
eHoddδ =

∏

n odd eh[n,n+1]δ and similar for Heven.
We now divide the time into small time slices δt � 1 (the relevant time scale is in fact

the inverse gap) and consider a time evolution operator U(δt). Using, as an example, the

2 Strictly speaking, this changes the Schmidt values and vectors on other bonds and thus destroys the canonical
form! However, if the discarded weight

∑

α>χ

�

Λ[n]
αα

�2
is small, this error might be ignored.

3As explained later on, the DMRG algorithm is a better alternative for this task.

10

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 6: (a) In TEBD each time step δt of a time evolution is approximated using
a Suzuki-Trotter decomposition, i.e., the time evolution operator is expressed as a
product of two-site operators. (b) Update to apply a two-site unitary U and recover
the MPS form, see main text for details.

first order decomposition (23), the operator U(δt) can be expanded into products of two-site
unitary operators

U(δt)≈
�

∏

n odd

U [n,n+1](δt)

��

∏

n even

U [n,n+1](δt)

�

, (26)

where U [n,n+1](δt) = e−iδt h[n,n+1]
. This decomposition of the time evolution operator is shown

pictorially in Fig. 6(a). The successive application of these two-site unitary operators to an
MPS is the main part of the algorithm and explained in the following.

Local unitary updates of an MPS. One of the advantages of the MPS representation is that
local transformations can be performed efficiently. Moreover, the canonical form discussed
above is preserved if the transformations are unitary [57].

A one-site unitary U simply transforms the tensors Γ of the MPS

Γ̃ [n] jnαnαn+1
=
∑

j′n

U jn
j′n
Γ
[n] j′n
αnαn+1

. (27)

In such a case the entanglement of the wave-function is not affected and thus the values of Λ
do not change.

The update procedure for a two-site unitary transformation acting on two neighboring sites
n and n+1 is shown in Fig. 6(b). We first find the wave function in the basis spanned by the left
Schmidt states |αn〉L , the local basis | jn〉 and | jn+1〉 on sites n and n+1, and the right Schmidt
states |αn+2〉R, which together form an orthonormal basis { | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R }.
Calling the wave function coefficients Θ, the state is expressed as

|ψ〉=
∑

αn, jn, jn+1,αn+2

Θ jn jn+1
αnαn+2

|αn〉L | jn〉 | jn+1〉 |αn+2〉R . (28)

11

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Using the definitions of |α〉L/R shown in Fig. 4(c), Θ is given by

Θ jn jn+1
αnαn+2

=
∑

αn+1

Λ[n]αnαn
B[n], jnαnαn+1

B[n+1], jn+1
αn+1αn+2

. (29)

Writing the wave function in this basis is useful because it is easy to apply the two-site unitary
in step (ii) of the algorithm:

Θ̃ jn jn+1
αnαn+2

=
∑

j′n j′n+1

U jn jn+1

j′n j′n+1
Θ

j′n j′n+1
αnαn+2

. (30)

Next we have to extract the new tensors B̃[n], B̃[n+1] and Λ̃[n+1] from the transformed tensor
Θ̃ in a manner that preserves the canonical form. We first “reshape” the tensor Θ̃ by com-
bining indices to obtain a dχn × dχn+2 dimensional matrix Θ̃ jnαn; jn+1αn+2

. Because the basis
{ | αn〉L ⊗ | jn〉 } is orthonormal, as for the right, it is natural to decompose the matrix using
the singular value decomposition (SVD) in step (iii) into

Θ̃ jnαn; jn+1αn+2
=
∑

αn+1

Ã[n]jnαn;αn+1
Λ̃[n+1]
αn+1αn+1

B̃[n+1]
αn+1; jn+1αn+2

, (31)

where Ã[n], B̃[n+1] are isometries and Λ̃[n+1] is a diagonal matrix. Indeed, the suggestive no-
tation that the new tensors are in mixed canonical form is justified, since the SVD yields a
Schmidt decomposition of the wave function for a bipartition at the bond between sites n
and n + 1. The isometry Ã[n] relates the new Schmidt states |αn+1〉L to the combined bases
|αn〉L ⊗ | jn〉. Analogously, the Schmidt states for the right site are obtained from the matrix
B[n+1]. Thus the diagonal matrix Λ̃[n+1] contains precisely the Schmidt values of the trans-
formed state. In a last step (iv), we reshape the obtained matrices Ã[n], B̃[n+1] back to tensors
with 3 indices and recover the right canonical form by

B̃[n] jnαnαn+1
= (Λ[n])−1

αnαn
Ã[n]jnαn;αn+1

Λ̃[n+1]
αn+1αn+1

and B̃[n+1] jn+1
αn+1αn+2

= B̃[n+1]
αn+1; jn+1αn+2

. (32)

After the update, the new MPS is still in the canonical form. The entanglement at the
bond n, n + 1 has changed and the bond dimension increased to dχ. Thus the amount of
information in the wave function grows exponentially if we successively apply unitaries to the
state. To overcome this problem, we perform an approximation by fixing the maximal number
of Schmidt terms to χmax. In each update, only the χmax most important states are kept in step
(iii), i.e., if we order the Schmidt states according to their size we simply truncate the range
of the index αn+1 in eq. (31) to be 1 . . .χmax. This approximation limits the dimension of the
MPS and the tensors B have at most a dimension of χmax× d ×χmax. Given that the truncated
weight is small, the normalization conditions for the canonical form will be fulfilled to a good
approximation. In order to keep the wave function normalized, one should divide by the norm

after the truncation, i.e., divide by N =
r

∑

jn, jn+1,αn,αn+2

�

�Θ
jn jn+1
αnαn+2

�

�

2
.

Generically, the entanglement entropy increases with time and hence would require expo-
nentially growing bond dimensions for an accurate description. With a finite χmax limited by
computational resources, the truncation errors become more severe at intermediate to large
times, and the approximations made in TEBD are no longer controlled: the simulation “breaks
down”. For example, TEBD does not even preserve the energy when the truncation is large.
An improved algorithm based on the time dependent variational principle (TDVP) was intro-
duced in Refs. [28, 29] which performs a unitary evolution in the space of MPS with given
bond dimension χmax.

If we perform an imaginary time evolution of the state, the operator U is not unitary
and thus it does not conserve the canonical form. It turns out, however, that the successive

12

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 7: (a) An operator O acting on the entire chain expressed as an MPO. (b) An
MPO acting on an MPS in right canonical form, O |ψ〉 . (c) The expectation value
〈ψ|O|ψ〉.

Schmidt decompositions assure a good approximation as long as the time steps are chosen
small enough. One way to obtain very accurate results is to decrease the size of the time steps
successively [58].

The simulation cost of of the TEBD algorithm scales as O(d3χ3
max) and the most time con-

suming part of the algorithm is the SVD in step (iii). Numerically, the algorithm can become
unstable when the values of Λ become very small since the matrix has to be inverted in order
to extract the new tensors in step (iv) of the algorithm. This problem can be avoided by ap-
plying a slightly modified version of this algorithm as introduced by Hastings in Ref. [60]. The
following example code uses the TeNPy library [1] to perform an imaginary time evolution,
finding the ground state of the transverse field Ising model (4). For a real time evolution, one
can use eng.run() instead of eng.run_GS(). Note that the TEBD algorithm is rather slow in
finding the ground state (especially near critical points). Moreover, in the above formulation,
it can only be applied to Hamiltonians with nearest-neighbor couplings4. The DMRG algo-
rithm discussed in the following represents a more efficient and versatile algorithm to study
ground state properties.

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import tebd

M = TFIChain ({"L": 16, "J": 1., "g": 1.5, "bc_MPS ": "finite "})
psi = MPS.from_product_state(M.lat.mps_sites(), [0]*16 , "finite ")
tebd_params = {"order": 2, "delta_tau_list ": [0.1, 0.001 , 1.e-5],

"max_error_E ": 1.e-6,
"trunc_params ": {" chi_max ": 30, "svd_min ": 1.e-10}}

eng = tebd.Engine(psi , M, tebd_params)
eng.run_GS () # imaginary time evolution with TEBD
print ("E =", sum(psi.expectation_value(M.H_bond [1:])))
print (" final bond dimensions: ", psi.chi)

13

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

3.4 Matrix Product Operators (MPO)

The DMRG algorithms explained in the next section relies on expressing the Hamiltonian in
the form of a matrix product operator (MPO). An MPO is a natural generalization of an MPS
to the space of operators, given by

O =
∑

j1,..., jN
j′1,..., j′N

vLW [1] j1 j′1W [2] j2 j′2 · · ·W [N] jN j′N vR | j1, . . . , jN 〉 〈 j′1, . . . , j′N | , (33)

where W [n] jn j′n are D × D matrices, and | jn〉, | j′n〉 represent the local basis states at site n, as
before. At the boundaries we initiate and terminate the MPO by the left and right vectors vL ,
vR. A diagrammatic representation of an MPO is given in Fig. 7(a). The advantage of the MPO
is that it can be applied efficiently to a matrix product state as shown in Fig. 7(b).

All local Hamiltonians with only short range interactions can be represented exactly using
an MPO of a small dimension D. Let us consider, for example, the MPO of the anisotropic
Heisenberg (XXZ) model in the presence of a field hn which can vary from site to site. The
Hamiltonian is

HXXZ = J
∑

n

�

S x
n S x

n+1 + S y
n S y

n+1 +∆Sz
nSz

n+1

�

−
∑

n

hnSz
n, (34)

where Sγn , with γ = x , y, z, is the γ-component of the spin-S operator at site n, ∆ is the XXZ
anisotropic interaction parameter. Expressed as a tensor product, the Hamiltonian takes the
following form:

HXXZ = J
�

S x ⊗ S x ⊗1⊗ · · · ⊗1+1⊗ S x ⊗ S x ⊗ · · · ⊗1+ . . .

+ S y ⊗ S y ⊗1⊗ · · · ⊗1+1⊗ S y ⊗ S y ⊗ · · · ⊗1+ . . .

+∆Sz ⊗ Sz ⊗1⊗ · · · ⊗1+ . . .
�

− h1Sz ⊗1⊗1⊗ · · · ⊗1−1⊗ h2Sz ⊗1⊗ · · · ⊗1− . . .

(35)

The corresponding MPO has a dimension D = 5 and is given by

W [n] =

1 S x S y Sz −hnSz

0 0 0 0 JS x

0 0 0 0 JS y

0 0 0 0 J∆Sz

0 0 0 0 1

, (36)

where the entries of this “matrix” are operators acting on site n, corresponding to the indices
jn, j′n, and

vL =
�

1, 0, 0, 0, 0
�

, vR =
�

0, 0, 0, 0, 1
�T

. (37)

By multiplying the matrices (and taking tensor products of the operators), one can easily see
that the product of the matrices does in fact yield the Hamiltonian (35). Further details of the
MPO form of operators can be found in Refs. [11,62].

To derive the form of the matrices for a more complicated Hamiltonian, it can be useful to
view the MPO as a finite state machine [63,64]. Using this concept, the generation of an MPO
for models with finite-range (two-body) interactions is automated in TeNPy [1]. The following
example code creates a model representing eq. (34). Moreover, various models (including the

4 One can extend TEBD for Hamiltonians with (limited) long-range couplings (e.g., next-to-nearest-neighbor
couplings) by introducing so-called swap gates [61].

14

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Heisenberg bosonic and fermionic models on cylinders and stripes) are already predefined
under tenpy.models and can easily be generalized; in fact, the model defined below is a
special case of the more general spin chain model in tenpy.models.spin.

from tenpy.models.lattice import Chain
from tenpy.networks.site import SpinSite
from tenpy.models.model import CouplingModel , \

NearestNeighborModel , MPOModel

class XXZChain(CouplingModel , NearestNeighborModel , MPOModel):
def __init__(self , L=2, S=0.5, J=1., Delta=1., hz =0.):

use predefined local Hilbert space and onsite operators
site = SpinSite(S=S, conserve=None)
lat = Chain(L, sites , bc="open", bc_MPS =" finite ") # define geometry
CouplingModel.__init__(self , lat)
add terms of the Hamiltonian;
operators "Sx", "Sy", "Sz" are defined by the SpinSite
self.add_coupling(J, 0, "Sx", 0, "Sx", 1)
self.add_coupling(J, 0, "Sy", 0, "Sy", 1)
self.add_coupling(J*Delta , 0, "Sz", 0, "Sz", 1)
for site dependent prefactors the strength can be a numpy array
self.add_onsite(-hz , 0, "Sz")
finish initialization
MPOModel.__init__(self , lat , self.calc_H_MPO ())
NearestNeighborModel.__init__(self , lat , self.calc_H_bond ())

3.5 Density Matrix Renormalization Group (DMRG)

We now discuss the Density Matrix Renormalization Group (DMRG) algorithm [8]. Unlike
TEBD, the DMRG is a variational approach to optimize the MPS, but the algorithms have many
steps in common. One advantage of the DMRG is that it does not rely on a Suzuki-Trotter
decomposition of the Hamiltonian and thus applies to systems with longer range interactions.
We assume only that the Hamiltonian has been written as an MPO. Secondly, the convergence
of the DMRG method to the ground state is in practice much faster. This is particularly the
case if the gap above the ground state is small and the correlation length is long.

The schematic idea for the DMRG algorithm is as follows (see Fig. 8). Like in TEBD,
the state at each step is represented by an MPS. We variationally optimize the tensors of two
neighboring sites (say n and n+1) to minimize the ground state energy 〈ψ|H|ψ〉, while keeping
the rest of the chain fixed. To do so, at each step we represent the initial wave function |ψ〉
using the two site tensor Θ jn jn+1

αnαn+2
(as previously defined in eq. (29) the TEBD section), project

the Hamiltonian into the space spanned by the basis set { | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R },
and use an iterative algorithm (e.g., Lanczos) to lower the energy. Repeating this two-site
update for each pair of neighboring sites, the wave function converges to the ground state.
While the Trotter decomposition requires to update first all even bonds and then odd bonds,
see eq. (26), in the DMRG we perform the two-site updates in a sequential order5, starting
from the left and proceeding to the right, n= 1,2, 3, . . . , L−2, L−1, and then back from right
to left, n = L − 1, L − 2, . . . , 3, 2, 1. This sequence is called a “sweep” from left to right and
back.

Two-site update. We start by describing the update of the tensors on two neighboring sites
n and n + 1. Let us assume that we have the MPS in mixed canonical form as depicted in
Fig. 8(a). We now want to find new A[n],Λ[n], B[n+1] → Ã[n], Λ̃[n], B̃[n+1] while keeping all
other tensors fixed. Step (i) of the update is identical to the first step in the TEBD method:

5 The two-site update is non-unitary and hence destroys the canonical form on other bonds. However,
the sequential order (together with the properties of the SVD used in the update) ensures that the basis
{ | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R } is still orthonormal.

15

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 8: (a) The energy E = 〈ψ|H|ψ〉 with the MPS |ψ〉 in mixed canonical
form and H given by an MPO. We contract the parts to the left of site n (right
of site n + 1) into the left (right) environment L[n] (R[n+1]). (b) The effective
Hamiltonian Heff to update sites n, n + 1 is the MPO projected onto the basis
{ | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R }. (c) Update steps for the sites n, n+1, see main
text. (d) The update rules for the environment follow from the definition in (a).

We contract the tensors for two neighboring sites to obtain the initial two-site wave func-
tion Θ jn jn+1

αnαn+2
. The orthonormal basis { | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R } spans the varia-

tional space |ψ̃〉=
∑

αn, jn, jn+1,αn+2
Θ̃

jn jn+1
αnαn+2

|αn jn jn+1αn+2〉 of the update, in which we must min-

imize the energy E = 〈ψ̃|Heff|ψ̃〉 in order to determine the new optimal Θ̃. Here, Heff is
the Hamiltonian projected onto the variational space. Recall from Fig. 4(c) that the prod-
uct A[1]A[2] · · ·A[n−1] gives exactly the projection from |i1i2 . . . in−1〉 to |αn〉L , and similarly
B[n+2] · · ·B[L] maps |in+2 . . . iN 〉 to |αn+1〉R. Hence, Heff is given by the network shown in
Fig. 8(b). For convenience, we have contracted the tensors strictly left of site n to form L[n],
and the ones to the right of site n+1 into R[n+1], respectively. We call these partial contractions
L[n] and R[n+1] the left and right “environments”. Each environment has three open legs, e.g.,
L[n] has an MPO bond index γn and the two bond indices αn,αn of the ket and bra MPS. For
now let us assume that we already performed these contractions; we will later come back to
the initialization of them.

16

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Grouping the indices on the top and bottom, we can view Heff as a matrix with dimen-
sions up to χ2

maxd2 × χ2
maxd2. Minimizing the energy E = 〈ψ̃|Heff|ψ̃〉 thus means to find the

the χ2
maxd2 dimensional ground-state vector Θ̃ of the effective Hamiltonian. Since this is the

computationally most expensive part of the DMRG algorithm, it is advisable to use an iterative
procedure like the Lanczos algorithm instead of a full diagonalization of Heff. If the previous
two-site wave function Θ obtained in step (i) is already a good approximation of the ground
state, the Lanczos algorithm typically converges after a few steps and thus requires only a few
“matrix-vector” multiplications, i.e., contractions of Heff with Θ. Note that the scaling of such
a matrix-vector multiplication is better (namely O(χ3

maxDd2 + χ2
maxD2d3)) if we contract the

tensors L[j], W [n], W [n+1], R[n+2] one after another to Θ, instead of contracting them into a
single tensor and applying it to Θ at once (which would scale as O(χ4

maxd4)).
This update step can be compared to the TEBD update where we obtain a new wave-

function Θ̃ after applying an time-evolution operator. As with TEBD, we split the new Θ̃ using
an SVD in step (iii), and must truncate the new index αn+1 to avoid a growth χ → dχ of
the bond dimension. It is important that the left and right Schmidt basis |αn〉L , |αn+2〉R are
orthonormal, on one hand to ensure that the eigenstate of Heff (seen as a matrix) with the
lowest eigenvalue indeed minimizes E = 〈ψ̃|Heff|ψ̃〉 and on the other hand to ensure an op-
timal truncation at the given bond. Assuming that this is the case, the isometry properties of
the SVD matrices imply that the orthonormality conditions also hold for the updated Schmidt
states |αn〉L/R defined about the central bond.

At this point, we have improved guesses for the tensors Ã[n], Λ̃[n+1], B̃[n] (after a reshaping
into the desired form) and can move on to the next bond. Note that we moved the center of the
mixed canonical form to the central bond n : n+ 1. If we move to the right, the next two-site
wave function Θ for step (i) is thus again given by Λ̃[n+1]B̃[n+1]B[n+2], while if we move to the
left, we need to use A[n−1]Ã[n]Λ̃[n+1]. Moreover, we need to find the next environments.

The starting environments on the very left and right are simply given by (see Fig. 8(a))

L[1]
α1α1γ1

= δα1α1
vL
γ1

, R[N]
αN+1αN+1γN+1

= δαN+1αN+1
vR
γN+1

. (38)

Here, the δα1α1
and δαN+1αN+1

are trivial since α1 and αN+1 are dummy indices which take only
a single value. The other environments can be obtained from a simple recursion rule shown as
step (iv) of Fig. 8(d). Using this recursion rule, R[2] required for the first update of the sweep
can be obtained by an iteration starting from the right-most R[N]. Note that the update on
sites n, n+ 1 does not change the right environments Rk for k > n+ 1. Thus it is advisable to
keep the environments in memory, such that we only need to recalculate the left environments
when sweeping from left to right, and vice versa in the other direction.

The procedure described above optimizes always two sites at once. Ref. [18] introduced a
way to perturb the density matrices during the algorithm. This allows to perform DMRG while
optimizing only a single site at once, called “single-site DMRG“ or “1DMRG“ in the literature,
and helps to avoid getting stuck in local minima. A detailed discussion of two-site vs. single-site
DMRG and a improved version of the density matrix perturbation can be found in Ref. [19].
Especially for models with long-range interactions (which appear for example when mapping
a quasi-2D cylinder to a 1D chain) or models with topological phases, this density matrix
perturbation can be necessary to converge towards the correct ground state. In TeNPy, this
perturbation of Ref. [18] can be activated with the parameter "mixer"; the single-site DMRG
is (at the moment) not implemented.

As noted above, DMRG is usually faster and more stable than an imaginary time evolution
with TEBD. Adapting the TeNPy code from the TEBD section to run DMRG instead of TEBD is
very simple [1]:

from tenpy.networks.mps import MPS

17

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg

M = TFIChain ({"L": 16, "J": 1., "g": 1.5, "bc_MPS ": "finite "})
psi = MPS.from_product_state(M.lat.mps_sites(), [0]*16 , "finite ")
dmrg_params = {" trunc_params ": {" chi_max ": 30, "svd_min ": 1.e-10}}
dmrg.run(psi , M, dmrg_params) # find the ground state
print ("E =", sum(psi.expectation_value(M.H_bond [1:])))
print (" final bond dimensions: ", psi.chi)

4 Infinite systems in one dimension

For translation invariant systems, we can take the thermodynamic limit in which the number
of sites N →∞, generalizing (7) to

|ψ〉=
∑

... jn−1, jn, jn+1,...

· · ·M [n−1] jn−1 M [n] jn M [n+1] jn+1 · · · |. . . , jn−1, jn, jn+1, . . .〉 . (39)

We can ensure the translation invariance of this infinite MPS (iMPS) by construction if we
simply take all the tensors M [n] → M in eq. (39) to be the same [also called uniform MPS
(uMPS) in the literature]. The paramagnetic product state |· · · ←← · · ·〉 with the tensors of
eq. (9) is a trivial example for such a translation invariant state; another example is the AKLT
state given in eq. (13). In general, we might only have a translation invariance by shifts of
(multiples of) L sites. In this case we introduce a repeating unit cell of L sites with L different
tensors, M [n] = M [n+L] in eq. (39). For example, the Neel state |· · · ↑↓↑↓ · · ·〉 is only invariant
under a translation by (multiples of) L = 2 sites, with the tensors on even and odd sites as
given in eq. (10) for the finite case, illustrated in Fig. 9(a). The length L of the unit cell should
be chosen compatible with the translation symmetry of the state to be represented, e.g., for
the Neel state L should be a multiple of 2. Choosing L larger than strictly necessary allows to
check the translation invariance explicitly.

At first sight, it might seem that we need to contract an infinite number of tensors to
evaluate expectation values of local operators, as the corresponding network consists of an
infinite number of tensors. However, as shown in Fig. 9(b) for a unit cell of L = 2 sites, the
network has a repeating structure consisting of the so-called transfer matrix T defined as

Tαα,γγ =
∑

j1, j2,β ,β

M [1] j1
αβ

M [1] j1
αβ

M [2] j2
βγ

M [2] j2
βγ

. (40)

A state is called pure if the largest (in terms of absolute value) eigenvalue of T is unique and
mixed if it is degenerate. In the following, we will always assume that the state is pure (in fact
every mixed state can be uniquely decomposed into a sum of pure ones). We renormalize the
iMPS such that the largest eigenvalue of T is 1. The eigenvector depends on the gauge freedom
of eq. (14), which we can use to bring the iMPS into the convenient canonical form defined
by the Schmidt decomposition on each bond, see Fig. 9(c). An algorithm to achieve this is
described in Ref. [65]. For an iMPS in right-canonical form, i.e., M [n] jn → B[n] jn ≡ Γ [n] jnΛ[n+1],
the orthonormality condition of the Schmidt vectors depicted in Fig. 4(d) applied to the whole
unit cell implies that δγγ is a right eigenvector of T with eigenvalue 1, as depicted in Fig. 9(d).
Note that T is not symmetric and hence left and right eigenvectors differ; the left eigenvector
to the eigenvalue 1 is (Λ[1]α)

2δαα. All other eigenvalues of the transfer matrix have magnitude
smaller than 1. Therefore, the repeated application of the transfer matrix in the network of
the expectation value projects onto these dominant left and right eigenvectors, and the infinite
network of the expectation value 〈ψ|On|ψ〉 simplifies to a local network as in the finite case,
see Fig. 5.

18

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 9: (a) An infinite MPS with a unit cell of L = 2 sites. (b) The expectation value
〈ψ|On|ψ〉 contains the transfer matrix T as a repetitive struture. (c) The canonical
form is defined as in the finite case. (d) The orthonormality conditions of the Schmidt
states yield eigenvector equations for the transfer matrix.

A similar reasoning can be used for the correlation function 〈ψ|OnOm|ψ〉. Projecting onto
the dominant eigenvectors left of On and right Om, we arrive at the network of Fig. 10(a). In
between the operators On and Om, the transfer matrix T appears N = b |m−n|

L c−1 times, where
b·c denotes rounding down to the next integer. Formally diagonalizing the transfer matrix to
take the N -th power shows that the correlation function is a sum of exponentials,

〈ψ|OnOm|ψ〉= 〈ψ|On|ψ〉 〈ψ|Om|ψ〉+ (η2)
N C2 + (η3)

N C3 + · · · . (41)

Here, ηi labels the i-largest eigenvalue corresponding to the left and right eigenvectors η[L/R]i ,

Ci = (O[L]n η
[R]
i)(η

[L]
i O[R]n) denotes the remaining parts of the network shown in Fig. 10, and

we identified the C1 = 〈ψ|On|ψ〉 〈ψ|Om|ψ〉 in the term of the dominant eigenvalue η1 = 1 .
The decay of the correlations is thus determined by the second largest eigenvalue η2, which
yields the correlation length

ξ= −
L

log |η2|
. (42)

Numerically, it is readily obtained from a sparse algorithm finding extremal eigenvalues of T .

4.1 Infinite Time Evolving Block Decimation (iTEBD)

Generalizing TEBD to infinite systems is very simple and requires only minor modifications
in the code [58]. Without loss of generality we assume that the Hamiltonian is translation
invariant by L sites as the iMPS; otherwise we enlarge the unit cells. As in the finite case, we
use a Suzuki-Trotter decomposition to obtain the expression of the time evolution operator
U(t) given in eq. (26), but now the index n runs over all integer numbers, n ∈ Z. If we apply
the two-site unitary U [n,n+1] = eih[n,n+1]δt on the iMPS to update the matrices B[n] and B[n+1] as
illustrated in Fig. 6(b), this corresponds due to translation invariance to the action of U [n,n+1]

19

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 10: (a) Correlation function 〈ψ|OnOm|ψ〉. (b) Expansion of T N in terms of
dominant eigenvectors and eigenvalues of T for large N . The second largest eigen-
value η2 of T determines the correlation length via eq. 42.

on the sites (n + mL, n + 1 + mL) for any m ∈ Z. Therefore, we can use the same two-site
update as in the finite case; the only difference is that the matrices of the iMPS represent only
the unit cell with nontrivial left and right bonds, and compared to a finite system with L sites
we have an additional term h[L,L+1] ≡ h[L,1] accross the boundary of the unit cell.

Note that the iTEBD algorithm is different from a time evolution in a finite system of N = L
sites with periodic boundary conditions. For analytical calculations with MPS in systems with
periodic boundary conditions, it can be useful to change the definition of an MPS from eq. (7)
to

|ψ〉=
∑

j1,..., jN

Tr
�

M [1] j1 M [2] j2 . . . M [N] jN
�

| j1, j2, . . . , jN 〉 , (43)

which has at first sight the same tensor network structure as an iMPS. However, cutting a single
bond of such a finite MPS with periodic boundary conditions does not split it into two parts.
Therefore, the canonical form (which relies on the Schmidt decomposition) is not well defined
in a system with periodic boundary conditions (or in general for any tensor network state in
which the bonds form loops)6. Since the two-site update scheme of iTEBD implicitly uses the
canonical form, it implements the time evolution in the infinite system with open boundary
conditions. This also becomes evident by the fact that the bond dimension χmax – in other
words the number of Schmidt states taken into account – can get larger than the Hilber space
dimension d L inside one unit cell.

In TeNPy one only needs to change the parameter "bc_MPS" from "finite" to
"infinite" to switch from TEBD to iTEBD [1]. In addition, we can choose a smaller unit
cell of just L = 2 sites and calculate the energy per site.

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import tebd

M = TFIChain ({"L": 2, "J": 1., "g": 1.5, "bc_MPS ": "infinite "})
psi = MPS.from_product_state(M.lat.mps_sites(), [0]*2, "infinite ")
tebd_params = {"order": 2, "delta_tau_list ": [0.1, 0.001 , 1.e-5],

"max_error_E ": 1.e-6,
"trunc_params ": {" chi_max ": 30, "svd_min ": 1.e-10}}

eng = tebd.Engine(psi , M, tebd_params)
eng.run_GS () # imaginary time evolution with TEBD
print("E =", sum(psi.expectation_value(M.H_bond))/ psi.L)
print(" final bond dimensions: ", psi.chi)

6A generalization of the canonical form for networks with closed loops was recently given in Ref. [66].

20

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 11: (a) For iDMRG (here with a unit cell of L = 2 sites), we initialize the
environments and perform updates like in DMRG of a finite system with L sites. (b)
Between the sweeps, we increase the system size by inserting a unit-cell of L sites
into each of the environments (assuming translation invariance of the iMPS).

4.2 Infinite Density Matrix Renormalization Group (iDMRG)

While iTEBD works directly in the thermodynamic limit N → ∞ by employing translation
invariance, for the infinite Density Matrix Renormalization Group (iDRMG) one should think of
a finite system with a growing number of sites - the “renormalization group” in the name refers
to this. Let us assume that the Hamiltonian is given as an MPO with a translation invariant
unit cell consisting of W [n], n = 1, · · · , L, which we can terminate with the boundary vectors
vL , vR to obtain the Hamiltonian of a finite system with a multiple of L sites. We initialize
the environments and perform two-site updates during a sweep exactly like in finite DMRG.
The crucial difference is that we increase the system size between the sweeps as illustrated
in Fig. 11(b): assuming translation invariance, we redefine the left and right environments
eL → L and eR→ R to include additional unit cells. Moreover, we need to extend the sweep to
include an update on the the sites (L, L+1)≡ (L, 1). With each unit cell inserted, the described
finite system grows by L sites, where we focus only only on the central L sites. Full translation
invariance is only recovered when the iDMRG iteration of sweeps and growing environments
converges to a fix point, at which the environments describe infinite half-chains.

One subtlety of the above prescription lies in the interpretation of the energy E obtained
during the diagonalization step. Is it the (infinite) energy of the infinite system? Keeping track
of the number of sites `R/L included into each of the environments, we see that the energy E
corresponds to a system of size N = `L+ L+`R. By monitoring the change in E with increased
N , we can extract the energy per site. This is convenient for problems in which there is no
few-site Hamiltonian with which to evaluate the energy.

When symmetry breaking is expected, it is helpful to initialize the environments by re-
peatedly performing the iDMRG update without performing the Lanczos optimization, which
builds up environments using an initial symmetry broken MPS.

Like for iTEBD, the switch from DMRG to iDMRG in TeNPy is simply accomplished by a
change of the parameter "bc_MPS" from "finite" to "infinite", a minimal example is
given below.

from tenpy.networks.mps import MPS
from tenpy.models.tf_ising import TFIChain
from tenpy.algorithms import dmrg

21

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

M = TFIChain ({"L": 2, "J": 1., "g": 1.5, "bc_MPS ": "infinite "})
psi = MPS.from_product_state(M.lat.mps_sites(), [0]*2, "infinite ")
dmrg_params = {" trunc_params ": {" chi_max ": 30, "svd_min ": 1.e-10}}
dmrg.run(psi , M, dmrg_params) # find the ground state
print ("E =", sum(psi.expectation_value(M.H_bond))/ psi.L)
print (" final bond dimensions: ", psi.chi)

To close this chapter, we mention the varitional uniform Matrix Product State algorithm
(VUMPS) as a new alternative to iDMRG, see Ref. [67] and references therein. In short, the
method can preserve a strict uniform structure of the infinite MPS in a very clever way by
summing up geometric series appearing in the effective Hamiltonian.

5 Charge conservation

If there is a unitary U which commutes with the Hamiltonian, U and H can be diagonalized
simultaneously, in other words the Hamiltonian has a block-diagonal structure when written in
the eigenbasis of U . This can be exploited to speed up simulations: for example diagonalizing
a full N ×N matrix requires O

�

N3
�

FLOPs, whereas the diagonalization of m blocks of size N
m

requires O
�

m
�N

m

�3�
FLOPs. A similar reasoning holds for the singular value decomposition

and matrix or tensor products. While exploiting the block structure does not change the scaling
of the considered algorithm with the total dimension of the tensors, the gained speedup is
often significant and allows more precise simulations with larger bond dimensions at the same
computational cost.

For tensor networks, the basic idea is that we can ensure a block structure of each tensor
individually. One can argue based on representation theory of groups that the tensors can
be decomposed in such a block structure [14, 15]. However, here we present a bottom-up
approach which is closer to the implementation. Motivated by an example, we will state a
simple “charge rule” which fixes the block structure of a tensor by selecting entries which have
to vanish. We explain how to define and read off the required charge values. Then we argue
that tensor network algorithms (like TEBD or DMRG) require only a few basic operations on
tensors, and that these operations can be implemented to preserve the charge rule (and to
exploit the block strucure for the speedup).

In these notes, we focus exclusively on global, abelian symmetries which act locally in the
computational basis. and refer to Refs. [13,14,16,17] for the non-abelian case, which requires
a change of the computational basis and is much more difficult to implement.

5.1 Definition of charges

For concreteness, let us now consider two spin-1
2 sites coupled by

H = ~S1 · ~S2 =
∑

ab

Hab |a〉 〈b| with Hab =
1
4

1
−1 1
1 −1

1

, (44)

where we have represented H in the basis { | a〉 } ≡ { | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉 } and omitted
zeros. Indeed, we clearly see a block-diagonal structure in this example, which stems from the
conservation of the magnetization7 Sz = Sz

1+Sz
2. We can identify the blocks if we note that the

7 We call this a U(1) symmetry since H commutes with U = exp(iφ
∑

j Sz
j) =

∏

j eiφSz
j which has a U(1) group

structure. If one thinks of particles (e.g., Fermions after using a Jordan-Wigner transformation), this symmetry
corresponds to the particle number conservation. In general, one could also exploit the non-abelian SU(2)∼= SO(3)
symmetry of spin rotations, but we focus on the simpler case of abelian symmetries.

22

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 12: (a) Diagramatic representation of the tensors in Tab. 1. We indicate the
signs ζ by small arrows on the legs. (b) Sign convention for the MPS.

considered basis states are eigenstates of Sz and inspect their eigenvalues: |↑↑〉 corresponds
to the eigenvalue ħh, the two states |↑↓〉 , |↓↑〉 form a block to the eigenvalue 0, and |↓↓〉 cor-
responds to −ħh. To avoid floating point errors we rescale the “charges” to take only integer
values; clearly, whenever Sz is conserved, so is q := 2Sz/ħh, but the latter takes the simple
values 2, 0 and −2 for the four basis states |a〉 considered above. We have thus associated one
charge value to each index a, which we can summarize in a vector q[a] := (2,0, 0,−2). Using
this definition, we can formulate the conservation of Sz as a condition on the matrix elements:

Hab = 0 if q[a]a 6= q[a]b . (45)

How does this generalize to tensors with a larger number of indices? To stay with the
example, we can also write H =

∑

s1s2 t1 t2
Hs1s2 t1 t2

|s1〉 |s2〉 〈t1| 〈t2| as a tensor with 4 indices
s1, s2, t1, t2 corresponding to the single-site basis { | s〉 } ≡ { | ↑〉, | ↓〉 }. The charge values
q[s] = (1,−1) for this basis are obvious from the definition q = 2Sz/ħh (and the reason why we
included the factor 2 in the rescaling). Since Sz is additive, its conservation now implies that

Hs1s2 t1 t2
= 0 if q[s]s1

+ q[s]s2
6= q[s]t1

+ q[s]t2
. (46)

Note that the indices corresponding to a ket appear on the left hand side of the inequality, while
the ones corresponding to a bra appear on the right. For an arbitrary tensor, we therefore define
one sign ζ= ±1 for each leg, where we choose the convention ζ= +1 (ζ= −1) for a ket (bra);
for the above example ζ[1] = ζ[2] = +1 for the first two indices s1, s2 and ζ[3] = ζ[4] = −1
for the legs of t1, t2. In diagrams, we can illustrate this sign by an arrow pointing into (for
ζ= +1) or out of (for ζ= −1) the tensor, see Fig. 12.

Finally, we also introduce an offset Q, which we call the “total charge” of a tensor. The
general charge rule for an arbitrary n-leg tensor M then reads

∀a1, a2 · · · an : ζ[1]q[1]a1
+ ζ[2]q[2]a2

+ ζ[3]q[3]a3
+ · · ·+ ζ[n]q[n]an

6=Q ⇒ Ma1a2···an
= 0 (47)

Note that the signs ζ[i] and the total charge Q introduce some ambiguity: the charge rule
(47) is still satisfied if we send ζ[j] → −ζ[j] and q[j] → −q[j] for some leg j, or if we send
ζ[j]q[j]→ ζ[j]q[j]+δQ and Q→Q+δQ. However, introducing the signs and the total charge
allows us to share the same q vector between legs representing the same basis, e.g., all four
legs of Hs1s2 t1 t2

shared the same q[s]. We can therefore fix the charge vectors q of physical legs
in the very beginning of the algorithm. Since also the signs ζ are fixed by conventions, for
tensors with only physical legs one can solve the charge rule (47) for Q (by inspecting which
entries of a tensor are non-zero). Examples of this kind are given in Tab. 1.

On the other hand, if the total charge Q and the charges q[i] of all but one leg j of a tensor
are fixed, one can also solve the charge rule (47) for the missing q[j]:

∀a1, a2 · · · an : Ma1a2···an
6= 0 ⇒ ζ[j]q[j]a j

=Q−
∑

i 6= j

ζ[i]q[i]ai
(48)

23

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Table 1: Examples for charge definitions such that the tensors fullfill the charge
rule (47). We consider spin-1

2 with q = 2Sz/ħh, i.e., q[s] := (1,−1) for the single-
site basis { | s〉 } ≡ { | ↑〉, | ↓〉 } and q[a] := (2, 0,0,−2) for the two-site basis
{ | a〉 } ≡ { | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉 }. The signs ζ are +1 (−1) for legs representing
kets (bras). The total charge Q can then be determined from the charge rule (47).

Example ζ[1] q[1] ζ[2] q[2] ζ[3] q[3] ζ[4] q[4] Q
H =

∑

Hs1s2 t1 t2
|s1〉 |s2〉 〈t1| 〈t2| +1 q[s] +1 q[s] -1 q[s] -1 q[s] 0

H =
∑

Hab |a〉 〈b| +1 q[a] -1 q[a] 0
Sz +1 q[s] -1 q[s] 0
S+ +1 q[s] -1 q[s] 2
S− +1 q[s] -1 q[s] -2

|↑↑〉=
∑

va |a〉 +1 q[a] 2
〈↑↑|=

∑

v∗a 〈a| -1 q[a] -2
|↑↑〉=

∑

vs1s2
|s1〉 |s2〉 +1 q[s] +1 q[s] 2

This allows to determine the charges on the virtual legs of an MPS. As an example, let us write
the singlet |ψ〉= 1p

2
(|↑↓〉 − |↓↑〉) as an MPS. The MPS in canonical form is given by

|ψ〉=
∑

s1s2,c

Γ
[1]s1
lc Λ[1]c Γ

[2]s2
cr |s1〉 |s2〉 with Λ[1] =

1
p

2

�

1
1

�

, (49)

Γ [1]↑ =
�

1 0
�

, Γ [1]↓ =
�

0 1
�

, Γ [2]↑ =

�

0
−1

�

, Γ [2]↓ =

�

1
0

�

. (50)

Here, l and r are trivial indices l ≡ r ≡ 1, and only introduced to turn the Γ [i] into matrices
instead of vectors. For trivial legs, we can (usually) choose trivial charges q[triv] := (0) which
do not contribute to the charge rule. Moreover, we choose the convention that ζ = +1 for
left virtual legs, ζ = −1 for right virtual legs and Q = 0, see Fig. 12(b). Then we can use the
charge rule (48) of Γ [1] solved for q[c] and obtain:

Γ
[1]↑
11 6= 0

(47)
⇒ q[c]1 = 1, Γ

[1]↓
12 6= 0

(47)
⇒ q[c]2 = −1. (51)

We use the same q[c] = (1,−1) for the left virtual leg of Γ [2]; one can easily check that it also
fulfills the charge rule (47) for Q = 0.

Strictly speaking, an operator with a non-zero total charge Q does not preserve the charge
of the state it acts on. However, it still preserves the block structure, because it changes the
charge by exactly Q, e.g., S+ increases it by 2. In contrast, S x (and similarly S y) can both
increases or decreases the charge, thus it can not be written as tensors satisfying eq. (47); only
the combination S x

1 S x
2 + S y

1 S y
2 =

1
2(S

+
1 S−2 + S−1 S+2) preserves the charge. When writing H as a

charge conserving MPO, one can only use single-site operators with a well-defined Q.

5.2 Basic operations on tensors

Above, we motivated the form of the charge rule (47) and explained how to define the charges
for various tensors. Thus, we can write both the initial state and the Hamiltonian in terms of
tensors satisfying eq. (47). Now, we argue that tensor network algorithms require just a few
basic operations on the tensors, namely (a) transposition, (b) conjugation, (c) combining two
or more legs, (d) splitting previously combined legs (e) contraction of two legs, (f) matrix
decompositions, and (g) operations on a single leg. These operations are depicted in Fig. 13.
As we will show in the following, all of them can be implemented to preserve the charge rule

24

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

Figure 13: Basic operations required for tensor networks: (a) transposition, (b) con-
jugation, (c) combining two or more legs, (d) splitting previously combined legs (e)
contraction of two legs, (f) matrix decompositions, and (g) operations on a single
leg.

(47) and thus the block structure of the tensors. Thus, any algorithm using (only) these basic
operations preserves the charges.

Transposition is by definition just a reordering of the legs. Clearly, (47) is then still valid if
we reorder the charge vectors q and signs ζ in the same way. Examples for the conjugation are
already given in Tab. 1; beside the complex conjugation of the entries this includes exchanging
bra and ket, i.e., a sign flip of all ζ. The charge rule is then preserved if we also flip the sign
of the total charge Q. For hermitian operators like H the combination of complex conjugation
and appropriate transposition changes neither the entries nor the charges of a tensor.

Another operation often needed is to combine two (or more) legs, e.g., before we can do
an SVD, we need to view the tensor as a matrix with just two indices. In other words, we
group some legs into a “pipe”. The pipe looks like an ordinary leg, i.e., we define a sign ζ
and charge vector q for it. However, it has the internal structure that it consists of multiple
smaller legs. Thus, we can later split it, e.g., after we did an SVD. For concreteness, let us
again consider the above example Hs1s2 t1 t2

→ Hab, i.e., we want to combine the indices s1, s2
into a pipe a (and t1, t2 into a pipe b). In this case, we map the indices as a(s1, s2) := 2s1+ s2
and b(t1, t2) := 2t1 + t2. The charge rule is then preserved if we define the charge vectors
q of the pipes as ζ[a]q[a]a(s1,s2)

:= ζ[1]q[s]s1
+ ζ[2]q[s]s2

and ζ[b]q[b]b(t1,t2)
:= ζ[3]q[s]t1

+ ζ[4]q[s]t2
, where

ζ[1] = ζ[2] = 1, ζ[3] = ζ[4] = +1 are the signs of the indices s1, s2, t1, t2, and ζ[a] = 1, ζ[b] = −1
are the desired signs of the pipes. One can easily check that these definitions coincide with
the previous ones, q[a] = (2,0, 0,−2) = q[b]. Since the mapping of indices is one to one, one
can also split a pipe into the smaller legs it consists of. However, note that this requires the q
vectors and signs ζ of these legs; the pipe should thus store a copy of them internally.

One of the most important (and expensive) operations on tensors is the contraction of
legs. Let us consider two tensors Aa1a2

and Bb1 b2
with charges QA, q[ai],ζA[i] and QB, q[bi],ζB[i],

i = 1,2. A contraction means to identify two indices and sum over it. Two indices can be
identified if they represent the same basis, thus we require them to have the same charge
vector q and opposite signs ζ. For example for the usual matrix product Ca1 b2

:=
∑

c Aa1cBcb2

we require q[a2] = q[b1] and ζA[2] = −ζB[1]. The charge rule (47) for C then follows from
the charge rules of A and B, if we define QC := QA+QB and just copy the signs ζ and charge
vectors q for the free, remaining indices. Moreover, the cost of the contraction is reduced if

25

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

we exploit the block structure of A and B, which becomes most evident if we have a block
diagonal structure as in Hab, eq. (44). On the other hand, we can also contract two legs of the
same tensor, i.e., take a (partial) trace. The contributions of these two indices to the charge
rule (47) then simply drop out and the rule again stays the same for the remaining indices of
the tensor.

We collect linear algebra methods that take a matrix as input and decompose it into a
product of two or three matrices under the name matrix decomposition. Examples include
the diagonalization of a matrix H = U†EU , QR-decomposition M = QR and SVD M = USV †.
Here, we focus exemplary on the SVD, other decompositions can be implemented analogously.
Let us first recap the properties of the SVD: it decomposes an arbitrary m × n matrix into a
product Mlc =

∑

c UlcSc(V †)cr , where Sc are the k =min(m, n) positive singular values, and U
and V are isometries, i.e., U†U = 1= V †V . The charge rule (47) for the matrix elements Mlc
implies a block structure: assuming that the basis states of the index l are sorted by charge
(which we discuss in the next paragraph), we can group indices with the same charge values
together to form a block. Moreover, for each block of l with a charge value q[l]l , there is at
most one block of the index r with compatible charges, i.e., we have some kind of pseudo
block-diagonal form (even if the blocks are not strictly on the diagonal). Therefore, we can
apply the SVD to each of the (non-zero) blocks separately and simply stack the results, which
again yields a (pseudo) block-diagonal form for U and V † with the required properties. To
define the charges of the new matrices we can ignore S, since it is only a trivial rescaling of
one leg. Similar as for the contraction, we keep the charge vectors q and signs ζ for the indices
l and r. Further, we choose the total charges as QU := 0 and QV :=QM , as well as the sign ζ[c]

of the new index c negative for U and positive for V . The charge vector q[c] can then easily be
read off using eq. (48), which yields q[c] := ζ[l]q[l] (for both U and V †).

Finally, the remaining operations needed for tensor networks are operations on a single
leg of a tensor. One examples is a permutation of the indices of the leg, for example required
to sort a leg by q as mentioned above. Clearly, this preserves the charge rule if we apply the
same permutation to the corresponding charge vector q. Simliarly, if we discard some of the
indices of the leg, i.e., if we truncate the leg, we just apply the same truncation to the charge
vector q. Lastly, we might also want to slice a tensor by plugging in a certain index of a leg,
e.g., taking a column vector of a matrix. This requires to update the total charge Q to preserve
the charge rule, as one can show by viewing it as a contraction with a unit vector.

Above we explained how to define the charges for the U(1) symmetry of charge conserva-
tion. In general, one can have multiple different symmetries, e.g., for spinfull fermions we
might have a conservation of both the particle numbers and the magnetization. The gener-
alization is straight-forward: just define one q for each of the symmetries. Another simple
generalization is due to another type of symmetry, namely Zn, where all the (in)-equalities of
the charge rules are taken modulo n. An example for such a case is the parity conservation of
a superconductor.

In TeNPy, the number and types of symmetries are specified in a ChargeInfo class [1]. We
collect the q-vectors and sign ζ of a leg in a LegCharge class. The Array class represents
a tensor satisfying the charge rule (47). Internally, it stores only the non-zero blocks of the
tensor along with one LegCharge for each of its legs. If we combine multiple legs into a single
larger “pipe” as explained above, the resulting leg will have a LegPipe, which is derived from
the LegCharge and stores all the information necessary to later split the pipe.

All these classes can be found in the tenpy.linalg.np_conserved, which also con-
tains functions for all the basic operations on tensors represented by an Array class, with an
interface very similar to that of the NumPy (and SciPy) library [68]. Moreover, the module

26

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5

SciPost Phys. Lect. Notes 5 (2018)

tenpy.networks.site contains classes which pre-define the charges and local operators for
the most commonly used models. For example the class SpinHalfSite defines the operators
S+, S−, and Sz (called Sp, Sm, and Sz) as instances of Array. The following code snippet uses
them to generate and diagonalize the two-site hamiltonian (44); it prints the charge vector
q[a] (by default sorted ascending) and the eigenvalues of H. A more extensive illustration of
the interface can be found in the online documentation [1].

import tenpy.linalg.np_conserved as npc
from tenpy.networks.site import SpinHalfSite

site = SpinHalfSite(conserve ="Sz")
Hxy = 0.5*(npc.outer(site.Sp , site.Sm) +

npc.outer(site.Sm , site.Sp))
Hz = npc.outer(site.Sz, site.Sz)
H = Hxy + Hz
here , H has 4 legs
H.iset_leg_labels (["s1", "t1", "s2", "t2"])
H = H.combine_legs ([["s1", "s2"], ["t1", "t2"]], qconj =[+1, -1])
here , H has 2 legs
print(H.legs [0]. to_qflat (). flatten ()) # prints [-2 0 0 2]
E, U = npc.eigh(H)
print(E) # prints [0.25 -0.75 0.25 0.25]

6 Conclusion

In these lecture notes we combined a pedagogical review of MPS and TPS based algorithms for
both finite and infinite systems with the introduction of a versatile tensor library for Python
(TeNPy) [1]. While there exists by now a huge arsenal of tensor-product state based algo-
rithms, we focused here on the time evolving block decimation (TEBD) [24] and the density-
matrix renormalization group (DMRG) method [8]. For both algorithms, we provided a basic
introduction and showed how to call them using the TeNPy package. Let us stress that there
are further tricks and tweaks to improve the accuracy of the results. Beside tuning the different
algorithm parameters, for which we refer to documentation of the package [1], one can for
example extrapolate the results in the bond dimension to χ →∞ [11,69].

The TeNPy package contains some minimal working codes for finite as well as infinite TEBD
and DMRG algorithms based on standard Python libraries. These “toy codes” are intended as
a pedagogical introduction, to give a flavor of how the algorithms work.

While we did not cover genuine 2D tensor-product state methods, we note that the tensor
tools build into TeNPy allow for a simple implementation of general tensor networks in higher
dimensions as well. In particular, the method of conserving abelian symmetries discussed in
the previous chapter directly carries over to 2D tensor-product states. Several complemen-
tary approaches for the simulation of higher dimensional tensor networks are currently under
development [40].

We close these notes with a comment on the efficiency of the latest TeNPy library (ver-
sion 0.3.0) [1] by comparing its speed with the ITensor C++ library (version 2.1.1), https:
//itensor.org. For simulations involving MPS with a small bond dimension χmax, we find that
the TeNPy library suffers from a large overhead of the Python code. Yet, for simulations of MPS
with a larger bond dimensions χmax, both libraries spend nearly all of the CPU time in linear
algebra routines using the underlying BLAS/LAPACK libraries, such that the Python overhead
becomes negligible. For example, we find that the application of the TEBD algorithm to time
evolve an MPS with χmax = 100 takes the same time with TeNPy as with ITensor, when no
quantum numbers can be exploited. When the Sz conservation of a spin-1

2 chain is used, TeNPy
reaches nearly the same speed as ITensor for MPS with bond dimensions χmax ¦ 300− 350.

27

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
https://itensor.org
https://itensor.org

SciPost Phys. Lect. Notes 5 (2018)

For the DMRG algorithm, a direct comparison is difficult since the libraries use different eigen-
solvers; we find however that the ITensor library is generally faster than the current TeNPy.
Contributions to the TeNPy library are very welcome!

Acknowledgements

We are grateful to Roger Mong and Michael Zaletel for stimulating discussions. We acknowl-
edge contributions to the TeNPy package by others, including Maximilian Schulz, Leon Schoonder-
woerd, and Kévin Héméry; the full list of contributors is distributed with the code.

Funding information FP acknowledges the support of the DFG Research Unit FOR 1807
through grants no. PO 1370/2-1, TRR80, the Nanosystems Initiative Munich (NIM) by the
German Excellence Initiative, and the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement no. 771537).

References

[1] J. Hauschild, F. Pollmann et al., TeNPy: Tensor Network Python, The code is available
online at https://github.com/tenpy/tenpy/, the documentation can be found at https:
//tenpy.github.io/. Accessed: 2018-08-28 (2018).

[2] D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-dimensional magneto-
transport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982),
doi:10.1103/PhysRevLett.48.1559.

[3] R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum
fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983),
doi:10.1103/PhysRevLett.50.1395.

[4] F. D. M. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Iden-
tification with the O(3) nonlinear sigma model, Phys. Lett. A 93, 464 (1983),
doi:10.1016/0375-9601(83)90631-X.

[5] F. D. M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semi-
classically quantized solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett.
50, 1153 (1983), doi:10.1103/PhysRevLett.50.1153.

[6] P. W. Anderson, Resonating valence bonds: A new kind of insulator?, Mater. Res. Bull. 8,
153 (1973), doi:10.1016/0025-5408(73)90167-0.

[7] J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system,
Z. Physik B - Condensed Matter 64, 189 (1986), doi:10.1007/BF01303701.

[8] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[9] M. Fannes, B. Nachtergaele and R. F. Werner, Finitely correlated states on quantum spin
chains, Commun. Math. Phys. 144, 443 (1992), doi:10.1007/BF02099178.

[10] M. B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech. P08024
(2007), doi:10.1088/1742-5468/2007/08/P08024.

28

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
https://github.com/tenpy/tenpy/
https://tenpy.github.io/
https://tenpy.github.io/
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024

SciPost Phys. Lect. Notes 5 (2018)

[11] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[12] S. Liang and H. Pang, Approximate diagonalization using the density matrix
renormalization-group method: A two-dimensional-systems perspective, Phys. Rev. B 49,
9214 (1994), doi:10.1103/PhysRevB.49.9214.

[13] I. P. McCulloch and M. Gulácsi, The non-Abelian density matrix renormalization group
algorithm, Europhys. Lett. 57, 852 (2002), doi:10.1209/epl/i2002-00393-0.

[14] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network decompositions in the presence of a
global symmetry, Phys. Rev. A 82, 050301 (2010), doi:10.1103/PhysRevA.82.050301.

[15] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network states and algorithms
in the presence of a global U(1) symmetry, Phys. Rev. B 83, 115125 (2011),
doi:10.1103/PhysRevB.83.115125.

[16] S. Singh and G. Vidal, Tensor network states and algorithms in the presence of a global
SU(2) symmetry, Phys. Rev. B 86, 195114 (2012), doi:10.1103/PhysRevB.86.195114.

[17] A. Weichselbaum, Non-abelian symmetries in tensor networks: A quantum symmetry space
approach, Ann. Phys. 327, 2972 (2012), doi:10.1016/j.aop.2012.07.009.

[18] S. R. White, Density matrix renormalization group algorithms with a single center site,
Phys. Rev. B 72, 180403 (2005), doi:10.1103/PhysRevB.72.180403.

[19] C. Hubig, I. P. McCulloch, U. Schollwöck and F. A. Wolf, Strictly single-site
DMRG algorithm with subspace expansion, Phys. Rev. B 91, 155115 (2015),
doi:10.1103/PhysRevB.91.155115.

[20] J. Motruk, M. P. Zaletel, R. S. K. Mong and F. Pollmann, Density matrix renormalization
group on a cylinder in mixed real and momentum space, Phys. Rev. B 93, 155139 (2016),
doi:10.1103/PhysRevB.93.155139.

[21] G. Ehlers, S. R. White and R. M. Noack, Hybrid-space density matrix renormalization group
study of the doped two-dimensional Hubbard model, Phys. Rev. B 95, 125125 (2017),
doi:10.1103/PhysRevB.95.125125.

[22] E. M. Stoudenmire and S. R. White, Real-space parallel density matrix renormalization
group, Phys. Rev. B 87, 155137 (2013), doi:10.1103/PhysRevB.87.155137.

[23] I. P. McCulloch, Infinite size density matrix renormalization group, revisited (2008),
arXiv:0804.2509.

[24] G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev.
Lett. 93, 040502 (2004), doi:10.1103/PhysRevLett.93.040502.

[25] A. J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix
renormalization-group using adaptive effective Hilbert spaces, J. Stat. Mech.: Theor. Exp.
P04005 (2004), doi:10.1088/1742-5468/2004/04/P04005.

[26] S. R. White and A. E. Feiguin, Real-time evolution using the density matrix renormalization
group, Phys. Rev. Lett. 93, 076401 (2004), doi:10.1103/PhysRevLett.93.076401.

[27] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore and F. Pollmann, Time-evolving
a matrix product state with long-ranged interactions, Phys. Rev. B 91, 165112 (2015),
doi:10.1103/PhysRevB.91.165112.

29

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.49.9214
http://dx.doi.org/10.1209/epl/i2002-00393-0
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevB.86.195114
http://dx.doi.org/10.1016/j.aop.2012.07.009
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.93.155139
http://dx.doi.org/10.1103/PhysRevB.95.125125
http://dx.doi.org/10.1103/PhysRevB.87.155137
https://arxiv.org/abs/0804.2509
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevB.91.165112

SciPost Phys. Lect. Notes 5 (2018)

[28] J. Haegeman, J. Ignacio Cirac, T. J. Osborne, I. Pižorn, H. Verschelde and F. Verstraete,
Time-dependent variational principle for quantum lattices, Phys. Rev. Lett. 107, 070601
(2011), doi:10.1103/PhysRevLett.107.070601.

[29] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken and F. Verstraete, Unifying time
evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016),
doi:10.1103/PhysRevB.94.165116.

[30] F. Pollmann, V. Khemani, J. Ignacio Cirac and S. L. Sondhi, Efficient variational diago-
nalization of fully many-body localized Hamiltonians, Phys. Rev. B 94, 041116 (2016),
doi:10.1103/PhysRevB.94.041116.

[31] V. Khemani, F. Pollmann and S. L. Sondhi, Obtaining highly excited eigenstates of many-
body localized Hamiltonians by the density matrix renormalization group approach, Phys.
Rev. Lett. 116, 247204 (2016), doi:10.1103/PhysRevLett.116.247204.

[32] X. Yu, D. Pekker and B. K. Clark, Finding matrix product state representations of highly
excited eigenstates of many-body localized Hamiltonians, Phys. Rev. Lett. 118, 017201
(2017), doi:10.1103/PhysRevLett.118.017201.

[33] M. Łącki, D. Delande and J. Zakrzewski, Numerical computation of dynamically
important excited states of many-body systems, Phys. Rev. A 86, 013602 (2012),
doi:10.1103/PhysRevA.86.013602.

[34] Y. Nishio, N. Maeshima, A. Gendiar and T. Nishino, Tensor product variational formulation
for quantum systems (2004), arXiv:cond-mat/0401115.

[35] F. Verstraete and J. I. Cirac, Renormalization algorithms for Quantum-Many Body Systems
in two and higher dimensions (2004), arXiv:cond-mat/0407066.

[36] T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys.
Soc. Jpn. 65, 891 (1996), doi:10.1143/JPSJ.65.891.

[37] M. Levin and C. P. Nave, Tensor renormalization group approach to two-
dimensional classical lattice models, Phys. Rev. Lett. 99, 120601 (2007),
doi:10.1103/PhysRevLett.99.120601.

[38] G. Evenbly and G. Vidal, Tensor network renormalization, Phys. Rev. Lett. 115, 180405
(2015), doi:10.1103/PhysRevLett.115.180405.

[39] S. Yang, Z.-C. Gu and X.-G. Wen, Loop optimization for tensor network renormalization,
Phys. Rev. Lett. 118, 110504 (2017), doi:10.1103/PhysRevLett.118.110504.

[40] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Ann. Phys. 349, 117 (2014), doi:10.1016/j.aop.2014.06.013.

[41] G. Kin-Lic Chan and S. Sharma, The density matrix renormalization group in quantum
chemistry, Annu. Rev. Phys. Chem. 62, 465 (2011), doi:10.1146/annurev-physchem-
032210-103338.

[42] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.:
Theor. Exp. P06002 (2004), doi:10.1088/1742-5468/2004/06/P06002.

[43] L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir and J. I. Latorre, Scaling of en-
tanglement support for matrix product states, Phys. Rev. B 78, 024410 (2008),
doi:10.1103/PhysRevB.78.024410.

30

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevB.94.165116
http://dx.doi.org/10.1103/PhysRevB.94.041116
http://dx.doi.org/10.1103/PhysRevLett.116.247204
http://dx.doi.org/10.1103/PhysRevLett.118.017201
http://dx.doi.org/10.1103/PhysRevA.86.013602
https://arxiv.org/abs/cond-mat/0401115
https://arxiv.org/abs/cond-mat/0407066
http://dx.doi.org/10.1143/JPSJ.65.891
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.115.180405
http://dx.doi.org/10.1103/PhysRevLett.118.110504
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1146/annurev-physchem-032210-103338
http://dx.doi.org/10.1146/annurev-physchem-032210-103338
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1103/PhysRevB.78.024410

SciPost Phys. Lect. Notes 5 (2018)

[44] P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev.
A 78, 032329 (2008), doi:10.1103/PhysRevA.78.032329.

[45] F. Pollmann, S. Mukerjee, A. M. Turner and J. E. Moore, Theory of finite-entanglement
scaling at one-dimensional quantum critical points, Phys. Rev. Lett. 102, 255701 (2009),
doi:10.1103/PhysRevLett.102.255701.

[46] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys.
Rev. Lett. 96, 110405 (2006), doi:10.1103/PhysRevLett.96.110405.

[47] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404
(2006), doi:10.1103/PhysRevLett.96.110404.

[48] F. Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair states,
and variational renormalization group methods for quantum spin systems, Adv. Phys. 57,
143 (2008), doi:10.1080/14789940801912366.

[49] H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement
entropy: Identification of topological order in non-abelian fractional quantum Hall effect
states, Phys. Rev. Lett. 101, 010504 (2008), doi:10.1103/PhysRevLett.101.010504.

[50] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993),
doi:10.1103/PhysRevLett.71.1291.

[51] J. Eisert, M. Cramer and M. B. Plenio, Colloquium: Area laws for the entanglement entropy,
Rev. Mod. Phys. 82, 277 (2010), doi:10.1103/RevModPhys.82.277.

[52] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization, Phys.
Rev. Lett. 75, 3537 (1995), doi:10.1103/PhysRevLett.75.3537.

[53] S. Rommer and S. Östlund, Class of ansatz wave functions for one-dimensional spin systems
and their relation to the density matrix renormalization group, Phys. Rev. B 55, 2164
(1997), doi:10.1103/PhysRevB.55.2164.

[54] I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki, Rigorous results on valence-
bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799 (1987),
doi:10.1103/PhysRevLett.59.799.

[55] D. Gottesman and M. B. Hastings, Entanglement versus gap for one-dimensional spin sys-
tems, New J. Phys. 12, 025002 (2010), doi:10.1088/1367-2630/12/2/025002.

[56] N. Schuch, M. M. Wolf, F. Verstraete and J. Ignacio Cirac, Entropy scaling
and simulability by matrix product states, Phys. Rev. Lett. 100, 030504 (2008),
doi:10.1103/PhysRevLett.100.030504.

[57] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena,
Phys. Rev. Lett. 90, 227902 (2003), doi:10.1103/PhysRevLett.90.227902.

[58] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimen-
sion, Phys. Rev. Lett. 98, 070201 (2007), doi:10.1103/PhysRevLett.98.070201.

[59] M. Suzuki, General theory of fractal path integrals with applications to many-body theories
and statistical physics, J. Math. Phys. 32, 400 (1998), doi:10.1063/1.529425.

[60] M. B. Hastings, Light-cone matrix product, J. Math. Phys. 50, 095207 (2009),
doi:10.1063/1.3149556.

31

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
http://dx.doi.org/10.1103/PhysRevA.78.032329
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevB.55.2164
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1088/1367-2630/12/2/025002
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1063/1.529425
http://dx.doi.org/10.1063/1.3149556

SciPost Phys. Lect. Notes 5 (2018)

[61] E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms,
New J. Phys. 12, 055026 (2010), doi:10.1088/1367-2630/12/5/055026.

[62] I. P. McCulloch, From density-matrix renormalization group to matrix product states, J.
Stat. Mech. P10014 (2007), doi:10.1088/1742-5468/2007/10/P10014.

[63] G. M. Crosswhite and D. Bacon, Finite automata for caching in matrix product algorithms,
Phys. Rev. A 78, 012356 (2008), doi:10.1103/PhysRevA.78.012356.

[64] S. Paeckel, T. Köhler and S. R. Manmana, Automated construction of U(1)-invariant
matrix-product operators from graph representations, SciPost Phys. 3, 035 (2017),
doi:10.21468/SciPostPhys.3.5.035.

[65] R. Orús and G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary
evolution, Phys. Rev. B 78, 155117 (2008), doi:10.1103/PhysRevB.78.155117.

[66] G. Evenbly, Gauge fixing, canonical forms, and optimal truncations in tensor networks with
closed loops, Phys. Rev. B 98, 085155 (2018), doi:10.1103/PhysRevB.98.085155.

[67] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete and J. Haegeman, Vari-
ational optimization algorithms for uniform matrix product states, Phys. Rev. B 97, 045145
(2018), doi:10.1103/PhysRevB.97.045145.

[68] T. E. Oliphant, Python for scientific computing, Comput. Sci. Eng. 9, 10 (2007),
doi:10.1109/MCSE.2007.58.

[69] C. Hubig, J. Haegeman and U. Schollwöck, Error estimates for extrapolations with matrix-
product states, Phys. Rev. B 97, 045125 (2018), doi:10.1103/PhysRevB.97.045125.

32

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.5
http://dx.doi.org/10.1088/1367-2630/12/5/055026
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1103/PhysRevA.78.012356
http://dx.doi.org/10.21468/SciPostPhys.3.5.035
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1103/PhysRevB.98.085155
http://dx.doi.org/10.1103/PhysRevB.97.045145
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1103/PhysRevB.97.045125

	Introduction
	Entanglement in quantum many-body systems
	Area law

	Finite systems in one dimension
	Matrix Product States (MPS)
	Canonical form
	Time Evolving Block Decimation (TEBD)
	Matrix Product Operators (MPO)
	Density Matrix Renormalization Group (DMRG)

	Infinite systems in one dimension
	Infinite Time Evolving Block Decimation (iTEBD)
	Infinite Density Matrix Renormalization Group (iDMRG)

	Charge conservation
	Definition of charges
	Basic operations on tensors

	Conclusion
	References

