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Abstract

We review both the kinematics and dynamics of non-lorentzian theories and their as-
sociated geometries. First, we introduce non-lorentzian kinematical spacetimes and
their symmetry algebras. Next, we construct actions describing the particle dynamics in
some of these kinematical spaces using the method of nonlinear realisations. We explain
the relation with the coadjoint orbit method. We continue discussing three types of
non-lorentzian gravity theories: Galilei gravity, Newton-Cartan gravity and Carroll gravity.
Introducing matter, we discuss electric and magnetic non-lorentzian field theories for

three different spins: spin-0, spin-1/2 and spin-1, as limits of relativistic theories.
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1 Introduction

The recent interest in non-lorentzian theories and their associated geometries is, among other
things, due to the following developments:

(i) non-relativistic holography, which has applications in condensed matter physics [1, 2].
For example, it has been shown, in the context of Lifshitz holography [3], that interesting
non-relativistic geometries appear at the boundary;

(ii) flat space holography, see for example [4-6] (general) and [7,8] (BMS symmetries) and
soft theorems as in [9,10];

(iii) carrollian physics, see, for example, [11,12], which allows us to understand the symmetries
of null hypersurfaces, such as black-hole horizons [13] and boundaries of asymptotically
flat spacetimes [14];

(iv) non-relativistic string theories [15,16], carrollian string theories [17] and tensionless
string theories [18-20] as corners of the moduli space of solvable string theories (see the
review [21]). Conjecturally, non-relativistic string theory has its own holography probing
a different class of boundary field theories;
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(v) post-Newtonian corrections [22—-26] in the experimental and theoretical investigations of
gravitational waves [27];

(vi) fractons [28] [29] which are condensed matter configurations with restricted mobility
which display infrared/ultraviolet mixing with subsystem symmetries (see the review

[30D).

In this review we introduce some of the basic concepts and tools to study these theories. We
first introduce kinematical Lie algebras and their associated homogeneous spacetimes. Some of
these Lie algebras arise as contractions of the isometry algebras of (anti) de Sitter spacetimes,
following the pioneering work of Bacry and Lévy-Leblond [31], but by far not all of them are
obtained in this way. We restrict ourselves to kinematical Lie algebras which preserve space
isotropy and hence the kinematical spacetimes we consider are also spatially isotropic. They
are adequate to describe particle dynamics. In particular this means that we are not considering
so-called p-brane kinematical Lie algebras and their associated spacetimes in which to describe
non-lorentzian p-brane actions. We refer the interested reader to [32-35].

We present a classification of (spatially isotropic) kinematical and aristotelian® Lie algebras
in generic dimension [36,37]. Generic means that they exist in all dimensions. There are
additional kinematical Lie algebras in two, three and four spacetime dimensions, to which we
refer the reader to the classic work of Bacry and Nuyts [38] (reviewed in [36]) for dimension
3+ 1, [39] for dimension 2 + 1 and the classic Bianchi classification of three-dimensional Lie
algebras [40,41] for 1 + 1. After a brief review of homogeneous geometry and the infinitesimal
description of homogeneous spaces in terms of Klein pairs, we present the classification of
spatially isotropic homogeneous spacetimes of kinematical Lie groups. Again we list those
which exist in generic dimension, which here it means we are omitting some 1+ 1 and 2 + 1
dimensional spacetimes, which can be found in [42,43].

In the study of particle dynamics on homogeneous kinematical spacetimes, one meets
homogeneous spaces of the kinematical groups other that the actual spacetimes: namely,
coadjoint orbits and their associated evolution spaces. We review the role played by these
homogeneous spaces in the construction of lagrangians describing particle dynamics on the
homogeneous spacetimes.

We review the method of nonlinear realisations and coadjoint orbits in the construction of
particle lagrangians and apply it in several examples, among them the well-known relativistic
massive and massless particles. In the non-relativistic case we construct the harmonic oscillator
as a nonlinear realisation of a centrally extended Newton-Hooke group. We also consider the
massless galilean particle introduced by Souriau [44,45].

In the case of Caroll and due to its causal structure, we consider a massive timelike and
tachyonic particles. Using the conformal algebra in one dimension we derive the action of
conformal mechanics of de Alfaro, Fubini and Furlan [46] and the Schwarzian action [47-49].

The analogues of contractions for Lie algebras in dynamical systems are limits of actions,
such as non-relativistic, carrollian and flat limits. The actions constructed using the nonlinear
realisation method are also obtained as nonrelativistic limits of the relativistic actions. In
general these limits produce terms that are divergent: unwanted terms that can be eliminated
by a suitable coupling of a relativistic dynamical system to a gauge field in the case of a particle
or a B-field in the case of a string [15] [33]. In some of these cases the divergent terms are total
derivatives. One can also eliminate divergences by a redefinition of the parameters appearing
in the first term of the expansion [50] [51].

As for the case of non-lorentzian particles, we continue discussing different aspects of
non-lorentzian gravity theories. We first review how general relativity can be described by a
gauging procedure applied to the Poincaré algebra. Next, we extend the discussion by applying

IThese are kinematical Lie algebras without boosts.
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the same gauging procedure to the following non-lorentzian algebras: Galilei, Bargmann and
Carroll. These gaugings lead to Galilei gravity, Newton-Cartan gravity? and Carroll gravity,
respectively. We show how these same gravity theories can be obtained by taking particular
(Galilean, Bargmann and Carroll) limits of general relativity. For recent work on electric and
magnetic theories of gravity see [53-56].

Besides taking non-relativistic limits there are two more ways to obtain non-relativistic
theories that we do not explore any further in this review. First, instead of taking the In6nii—
Wigner contraction of a Lie algebra, one may also consider a Lie algebra expansion [57-60]
where the number of generators corresponding to the nonrelativistic symmetries is increased.
Second, one may obtain a non-relativistic theory by the null reduction of a relativistic theory in
one spatial dimension higher, see, e.g., [61,62]. This null reduction is based upon the fact that
the Bargmann algebra embeds into the Poincaré algebra in one spatial dimension higher.

Having discussed non-lorentzian gravity, we continue introducing matter and discussing
non-lorentzian field theories. We will do this for a complex and real massive spin-0 particle,
a massive spin-1/2 particle and a massless spin-1 particle. In particular, for spin-0, we will
discuss the Galilei, Bargmann and Carroll limits while for spin-1/2 and spin-1 we will only
discuss the Bargmann limit.

2 Motivation

Let us motivate our discussion of kinematical symmetries and their spacetimes by contrasting
two classical models of the universe: the Galilei spacetime of newtonian mechanics and
Minkowski spacetime of special relativity. As we will see, both spacetimes are described by
a four-dimensional affine space, homogeneous under the action of a kinematical Lie group;
that is, a transformation group consisting of rotations, boosts and translations in both space
and time. We will contrast the invariant structures of the two spacetimes: a clock and a ruler
in the Galilei spacetime and a proper distance in Minkowski spacetime. The latter defines a
lorentzian metric and the former, as we will see, a (weak) Newton—Cartan structure. We will
also contrast their Lie algebras of symmetries: the finite-dimensional Lie algebra of isometries
in Minkowski spacetime and the infinite-dimensional Coriolis algebra in the Galilei spacetime.

2.1 Affine space

Let A* denote the four-dimensional affine space. It is modelled on the vector space R* in
the sense that given any two points a,b € A% there exists a unique translation v € R* such
that b = a + v. We often refer to v as b — a and identify translations with differences of
points. We will use an explicit model for A% as the affine hyperplane in R® consisting of points
(x,x2,%3,x%, x> = 1) € R, but we should emphasise that the fifth dimension is an auxiliary
construct and has no physical meaning. One cannot add points in A* (their last entry would
not equal 1), but one can add differences, since those lie in the hyperplane x> = 0. In this
model, the group Aff(4, R) of affine transformations of A is the subgroup of GL(5, R) which

preserves the hyperplane x> = 1. It consists of matrices of the form

L v
(), o

where v € R* and L € GL(4,R). We will see that the relativity groups of the Galilei and
Minkowski spacetimes are subgroups of the affine group containing all the translations v € R*
but with a restricted subgroup of linear transformations consisting of rotations and boosts.

2Newton-Cartan gravity in the context of non-relativistic holography was studied in [52].

4


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.69

SCIl SciPost Phys. Lect. Notes 69 (2023)

Aj
[ X5}
N~
ae
A4
Jn
(b —a)
° Se Al
m(a) 7(b)

Figure 1: The clock fibration 7 : A* — Al

It follows from matrix multiplication that the affine group is the semidirect product
GL(4,R) x R* with GL(4,R) acting on R* by matrix multiplication. Multiplying (x, 1) € R> by
the matrix in equation (2.1) gives (Lx + v, 1), which is the effect of an affine transformation.
Both the Galilei and Minkowski spacetimes are described by A* only that their invariant
structures differ. Points in A% are called (spacetime) events.

2.2 Galilei spacetime

The following description of Galilean spacetime is essentially due to Weyl [63].
Galilei spacetime is defined by A* together with two invariant notions:

e aclock T: R* - R, sending b — a — 7(b — a) and measuring the time interval between
two events a,b € A% If a = (x,1) and b = (y, 1), then t(b — a) = y* — x*. Two events
a,b € A% are said to be simultaneous if (b — a) = 0. In other words, simultaneous
events are related by translations in the kernel of . If we fix an event a, the set of events
simultaneous to a defines a three-dimensional affine subspace

at+kert={a+v|t(v) =0} (2.2)

of A%. As the notation suggests, it is a coset of the subgroup ker T of the translation
group R*. The quotient A%/ ker 7 is an affine line A!, so that the clock gives a fibration
mt: A* — A! whose fibre at 7t(a) consists of all those events simultaneous to a, which
constitute an affine hypersurface A2 of A*. This is illustrated in Figure 1.

* aruler A: kert — R, sending b — a — A(b — a) and measuring the euclidean distance
between simultaneous events. Explicitly, if a = (x,x%, 1) and b = (y,y*, 1) withx,y € R3
and x* = y* are simultaneous events, then A(b —a) = |ly — x| = /(y —x) - (y —x),
which is the euclidean distance between x and y.

The kinematical group of Galilei spacetime is called the Galilei group and it consists of
those affine transformations of A% which preserve the clock and the ruler. It embeds in GL(5, R)

as those matrices of the form
R

(2.3)

o O
o =<
—» Q
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where R € O(3), a,v € R? and s € R. This matrix is of the form (2.1), but where the general

linear transformation L is of the form (g ‘{) .

The action of the matrix in equation (2.3) on an event (x,t,1) gives the event
(Rx +tv + a,t + s,1) which we interpret as the composition of an orthogonal transform-
ation x — Rx, a Galilei boost x — x + tv, a spatial translation x — x + a and a temporal
translation t — t + s:

R v a I 0O I 0 a I v O R 0 O
01 s]=101 s 010 010 01 0f. 2.9
0 0 1 0 01 0 0 1 0 01 0 01

Its Lie algebra is the Galilei algebra, which is isomorphic to the subalgebra of gl(5,R)
consisting of matrices of the form

(2.5)

oS O x>
o o<
O »w Q

where A € 50(3), v, a € R® and s € R. We may introduce a basis Lqt, = —Lpq, Ba, Pa, H by

A
0 = 1ALy +vOBg + a®Pq + sH. (2.6)
0

o o<
S »w Q

We can easily work out the Lie brackets of the Galilei algebra in this basis. The nonzero brackets
are given by

[Lav, Leal = dvelaa — daclva — Opalac + dvalac,
[Lav, Bv] =0 —8acBub,

ab b bc acbb (2.7)
[ ab> Pb} - 6bcP _6acpb:

[B(l) H}

This shows that L.}, span an so(3) subalgebra, relative to which B, P, transform according to
the three-dimensional vector representation (which is also the adjoint representation in this
dimension) and H transforms as the one-dimensional scalar representation. We shall see that
all kinematical Lie algebras (with spatial isotropy) share these properties, which are strong
enough to allow for their classification.

2.3 Minkowski spacetime

Minkowski spacetime is also described by A%, but the invariant notion is now that of a proper
distance A : R* — R, sending b — a — A(b — a), where if a = (x,1) and b = (y, 1),

Alb—a) = (y—x)"ny—x), (2.8)
where
1.0 0 0
0100
"1 0010 (2.9)
000 1

We no longer have a separate clock and ruler, or as Minkowski himself put it [64]:
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Von Stund’ an sollen Raum fiir sich und Zeit fiir sich vollig zu Schatten herab-
sinken und nur noch eine Art Union der beiden soll Selbstindigkeit bewahren.?

In particular, there is no longer an invariant notion of simultaneity between events, so instead of
affine subspaces of simultaneity, we have lightcones at every spacetime event a: the lightcone
L, of a being defined as those events which are a zero proper distance away from a:

Lo = {b € A*|A(b—a) =0} . (2.10)

The kinematical group of Minkowski spacetime is the Poincaré group and consists of
those affine transformations which preserve the proper distance between events. It embeds in

GL(5, R) as those matrices
L v
< 0 1) , (2.11)

where L™nL =n and v € R*. Matrix multiplication shows that the Poincaré group is isomorphic
to the semidirect product O(3, 1) X R*, where O(3, 1) is the Lorentz group. Acting on an event
(x, 1) with the matrix in equation (2.11), we obtain the event (Lx + v, 1), which is the effect of
a Lorentz transformation (x — Lx) and a (spatiotemporal) translation x — x + v; that is,

<B D N <(I) \1}> (B 2) (2.12)

The Lie algebra of the Poincaré group embeds in gl(5,R) as those matrices of the form

X v
2.13
5y -
where X™n + 11X = 0 and v € R* Introducing a basis Lag = —Lga,Pa, where now
A,B=0,1,2,3, by
(g 3) = LXABL g + VAP, (2.14)

it is easy to calculate the nonzero Lie brackets:

[Lag,Lcpl =neclap —maclep —neplac +nabplsc,
(2.15)
[La,Pcl =mBcPa —MmacPs.-
To ease comparison with the Galilei algebra (2.7), we will let PA = {H = Py, P4} and
Lag ={Ba = Loa, Lab}, relative to which the brackets become

[Lav,Leal = dvelad —daclva — Ovalac + dvalac s

(Lab, Bb} =0pcBa —dacBy

[Lab, Po] = 8bcPa — 8acPu, 2.16)
[Ba, Bol = Law ,
[Ba, Pv]l = 5abH
[Bo,Hl =

We see that again L1, span an so(3) subalgebra relative to which B4, P4 transform according to
the three-dimensional vector representation and H transforms according to the one-dimensional
scalar representation. What sets the Poincaré and Galilei algebras apart are the Lie brackets
which do not involve the L.y, : the last bracket in equation (2.7) and the last three brackets in
equation (2.16).

3Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.
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2.4 Lie algebra of symmetries

Minkowski spacetime is a lorentzian manifold, diffeomorphic to R* with lorentzian metric
g = —dt? + dx? + dy? + dz?® = n,ydxHdx” (2.17)

relative to cartesian coordinates x* = (t, x,y,z). The Poincaré Lie algebra is isomorphic to
the Lie algebra of Killing vector fields of the metric g. Let & = {0, denote a vector field of
Minkowski spacetime. It is a Killing vector field if £; g = 0, which translates into

npvauap +nupavap =0, (2.18)
or, defining &,, =ny,&P, into Killing’s equation:4
0uéy +0+&,=0. (2.19)

Notice that 0,0+ &, is clearly symmetric in p <+ v and, from Killing’s equation, also skewsym-
metric in v < p. Therefore 0,,0,&, = 0 and hence &, = A,y Xx¥ + a,,.. Re-inserting this into
Killing’s equation, we find that A, = —A,,, and we may write the general solution of Killing’s
equation as

&= AMEL,, +atEp,, (2.20)

where
E’Luv = Xvau — Xuay and E’Pu = au . (221)

One can check that these vector fields obey the opposite (i.e., negative) brackets of those of the
Poincaré Lie algebra:

[E,Lu\,, EvaU} = _nvp‘(—vl_w "‘Tlp.p‘(—vl_wy + HWELW - nHUE»LVp P

(2.22)
[EL,s &Pyl = Mvp&p, +Nppép, -

The fact that we have an antihomomorphism of Lie algebras might seem counter-intuitive, but
we will see that it is natural in the context of homogeneous spaces, where the group action is
induced from left multiplication in the group. The infinitesimal generators of left multiplication
are the right-invariant vector fields whose Lie brackets are opposite to those of the left-invariant
vector fields defining the Lie algebra.

In contrast, Galilei spacetime is a non-lorentzian geometry: there is no invariant metric,
but rather an invariant Newton—Cartan structure.” Relative to cartesian coordinates (x,y, z, t),
the clock defines a one-form T = dt. Indeed, as shown in Figure 1, the clock is the linear
projection R* — R taking b — a to T(b — a). This is nothing but the derivative of the projection
7t : A* — Al, which in this model of the affine space is given by 7(x,y,z,t) = t; in other
words, dt. We will see later that in a general Newton—Cartan manifold, the clock one-form
need not be exact or even closed. The ruler defines an invariant symmetric (2, 0)-tensor field
A =0y ®0x + 0y ® 0y + 0y ® 0y. Interpreting A as a symmetric bilinear form on one-forms,
we notice that A is degenerate along dt. It is often called the “spatial cometric”. In analogy
with a lorentzian spacetime, let us say that a vector field ¢ is “Killing”, if it preserves the clock
one-form T and the spatial cometric A; that is,

Lt=0 and LA=0. (2.23)

4Solutions of equation (2.19) are the Noether charges for point symmetries of the geodesic equation. Indeed,
if we consider the variational problem with lagrangian ¢ = 1n,,x"x" and ask which point transformations
ox* = EF(x) leave & invariant, we find that &* must satisfy equation (2.19).

5Some authors (e.g., [65]) refer to this structure as a “weak” Newton—Cartan structure, reserving the unqualified
name for the structure which results by an additional choice of an adapted connection; that is a connection relative
to which the clock one-form and the spatial cometric are parallel.

8
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For Galilei spacetime, and introducing coordinates x* = (x,y,z), the general solution of
equations (2.23) is given by

£ =0y + Vv (t)da + 2T (t) (xp0a — Xadb), (2.24)

where « € R and where v® and T*® = —T?@ are smooth functions of t. In contrast to the Lie
algebra of isometries of a lorentzian manifold, the Lie algebra of symmetries of the (weak)
Newton—Cartan structure of Galilei spacetime is infinite-dimensional, and is known as the
Coriolis algebra [66]. It contains (the opposite of) the Galilei algebra as a subalgebra, spanned
by

EH = 0, &p, = 0a, &B, = t0q and ELyy = —XaOb +Xp0q . (2.25)

Had we considered (strict) Newton—Cartan structures, including the adapted connection as
part of the data, then the Lie algebra of symmetries would be finite-dimensional.®

3 Symmetry

In Section 2 we discussed two models of the universe: the Galilei and Minkowski spacetimes.
Both are four-dimensional affine space homogeneous under the action of a kinematical Lie
group: the Galilei and Poincaré groups, respectively. In this section we will discuss the notion
of a kinematical Lie group more formally and will discuss the classification of kinematical Lie
algebras.

3.1 Kinematical Lie algebras

In a landmark paper [31] written more than half a century ago, Bacry and Lévy-Leblond
asked themselves the question of which were the possible kinematics, rephrasing the question
mathematically as the classification of kinematical Lie algebras. A careful comparison of
the Poincaré and Galilei algebras we met in Section 2 suggests the following definition for
four-dimensional spacetimes.”

Definition 1. A kinematical Lie algebra is a ten-dimensional (real) Lie algebra ¢ with generat-
ors Lap = —Lpa, Ba, Pa, H with a,b = 1, 2, 3 satisfying the following conditions:

* the generators L, span an so(3)-subalgebra ¢ of g:
[Lab,Leal = dvclad — daclva —dvalac + dvalac, (3.1)
* the generators B, P, transform as vectors under t:

U—ab; Bb] = 6cha - 6ctcBb 5

(3.2)
[Lab; Pb] = 5bcPa - 6ach >
* and the generator H transforms as a scalar:
[Lap,HI =0. (3.3)

The reason is that Newton—Cartan structures are Cartan geometries and the infinitesimal automorphisms of a
Cartan geometry form a finite-dimensional Lie algebra.

7Strictly speaking, the definition is for spatially isotropic spacetimes. There are generalisations where the
rotational subalgebra v in the definition is replaced by a Lorentz subalgebra. Such homogeneous spaces do occur in
nature. Indeed, as shown in [67], the blow-up of spatial infinity of Minkowski spacetime is a homogeneous space of
the Poincaré group with lorentzian isotropy. There are other homogeneous spaces of the Poincaré group occurring
at the asymptotic infinities of Minkowski spacetime, as discussed in [68].

9
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In addition, Bacry and Lévy-Leblond initially also imposed that the Lie brackets should be
invariant under parity P, — —Pq and time-reversal H — —H; although they did point out that
those restrictions were “by no means compelling” and indeed twenty years later, Bacry and
Nuyts [38] lifted those conditions arriving at a classification of four-dimensional kinematical
Lie algebras. This classification was recovered using deformation theory in [36] and extended
to arbitrary dimension in [37,39]. The definition of kinematical algebra in d + 1 dimensions is
formally as the one above, except that a,b = 1,..., d and the subalgebra v spanned by Ly,
is now isomorphic to so(d). The case of d = 1 corresponds to the Bianchi classification of
three-dimensional real Lie algebras [40,41], here re-interpreted as kinematical Lie algebras for
two-dimensional spacetimes. The cases of d = 2 and d = 3 are the most complicated due to
the existence of e, and €q4p. Which are v-invariant and can thus appear in the Lie brackets
and, indeed, there are kinematical Lie algebras in dimension 2 + 1 and 3 + 1 which have no
higher-dimensional analogues. We will refer the interested reader to the papers cited above
and will concentrate here on those kinematical Lie algebras which exist in generic dimensions.

Before we state the classification, let us make an important remark. Although the notation
for the generators of a kinematical Lie algebra suggests a physical interpretation: namely, Ly,
generate rotations, B, boots, P, spatial translations and H temporal translations, it would be
imprudent to take this very seriously. The physical interpretation of the generators can only
be determined once we realise them geometrically as vector fields in a spacetime. In the two
examples we have seen in Section 2, it is indeed the case that the generators can be interpreted
as above, but this is certainly not true in most cases.

One way to approach the classification is to write down the most general t-invariant Lie
brackets for the generators B, Py, H and impose the Jacobi identity. The Jacobi identity cuts
out an algebraic variety _¢ in the vector space of possible brackets: i.e., the vector space of
linear maps /AW — ¢, where W C ¢ is the vector subspace spanned by B, P, H. Two points
in ¢ define isomorphic kinematical Lie algebras if and only if they are related by a change of
basis in W. We take care of this ambiguity by quotienting ¢ by the action of the subgroup of
GL(W) which commutes with the action of t. In practice, one selects a unique representative
for each isomorphism class of kinematical Lie algebras.

Table 1 lists the kinematical Lie algebras in generic dimension d 4+ 1. For d < 2, there are
some degeneracies (e.g., if d = 2, the Galilei algebra g is isomorphic to the Carroll algebra ),
but for general d the table below lists non-isomorphic kinematical Lie algebras and for d > 3 the
table is complete. The table lists the nonzero Lie brackets except for the common ones in every
kinematical Lie algebra. It also uses a shorthand notation omitting indices. The only t-invariant
tensor which can appear is 8, and hence there is an unambiguous way to add indices. For
example, [H, B] = B + P unpacks as [H, B,] = B, + Pq, whereas [B, P] = H + L stands for
[Ba, Pv] = 8apH + Lap, et cetera. There is no standard notation for all the kinematical Lie
algebras, so we have made some choices.

We now describe each of the algebras in turn:

* The Lie algebra s is the static kinematical Lie algebra: all additional brackets are zero.
Therefore every kinematical Lie algebras is a deformation of s.

¢ The Galilei algebra is denoted g and we have denoted by n° a closely related algebra. In
g and n°, the adjoint action of H is not diagonalisable over the complex numbers, but
has a nontrivial Jordan block:

w)-CDE = w()-(HE e

* There are two one-parameter families of algebras: n}, withy € [—1, 1], which fory = —1
is one of the two Newton-Hooke algebras; and n, with x > 0, which for x = 0 is the
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Table 1: Kinematical Lie algebras in generic dimension

Name | Nonzero Lie brackets in addition to (3.1)-(3.3) Comments
5
g H,B] =—P
n0 H,BI=B+P [H,P|=P
nf [H,B] = vB [H,P] =P v e [-1,1]
n, H,B]=xB+P [H,Pl=xP—B x>0
c [B,P]=H
b [H,B] = —¢P B,B]=¢L [B,Pl=H e= =+l
so(d+1,1) | [H,B]=B [H,P]=—P B,P]=H+L
oG [H,B]=—¢P  [H,P]=¢B B,Bl=¢L [B,P]=H [P,Pl=cL | e =1

other Newton-Hooke algebra. These two families correspond to the cases where the
adjoint action of H is diagonalisable over the complex numbers: in n}, the eigenvalues
are real, whereas in ny_ they are complex:

w®-GYE = w5 DE) e

* The Carroll algebra is denoted c.

* The Poincaré algebra is iso(d, 1) and

the euclidean algebra is iso(d + 1).

* The remaining algebras are semisimple (for d > 2) and consist of so(d + 2), so(d + 1, 1)

and so(d, 2). Finite-dimensional semisimple Lie algebras are rigid, so they cannot be
deformed further. However they can be contracted. Not all the kinematical Lie algebras
in the table can be obtained as contractions of the simple ones: those which can are the
Poincaré, euclidean, (both) Newton—-Hooke, Galilei, Carroll and static algebras. These
are precisely the algebras which admit parity and time-reversal automorphisms; that is,
the ones originally classified in [31].

3.2 Aristotelian Lie algebras

A closely related family of Lie algebras are the aristotelian algebras, defined just like in

Definition 1, but dropping the boosts.

Definition 2. An aristotelian Lie algebra is a real Lie algebra a with generators
Lab = —Lva, Pa, H, with a,b = 1,..., d, satisfying the following conditions:

* the generators Ly span an so(d)-subalgebra t of g:

[Lab,Leal =dbclad — daclva —dvalac + dvalac, (3.6)

* the generators P, transform as vectors under t:

“—ab; Pb} = 6‘bcPa - ‘Sach ) (3~7)

* and the generator H transforms as a scalar:

[Lab, HI =0. (3.8)
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Table 2: Aristotelian Lie algebras

Name | Nonzero Lie brackets Comments
iso(d) ® R

sim(d) [H,P,] = P,

igggi)le)BED;R [Pa; Pb} = ELab £ = :l:].

Aristotelian Lie algebras are easy to classify in any dimension and the result is contained
in [42, Appendix B] and summarised in the Table 2, which lists the nonzero Lie brackets in
addition to those fixed by the definition. We omit aristotelian Lie algebras which do not exist
in general dimension.

Let us describe each of the aristotelian Lie algebras in turn:

* The aristotelian Lie algebra with no additional nonzero Lie brackets, which we could
term the “static” aristotelian Lie algebra, is isomorphic to iso(d) & R, with iso(d) spanned
by Law, Pq and the one-dimensional Lie subalgebra spanned by H, which is central.

* Ifinstead of being central, we think of H as dilatations, we obtain a Lie algebra isomorphic
to the similitude algebra of d-dimensional euclidean space: sim(d). This is also denoted
co(d) x R4, where co(d) = so(d) @R is the extension of the rotation algebra by dilatations
and R transforms as a vector under rotations but with nonzero conformal weight.

e If H remains central, but now the translations do not commute, we obtain trivial central
extensions of so(d, 1) or so(d + 1).

3.3 Central extensions

Central extensions of Lie algebras arise naturally in Physics. In quantum Physics they arise
due to the fact that the state space of a quantum system is a projective space (the space of
rays of a Hilbert space) so that the action of a group ¥ on the projective space may only lift
to a projective representation on the Hilbert space, and hence an honest representation of a
one-dimensional central extension of ¢. In classical Physics they arise due to the fact that
homogeneous symplectic manifolds of a Lie group ¢ are (up to covering) coadjoint orbits of ¥
or perhaps a one-dimensional central extension of ¥, as we will discuss in Section 4.4.

Mathematically, a central extension of a Lie algebra £ is a special case of a Lie algebra
extension. A Lie algebra ¢ is said to be a an extension of a Lie algebra ¢ by a Lie algebra a if
they fit in an exact sequence of Lie algebras

0 a £ ¢ 0. (3.9

This is equivalent to the following conditions: £ =t®aas a vector space, a is an ideal of t (e,
(€,a] C a) and the quotient Lie algebra %v/ a is isomorphic to £. If a is central, so that [0, =0,
then we have a central extension. Notice that ¢ is not necessarily a Lie subalgebra of €. If that
is the case, the sequence is said to be split and we have that ¢ is the semidirect product of ¢
with a. A special case of semidirect products are the trivial extensions, when t=tdaasalie
algebra; that is, £ and a are subalgebras (actually ideals) and [¢, a] = 0.

Whereas every Lie algebra admits trivial extensions, the only kinematical Lie algebras
in Table 1 admitting nontrivial central extensions (in dimension d > 2) are the static (s),
Newton-Hooke (n*) and Galilei (g) algebras. To describe them, we introduce a new generator
Z with [Z, —] = 0 and modify the Lie brackets of the kinematical Lie algebra by [Bq, Pp] = 64pZ.
The central extension of the Galilei algebra is called the Bargmann algebra.
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Table 3: Generalised Bargmann algebras in d > 2

¢ | Brackets involving Z Comments
s |[B,Pl=Z
n"|[B,Pl=2Z
n |[B,Pl=2Z
B,Pl=2
nf|B,Pl=2Z M2 = (v+1)Z]ye(-1,1
n® |[B,Pl=2Z [H,Z] =2Z
n |[B,Pl=2 [H,Z] =2xZ x>0
5 H,Z]=Z
g H,Z] =2
ny H,Z] = aZ vy €[-1,1] and o« # 0
n H,Z] = aZ x#0
ny H,Z] = aZ x=>0and x #0

Table 4: One-dimensional extensions of aristotelian Lie algebras in d > 2

a | Brackets involving Z | Comments

iso(d)oR|[H,Z] =Z

sim(d) H,Z] = aZ x#0
(d,1)eR _
22(d+1)@R [H’ Z] =7

A one-dimensional extension (not necessarily central) of a kinematical Lie algebra is called
a generalised Bargmann algebra. Apart from the central extensions listed above and the
trivial extensions, there is a small list (some with parameters). Those for which [B4, Pp] = 6412
are deformations of the central extension of the static kinematical Lie algebra and have been
classified in [36] (for d = 3) and in [37] (for d > 3). Those for which [B, Py] = 0 are listed
here for the first time.

Table 3 lists the (nontrivial) generalised Bargmann algebras in dimension d > 2. In the
table ¢ stands for the kinematical Lie algebra being extended and the brackets listed are the
ones which involve the additional generator Z, so they are either new or modifications of the
brackets in £. The (nonzero) parameter « in the last three rows is effective: different values of
« give non-isomorphic Lie algebras.

Aristotelian Lie algebras (if d > 2) admit no nontrivial central extensions: there are
no tv-invariant cochains, let alone cocycles. They do, however, admit nontrivial non-central
extensions, which are listed in Table 4, which lists the aristotelian Lie algebra being extended
and the brackets involving the additional generator Z. Again the (nonzero) parameter « is
effective.

Changing notation: (H, Z) — (D, H), the Lie algebras in Table 4 are examples of Lifshitz
Lie algebras (see, e.g., [69]). The extension of sim(d) is the original Lifshitz algebra, where the
parameter « is typically denoted z:

[D,P]=P and [D,H] =zH, (3.10)

in addition to the brackets (3.6)—(3.8) common to all aristotelian Lie algebras.
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4 Geometry

In this section we discuss non-lorentzian geometries. In the spirit of Klein’s Erlangen Programme,
we start by discussing the homogeneous spacetimes associated to the kinematical Lie algebras
discussed in Section 3. We will see that these spaces fall into different families depending
on the structure which the kinematical group preserves: metric (riemannian or lorentzian),
Newton—Cartan, carrollian or aristotelian. Each of these geometries is a Cartan geometry
modelled on a homogeneous spacetime and we will discuss them in turn. In a sense, all we are
doing is extending to the non-lorentzian context the standard sequence of ideas:

Poincaré symmetry — Minkowski spacetime — lorentzian geometry. (4.1)

Of course, Minkowski spacetime is not the only homogeneous space of the Poincaré group, so
the passage from the Poincaré group to Minkowski spacetime requires a choice, whereas the
passage from Minkowski spacetime to lorentzian geometry is more or less forced.

4.1 Homogeneous spaces

In this section we review the basic notions of homogeneous geometry.

4.1.1 Group actions on manifolds

Let ¢ be a Lie group. A (linear) representation of ¢ on a vector space V is a Lie group
homomorphism p : ¥ — GL(V); that is, p is a smooth map and a group homomorphism
p(ab) = p(a)p(b) for all a,b € Y. We are also interested in nonlinear realisations® of ¢ on a
manifold M. It would be tempting by analogy with the case of a linear representation to define
a nonlinear realisation as a Lie group homomorphism p : ¢ — Diff(M), except for the fact
that the diffeomorphism group Diff(M) of a manifold is not typically a Lie group. Instead we
define nonlinear realisations as actions. One has to distinguish between left and right actions;
although it is easy to go between them. By a (left) action of ¢ on a manifold M we mean a
smooth map «: ¢ x M — M, written simply as «(g,p) = g - p, satisfying two properties:

e forall g;,g2 € Yandp € M, (g192) - p = g1 - (g2 - p); and
e forallp € M, e-p = p where e € ¥ is the identity element.

If we fix g € ¥, a(g,—) : M — M is a diffeomorphism which we typically denote «4. On the
other hand, if we fix p € M, we get a map «(—,p) : 4 — M known as the orbit map, as its
image is the orbit of p under ¥.

Let g denote the Lie algebra of ¢. An action of ¢4 on M gives rise to a Lie algebra antiho-
momorphism ¢ : g — (M), assigning to every X € g a vector field £x and such that for all
X,Y € g, [Ex, &v] = —&x,v], where the bracket on the LHS is the Lie bracket of vector fields
and that on the RHS is the bracket on g. The vector fields in the image of ¢ are called the
fundamental vector fields of the group action. Although one can redefine the fundamental
vector fields in such a way that the new map g — 2 (M) is a Lie algebra homomorphism, it
turns out not to be natural, as we will see shortly.

A group action « : 4 x M — M is said to be effective if the only element g € ¢ which acts
trivially (i.e., which obeys g - p = p for all p € M) is the identity element. A weaker condition
is for the action to be locally effective, which says that the elements of ¢ which act trivially

8In Physics it is customary to reserve the name “nonlinear realisation” only to transitive actions (see later), when
M is diffeomorphic to a coset space ¢/#. A manifold admitting a transitive action of a Lie group is the nonlinear
analogue of an irreducible representation. In the same way that it is useful to consider representations which are
not necessarily irreducible, we shall consider nonlinear realisations where the action is not necessarily transitive.
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form a discrete subgroup of ¢. This is equivalent to the map & : g — 2 (M) being injective, so
that no nonzero element in g is sent to the zero vector field.

A group action « : 4 x M — M is said to be transitive if given any two points p,q € M,
there is some g € ¢ with q = g-p. Equivalently, if the ¢-orbit of any point is the whole manifold.
This is the analogue for nonlinear realisations of irreducibility for linear representations. A
linear representation of ¢ on V is irreducible if there are no proper subspaces of V which are
stable under ¢. Similarly, an action of ¢ on M is transitive if there are no proper submanifolds
of M stable under the action of 4.

A manifold M is said to be a homogeneous space of a Lie group ¥ if ¥ acts transitively
on M. The stabiliser subgroup of a point p € M is the subgroup # C ¥ which fixes
p: # ={g € Ylg-p=np) Itisa closed subgroup of ¢. Its Lie algebra b consists of those
fundamental vector fields which vanish at p. If M is a homogeneous space of ¥, then the
stabiliser subgroups of all of its points are conjugate in ¢. Indeed, let 5%, denote the stabiliser
subgroup of p € M and . that of ¢ € M. Since ¥ acts transitively, there is some g € ¢ such
that ¢ = g - p and hence h € 5%, if and only if h = gh’g™! for some h’ € J#%,. Often one picks
an “origin” o € M and lets 5# denote the stabiliser subgroup of 0. Then M is diffeomorphic to
the space of left cosets ¢/#. This is why homogeneous spaces are often referred to as coset
spaces or coset manifolds. Of course the choice of origin is immaterial, since from the point of
¢ all points in a homogeneous space “look the same”.

It is not just that M and ¥/5¢ are diffeomorphic, but that they are ¥-equivariantly so:
the diffeomorphism M — ¢/ intertwines between the left action of ¢4 on M and the left
action of ¢ on ¥/ which is induced from left multiplication in ¥: if g’# € ¢/ and
g € ¢, we have that g - ¢’ = (gg’)#°. Now recall that the vector fields which generate
left multiplication on ¥ are the right-invariant vector fields and they satisfy the opposite Lie
algebra. This explains why it is natural for the map & : g — & (M) to be an antihomomorphism.

4.1.2 Linear isotropy representation and invariant tensors

Let M be a homogeneous space of ¢ and # C ¥ the stabiliser of the origin o € M. Since every
h € s preserves o, the derivative at o of the diffeomorphism a4, : M — M defines a linear trans-
formation A(h) of the tangent space T, M. Since « is an action, in particular, oth, © Xn, = &th,h,
for all hy, hy € 5 and, by the chain rule, A : 7 — GL(T,M) is a representation, known as the
linear isotropy representation.

The linear isotropy representation plays a very important role in determining the ¢-invariant
tensor fields on a homogeneous space M. An important result, which is a special case of the
fundamental principle of holonomy (see, e.g., [70, Para. 10.19] in the riemannian case, but holds
more generally for any connection), states that there is a one-to-one correspondence between
#¢-invariant tensors on T,M and ¥-invariant tensor fields on M. Briefly, it goes as follows. If
® is a Y-invariant tensor field on M, its value at the origin is a tensor ®, on T,M which is
invariant under the linear isotropy representation of ». Conversely, given an s#-invariant
tensor @, on T,M we may extend it to a tensor field on M via the ¥ action. Its value @, at
p € M is defined by picking g € ¢ with g - o = p and acting on ®, with g: ®, =g - ®,. The
problem is that there is typically not a unique g € ¢ connecting o to p, so which one do we
choose? It turns out that the choice is immaterial: if g’ € ¥ is any other such element, then
g’ = gh for some h € 5 and precisely because @, is #-invariant, g’ - ®, = g- @, and it does
not matter whether we use g or g’ to calculate ®,,.

If in addition, ¢ is a connected subgroup with Lie algebra h C g, then ¥-invariant tensor
fields on M are in one-to-one correspondence with h-invariant tensors on T,M. Determining
the h-invariant tensors is a reasonably simple linear algebra problem in most cases.
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4.1.3 Klein pairs

Let M be a homogeneous space of ¢ with typical stabiliser 5. Let g and h denote the Lie
algebras of ¢ and 4%, respectively. Then we may associate to M the Klein pair (g, ). Not
every pair (g, h) consisting of a Lie algebra g and a Lie subalgebra § is a Klein pair. It has to
be geometrically realisable, which says that there exists some Lie group ¢ with Lie algebra g
such that the connected subgroup # generated by b is closed. As explained, for example,
in [42, Appendix B], there is a one-to-one correspondence between (effective, geometrically
realisable) Klein pairs and simply-connected homogeneous spaces of 4. (See [42, Appendix B.3]
for a simple example of a Klein pair which is not geometrically realisable.) Paraphrasing slightly,
(effective, geometrically realisable) Klein pairs classify homogeneous spaces up to covering, in
the same way that Lie algebras classify Lie groups up to covering.

There is a notion of isomorphism between Klein pairs which is crucial in classifications. We
say that two Klein pairs (g1, h1) and (go, b2 ) are isomorphic, if there is a Lie algebra isomorphism
© : g1 — g2 with @(h1) = bha. Isomorphic Klein pairs, if geometrically realisable, give rise to
locally isomorphic homogeneous spaces.

Let M be a homogeneous ¥-space with Klein pair (g, ). We say that the Klein pair is
reductive if there exists a complementary subspace m with g = b & m which is stable under
the restriction to 4 of the adjoint action of ¢ on g. If 5 is connected, reductivity says
that [h, m] C m. In the reductive case, the vector space isomorphism T,M = m intertwines
between the linear isotropy representation on T,M and the restriction to 5# of the ¥-adjoint
representation on m. In the non-reductive case, there is a vector space isomorphism ToM = g/b,
where the quotient vector space g/h is naturally a representation of 5¢. In practice we work
with g/h by working with g and just dropping any terms belonging to § at the end.

A reductive Klein pair (g = h ® m, h) is said to be symmetric if [m, m] C h. Symmetric Klein
pairs are the infinitesimal description (up to coverings) of symmetric spaces.

It may be convenient to write the reductive and symmetry conditions in a basis. Let X;
denote a basis for . The Klein pair (g, h) is reductive if we can complete to a basis X;, Y1
for g such that [Xi, Y] = cit/ Yy; that is, no X; appear in the RHS. For a reductive Klein
pair, [Y1,Yy] = cUiXi + CUKYK in general, but if it is symmetric then CI]K = 0 and hence
Y1, Yj] = c1y*X;.

4.1.4 Exponential coordinates

Let us now discuss coordinates on homogeneous spaces, but first we review exponential
coordinates on a Lie group.

In the neighbourhood of any point g in a Lie group ¢, we have exponential coordinates
associated to every choice of basis for the Lie algebra g. Recall that the exponential map
exp : g — ¢, which for a matrix Lie group is just the matrix exponential, is a diffeomorphism
between a neighbourhood of 0 € g and a neighbourhood of the identity e € 4. Let Xq,..., X,
be a basis for g and consider exp(x!X; + ---x™Xy,) € 9. The (x!,...,x™) are local coordinates
for ¢ centred at the identity, which has coordinates (0,...,0). We may now use left (or
right) multiplication to give coordinates in a neighbourhood of any other g € ¥; for example,
gexp(y'X; + ---y™Xy) give local coordinates for ¢4 near g. On overlaps, the change of
coordinates between these exponential coordinates is real analytic, which shows that Lie groups
are not just smooth but actually real analytic manifolds.

Now let us consider a homogeneous space M = ¢ /¢ with Klein pair (g, h). Recall that the
identification of M with /¢ implies a choice of origin o € M (corresponding to the identity
coset) with stabiliser . Let us choose a vector space complement to h in g and write g = h S m.
In the reductive case, we can (and will) choose m so that [h, m] C m, but in general this may not
be possible. Choosing a basis Y1, ..., Y, for m we obtain local coordinates near the origin on M
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by exp(x'Y; +---4+Xx™Y) -0 or, having identified M with ¢/, by exp(x1 Y1 +- - - +x™ Y, ) .
In general we can only hope for local coordinates. Indeed, a coset representative is a choice of
section of the principal s#-bundle ¥ — %/ and principal bundles admit sections if and only
if they are trivial.

In effect, what we are doing is choosing a coset representative
(here exp(x'Y7 4 --- +x™Y;,) € ¥) for each coset in ¥/ near the identity coset. This
is a locally defined smooth map M — ¥, which is only defined in a neighbourhood of the
origin, and we may use it to pull back differential forms on ¥ to M. Every Lie group ¢ has a
distinguished g-valued one-form § € Q'(¥, g): the left-invariant Maurer—Cartan one-form. If
we identify g = T.G with the tangent space at the identity, then 94 : Ty — T.¥ is simply the
differential of left multiplication by g—'. We may use a (local) coset representative L : M — ¥4
to pull back 9 to a local one-form L*® on M which, for ¢4 a matrix group, has the simpler
expression

[*9=L"1dL. (4.2)

Although this is strictly speaking only valid for ¢ a matrix group, one does not go wrong by
assuming we are in a matrix group for calculations provided that in the end we express the
final result in a way that makes sense for a general Lie group. For example, it follows from
the above expression that L*9 is left-invariant, since if we multiply L(x) by a constant group
element g on the left, it remains invariant:

(gL)"td(gL) =L g lgdL =L"'dL. (4.3)
Similarly, differentiating again, we find that
d(L'dl) =dL 'AdL=-L"'dL AL 'dL=—1['dL, L 'dL], (4.4)

which is the Maurer—Cartan structure equation. Notice that in the equation above we wrote the
term L~1dL A L~'dL which involves matrix multiplication as a commutator 3[L~'dL, L~!dL],
which makes sense (as the Lie bracket in the Lie algebra g) for ¢ any group, not necessarily a
matrix group.’

Suppose that ¢/ is reductive, so that g = h & m with [h, m] C m. Then we can split the
pull-back of the Maurer—Cartan form into its components along  and m:

L ldL = (L7 'dL)p + (L 1Al = w + 6, (4.5)

where w, the component along § is a connection one-form and 6, the component along m, is a
soldering form. Indeed, under right multiplication by a local # transformation L — Lh™1,

LML — (Lh H 'd(Lth ™ ) = h(L'dL)h '+ hdh ! = hwh ! — dhh~ ! + hoh™ !, (4.6)
so that comparing the h and m components, we arrive at
w +— hwh ! — dhh™! and 06+~ hoh!. 4.7)

If 4/ is not reductive, there is no natural split of the Maurer-Cartan one-form. We can still
project to g/h to obtain a soldering form, but there is no uniquely defined component along h
and, moreover, no such component can be chosen in such a way that results in a connection.
Let us consider in this light the examples in Section 2: the Galilei and Minkowski space-
times. Both spacetimes are homogeneous spaces of the translation subgroup: in fact, they are

“Whereas Ado’s theorem says that any finite-dimensional real Lie algebra is a matrix Lie algebra, the similar
result for Lie groups is false. The simplest counterexample to the putative Lie group version of Ado’s theorem is the
universal cover of SL(2,R). See, for example, Graeme Segal’s lectures in [71].
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principally homogeneous spaces since every point has trivial stabiliser. However we wish to
view them as homogeneous spaces of their kinematical Lie groups: the Galilei and Poincaré
groups, respectively. Let us start with Minkowski spacetime, which should be more familiar.
We work now in general dimension d + 1.

4.1.5 Minkowski spacetime as a homogeneous space

The Poincaré algebra is given in equation (2.15). Let h be the span of L g and m the span
of Pa, where A,B =0, ..., d. Then it follows that the Klein pair (g, §) is reductive. Here we
do have a global coset representative L(x) = exp(x*Pa), which gives global coordinates to
Minkowski spacetime. We can pull-back the Maurer—Cartan form and we get

L 1dL = dx*PA . (4.8)

We see that here L—!dL takes values in m. This is very special. In general for a reductive
Klein pair (g, b), the pull-back of the Maurer—Cartan one-form takes values in g: so it has
an h-component and an m-component. The h-component is a connection one-form whereas
the m-component is a soldering form (i.e., a coframe or an inverse vielbein). Here we see
that the connection one-form is absent. We can explain this as follows. The linear isotropy
representation of h on m admits an invariant symmetric inner product n € ©*m*, where ®
denotes the symmetric tensor product, with entries n(Pa, Pg) = nap of lorentzian signature.
We can apply this to L~!dL to obtain a Poincaré-invariant metric on Minkowski spacetime:

(L dL, L7 1dL) = napdx™dxB, (4.9)

which is nothing else but the standard Minkowski metric in flat coordinates. Of course, relative
to flat coordinates, the connection one-form (relative to the coordinate frame) vanishes, which
explains why there is no h-component in L~ 1dL.

The action of the Poincaré group on Minkowski spacetime relative to these coordinates is
easy to work out, since it is induced by left multiplication in the Poincaré group. Translations
just shift the coordinates:!°

exp(a™Pa) exp(x*Pa) = exp((x™ + a™)Pa), (4.10)
so that exp(a™Pa) - (x%,...,x%) = (x° 4+ a®,...,x9 + a). Lorentz transformations act linearly
on the coordinates. If h € ¢, then

hexp(x*Pa) = hexp(x*Pa)h ' h = exp(x* Ady, Pa)h, (4.11)

where we have introduced the notation Ad for the restriction to 5# of the adjoint repres-
entation of ¢. Since m is stable under the action of 2%, Ad;, PAo € m, so we can write it as
Ady, PA = PghB 4 and hence

hexp(x*Pa) = exp(hB Ax*hPp)h. (4.12)
Acting on the “origin” of Minkowski spacetime or on the identity coset e = 5, we have that
hexp(x*Pa)# = exp(hB Ax hPp)#, (4.13)

using that hs# = 22, since ¢ is a subgroup. Therefore Lorentz transformations in Minkowski
spacetime are linear relative to the exponential coordinates. This is a general fact about reduct-
ive homogeneous spaces ¥/5¢: in exponential coordinates, # acts linearly. It is important
to realise that this is a coordinate-dependent statement and, moreover, only applies to the
reductive situation. It is the linear isotropy representation (on the tangent space at the origin)
which, as the name belies, is always linear, regardless of reductivity.

10This is not usually so simple, particularly in exponential coordinates the way we have defined them. In some
examples, calculations are simpler in modified exponential coordinates where we take product of exponentials
instead of a single exponential.
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4.1.6 Galilei spacetime as a homogeneous space

Let us now consider Galilei spacetime, which is described by a Klein pair (g, h) where g is
the Lie algebra spanned by L4y, Bq, Po, H, for a,b =1,..., d, and whose brackets are given
by equation (2.7) and § is the subalgebra spanned by L,p,Bq. We choose the reductive
complement m to be the span of Py, H. We choose exponential coordinates (t,x®) via the coset
representative

L(t,x) = exp(tH + x“Pq) . (4.14)
Here again the pull-back of the Maurer—Cartan one-form has no h-component:
L 1dL = dtH + dx“Pg . (4.15)

The action of the Galilei group is again easy to work out using left multiplication: translations
again shift the exponential coordinates exp(sH + v®Pg) - (t,x?) = (t +s,x* +v?), whereas
rotations and boosts act as follows. Let R € ¢ be a rotation; that is, an element of the SO(d)
subgroup generated by the L,1,. Then

Rexp(tH 4+ x%Pq) = Rexp(tH + x*Po)R IR = exp(tH + x* Adg P4 )R, (4.16)

where we have used that H is a scalar and hence commutes with the rotations. Again
Adg P, = PyRP, and hence acting on the identity coset we read off the action of rotations
on the exponential coordinates: R - (t,x%) = (t, R?4x?). Now let us consider the boosts. Let
h := exp(v®*B,). Then, as before,

hexp(tH 4+ x*Pq) = exp(Ady, (tH + x%Pq) ) 1. 4.17)
We work out the term inside the exponential:
Adn (tH +x9Pq) = Adeyp(vop, ) (tH +x*Pq) = exp(vP adg, ) (tH + x*Pq), (4.18)
where adg, H := [By, H] = Py and adg, Pa = [Byp, Pa] = 0. Substituting, we find
h(tH 4+ xPo)h ™! = (tH + (x® + tv*)Py) . (4.19)

Acting on the identity coset again we see that boosts act on the exponential coordinates by
h-(t,x%) = (t,x* 4+ tv®), which are precisely the Galilei boosts we saw in Section 2.2.

To determine the Galilei-invariant tensors in Galilei spacetime ¥ /5, we need to determine
the #-invariant tensors of the linear isotropy representation. Canonically dual to the basis
H, P4 for m we have a basis 1, t® for m*. We need to work out the linear isotropy representation
of # on both m and m* and hence on tensors. The linear isotropy representation is such that
the L, generate rotations and B, generate boosts. It is easy to determine the tensors invariant
under rotations. First of all H € m is invariant, but also its dual . A classical theorem of
Weyl’s [72, Theorem 2.11.A] says that every SO(d) invariant tensor of the d-dimensional vector
representation can be constructed out of 4y, its inverse and €q,...q,. Concerning the boosts,
we have that

Ba-H="Pa, and Ba-n =0, (4.20)
Bq-Pp =0, Ba-nb:—égn,
where we have used that the action of B, on m is induced by the restriction of adjoint repres-
entation B, - X = adg, X = [Bq, X] for X € m, whereas that on m* is induced by the restriction
of the coadjoint representation B, - « = adp o« = —x o adp, for € m*. We see thatn € m* is
¢-invariant and so is §°P, ® Py,. Applying 1 to the pull-back of the Maurer—Cartan one-form
we obtain a Galilei-invariant one-form on Galilei spacetime, namely, the clock one-form

T:=7(L"1dL) = n(dtH + dx®Pq) = dt. (4.21)

The vielbein dual to the soldering form dtH + dx®P, is given by 2 and ;2. The Galilei-
d

invariant tensor field corresponding to §*°Py ® Py, is then §*° 52 ® %, which is the spatial
cometric on Galilei spacetime we saw in Section 2.2.
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4.1.7 Summary

We may summarise the above discussion as follows:

* Homogeneous spaces of a group ¥ are described infinitesimally by a Klein pair (g, )
where g is the Lie algebra of ¢ and bh a Lie subalgebra generating a closed subgroup #
of ¢¥. The homogeneous space can be identified with the coset space ¢ /5 consisting of
left #-cosets g+ in ¢. The action of ¢ on ¥/ is induced from left multiplication on
9.

* As avector space, g = h ®m, where if possible we choose m in such a way that [h, m] C m.
If this is possible, we say that (g, h) is reductive.

* Every choice of basis X1, ..., Xy, for m gives rise to exponential coordinates near the iden-
tity coset of ¢ /¢ corresponding to a (locally defined) coset representative L : 4/ — ¥,
where L(x) = exp(x!X; + ---x™X1). The action of ¢ on the exponential coordinates
can be calculated in principle simply by left multiplying in ¢: gL(x) = L(g - x)h(g, x)
for some h(g,x) € 5. In the reductive case, the action of h € 5 on the exponential
coordinates is linear.

* We can use the coset representative to pull-back the Maurer—Cartan one-form to ¥/5¢.
This results in a locally defined one-form with values in g. In the reductive case, it
decomposes into an h-connection and a soldering form. In the non-reductive case, the
h-component is not a connection, but the projection to g/f is still a soldering form.

* In the reductive case, the representation of 5# on m is called the the linear isotropy
representation. In the non-reductive case, the linear isotropy representation is carried by
the quotient vector space g/h. In practice we work with g/bh by calculating brackets in g
and then dropping from the RHS anything belonging to §.

* %-invariant tensor fields on ¢ /¢ are in one-to-one correspondence with J#-invariant
tensors on g/h (or on m in the reductive situation). If 5# is connected, this is the same
as h-invariant tensors, which are typically simple to determine, at least if of small rank.

4.2 Homogeneous kinematical spacetimes

A homogeneous kinematical spacetime is a homogeneous space of a kinematical group of the
right dimension. Recall from Definition 1 (but now for arbitrary dimension) that a kinematical
Lie algebra for (d+1)-dimensional spacetimes consists of a subalgebra v = so(d) with generators
Labw, two copies of the vector representation with generators B,, P, and an additional scalar
generator H. Suppose that g is such a kinematical Lie algebra. A kinematical Klein pair for a
(d + 1)-dimensional spacetime takes the form (g, h), where  C g is a Lie subalgebra spanned
by Lap and V4 = aB4 + BPq for some o, 3 € R.

The determination of such Klein pairs was done in [42], whose results we summarise in
Table 5, where we have excluded some spacetimes which only exist for d = 1, 2. We have chosen
a basis for g in such a way that  is always spanned by L., and (the new) B,. This facilitates
comparison of the different homogeneous spacetimes, but also obscures the isomorphisms
between some of the Lie algebras. For example, the kinematical Lie algebras for Minkowski
(M) and anti de Sitter—Carroll (AdSC) spacetimes are isomorphic to the Poincaré algebra.
The explicit isomorphism is the identity on the rotation and time-translation generators, but
exchanges boosts and spatial momenta:

[M _[AdSC M _ jAdSC  BM _ pAdSC g pM _ _pAdSC (4.22)
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This illustrates the need to specify a geometric realisation before assigning a physical/geometric
meaning to the generators of a kinematical Lie algebra, since what is a translation in Minkowski
spacetime is a carrollian boost in anti de Sitter—Carroll.

Similarly, the kinematical Lie algebras for hyperbolic space (H), de Sitter spacetime (dS)
and the lightcone (LC) are isomorphic (to the Lorentz algebra in one dimension higher). The
explicit isomorphisms are again the identity on the rotation and time-translation generators:

95 =1H ='C and HIS =HH = HLC, (4.23)
but now
S=B" and B =-pPH, (4.24)
and
BLC = L (B®—P®) = — - (B"+P") and P'C= S (BP4+P®) = L(BN-PN). (4.25)

Table 5: Homogeneous (d + 1)-dimensional (spatially isotropic) kinematical space-

times
Name ‘ Klein pair ‘ Nonzero Lie brackets in addition to [L,L] =L, [L,B] =B, [L,P] =P

Minkowski (is0(d, 1),50(d, 1)) [H,B] =P B,Bl=L [B,P]=H
de Sitter (so(d +1,1),s0(d,1)) | [H,B]=—P [H,Pl=-B B,B]=L [B,Pl=H [P,P]=—
anti de Sitter (so(d,2),s0(d, 1)) H,B]=—P [H,P]=B [B,Bl =L [B,Pl=H [P,P]=L
euclidean (iso(d+1),s0(d+1)) | H,B]="P B,B]=-L [B,P]=H
sphere (so(d+2),50(d+1)) [H,B]=P [H,P]=-B B,B]=—L [B,PI=H [P,P] =—-L
hyperbolic (so(d+1,1),s0(d+1)) | [{,B]=P  [H,P]= (B,B]=-L [B,PI=H [P,P]=L
Galilei (g,is0(d)) [H,B] = P
de Sitter—Galilei (nJ__,is0(d)) [H,B]=—P [H,P]=
torsional de Sitter-Galilei (e (1) is0(d) H,B]=—P [H,P]= YB +(1+v)P
torsional de Sitter-Galilei (n?,is0(d)) [H,B]=—P [H,P] = B + 2P
anti de Sitter-Galilei (n_g,is0(d)) H,B]=—P [H,P]=
torsional anti de Sitter—Galilei (n;>0, iso(d)) [H,B]=—P [H,P]= (1 +x2)B + 2xP
Carroll (c,is0(d)) [B,P]=H
de Sitter—Carroll (iso(d + 1),is0(d)) [H,P] =-B [B,PI=H [P,P]=-L
anti de Sitter—Carroll (iso(d, 1), is0(d)) H,Pl=B [B,P] =H [P,P] =L
lightcone (so(d+1,1),is0(d)) H,B]=B [H,P]=-P B,Pl=H+L

Table 5 is divided into sections corresponding to the class of geometry the spacetime
describes: lorentzian, riemannian, galilean and carrollian. They can be distinguished by the
type of invariant tensor fields or, as explained in Section 4.1.2, by the h-invariant tensors of
the linear isotropy representation on g/h. We shall now go through the table in some detail.
Further details can be found in [42,43].

4.2.1 Homogeneous lorentzian spacetimes

The first section of the table consists of those homogeneous kinematical spacetimes admitting
an invariant lorentzian metric. They admit an h-invariant lorentzian inner product on g/h. The
dimension of the kinematical Lie group for a (d + 1)-dimensional homogeneous spacetime is
%(d + 1)(d + 2), hence if the kinematical Lie group is acting via isometries, the geometry is
maximally symmetric. In lorentzian signature they are Minkowski, de Sitter and anti de Sitter
spacetimes. Geometrically, there is a one-parameter (the scalar curvature) family of both
de Sitter and anti de Sitter spacetimes, but as homogeneous spacetimes they are isomorphic.
The parameter is simply the scale of the invariant metric. These spacetimes are symmetric
spaces and the stabiliser subalgebra ) = so(d, 1) in all cases.
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4.2.2 Homogeneous riemannian “spacetimes”

The second section of the table consists of homogeneous spaces of kinematical Lie groups which
admit an invariant riemannian metric. They can hardly be considered as spacetimes, so we will
not mention them again. The same dimension arguments as for the lorentzian spacetimes imply
that these riemannian homogeneous spaces are maximally symmetric, so they are the euclidean
and hyperbolic spaces and the round sphere. Again the curvature of the sphere and hyperbolic
space is a choice of additional structure on the homogeneous spaces. All round spheres are
described by the same Klein pair (so(d + 2),s0(d + 1)), for example. These riemannian spaces
are symmetric spaces and the stabiliser subalgebra h = so(d + 1) in all cases.

4.2.3 Homogeneous galilean spacetimes

The third section of the table consists of homogeneous spaces of kinematical Lie groups admitting
an invariant galilean structure: a clock one-form and a spatial cometric. The clock one-form
comes from an h-invariant covector in (g/h)*, the dual of the linear isotropy representation.
The spatial cometric comes from an h-invariant symmetric bivector in ®?(g/h), the symmetric
square of the linear isotropy representation. Apart from Galilei spacetime, discussed in 4.1.6,
which is the non-relativistic limit of Minkowski spacetime, there are two one-parameter families
of spacetimes. One family is the de Sitter-Galilei family with parametery € [—1, 1]. Fory = —1,
it is the non-relativistic limit of de Sitter spacetimes and hence a symmetric space associated to
one of the Newton-Hooke algebras. For any y € (—1, 1), the spacetime is reductive but not
symmetric and associated to the kinematical Lie algebra n}. The notation notwithstanding,
the spacetime with vy = 1 is not associated to “;::1 but instead to the Lie algebra n°, which is
obtained as a (singular) limit lim, _,; n;j . This limit is analogous to a contraction, but it is not
a contraction in that the Lie algebras nJ, are not isomorphic for different values of y € [-1, 1].
The canonical invariant connection (see, e.g., [73]) has torsion proportional to 1+ vy and hence
the spacetimes for v # —1 may be thought of as torsional de Sitter—Galilei spacetimes. The
other family is the anti de Sitter—Galilei family with parameter x > 0. For x = 0, it is the
non-relativistic limit of anti de Sitter spacetime and hence a symmetric space, associated to the
other Newton-Hooke algebra. For any x > 0, it is a reductive, non-symmetric homogeneous
spacetime. Again the canonical invariant connection has torsion (proportional to x) and these
spacetimes are therefore called torsional anti de Sitter—Galilei spacetimes. The limit x — oo of
the torsional anti de Sitter—Galilei spacetimes coincides with the limit y — 1 of the torsional
de Sitter—Galilei spacetime. In all cases, the stabiliser subalgebra h = iso(d).

4.2.4 Homogeneous carrollian spacetimes

The fourth section of the table consists of four homogeneous kinematical spacetimes admitting
an invariant carrollian structure: a nowhere-vanishing vector field and a “spatial metric”. The
vector field comes from an invariant vector in the linear isotropy representation g/h and the
spatial metric comes from an invariant symmetric bilinear form in ®?(g/h)*. Three of these
carrollian spacetimes are limits of the lorentzian spacetimes in the Table: Carroll spacetime
(of Minkowski) and de Sitter—Carroll and anti de Sitter—Carroll spacetimes (of de Sitter and
anti de Sitter, respectively). They are symmetric spaces. The fourth carrollian spacetime is
the lightcone in Minkowski spacetime one dimension higher. It is the only non-reductive
homogeneous spacetime in the table. In all cases, the stabiliser subalgebra ) = iso(d), but
despite being abstractly isomorphic to the stabiliser subalgebra of the galilean spacetimes,
their images under the linear isotropy representation are not conjugate subalgebras of gl(g/h),
which explains why they have different invariants and hence why the geometries are different:
carrollian instead of galilean.
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4.2.5 Homogeneous aristotelian spacetimes

Although not in the Table, there are also aristotelian spacetimes which are homogeneous
spaces of Lie groups of the aristotelian Lie algebras in Table 2. The stabiliser subalgebra is
always the rotational subalgebra v+ = s0(d) and hence there is a unique Klein pair for each
aristotelian Lie algebra. In the order given in Table 2, they are the static aristotelian spacetime,
the torsional static aristotelian spacetime and the product of the round d-dimensional sphere
or d-dimensional hyperbolic space with the real line. All are reductive and all but the torsional
static spacetime, whose canonical connection has torsion, are symmetric.

4.3 Non-lorentzian geometries

As we saw in Section 4.2, the homogeneous spatially isotropic kinematical spacetimes come
in several families depending on their invariant tensors. We shall ignore the riemannian case
in what follows, since they do not admit an interpretation as spacetimes (e.g., the boosts
are actually rotations). We shall now describe the (Cartan) geometries modelled on the
homogeneous spacetimes. It turns out that all of the geometries we consider: lorentzian,
galilean, carrollian and aristotelian are examples of G-structures; that is, they are defined by
distinguished vielbeins transforming under a subgroup of the general linear group. The prime
example is lorentzian geometry, where the distinguished vielbeins transform under local Lorentz
transformations on overlaps and can subsequently be interpreted as the (pseudo) orthonormal
frames relative to a lorentzian metric.

4.3.1 Basic notions about G-structures

Now consider an n-dimensional manifold M. Let p € M. A frame at p is an isomorphism
u : R™ — T,M of vector spaces. The images under u of the standard basis (es,...,en) of
R™ give a basis (u(e1),...,u(ey)) for the tangent space at p. If u,u’ are two frames at p,
then h := u~! ou’ € GL(n,R), which we may rewrite as u’ = u o h. This defines a right
action of GL(n,R) on the set F,, of frames at p, which is free (if u o h = u, then h is the
identity) and transitive (any two frames are related by some h € GL(n,R)). The disjoint
union F(M) = ||, o Fp is the total space of the frame bundle of M: a smooth right principal
GL(n, R)-bundle, whose (local) sections are called moving frames or vielbeins.

Let ¢ C GL(n,R) be a Lie subgroup. A ¥-structure on M is a principal ¥-subbundle
P C F(M) of the frame bundle: this amounts to restricting to a collection of frames such for
any two frames u,u’ at p in this collection, u=! o u’ € 9. The existence of a ¥-structure
is not guaranteed: there are topological obstructions. For example, if (M, g) is a Lorentzian
manifold, we can always pick pseudo-orthonormal frames and it follows that if u, 1’ are pseudo-
orthonormal frames at p, u=! ou’ € O(d, 1) € GL(d + 1,R). The Lorentz group O(d, 1) is not
connected: it has four connected components: depending on whether or not the temporal
or spatial orientations are preserved. This then leads to topological obstructions (temporal
and/or spatial orientability) to further reduce the structure group from O(d, 1) to its connected
component SO(d, 1)g (i.e., the proper orthochronous Lorentz group) or some group in between.

Associated to every %-structure 7t : P — M there is a soldering form 6 € Q!'(P;R"™),
which is a R™-valued one-form on the total space P. Let u be a frame at p and suppose that
X. € T, P is a tangent vector to P at u. Then 0,,(Xy) = u~!(m,Xy,). In other words, 0, (X,,) is
the coordinate vector of 7, X,, € T,M relative to the frame u. Given a vielbein (i.e., a local
section s : U — P on some open subset U C M) we can use it to pull back 6 to U. Since 6 is
R™-valued, so is its pull-back and we may write it as a linear combination of the standard basis
of R™: s*0 = dle; for some one-forms 9! defined only on U. Then (9%,...,9") is often called
the inverse vielbein, but of course it is simply the canonically dual coframe to the vielbein.
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The soldering form is the fundamental object which allows to relate the representation
theory of ¢ to the geometry of any manifold with a ¢-structure. For more details about this in
the context of non-lorentzian geometry, please see [74, Section 2].

4.3.2 Lorentzian geometry

Let us see how these ideas play out in the familiar case of lorentzian geometry.

Let (g = h ® m, h) be a reductive Klein pair for any one of the homogeneous lorentzian
manifolds in Table 5. In all cases, h = so(d, 1) and the infinitesimal linear isotropy representa-
tion A : h — gl(m) preserves a lorentzian inner product n, say, on m; that is, for all X €  and
Y1, Yy € m, we have that

N(AxY1, Y2) +1(Y1,AxY2) = 0. (4.26)

Every choice of basis for m defines an isomorphism m — R9+! which may be used to transport
the lorentzian inner product to R4*+1. Choosing a pseudo-orthonormal basis for m brings the
inner product on R4+! to be the standard one with diagonal matrix with entries (—1,1,...,1)
and embeds h C gl(d + 1, R) as the standard Lorentz algebra.

Let M be a (d + 1)-dimensional manifold with a G = O(d, 1)-structure. Then M is covered
by open subsets {U,} and each U, we have an inverse vielbein 9, taking values in R4*1 and
such that on nonempty overlaps Uyp := Uy N Upg, the inverse vielbeins are related by local
O(d, 1)-transformations hqp : Uyxg — O(d, 1). Using the O(d, 1)-invariant lorentzian inner
product 1 on R4*+1, we can define on each U, a local lorentzian metric

Jo = NOw, Vo) - 4.27)

But because n is O(d, 1) invariant, these local metrics agree on overlaps and hence they glue to
a lorentzian metric g on M. This shows that a lorentzian metric on an (d + 1)-dimensional
manifold M is equivalent to a ¢-structure on M with G = O(d, 1).

This generalises in the sense that if an n-dimensional manifold M admits a ¥-structure
with ¢ C GL(n, R), then every (nonzero) ¢-invariant tensor of R™ gives rise to a (nowhere-
vanishing) global tensor field on M: it is defined locally using the (inverse) vielbeins, but the
%-invariance guarantees that these local tensor fields glue on overlaps.

4.3.3 Newton-Cartan geometry

Let (g = h®dm, b) be a reductive Klein pair for any one of the homogeneous galilean manifolds in
Table 5. In all cases, h = iso(d) and the infinitesimal linear isotropy representation A : h — gl(m)
preserves a covector in m* and a symmetric bivector in ®?m. Choose basis (Pg, P1, ..., Pq) for m
and canonical dual basis 7%, 7!, . . ., 9 for m*, relative to which the invariant covector is 7t° and
the invariant symmetric bivector is P2 + - - - 4+ P2 = §9°PPy,. The subgroup ¥ C GL(d + 1, R)

which preserves these tensors consists of matrices of the form

1 0" . a
v A with veR4 AcO(d). (4.28)

A (weak) Newton-Cartan structure on a (d + 1)-manifold M is a ¥-structure with
% C GL(d+1, R) the subgroup given by the matrices in equation (4.28). The ¢-invariant tensors
give rise to global (nowhere-vanishing) tensor fields on M: the clock one-form t € Q!(M)
defined locally on U, by T, := m°(94) relative to the inverse vielbein 9. Similarly the
spatial cometric is given locally on Uy by Ay := 8%°(Ey)a(Ex)w, Where E is the vielbein
dual to 9. These symmetric bivectors glue to give a symmetric (2, 0)-tensor field A on M.
Equivalently, one could define a (weak) Newton—Cartan structure on M by specifying a nowhere
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vanishing one-form T € Q!(M) and a corank-1 positive-semidefinite symmetric (2, 0)-tensor
field A € I'(®?TM) with the property that A(t, —) = 0.

A Newton-Cartan structure is obtained by enhancing a weak Newton—Cartan structure
with an adapted connection: an affine connection relative to which t and A are parallel.
Such connections were studied initially in [75, 76]. As explained, e.g., in [74, Section 2],
every ¥-structure has an intrinsic torsion which is the part of the torsion tensor of an adapted
connection which is independent of the connection.

This is not something one is familiar with from lorentzian geometry, since the Fundamental
Theorem of lorentzian (or, more generally, pseudo-riemannian) geometry states that there
exists a unique torsion-free adapted (here, metric) connection. So that intrinsic torsion of a
lorentzian geometry is always zero.

However for a Newton—Cartan structure this is not the case. As first shown in [76], the
intrinsic torsion of a Newton—Cartan connection can be identified with dt € Q%(M), for T the
clock-one form. Hence the intrinsic torsion need not a priori be zero. Also shown in [75,76]
is that specifying the torsion does not uniquely determine the adapted connection: there is
contorsion, which is measured by an arbitrary two-form.

A study of how the bundle of two-forms decomposes under the action of the structure group
reveals that there are three!! classes of Newton—Cartan structures [ 74, Theorem 6]:

¢ torsionless (NC): dt = 0;
* twistless torsional (TTNC): dt /At = 0; and
* torsional (TNC): dt At # 0.

These classes first appeared in [3] (see Table I in that paper) in the context of Lifshitz holography.

The homogeneous examples in Table 5 are all such that dt = 0, but there are homogeneous
examples of all three kinds [77].

A rich source of (weak) Newton—Cartan structures arise as null reductions of lorentzian
manifolds [62,78]. Let (N, g) be a lorentzian manifold with a null nowhere-vanishing Killing
vector ¢ and suppose that £ is complete so that it integrates to a one-parameter I" subgroup of
isometries of N. Let us assume that the action of " on N is such that the quotient M := N/T is
smooth making the projection 7t: N — M into a smooth submersion. Then M inherits from N
a (weak) Newton-Cartan structure as follows. The Killing one-form £ dual to & is the pull-back
via 7t of a clock one-form T € Q1(M)

£ =m't, (4.29)

which is nowhere vanishing since &, is. We define the ruler A as follows. Clearly it is enough
to know what A(w, B) is for any two one-forms o, p € Q'(M). Give two such one-forms
o, B, let X, Xpg € Z(N) be vector fields on N which are metrically dual to the pull-backs
a, B € QY(N). Then A(«, B) is the function on M whose pull-back to N agrees with
the inner product g(X«, Xg). It follows that A(t,—) = 0 and hence that (M, 1,A) is a (weak)
Newton—Cartan structure.

4.3.4 Carrollian geometry

Not all carrollian spacetimes in Table 5 are reductive: the lightcone is not. So in order to treat
all cases together we will be working with a Klein pair (g, h) and simply define the infinitesimal
linear isotropy representation A : h — gl(g/h). In all cases, h = iso(d), but this is a different
(i.e., non-conjugate) Lie subalgebra of gl(g/h) than the one in the galilean examples. This

This is in generic dimension d + 1: if d = 1 then there are only two classes and if d = 4 and assuming that M is
orientable, there are five classes. See [74, Appendix B].
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means that g/h has different h-invariant tensors in this case. The h-invariant tensors are now a
vector in g/h and a symmetric bilinear form in ®?(g/h)*. We can choose basis (Pg, P1,...,Pq)
for g/h, where PA = PAo mod b, and canonical dual basis (%, 7', ..., %) for (g/h)*, relative
to which the invariant tensors are Py and 5,p,%m? = (n')2 + --- + (m9)2. The subgroup

¢ C GL(d + 1,R) which preserves these two tensors consists of matrices of the form

<1 VT> . d
B with veRYAe0O(d). (4.30)
0 A

This group is abstractly isomorphic to the one with matrices (4.28), but of course they are not
conjugate in GL(d + 1, R) since they have different invariants. The connected component of
the group ¢ (where A € SO(d)) also leaves invariant T® A7l A --- And € Ad+1(g/ph)*.

A (weak) carrollian structure on a (d + 1)-dimensional manifold M is a ¢-structure with
¢ C GL(d + 1, R) the subgroup consisting of the matrices in equation (4.30). The ¥-invariant
tensors give rise to a (nowhere-vanishing) vector field £ € & (M) and a positive-semidefinite
corank-1 symmetric (0, 2)-tensor field h € I'(®?>T*M) with the property that h(&, —) = 0. If
M is simply connected, then the structure group can be further reduced to the connected
component Go and hence there is also a “volume” form u € Q9+1(M). Even if the structure
group does not reduce, we still have a locally defined volume form p, on each U, and they
can be chosen so that they may change by a sign on overlaps.

A carrollian structure is a weak carrollian structure enhanced by an adapted connection.
As in the case of a Newton—Cartan structure, the torsion of the adapted connection does
not characterise the connection uniquely: the contorsion here is measured by a section of
the subbundle ®2Anné& c ©2T*M, where Anné C T*M is the bundle of one-forms which
annihilate the vector field &. The intrinsic torsion is now given by Z; h, the Lie derivative of
h along & (see [74, Proposition 8]) and studying the decomposition of the bundle ®? Ann &
under the action of the structure group results in four'? classes of carrollian structures [74,
Theorem 10]:

* totally geodesic: £:h = 0;

* minimal: ¥; u = 0, where p is the (possibly only locally defined) volume form,;
* totally umbilical: Z:h = fh for some f € C*(M); and

* generic, if none of the above are satisfied.

The names have been chosen in analogy with the theory of hypersurfaces in riemannian
geometry. This is more than an analogy in that, as shown in [65, 79] a natural source of
carrollian manifolds are null hypersurfaces in lorentzian manifolds. Indeed if N € M is a
null hypersurface in a lorentzian manifold (M, g), then h is the pull-back of g to N and ¢ is
the null vector field (tangent to N) whose integral curves are the null geodesic generators of
N. Then %:h is the null second fundamental form of the hypersurface and the names above
coincide with the classification of hypersurfaces based on their second fundamental form. The
minimality condition is equivalently but more commonly rephrased as the vanishing of the
trace of the Weingarten map. There is also a null Weingarten map for null hypersurfaces
and it is traceless if and only if the carrollian structure is minimal. Classic references on null
hypersurfaces are [80,81] and in the present context [74,79].

The homogeneous carrollian spacetimes in Table 5 can be realised as null hypersurfaces
in the maximally symmetric lorentzian manifolds in Table 5, but in one dimension higher:
Carroll spacetime and the lightcone are null hypersurfaces in Minkowski spacetime, whereas

12This is for d > 1: if d = 1 there are only two classes, as for the d = 1 Newton-Cartan geometries, consistent
with the fact that in 1+ 1 dimensions, there is no real distinction between carrollian and Newton—Cartan structures.
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de Sitter—Carroll and anti de Sitter—Carroll spacetimes are null hypersurfaces in de Sitter and
anti de Sitter spacetimes, respectively.

The symmetric carrollian spacetimes in Table 5 (i.e., all but the lightcone) are totally
geodesic, whereas the lightcone is totally umbilical. In fact, being homogeneous, the function
f € C*(M) in the definition of totally umbilical is a constant. We are not aware of homogeneous
examples of minimal and/or generic carrollian structures, but they should exist.

4.3.5 Aristotelian geometry

Aristotelian geometries are also describable in terms of ¥-structures, where ¥4 C GL(d+1,R) is
the intersection of any two of the groups defining a galilean, carrollian or lorentzian structures.
Comparing the matrices in equations (4.28) and (4.30), we see that ¥ = O(d) consists of
matrices of the form

1 0" .
o A)s with Aco(d). (4.31)
Choosing basis Py, P1,. .., Pq for R4*! and canonical dual basis 7%, 7!, ..., 4, we see that

Po and n° are invariant and so are §9°PP, = P?+---+ P32 and §qpmOn® = (71)2 4 - - 4 ()2

A (weak) aristotelian structure on a (d + 1)-dimensional manifold M is a ¥-structure
with ¢ C GL(d + 1,R) the subgroup of matrices of the form given in equation (4.31). The
%-invariant tensors described above give rise to the following: a vector field &, a one-form
T, a symmetric (0, 2)-tensor field h and a symmetric (2, 0)-tensor field A in such a way that
(1,A) and (&, h) are simultaneously a (weak) Newton—Cartan and (weak) carrollian structure.
The details about the classification of aristotelian %-structures via their intrinsic torsion can
be found in [74, Section 5] and a recent discussion of aristotelian geometry in the context of
fractons can be found in [82, Section 5].

4.4 Coadjoint orbits

In this section we describe the method of coadjoint orbits in order to write down particle
actions.

4.4.1 Adjoint and coadjoint actions

Let ¢ be a Lie group and let g be its Lie algebra, whose dual vector space is denoted g*.
We identify g with the tangent space T.¥ to ¢ at the identity. The identity is fixed under
conjugation by any g € ¥ and therefore the differential of conjugation by g defines a group
homomorphism Ad : ¢4 — GL(g) known as the adjoint representation. For a matrix group
9, if g € ¢ and X € g, the adjoint action is simply matrix conjugation Adg X = gXg~!. The
adjoint representation on g induces the coadjoint representation Ad™ : ¢ — GL(g*): if g € ¥
and « € g*, we have that Ady « = « 0 Adg-1. In other words, for all X € g, and using dual
pairing notation:

(Ady o, X) = (o, Ad g1 X)) . (4.32)

Infinitesimally, we have the adjoint ad : g — gl(g) and coadjoint ad™ : g — gl(g*) representations
of the Lie algebra, defined by adx Y = [X, Y] and ad} o« = —x o adx for all X,Y € g and « € g*.
This last condition can be expressed in dual pairing notation as

(ady o, Y) = — (o, X, Y]) . (4.33)
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4.4.2 The symplectic structure on a coadjoint orbit

Let 0, be the coadjoint orbit of « € g*; that is,
Ou = {Adjx|ge ¥} . (4.34)

A fundamental property of coadjoint orbits is that they admit a ¢4-invariant symplectic structure,
given by the Kirillov—Kostant—Souriau symplectic form wggs. There are several ways to describe
this symplectic form. Perhaps the simplest description is in terms of the corresponding Poisson
brackets. Every X € g defines a linear function {x on g* by {x(«) = (&, X) for all & € g*. We
may restrict the {x to smooth functions on the coadjoint orbit &,. Their differentials d¢x span
the cotangent space to the orbit at any point in the orbit. Therefore the Poisson bivector TTgks
dual to the symplectic form (and hence the symplectic form itself) is uniquely determined by
its value on the déx. These are given by the Lie algebra itself:

Mgks(dfx, dly) = {Ix, by lkks = Lix.v] (4.35)

and hence the Jacobi identity follows from that of the Lie algebra. The Jacobi identity for the
Poisson brackets is equivalent to the closure of the 2-form inverse of the Poisson bivector. The
functions {x are hamiltonians for the ¢-action on 0,: the hamiltonian vector fields {{x, —}
generate the infinitesimal action of ¢ on 0. To show this, let {(x € Z (0,) be the vector
fields which generate the ¢ action; that is, the value at « of the vector field (x is given by
((x)« = adx . It follows that the derivative of the function ¢y along the vector field {x
evaluated at « is given by

(Cx)a(ly) = (o, [X, Y]) = {1x v (). (4.36)

A different description, in the spirit of Section 4.1.2, is via the holonomy principle for
homogeneous spaces. A 9-invariant 2-form w € Q?(0,) determines and is determined by a
Y -invariant w € A2T} Oy, where ¥, C 9 is the stabiliser of «. Every X € g defines a vector
field on &, and, evaluating it at «, gives a tangent vector there. This defines a linear map
g — Ta Oy, sending X € g to ad « which, since @, is an orbit, is surjective. The kernel of this
map is the Lie algebra g4 of the stabiliser group ¥, of «. This shows that Ty 0y is isomorphic
to g/g«. Denoting the quotient map g — g/g« by X — X, we have that

W (X, Y) = (o, [X, Y]) . (4.37)

It is not hard to check that the RHS only depends on X, Y modulo g, and that w, is non-
degenerate. The resulting ¢-invariant 2-form, denoted wygs is closed: indeed, its pull-back
T wiks € Q?(¥) to ¢ under the orbit map 7: ¢4 — 0, sending g — Ady o is not just closed
but in fact exact:

T wgks = —d (o, D) , (4.38)

where 9 is the left-invariant Maurer—Cartan one-form on ¥¢. This shows that wggs is a ¥-
invariant symplectic form on .

Finally, and perhaps the most conceptual reason why coadjoint orbits are symplectic mani-
folds is that they arise by symplectic reduction from the canonical symplectic structure on the
cotangent bundle T*%, which is the phase space of the Lie group ¥ thought of as a configuration
space. Any diffeomorphism of ¢ induces a diffeomorphism of T*% which preserves the sym-
plectic form. In particular, the symplectic form on T*¥ is invariant under the diffeomorphisms
induced from left- and right-multiplications in ¢. The existence of left- and right-invariant
vector fields on Lie groups says that ¢ is parallelisable and hence that T*¥ is trivial: that is,
T*% = ¢ x g*. There are two natural trivialisations: one using left-multiplication and the other
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using right-multiplication. Let us use left-multiplication to trivialise T*%¥ and hence identify it
with ¢ x g*. The cartesian projection ¥ x g* — g* defines a function p: T*9¢ — g* which is
¢-equivariant: it intertwines between the action of ¢ on T*¥ induced by left-multiplication
and the coadjoint action of ¢ on g*. Pick « € g* and consider u~!(«). These are all the points
in ¢4 x g* of the form (g, «) for any g € ¢ and hence it is a copy of ¢. This copy of ¢ in T*¥
is preserved by the stabiliser ¥, of «. Quotienting gives the symplectic quotient p=!(ot)/ %
which is a symplectic manifold diffeomorphic to ¥ /% or, equivalently, to the coadjoint orbit
Oy. The resulting symplectic form on &, is uniquely characterised by the fact that its pull-back
to u~!(«) agrees with the restriction to p~!(x) of the canonical symplectic form on T*% and a
calculation shows that this is again wggs.

In summary, coadjoint orbits of a group ¢ are homogeneous symplectic manifolds of ¥.
There is a partial converse to this result, which roughly speaking says that all homogeneous
symplectic manifolds are coadjoint orbits. More precisely, one has the following “folkloric”
theorem, proved recently in [83].

Theorem. Let ¢ be a connected Lie group and (M, w) a simply-connected homogeneous symplectic
manifold of 4. Then there exists a covering 7 : (M, w) — (0, wggs), with @ a coadjoint orbit of
a one-dimensional central extension of ¢, such that 7 wggs = w.

4.4.3 Elementary classical systems

Homogeneous symplectic manifolds of a Lie group ¥ are the elementary classical systems
with symmetry ¢, or perhaps more colloquially, the elementary particles with symmetry
% in the nomenclature of Souriau [45]. The above theorem implies that they are locally
symplectomorphic to coadjoint orbits of ¢ or possibly a one-dimensional central'® extension of
4. As shown by Souriau [45], whether or not we need to centrally extend the group comes
down to the symplectic cohomology of ¢, which we now describe briefly.
A smooth function 6 : 4 — g* allows us to define an affinisation of the coadjoint represent-
ation
g-o:=Adya+0(g). (4.39)

This defines an affine action g1 - (g2 «) = (g19g2) - & precisely when 8 obeys the cocycle condition

0(g192) = Adg, 0(g2) +0(g1). (4.40)

Differentiating 6 at the identity gives a linear map d.6 : g — g* and hence a bilinear form c on
the Lie algebra defined by
c(X,Y) = ((de0)(X),Y) . (4.41)

We say that 6 is a symplectic cocycle if it satisfies the cocycle condition and c(X,Y) = —c(Y, X).
In that case, ¢ € /A\?g* is a Chevalley-Eilenberg cocycle and hence defines a central extension of
g, which is trivial if and only if there exists § € g* such that ¢(X,Y) = — (B, [X, Y]). A symplectic
cocycle defines a class in the symplectic cohomology Hslymp(%, g*), which is trivial if and only if
there exists € g* such that 8(g) = Ad’; B — B. In that case, the affine coadjoint action (4.39)
becomes equivalent to the linear coadjoint representation, being simply the conjugation of the
linear coadjoint representation by the constant translation « — o« — f3.

As shown by Souriau, every time a Lie group ¥ acts symplectically on a symplectic manifold
(M, w) and assuming that the fundamental vector fields are hamiltonian, we get a class in
the symplectic cohomology of 4. Indeed, consider the linear map ¢ : g — C*°(M), sending
X — @x, where the hamiltonian vector field {—, ¢x} generates the infinitesimal action of 4.

13The extension has to be central since the coadjoint orbit of a non-central extension of a Lie group ¥ does not
admit a natural action of .
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Dual to ¢ we have the'* momentum map n : M — g*, defined by (u, X) = @, originally
introduced by Souriau. The symplectic cocycle 6 : G — g* measures the failure of the moment
map to be equivariant relative to the coadjoint representation:

0(g) :=Adg p(p) — ulg-p), (4.42)

for any p € M. Surprisingly, perhaps, assuming that M is connected, this does not depend on
p. If the symplectic cohomology class of 0 is trivial, so that 6(g) = Adg B — B for some fixed
B € g*, we can translate u — p — 3 in such a way that the translated p is equivariant:

nig-p)— B =Adg(unlp) —B). (4.43)

This modifies the functions ¢x by constants ¢x — ¢@x — ($, X), which do not change the
hamiltonian vector fields.

Suppose that ¥ acts transitively on M, so that M is one orbit of 4. If the class of 0 (given in
(4.42)) in symplectic cohomology vanishes, then the image of the moment map p: M — g* is
a coadjoint orbit of ¢4. One can show that u is a covering map and hence M covers a coadjoint
orbit of 4. If ¢ has vanishing symplectic cohomology, all elementary systems with symmetry
% are (up to covering) coadjoint orbits of ¢. In contrast, if the symplectic cohomology of ¥ is
not zero, then some elementary systems with symmetry ¢ do not cover coadjoint orbits of ¥
but of a one-dimensional central extension of 4.

For example, the symplectic cohomology of the Poincaré group vanishes, so that Poincaré-
invariant classical elementary systems (i.e., particles) are classified by the coadjoint orbits of the
Poincaré group. In contrast, the Galilei group does have nontrivial symplectic cohomology and
hence Galilei-invariant particles are classified by coadjoint orbits of the Bargmann group, the
one-dimensional central extension of the Galilei group already discussed (at the Lie algebraic
level) in Section 3.3.

4.4.4 Coadjoint orbits from geodesic motion

In the context of lorentzian geometry we can understand the emergence of the coadjoint orbits
as follows. Suppose that (M, g) is a lorentzian manifold and let y be an affinely parametrised
geodesic for the Levi-Civita connection; i.e., a solution of % =0. If £ € Z (M) is a Killing
vector field, then the inner product g(&, v) is constant along the geodesic. Let ¢ be the isometry
group and let g be its Lie algebra. Then to every X € g we associate a Killing vector field &x
and therefore every geodesic defines a momentum p in g*; namely, the linear map p: g — R
defined by (u, X) = g(&éx,V). For every a € ¥, let b4 : M — M be the corresponding isometry
and suppose that vy is a geodesic. Then ¢4 oy is also a geodesic and its momentum is given
by Ad} u, where p is the momentum of y. The collection of momenta corresponding to all
geodesics which are related to 'y by an isometry define the coadjoint orbit of the momentum of
Y.

As an example, consider affinely parametrised geodesics in Minkowski spacetime (M, n). In
flat coordinates x", they are given by straight lines x**(A) = a*+Ak". Thereforey = x#9,, = k"9,
and the momentum u is given by the linear function sending

Pu — n(awW‘/) :n(au; kvav) = kunuv = ku; (4.44)

and
Lyv — T](Xuav - Xvau,'\./) = n(xuav — Xy Oy, kpap) =apky —ayky, (4.45)

which are the linear and relativistic angular momenta, respectively, of the particle. The quadratic
function P? = n*YP,P, on g* which takes the value k? on the momentum p is constant on

moment in the original French and also in part of the symplectic geometry literature.
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the coadjoint orbit and corresponds to —m?, where m is the particle mass. Acting with the
translations in the Poincaré group on the geodesic, we can set a* = 0 and acting with the
Lorentz transformations which preserve the origin, we can bring k* to any desired point on the
mass-shell k> = —m?. For m # 0, we can take k* = (m, 0, 0,0), and for k> = 0 we can take
kH* =(1,0,0,1), for instance.

As an example, consider the geodesic traced by a massive particle with mass m in the rest
frame, whose momentum is i = mn relative to the basis 7, A* for g* canonically dual to
the basis P,,, L, for g. Relative to this basis, the infinitesimal coadjoint action is given by

adf , m® = d{m, — 8Qmy,

adp, m* =P,
adi AP =8N P — 83N P — 88N, * + 88N,
adp APB =0,

(4.46)

where we have raised and lowered indices with 1,,. This allows us to determine the stabiliser
subalgebra of p = mn®, which is seen to be spanned by Lis, L3, 23, Po: that is, by the
infinitesimal generators of rotations and time translations. These generate a subgroup of the
Poincaré group isomorphic to SO(3) x R. The coadjoint orbit & is a homogeneous space of the
Poincaré group with Klein pair (iso(3,1),s0(3) @ R) and can be identified with the cotangent
bundle of (one sheet of) the mass-shell hyperboloid. The homogeneous space with Klein
pair (iso(3,1),50(3)) is, in the language of Souriau [45], the evolution space & of the free
massive particle. It is a principal bundle over the coadjoint orbit ¢ with structure group the
one-dimensional group generated by time translations (in Minkowski spacetime). If we let
@ : & — O denote the bundle projection, the pullback o := @*wxgs of the symplectic structure
defines a pre-symplectic structure on &. It is a closed degenerate two-form on & whose kernel
ker o defines a rank-one integrable distribution whose leaves are the trajectories of the massive
particle. In Souriau’s language, but going back to Lagrange, the coadjoint orbit is the space of
motions of the massive particle.

4.4.5 Particle actions from coadjoint orbits

The trajectory of a free particle defines a point in the space of motions but a curve in the
evolution space. Therefore if we wish to define a variational problem whose extrema are the
trajectories of a free particle, the lagrangian should be defined on the evolution space. We shall
assume that just like the space of motions, the evolution space is also a homogeneous space of
the symmetry group ¢ under discussion. In the example above, ¥ is the Poincaré group and
for the massive spinless particle, it is indeed the case that both the space of motions and the
evolution space are homogeneous spaces of 4.

In this more general discussion, we shall assume that the space of motions is a coadjoint orbit
Oy of ¢ and we shall let ¥, C ¥ denote the stabiliser subgroup of x. We shall let ® : & — 04
be the projection sending a point p € & to the unique trajectory passing through p, which is a
point in the space of motions. This projection is ¢-equivariant, so that @(g - p) = Adg @(p).
Choosing a point o € & with @(0) = «, we have a commuting triangle

x l@ (4.47)

where 7 : ¥ — & and m : ¢4 — O, are the orbit maps: 7i(g) = g - o and 7(g) = Ad’; x,
respectively. Commutativity of the triangle says that 1 = @ o 7. We will let ¥, C ¥ be the

31


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.69

SCIl SciPost Phys. Lect. Notes 69 (2023)

stabiliser subgroup of o € & and we observe that ¥, C %Y. Indeed, if g € ¥,, then

o =®(0) =@(g-0) =Ady @(0) = Ady «, (4.48)

where we have used the equivariance of @. Let 0 = @*wggs € Q?(&) and w = 7 wygs € O%(G).
Then the commutativity of the above triangle implies that

o = 7/%*(1)*(1)[(1(5 = (@ o ﬁ)*wKKS = 7'(*(,01(1(5 =w. (4.49)

Now let I C R be an interval with parameter A and let y : [ — & be a curve in the evolution
space passing through o. It is a physical trajectory if and only if v € ker o, so that @(y(A)) is
constant and equal to @ (o) = «. We now set up a variational problem whose extremals are
precisely such curves.

Any curve v : I — & may be lifted to a curve ¥ : I — ¥ in the group so that ¥(A) - o = y(A).
This lift is not unique, since we may multiply on the right with any h: I — %,. Indeed,

(Yh)(A) -0 = (Y(Ah(A)) -0 =¥(A) - h(A) -0 =¥(A) -0 = y(A). (4.50)
Recall that "0 = w = m* wykys and hence by equation (4.38), it is exact:
o =—d(x9d) . (4.51)

We may define an action functional for y : I — & by lifting the curve to the groupy:1 — ¥
and defining

57 = | (e 70) (4.52)
I

At first sight it seems that this depends on the lift y, but notice that under a gauge transformation
¥ — ¥h, the above action transforms as

Slyhl = Siy] + S[hl, (4.53)

where S[h] is a constant. We thus conclude that the variational problem for the action func-
tional (4.52) is independent on the lift and, therefore, it defines an action functional for curves
v:I—=+8.

Varying the action functional we find, using the Maurer-Cartan structure equation
dd = —1[9,9], that

8S[H] = — L <oc, [?*1?, f%ﬁb A = L <ad;,1§ o ?*15$> A, (4.54)

where we have used equation (4.33). This vanishes for all variations if and only if
adi,l? o = 0, so that ™9 = 9(y) € g. We claim that this is equivalent to ¥ € ker w.
Indeed,
Lw=-—1d (o0, )
= %1? (e, [0, 9])

= (@ 19(9),91)
=— <adg(§) oc,ﬁ> ,

which vanishes if and only if 9(y) € g. Finally, we observe that ¥ € ker w if and only if
v € kero.

In summary, free particle motion with momentum in the coadjoint orbit &, defines a curve
in the evolution space which is an extremal of the action functional (4.52). In the following

(4.55)
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section we will see several examples of this construction, but before doing that let us make an
important remark.

As observed in Section 4.2, the same kinematical Lie group might have inequivalent homo-
geneous spacetimes. For example, the Poincaré group has both Minkowski and anti de Sitter—
Carroll as homogeneous spaces. Since coadjoint orbits are a property of the group, their
interpretation as the space of motions of a particle in a homogeneous space requires additional
information. In this example, the Poincaré coadjoint orbit @ of o = mn® can be interpreted
as the space of motions of a spinless particle of mass m in Minkowski spacetime. What is its
interpretation in terms of anti de Sitter—Carroll spacetime? The evolution space @ : § — 0 is
also common to both Minkowski and anti de Sitter—Carroll spacetimes, but it admits projections
to both spacetimes. In terms of their Klein pairs, with g standing for the Poincaré algebra and
ho = <Lab:H>: he = <Lab>’ bm = <Lab, Ba> and badsc = <Lab, Pa>: we have the following
maps:

AN TN (450
M 0 AdSC (9,bm) (9,h0) (9, hadsc)

A point in the coadjoint orbit & lifts to a curve in the evolution space & and this projects to
a curve in Minkowski spacetime M or to a curve in anti de Sitter—Carroll spacetime AdSC.
The curve in Minkowski spacetime corresponds to the trajectory of a massive spinless particle,
since that is how we arrived at this space of motions. We may similarly interpret the curve
in anti de Sitter—Carroll spacetime as the trajectory of a carrollian particle. We will see this
example in detail in Section 5.1.4.

5 Dynamics

In this section we will construct dynamical systems living in some of the homogeneous kinemat-
ical spacetimes introduced in Section 4.2. We will focus on the construction of particle actions
in various dimensions for some of these spacetimes. We will use the techniques of nonlinear
realisations [84,85] and the coadjoint orbit method [44,45] described in Section 4.4. Although
we are in the context of particle dynamics, the language of nonlinear realisations borrows from
its original use in quantum field theory.

In the current context and at its most basic, a nonlinear realisation of a Lie group ¥ is a
smooth transitive action of ¢ on a manifold M. As we discussed in Section 4.1, once we choose
an origin o € M, we get a diffeomorphism M = ¥/, with 7 the stabiliser of the origin.
This diffeomorphism is ¥-equivariant, intertwining between the ¢ action on M and the ¢
action on ¥/ given simply by left multiplication. Another choice of origin would select a
different subgroup 5, but any two such subgroups are conjugate in ¢ and hence the choice is
immaterial. Let us choose an origin once and for all and hence a description of M as the coset
space ¥/ . As discussed in Section 4.1.3, such a nonlinear realisation of ¢ is described (up
to coverings) infinitesimally by a Klein pair (g, i), where g is the Lie algebra of ¢4 and ) C g the
Lie subalgebra corresponding to the subgroup #. In the language of nonlinear realisations,
the subalgebra ) generates some of the unbroken symmetries.

One of the fundamental assumptions in the pioneering papers [84,85] on nonlinear realisa-
tions is that the group ¥ is compact, connected and semisimple. Since S is a closed subgroup,
it is also compact and hence any finite-dimensional representation of 5 is completely reducible
into simple (i.e., irreducible) representations. In particular, we can consider the restriction to
¢ of the adjoint representation of ¢ on g. The subalgebra | is a subrepresentation and since

33


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.69

SCIl SciPost Phys. Lect. Notes 69 (2023)

J is compact, it has a complementary subrepresentation g = h & m, where m is isomorphic to
the tangent space of the homogeneous space M at the origin, not just as a vector space but as a
representation space of 5#. (Recall that # acts on T, M via the linear isotropy representation.)
In other words, the Klein pair (g, h) is reductive. The subspace m is said to generate the broken
symmetries and its elements are often referred as Goldstone bosons.

Of course, as we have already seen, kinematical groups are certainly not compact and
seldom semisimple, so its Klein pairs (g, h) need not be reductive. However, as we saw in
Section 4.2, with one notable exception (the lightcone), the Klein pairs of the kinematical
spacetimes are reductive and hence we can talk unambiguously about broken and unbroken
generators. In general, the broken generators are equivalence classes in g/b.

Spacetimes are not the only nonlinear realisations of kinematical groups that we will be
interested in. In a sense, these describe the vacua. When discussing particle dynamics, the mere
existence of the particle in the spacetime breaks the symmetry further. The resulting nonlinear
realisation can often be interpreted as the evolution space (in the sense of Souriau [45]) of the
particle dynamical system. In the case of elementary particles (again in the sense of Souriau),
the evolution space fibres over a coadjoint orbit of the kinematical group. And indeed, one of
the approaches to elementary particles in a given homogeneous spacetime ¥/ is to classify
coadjoint orbits of ¥, pass to their evolution spaces and project onto the spacetime. This
method was illustrated in Section 4.4.5, resulting in an explicit expression for the particle
action functional (4.52).

In practical terms, the method we will follow in this section is the following.

1. We consider nonlinear realisations of a kinematical (or closely related) group ¢ on the
evolution space of the dynamical system corresponding to a particle propagating on a
homogeneous spacetime. Let the evolution space be the coset manifold ¥ /¢ where #
a subgroup of unbroken symmetries.

2. We then choose a basis of the Lie algebra ) and extend it to a basis for g. If the Klein
pair (g, h) is reductive, we will choose the basis in such a way that the split g = h & m is
preserved by the adjoint action of 5#. Even if (g, h) is not reductive, we will choose a
vector space complement m.

3. This choice of basis for m gives local coordinates for /¢ near the origin via (modified)
exponential coordinates, as discussed in Section 4.1.4. In effect what these local coordin-
ates do is define a local coset representative g : ¥/5 — ¥, which in principle is only
defined in a neighbourhood of the origin.

4. We pull back the left-invariant Maurer—Cartan one form on ¥ via the local coset rep-
resentative and obtain a g-valued one-form QO = g~'dg. Being g-valued it may be
decomposed into a component along h and a component along the chosen complement

5. In order to obtain a particle lagrangian with lowest order in derivatives, we take a linear
combination of the ##-invariant components of Q and pull them back to the interval
parametrising the worldline of the particle. In some cases, for example that of the one-
dimensional Schwarzian particle discussed in Section 5.4.4, we may consider instead
Jf-invariant quadratic expressions in the components of the Maurer—Cartan form.

We shall have ample opportunity to see how this process works in practice in a number of
examples, to which we now turn.
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5.1 Relativistic Particle lagrangians

Here, we give a short exposition of the lagrangians of free spinless particles built on the Poincaré
group for spacetime dimensions > 3 using nonlinear realisations, see e.g. [86]. Free particles
can be timelike, lightlike and tachyonic due to the causal structure of Minkowski spacetime.
The Poincaré algebra in d + 1 spacetime dimensions, denoted iso(d, 1), is given in (2.15),
where now A,B =0,...,d and nap is the mostly-plus Minkowski metric. We separate the time
and space indices according to A = (0, a), with a =1,..., d. We may also consider lightcone
coordinates, where A = (4, —,i) withi=1,...,d— 1.

5.1.1 Massive particle

We begin with the construction from nonlinear realisations. For a massive particle in the rest
frame, the momentum eigenvalues take the form pao = (m,0,0,...,0) with SO(d) stabiliser in
the Lorentz group generated by rotations.!® The Klein pair is (iso(d, 1),s0(d)), which describes
the evolution space of a spinless massive particle in Minkowski spacetime, as described in
Section 4.4.4 in the special case of d = 3.

The local subgroup H of the nonlinear realisation is thus SO(d) and we write the coset
representative for the evolution space as

g= eXAPA b, (5.1)
90

where gp is a coset representative of Minkowski spacetime thought of as the coset space
Poincaré/Lorentz and b = e¥*Be (a = 1,..., d) is a general boost generated by those boost
generators B, := Loq of the Lorentz group which are broken due to the presence of a massive
particle in Minkowski spacetime.

The pull-back of the Maurer—Cartan form of the Poincaré group is

Q=g 'dg=b"Qeb+b 'db =% Pa+ 300 LaB, (5.2)

where Qg = dx*Pa =g ldgo is the Maurer-Cartan form of Minkowski spacetime.

For a relativistic massive particle in another background, for example AdS, the form of Qg
will differ: it would be the pull-back of the Maurer—Cartan form via a local coset representative
for AdS.

The explicit form of the Maurer—Cartan forms are obtained by computing the adjoint
representation of the boost b on the generators of space-time translation P :

b lPAb = PAB(VY)PE, (5.3)
and
b ldb = %HAB(DAC(VO’) d(DBD(Va)I_CD , (5.4)

where @ 5 B(v?) is the fundamental representation of the Lorentz group, which here depends
on the d boost parameters v®. Explicitly,

sinh ||v||
vl

1 — cosh
vl e,
[V

b 1Pob = coshl[v||Po — viP,.,
55
sinh ||v|| -5

b 1Peb =P, — smajivil
[[v]]

vaPo,

where |[v]|2 = 8 4pvvP.

15The stabiliser in the Poincaré group contains also the time translations Py.
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We want to construct a lagrangian in terms of the pull-back of the Maurer—Cartan forms
subject to two conditions: it should have the lowest possible number of derivatives and it should
be invariant under the unbroken SO(d) subgroup of the Lorentz group. One can therefore
choose any component of the Maurer—Cartan form which is invariant under rotations. In this
example, we can take the component Q?P) along Py. Therefore we take as lagrangian'® the

pull-back of Q((’P] to the world-line of the particle: a curve y(t) parametrised by .
The action of a free massive particle is given by

. . sinh .
Ift,x%,v?] = —va*Q?P) = —mJ' dtx* DA (vY) = —mJ <cosh IviIt — H\}:v'vaxa> dr.
The vector ® A%(v?) is a timelike unit Lorentz vector and therefore n*B®A°®g° = —1. The

lagrangian depends on the d + 1 spacetime coordinates t,x® and the d boost parameters v<.
The action constructed by nonlinear realisations could be interpreted as a canonical action [89].

In fact the momentum is a1

- — _—md 0/,,a .
so that -
po = —mecosh |v| and Pa = msm|vlv|va , (5.8)
and the action becomes
XA, v = JdTpA(va)kA . (5.9)

This action is invariant under reparametrisations and the reduced physical space (e.g., by
choosing x° = 1) has a symplectic structure. For other orbits the structure of the action is the
same, the only difference will be the form of the constraint of ® 5 °(v?). This form of the action
is recovered in the coadjoint orbit approach, see for example [90] and below.

Now if we regard pa as d+ 1 independent degrees of freedom, we can rewrite the action as

Ix*, pal = JdT (pax™ — 3 n*Bpaps +m?)), (5.10)

which is the canonical action of a massive spinless relativistic free particle. Using the equations
of motion of ®A° and vy, we obtain

Op° = A (5.11)
—X

Note that the previous relation can also be obtained from the the vanishing the Maurer—Cartan
form Q?P) associated to the broken translations

Qfp) = dx*dp* =0, (5.12)

which is known as the inverse Higgs mechanism [91].
Substituting back (5.11) in the canonical action and using the equations of motion of pa
and -y, we obtain the geometrical action

XN = —mJ dtv/—x2. (5.13)

The quantisation of the mass-shell constraint for a massive particle gives the wave equation

(O—m?) @(t,X) =0. (5.14)

16The cases of two- and three-dimensional spacetimes are special. In three dimensions we could also add a
Wess—Zumino term associated to the so(2) rotational component of the Maurer-Cartan form [87-89]; whereas in
two dimensions, the absence of spatial rotations implies that we can use any component of the Maurer—Cartan form
in the lagrangian.
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5.1.2 Relativistic Massless particle

Let us now consider a spinless massless particle. In the standard frame the momentum takes the
formpa = (1,0,0,...,1), whose stabiliser in the Lorentz group is isomorphic to the euclidean
group ISO(d — 1), with null rotations playing the role of euclidean translations. The Klein pair
for the evolution space is therefore (iso(d, 1),is0(d — 1)). It is useful to work in a lightcone

frame, associated to the lightcone coordinates: x*,x—, x! with x* = % (x4+x9) and transverse

coordinates x* withi =1, ..., d—1. The Poincaré algebra in a lightcone frame has the following
nonzero brackets:

[Lij, Lit] = 8k Liv — 8ikLji — 851 Lix + SuLjk, Ly ,Pi] =Py,
[Lij, Lai] = 851 Las — ikl [Lij, Px] = 6)kP dikPj, (5.15)
[I—+ > L:l:l] = iL:‘:l > [L:IZ‘L’ $} ’
[Lyi, L] = =8yl — Ly, [Lei, P = P:t:
where we have used thatni; = 8;; andn — = 1. In this case, the Klein pair is (iso(d, 1), is0(d—1))

with iso(d — 1) spanned by Ly;, L, ; and hence it is not reductive: indeed, [L,, L_;] always has
a rotational component.

The coset space describing the evolution space is now 1SO(d, 1)/ISO(d — 1) and we can
choose a local coset representative

g=e""PAb = gob, (5.16)

where now b = eV L-ie L+ with L_;,L,_ are the broken boost generators.

In order to compute the Maurer—Cartan form we need the analogue of (5.3) for this new
form of b. Computing the adjoint representation in this case, the result is a Lorentz matrix
® A B(vi, 1) where now A, B are lightcone indices. The translational component of the Maurer—
Cartan form invariant under ISO(d — 1) is erp) and, therefore, the invariant action is

Ix™, v ul :JdiAd)A*(vi,u), (5.17)

where now ® 5 (v, u) is a Lorentz vector with vanishing norm. The momenta are

oL ;
PA = aXfA = (DA+(Vl,u) > (5'18)
and the action becomes
XM vhul = JdTpA(Vi,u)f(A. (5.19)

In this case, pa are the components of a null vector, but if we consider pa as d + 1 independent
variables, we need to introduce a Lagrange multiplier y to implement the constraint p?> = 0 so
that the action becomes

Ix*, pal = J dt (pax™ — 2yn*Bpaps) . (5.20)
which is the canonical action of a massless spinless relativistic particle.

5.1.3 The coadjoint orbit method for relativistic particles

We note that the component Q(()P) of the Maurer—Cartan form that we used to construct the
action for the massive spinless particle is nothing but the pairing of the Maurer—Cartan form with
the momentum vector. Indeed, as was done inn Section 4.4.4 in four dimensions, canonically
dual to the basis Lo, Pa of the Poincaré algebra g, we have the basis A*B, i for the dual g*.
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Then the momentum for a spinless massive particle in the restframe is po7* = mn®, where
pAa = (M,0,...,0), and hence

%) = ("% Q) , (5.21)

which, using equation (5.2), can be rewritten as
Q%) = (1%, b7 (dx*Pa) b) = (1%, Ady, 1 (dx*Pa)) = (Ady 7%, dx*PA ), (5.22)

where we have used that the action of the Lorentz group element b—! on the vector repres-
entation is the adjoint action of b—! as an element of the Poincaré group, which a semi-direct
product of the Lorentz group and the vector representation. Similarly, Ad;, is the coadjoint
action on the dual space.
Writing x*Pa = X we therefore have the equivalent form of the lagrangian (5.11), see for
example [90],
L=(mX), (5.23)

where 7t is an arbitrary element of the orbit of mn®. This orbit can be parametrised with the
boost parameters v* that then appear algebraically in the lagrangian. The momenta can be
thought as elements of the dual of the Lie algebra. The derivative in X denotes the derivative
with respect to the parameter of the world-line and so we have explicitly carried out the
pull-back.

For other orbits like the massless case, we take as element of the dual Lie algebra n® 4 74
or for the tachyonic case, the element 1. The action of the Lorentz group on the space of
momenta take the form (5.23) is universal in all cases.

5.1.4 Comparing Minkowski and AdSC particles

As discussed at the end of Section 4.4.5, coadjoint orbits are intrinsic to the group ¢ and the
same kinematical group might give rise to different kinematical spacetimes: e.g., Minkowski
and anti de Sitter—Carroll (AdSC) are both homogeneous spacetimes of the Poincaré group.
In Section 5.1.1 we derived the lagrangian for a massive spinless particle in Minkowski
spacetime. Consider a curve
v(t) = etHex PagvBa (5.24)

in the evolution space, where t, x®,v® are functions of . Then the lagrangian corresponding
to the coadjoint orbit of mn® € g* is given in equation (5.6) by

. sinh
L=—m <cosh vt — HVHVHvaka> . (5.25)
We would like to interpret this as a particle action in AdSC. As shown in equation (4.22),
what is a translation in Minkowski is a carrollian boost in anti de Sitter—Carroll. This suggests
considering the same curve but written in different coordinates adapted to AdSC:

v(t) = e*Hey BagWPa (5.26)

for some functions u,y®, w® of T. We now interpret u,y® as local coordinates on AdSC and
w¢? as parametrising the carrollian boosts which are broken due to the presence of a particle in
AdSC. The explicit change of coordinates from (t,x%,v%) to (u,y%, w?) is given by

tanh ||v sinh
_A Va, t:u+wwaya,
I [yl
Yyt =va, with inverse a_ a Mwbybya
= > )
e ey (Lo coshlv] ) xev® Iyl
cosh v[| / [lv]* "~ ve=y©

(5.27)
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We can then perform the change of variables in the lagrangian to arrive at the following
lagrangian for a particle in AdSC:

. h . h 'b a
L=-m <cosh Iyl + Sln7”1‘4”1%)(19‘1 + (1 _ ||y|> Yol yzay > . (5.28)
[yl [yl [yl
The canonical momenta are
oL
po = 5= = —mecosh |y|.
b .
WhY sinh [|y]| < yayb> b (5.29)
Pa = Y b~ we )
2 [yl o yl?
—
i Pa

We see that the “spatial” momentum p, breaks up into a longitudinal component pﬂl along y¢
and a transverse component pz. The Euler-Lagrange equation for u says that ||y|| is constant,
whereas the Euler-Lagrange equation for w® says that if ||y|| # 0, then y¢ is constant. Hence a
massive particle in AdSC does not move.

5.2 Non-relativistic particle lagrangians

In this section we will consider non-relativistic particle lagrangians. We will start by considering
the centrally extended Newton-Hooke algebra n—. The Newton-Hooke algebra n— was defined
in Section 3.1 and corresponds to x = 0 in the family of kinematical Lie algebras n, in Table 1.
Its central extension is listed in Table 3. We will introduce an additional parameter in the Lie
brackets to allow us to take a limit to the Bargmann Lie algebra which is the universal central
extension of the Galilei algebra g.

The centrally extended Newton—-Hooke Lie algebra n~ is spanned by Ly, Bq, Pa, H, Z where
Lab span the so(d) rotational subalgebra. The Lie brackets are the generic kinematical Lie
brackets of equations (3.1), (3.2) and (3.3) together with the following nonzero brackets:

[H; Ba] = Pa 5 [H; Pa] = %Ba and [Baa Pb] = 6abza (530)

with Z central. Notice that for any nonzero real number R, these Lie algebras are all isomorphic,
but if we take the limit R — oo we obtain the Bargmann algebra in Section 3.1 after H — —H.

5.2.1 Massive particle

In this section we will see that a massive spinless particle with symmetry algebra n— is equivalent
to a d-dimensional harmonic oscillator. In order to see that, we will consider the coset space
with Klein pair (n—, so(d)).

We choose a local coset representative of the form

g= eX'HexPa euZ& . (5.31)
go b

Here gy is the coset representative of the generalised non-relativistic spacetime and b is a
Galilei boost parametrised by v¢.

The role of the coordinate u of the central charge Z in non-relativistic theories to construct
a Wess—Zumino term was first discussed in [92]. The coordinates x°, x%, u suggest an interpret-
ation of these coordinates as relativistic coordinates in a space of one higher dimension, here
d+2.

We now calculate the pull-back of the Maurer-Cartan form along the coset representative:

Q=g 'dg=b"1Q¢b+b 'db, (5.32)
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where Qg = g, ldgo. These are easy to calculate and one finds

b ldb = dv®B,, (5.33)
and
x2 0 x*
Qo = dx°H + dx*P, + (du ﬁdx ) Z— ?dx Ba. (5.34)

We then calculate b—1Qgb to arrive at the final expression

2
Q= <du— X X0 — %vzdxo —vadxa> Z+ dx°H + (dv® — %x“dxo)Ba + (dx® +veax%) P, .

2R2
(5.35)
The so(d)-invariants in the adjoint representation are H and Z and hence the so(d)-invariant
lagrangian is built out of the H and Z components of Q. The H-component is an exact form,
hence it does not contribute to the Euler-Lagrange equations. We will therefore concentrate on
the Z-component. Pulling it back to the interval parametrising the worldline of the particle, we
arrive at the following lagrangian

2
. X 2\ . .
L—u—é(lzz—i-v)xo—vaxa. (5.36)
The first term is again a total derivative, so it does not contribute to the Euler-Lagrange
equations. Its role is to make the lagrangian invariant, since without it the lagrangian is only
quasi-invariant. In other words, it is a Wess—Zumino term.

Solving for v via its equation 2% = 0, we find

vi= " (5.37)

and re-introducing this into the lagrangian, we obtain

22 2
X X g

L=—pF—555% - 5.38

2x0  2R2? ( )
If we choose the gauge x° = 1, so we use x° as the parameter along the worldline, we see that
L is indeed the lagrangian for a d-dimensional harmonic oscillator with characteristic frequency
%. Taking the limit R — oo in the lagrangian, we arrive at the lagrangian for a non-relativistic
spinless particle of unit mass:

).(2

L=—. 5.3
550 (5.39)
Had we considered instead the central extension of the other Newton-Hooke algebra
nt = n1t=71 in Table 1, we would have obtained the inverted harmonic oscillator [93].

5.2.2 Massless Galilei Particle

Is there a massless particle associated to the (unextended) Galilei algebra? The answer is
yes.!” The model was first introduced by Souriau [45]. A massless relativistic particle follows a
direction on the lightcone. In the non-relativistic case, since the speed of light is infinite, the
particle follows a spatial longitudinal direction, say x¢. In this case, the unbroken group is
generated by Lij, By, Pq; that is, the infinitesimal rotations L;; on the hyperplane spanned by
x1,x2,...,x471, the infinitesimal galilean boosts B; in directions perpendicular to x¢ and the

infinitesimal longitudinal translations along x¢. The evolution space has Klein pair (g, iso(d—1)),

17We acknowledge discussions with Axel Kleinschmidt on this point.
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where g is the Galilei algebra, as in Table 1, and the iso(d — 1) subalgebra is spanned by Ly;, B,
fori,j=1,...,d—1.
A local coset representative is

g= etH+xiPi+ded eeiRiede , (540)
~
90 b
withi=1,...,d—1, where R; := L;4 are the broken rotations and B4 is the broken longitudinal

boost.
The pull-back of the Maurer—Cartan form is given as usual by

Q =Ady,-1 Qo + b lab, (5.41)

where
Qo = gy 'dgo = dtH + dx'P; + dx?Pq. (5.42)

The I1SO(d — 1)-invariant subspace of g is spanned by P4 and B4, hence we need to extract
those components of Q) in order to write down the lagrangian. We notice that

b—ldb — e—dee—GiRid(eGiRiede) — e—de (e—BiRideeiRi) ede + dVBd . (543)

Since [Ry, R;] = —Lyj, the expression in parenthesis lives in the span of Ly, R; and hence the
first of the above terms lives in the span of Lij, Ri, B;. Therefore the only term in b~ 1db which
contributes to the lagrangian is dvBg4.

We calculate Ad, -1 Qp paying particular attention to the P4 component:

Ad, 1 Q¢ = dtH — vdtP4 + exp(ad_g.r)dx'P; + exp(ad_g.r)dxPq

. cos|O|l—1 ; . sin||0] 41, a
—dtH + (dxt + SB2PU T 2 gig g — otdxd ) P;

+< el U T e )T (54

el

+ <cos 0] dxd + SIT9”| Lo axt vdt) Pa,
where [|6]|% = 5;;6'6). In summary,

N

Q= dvBg + <cos 0] dxd + Slﬁgln Lo, axt —vdt> Pat--, (5.45)

omitting terms which are not ISO(d — 1)-invariant. The B4 component is exact, so that it
does not contribute to the Euler-Lagrange equations. Therefore we concentrate on the Pq4
component and introducing the “colour” k [45], we may write the lagrangian as the pull-back
to the interval of the P4-component:

el
L—k(cos|9|>kd+ SH|16|)|| ”eg&-w) . (5.46)

We calculate the spatial canonical momentum ¢ = (p1,p2,--.,pa) to be

oL ksin 116]|

=2 =5 % (5.47)

oL
Pa=3g = kcos ||6]| and Pi

from where we see that - f = k2. Introducing the associated unconstrained momentum, we
implement the above constraint via a Lagrange multiplier e to arrive at the lagrangian

L=pax?+pix' —vi+le(d p—k) . (5.48)
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Notice that the v equation of motion is % = —kt = 0, so that propagation is instantaneous.

The quantisation of the mass-shell constraint gives the Helmholtz equation

(V2 + K2 D(t,%) =0, (5.49)

which agrees with the field equation of the galilean magnetic Klein—Gordon field (see equa-
tion (7.4)). The approach to quantum field theory in terms of particle variables is know as the
world approach to field theory and it was first considered by Feynman [94,95], see also for
example [96,97].

5.3 Carroll particle lagrangians

In this section we will construct the action of a massive (timelike) particle in Carroll spacetime.
The case of a massless Carroll particle can be obtained from from the massive one by taking the
mass to be zero. We will also construct the lagrangian of a tachyonic particle. The presence of
these three kinds of particles (timelike, lightlike and tachyonic) is due to the causal structure of
the Carroll geometry. This is analogous to what happens in lorentzian geometry, but in contrast
with the galilean case, where the notion of mass is not related to the causal structure.

The Carroll algebra is denoted ¢ and given in Table 1. Besides the Lie brackets in equa-
tions (3.1), (3.2) and (3.3), which are shared by all kinematical Lie algebras, the only nonzero
bracket in ¢ is

[Ba, Po]l = 6abH. (5.50)

In contrast to the Galilei algebra, the Carroll algebra (for d > 3) does not allow nontrivial
central extensions, although H is a central element.

5.3.1 Massive Carroll particle

We construct the timelike massive Carroll particle lagrangian [98] [65] using the method of
nonlinear realisations. The Klein pair for the evolution space is (¢, s0(d)), where so(d) is the
span of the rotations L.p. A coset representative for the corresponding coset space is given by

— etH+XaPa evaBa , (5.51)
90 b

g

where t,x® are the Goldstone bosons associated to spacetime translations and v® are the
Goldstone bosons associated to the broken boosts.
The Maurer-Cartan form Q is given by

Q=g ldg=Ad, 1Qp+b 1db, (5.52)

where
Qo =gpldgo = dtH+dx"P, and b 'db=dv®B,. (5.53)
It follows that
Ady-1 Qo = dtH + exp(—adyap, )dx" Py, = dtH + dx® (P, —vpH) = (dt — v, dx®)H + dx" Py, .
(5.54)

The lagrangian is the pull-back to the interval of the rotationally invariant component of Q,
which is the component along H:

L =M(—t+vax?), (5.55)

where we have introduced a mass M. Notice that the ordinary massive particle does not
move: the momentum of the Carroll particle p, = Mv, and there is no relation between the
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momentum and the velocity of the particle. The canonical lagrangian is obtained by introducing
a Lagrange multiplier e:

Lean = —Et +pax® — 2e (E2 —M?) . (5.56)

Note that in this form we have introduced also negative energies that are allowed in the Carroll
case. Since H is a Casimir, its eigenvalues can take any real value: positive negative or zero.
Physically, a timelike or lightlike Carroll particle does not move.

The quantisation of the mass-shell constraint for a Carroll massive particle gives the wave
equation [98]

aZ

that is, the equation of motion of the carrollian electric Klein-Gordon field theory, see (7.18).

5.3.2 Tachyonic Carroll Particle

Here we construct the tachyon Carroll particle lagrangian [99]. A relativistic tachyon has a
spacelike momentum, but in the ultra-local limit, the lightcone collapses to the timeline and
hence any momentum having a nonzero component along a spacelike direction is tachyonic.
For example, we may take the momentum purely along the d-direction: « = Mm¢ € ¢* in the
dual of the Carroll algebra. The resulting coadjoint orbit has Klein pair (c, h), where b is
spanned by Li;, Bi, Bg, P4, Po, where now i,j = 1,...,d — 1. The subalgebra b is isomorphic
to the direct sum of the iso(d — 1) algebra generated by L;;, B; and the Heisenberg algebra
generated by Bg, Pg, Po. The evolution space is obtained by breaking the translation symmetry
in the d-direction. Therefore the Klein pair for the evolution space is (c, ), where § is spanned
by Lij, Bi, B4, Po and isomorphic now to iso(d — 1) @ R2. This Klein pair is not reductive, but
we may choose a complement m spanned by R; := Liq4, P;, Pq. It is not reductive because
(B, Pal = Py & m. Nevertheless the image P4 of P4 in ¢/b is an invariant of the linear isotropy
representation of h on ¢/b.
Let us choose a coset representative

P4 x"P;y LOIR;
g=g¢* "deXlie , (5.58)

g0 b
and pull back the left-invariant Maurer—Cartan form. This will take values in the Carroll algebra,

but we project to ¢/h and keep the invariant components, which here is only the component
along P4. Equivalently, we calculate the dual pairing (&, g~'dg). A calculation shows that

g ldg = (cos 6]/ dx + Slﬁgf” eidxi> Pa+- -, (5.59)
where [|6]|% = 5;;6'07, hence
e _
(«, gildg> =M <7’Ed, gfldg> =M <cos |6l dx? + Slﬁe”| ” Gidxl> . (5.60)

The lagrangian is now obtained by pulling back this component to the interval parametrising
the worldline of the particle:

ol
L=M <cos 104 + SITIIG||| | 95&) . (5.61)

The canonical momenta are given by

oL oL sin ||6]|
=——=M 0 d i==——=M
Pa % cos |10 an Pi Oxt o]

0i, (5.62)
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from where it follows that they are constrained:

P-P=p3i+) pi=M>. (5.63)
i

We may implement this constraint via a Lagrange multiplier to arrive at the lagrangian
L=pax? +pix' + INF-p— M?). (5.64)

Since x° does not appear in the action, its momentum py is also zero. We may implement that
constraint with a second Lagrange multiplier and write the canonical lagrangian as

L=pax™ + IAF - §— M?) + upo. (5.65)

Notice that the mass-shell constraint p - f — M? = 0 coincides with the one of the massless
galilean particle and also that the energy (pg) of a tachyon particle is zero. The associated
wave equation reduces to a Helmholtz equation:

(V2 +M?)O(t,%) =0  and %(D(t, %) =0, (5.66)
which is related to the equations of motion of magnetic Carroll field theory as in equation (7.15).
The field equations resulting from (7.15) are not exactly (5.66), but include a source term for
the Helmholtz equation. The relation among Galilean and Carroll particles has been studied
in [100] based on the duality among Galilei and Carroll algebras [35], at the level of the
associated wave equations (5.49) and (5.57).

5.4 One- and two-dimensional particle dynamics with SL(2, R) symmetry

In this section we will give several examples of one- and two-dimensional particle dynamics
with SL(2, R) symmetry. There are three two-dimensional homogeneous spaces of SL(2,R):
corresponding to the hyperbolic plane, the lightcone and (anti) de Sitter spacetime. In addition,
SL(2,R) acts on the real projective line RP! (also known as one-dimensional conformal space)
via projective transformations. Among the particle dynamics discussed here, we will recover
the conformal mechanics of [46], see, e.g., [101-104] and the Schwarzian particle action
of [47-49].

As already discussed in Section 4.2, there are three spatially isotropic homogeneous spaces
associated to the Lorentz group SO(d, 1): namely, hyperbolic space Hq, de Sitter spacetime dS4
and the future lightcone IL4. The picture is the familiar foliation of Minkowski spacetime into
orbits of the Lorentz group. Whereas de Sitter spacetime is a maximally symmetric lorentzian
manifold and hyperbolic space is a maximally symmetric riemannian manifold, the future
lightcone is what we could term a maximally symmetric carrollian manifold. Each of these
three spaces is described infinitesimally by a Klein pair (g, h) where g = so(d, 1) and

so(d), (Ha),
h=<so(d—1,1), (dSq), (5.67)
iso(d—1), (Lg).

In this section we will concentrate in the case d = 2 and we will use the isomorphism
50(2,1) = sl(2,R). Each of the above Klein pairs can thus be realised geometrically as coset
spaces SL(2,R)/s for some one-dimensional connected closed Lie subgroup H C SL(2,R).
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Up to conjugation in SL(2,R), there are three connected closed one-dimensional Lie subgroups
H C SL(2,R):

o cos® —sin6
(elliptic) H = { <Sin6 cos 0

(hyperbolic) H = {(COShT Sth) ‘ TE R} , (5.69)

) ' 0 e ]R/ZT[Z} R (5.68)

sinht cosh~t
(parabolic) H = {(é i) ‘ e R} . (5.70)

They can be distinguished by the trace of the non-identity elements: < 2 in the elliptic case,
> 2 in the hyperbolic case and = 2 in the parabolic case. They can also be distinguished by the
causal nature of the vectors they leave invariant in the three-dimensional vector representation
of s0(2,1): timelike in the elliptic case, spacelike in the hyperbolic case and lightlike in the
parabolic case.

Since the vector representation of SL(2, R) is isomorphic to the coadjoint representation,
these homogeneous spaces can also be interpreted as coadjoint orbits and hence, according
to Souriau, as the space of motions of elementary systems. The evolution spaces can in all
cases be interpreted as the Lie group SL(2, R) itself. It is then a matter of interpretation how to
project the trajectories on the evolution space into particle trajectories in the spacetime.

The Lie algebras of these Lie subgroups are given by

(elliptic) h = {<2 _07‘) ze ]R} , (5.71)
(hyperbolic) h = {(2 g) ze ]R} , (5.72)
(parabolic) h = {<8 (Z)) ze ]R} . (5.73)
We will write g = b & m in each case with
(elliptic) ~ m = {(: _UX) X,y € ]R} : (5.74)
(hyperbolic) m = {(;‘ _X‘J) Xy € R} , (5.75)
(parabolic) m = {(: _OX) X,y € ]R}. (5.76)

In the elliptic and hyperbolic cases, the split g = h @ m is reductive, so that [h,m] C m
in the obvious notation, whereas in the parabolic case no reductive split exists. Let us write
m ={xP; + yP2 | x,y € R}and h ={zB | z € R} in all cases, which defines the matrices B, P1, Py:

.. 0 -1 1 O 01
(elliptic) B = <1 0 > P1 = (0 _1> Py = <1 O) ,  (5.77)

. 01 1 O 0 -1
(hyperbolic) B = (1 O) P = (0 _1> Py = <1 0 ) , (5.78)

. 01 1 0 00
(parabolic) B :<0 O) P1=<0 _1> P2:<1 0). (5.79)

In the elliptic case, there is a positive-definite inner product on m which is #-invariant:
(Pa,Pv) = dab, Whereas in the hyperbolic case there is an #-invariant lorentzian inner
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product on m given by (Pq, Pv,) = Nqp, with n diagonal with 117 = —m22 = 1. In the parabolic
case, Py is ##-invariant (in g/h) and so is the degenerate bilinear form b whose only nonzero
entry is b(Pa, P2).

We shall describe SL(2,R)-invariant particle dynamics on each of the coset manifolds
SL(2,R)/5¢, where ¢ is either an elliptic, hyperbolic or parabolic subgroup. To do so we will
parametrise a neighbourhood of the identity of SL(2,R) via g : R® — SL(2, R) where

g(x,y,z) = e¥"2exP1 &Zf/, (5.80)
go b

where g is a coset representative for the spacetime and b corresponds to the extra generator
that is broken by the presence of the particle. Notice that B, P;, P» are defined differently in
each of the three cases, as show above, consistent with this interpretation.

The left-invariant Maurer—Cartan one-form on SL(2, R) pulls back to g~'dg € Q!(R3, g).
Choosing « € g*, we have that Ly := (&, g~ 'dg) € Q!(R?), where we have used (—,—) to
denote the dual pairing between g and g*. Let I := [a,b] C R and let y : I — R3 be a regular
curve. We may pull back L via y to produce a one-form y*L, € Q!(I) which we may integrate
to arrive at the following action functional:

Se = Ly*ch. (5.81)

We will see that after partially solving the Euler-Lagrange equations, S, will induce an action
for particle dynamics in SL(2, R)/#.

5.4.1 Particle dynamics on the hyperbolic plane

Despite the name, the hyperbolic plane H, is the quotient of ST.(2,R) by an elliptic subgroup.
Let us write g~'dg = 0'P; + 02P, + 03B, where

0! = cosh(2x) cos(2z)dy — sin(2z)dx,
62 = cos(2z)dx + cosh(2x) sin(2z)dy, (5.82)
0% = dz + sinh(2x)dy .

The invariant metric on SL(2,R)/5¢ is given (up to homothety) by
ds? = (81)? + (8%)% = dx? + cosh(2x)?dy?. (5.83)

The action is given by

b
So = J (oq(cosh(Zx) cos(2z)y — sin(2z)%)

a

+ otz (cos(2z)% + cosh(2x) sin(2z)y) + as (2 + sinh(2x)g)> dt. (5.84)

The Euler-Lagrange equation for z is simply % = 0, which is equivalent to
o (cosh(2x) sin(2z)y + cos(2z)x) = ag(cosh(2x) cos(2z)y — sin(2z)x), (5.85)
from where we may solve (implicitly) for z as follows:

o cosh(2x)y — g x
o1 cosh(2x)y + opx

tan(2z) = (5.86)
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Reinserting into the action (and dropping total derivatives), we arrive at

b
Sl = J <\/oc% + oc%\/icz + cosh(2x)2y2 + o3 sinh(zx)g> dt. (5.87)
a
We recognise the first term as the line element in Hy with hyperbolic metric
ds? = (a2 + o2)(dx? + cosh(2x)%dy?), (5.88)

whereas the second term is the coupling to a Maxwell field

A = agsinh(2x)dy, (5.89)
whose fieldstrength
20(3
F=dA =23 cosh(2x)dx N dy = — 5 dvol, (5.90)
of + o5

where dvol is the hyperbolic area form of the metric in equation (5.88).

5.4.2 Particle dynamics on de Sitter spacetime
This case is very similar mutatis mutandis to the previous case, although now we quotient by a
hyperbolic subgroup. Again we write g~ 'dg = 8'P; + 62P, + 0°B, where
0! = cosh(2x) cosh(2z)dy + sinh(2z)dx,
02 = cosh(2z)dx + cosh(2x) sinh(2z)dy, (5.91)
0% = dz — sinh(2x)dy .
The invariant metric on SL(2,R)/3# is now given (up to homothety) by

ds? = (81)% — (%)% = —dx® + cosh(2x)?dy?. (5.92)

As we see from the metric, x is a time coordinate and y is a space coordinate. This metric could
also be re-interpreted as AdS,, by reinterpreting x as space and y as time.
The action is now given by

b
Sa = J (oq(cosh(Zx) cosh(2z)y + sinh(2z)x)

a

+ oz (cosh(2z)x + cosh(2x) sinh(2z)y) + ag(z — sinh(2x)g)) dt. (5.93)

The Euler-Lagrange equation for z is again simply % = 0, which translates into
&1 (cosh(2x) sinh(2z)y + cosh(2z)x) + ay(cosh(2x) cosh(2z)y + sinh(2z)x), (5.94)
and which allows us to solve for z implicitly:

— (o2 cosh(2x)y + a1x)

tanh(2z) = a1 cosh(2x)y + aox

(5.95)

Reinserting into the action (and dropping total derivatives), we arrive at (see, also, [105,
eq.(5.10)])

b
Sl = J <\/oc% — o \/—Xz + cosh(2x)2y2 — o3 sinh(2x)g> dt. (5.96)
a
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We recognise the first term as the line element in dS; with metric

ds? = (o — ad)(—dx? + cosh(2x)2dy?), (5.97)

whereas the second term is the coupling to a Maxwell field

A = —agsinh(2x)dy, (5.98)
whose fieldstrength
20(3
F=dA = —2agcosh(2x)dx N\ dy = — 5 dvol, (5.99)
Xy — &1

where dvol is now the area form of the de Sitter metric in equation (5.97).

5.4.3 Particle dynamics on the lightcone

Finally, we discuss the parabolic case. Again we write g~ 'dg = 8'P; + 82P, + 08B, where now

ol = e *dy,
02 = dx —ze **dy, (5.100)
0% = dz — 2zdx + z%e >*dy.
There is no SL(2, R)-invariant metric here, but only a carrollian structure (k,n), where the
carrollian vector field is k = z0, + ez"ay and the carrollian degenerate metric is given by

N = (dx — ze~2*dy)?.
The action is now given by

b
5. — J (e 2% + ok — ze 29 + aa (2 — 22k + 22e2%9)) dt. (5.101)
a

The Euler-Lagrange equation for z is again simply %_ = 0, which is easily solved for z:

2= X2 e X (5.102)
203 Y

Reinserting into the action (and dropping total derivatives), we arrive at

b 2
o dt
S/ _J 2 —2x2 2x .52 . 5.103
=] ((“1 dog ) € YT T aeeTX R ( )
Choosing the “static gauge” where y = 1 and changing variables to u = e*, we arrive at the
following action
b o2
Sl = J ((oq — 2> u? - a3u2> dt, (5.104)
a 4oz

which we recognise as a version of the one-dimensional conformal mechanics of [46].

5.4.4 One-dimensional Schwarzian particle

Here we will rederive the SL(2,R)-invariant Schwarzian action of [47-49] using the method of
nonlinear realisations and the inverse Higgs mechanism applied to SL(2,R). An alternative
derivation using nonlinear realisations for SL(2,R) x R can be found in [106].

48


https://scipost.org
https://scipost.org/SciPostPhysLectNotes.69

SCIl SciPost Phys. Lect. Notes 69 (2023)

Let RP! denote the real projective line: the space of straight lines through the origin in
the plane R2. The real projective line is diffeomorphic to the circle. Given a diffeomorphism
¢ : RP! — RP!, we define its Schwarzian derivative (or simply its Schwarzian) by the formula

" "\ 2
Seh(g) = & 3 (@) , (5.105)
" 2\¢

where the primes represent derivatives with respect to the local coordinate on RP'. The
Schwarzian defines a quadratic differential on RP! or, in physical terms, a quasiprimary field
with weight 2 under diffeomorphisms of the circle and it plays an important réle in projective
geometry (see, e.g., [107]). One of its most important properties is its invariance under
PSL(2, R) Mobius transformations:

ap+b
co+d’

with ad—bc=1. (5.106)

We will re-use the basis for s[(2,R) in Section 5.4.3, but with a change of notation to
reflect that SL(2, R) is the one-dimensional group of conformal transformations. Therefore we
introduce the basis H, K, D for s((2, R) where

0 1 1 0 0 0
Kz(o O)’ D:<O _1> and H:<1 O>' (5.107)

Here H generates translations, K generates special conformal transformations and D generates
dilatations, which are all the one-dimensional conformal transformations. The ad-invariant
inner product on s(2, R), which is a multiple of the Killing form, can be normalised to (D, D) = 2
and (H, K) = 1 in this basis.

We will choose a local chart (p,y,u) for SL(2, R) different than the one we introduced in
Section 5.4.3 to derive the lagrangian for one-dimensional conformal mechanics. We shall
parametrise group elements near the identity by

g=g’levfe?, (5.108)
g0

where g is a local coset representative for the one-dimensional conformal space thought of as
the coset space SL(2,R)/5, with 5 the two-dimensional non-abelian Lie group generated by
K and D. Explicitly, the above parametrisation is

et e "y
= . 5.109
! (e“p e "1+ py)) ( )
The Maurer—Cartan form is given by
Q=g 'dg=QuH+QpD + QK
9 9 2H D K ) ) (5.110)
=e*™dpH + (du —ydp)D + e “*(dy —y“dp)K.

In contrast to what we did in Section 5.4.3, the lagrangian here will not be linear in the
components of the Maurer—Cartan form, but rather quadratic, resulting from applying the
inverse Higgs mechanism to the lagrangian for geodesic motion on SL(2, R) relative to the
bi-invariant metric

(Q,0Q) =20% + 2010k =2 (du2 — 2ydudp + dpdy) . (5.111)

The geodesic lagrangian is obtained by pulling back the metric to the interval parametrising
the world-line of the particle:

L=1{(g71g g7 g") =u? + (y' —2yu')p’, (5.112)
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where we are using primes to denote differentiation with respect to the parameter of the
world-line of the particle. This lagrangian is invariant under both left and right multiplication
by SL(2, R). For example, under infinitesimal left multiplication with parameter cH + D + K,
we have

Su=p+vp, 5p = ot — 2pp + yp? and dy=v+2yp + 2pyy. (5.113)

We recognise in (5.113) the transformation of the Goldstone field p under an infinitesimal
Mobius transformation.

We can reduce the number of Goldstone fields in the action by imposing some conditions
on the Maurer—Cartan form, a procedure also known as the inverse Higgs mechanism [91]. In
the present context, the conditions are familiar from Drinfel’d-Sokolov reduction [108,109]
and are given by

Op=1 and Qp =0. (5.114)

This breaks the symmetry of the lagrangian under right multiplication, leaving only the global
symmetry described infinitesimally in equation (5.113).
We can solve the constraints (5.114) explicitly for u,y in terms of p:

/ 1
y= u—, and u= %log </> . (5.115)
p P
It follows that . o "
1P P 1p
u’ :—5? and y' = T (5.116)

Substituting this in the lagrangian (5.112), we obtain

1 " 3 "\ 2
L= <F; (%) ) =2 5eh(e). G117

In summary, it is possible to obtain the Schwarzian action using the inverse Higgs mechanism.

It is also possible to obtain the Schwarzian action by integrating out the gauge transformations

of the particle model with variables x*, A and lagrangian L = %7’(2 — %)\xz, asin[110,111].

5.5 Non-relativistic limit of relativistic particle actions

In this section we obtain some of the non-lorenztian particle dynamics studied in the previous
sections as non-relativistic limits of relativistic particles.

5.5.1 Non-relativistic limit of the AdS,, particle action

We consider the action of a massive particle propagating in AdS4. 1, with metric

inh =\ 2 inh Z\ 2
as? = —cosh? % (aX°)? + <st> (ax@)2 — ((Smr R) —1> (@2, (5.118)

R

R

where r = /XX¢. The particle lagrangian is that describing geodesic motion on this geometry:

. T 2 . TN 2
L=—m coshZE(Xo)z—(smPR> (Xa)2+<<smfl‘?> —1) (+)2. (5.119)

R

R

In order to take the non-relativistic limit, we introduce an invertible change of variables with a
dimensionless parameter w:

X0 = wx?, m=wM and R = wR. (5.120)
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After this change of variable, the lagrangian becomes

L=-—Mw?x°+ +0(w™2?). (5.121)

M2 oMr?

2x0 2R2
The omitted terms O(w—2) will not contribute in the limit w — oo, but this limit is problematic
due to the presence of a quadratically divergent term. This term may be cancelled if we

introduce at the relativistic level a coupling to a constant electromagnetic field [15,33] A (with
F = dA = 0) in such a way we preserve the same physical degrees of freedom:

Lem = Ape", Ay =(Mw,0), (5.122)

where et are the components of the vielbein of the metric (5.118).
Doing so and taking the limit w — oo, the lagrangian becomes

M(x2)?  Mr?

— XS (5.123)

which takes the expected form of the reparametrization invariant n—-particle lagrangian in
equation (5.38).

5.5.2 Massless galilean particle and the non-relativistic limit of a tachyon

Now we will consider the non-relativistic limit of a tachyon. We start with the relativistic
canonical action of a tachyon of mass m

S = JdT (pAkA _¢ (p2 — mzcz)> . (5.124)
2
The non-relativistic limit is defined by taking ¢ — oo in
E
xX®=ct, and po= - (5.125)
while keeping the colour k = mc finite. The action becomes [112]
Szjdt(—E{—i—ﬁ-i’—;(ﬁz—kz)) . (5.126)
If we eliminate the momenta we have

S = Jdr (Et + ;%5) . (5.127)

In this form the action can be interpreted a relativistic tachyonic particle with an instantaneous
interaction [35]. The field theory associated to this particle model is the galilean magnetic
Klein—-Gordon field theory as in equation (7.4).

The non-relativistic limit of the one-dimensional conformal mechanics and of the Schwarzian
particle has been studied in [113,114].

5.6 Carrollian limits of particle actions

In this section we obtain some of the non-lorenztian particle dynamics studied in the previous
sections as carrollian limits of relativistic particles.
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5.6.1 Carrollian limit of a massive particle in AdS,.; background

We consider the canonical action of a massive particle in AdSq4.; background

S = JdT (puk” — % (g™ pupv — mz)) , (5.128)

where g"Y is the inverse metric of (5.118).
The carrollian limit is defined by taking w — oo in

X' =—, po = —wE, and m=Muw, (5.129)

and keeping R fixed. It is understood that, before taking the limit, we rescale the Einbein
variable like
e— — . (5.130)

The carrollian action is given by

- E2
SC_JdT (Et+7‘{.ﬁg<zrl\/{2>>. (5.131)
cosh” ¢

A particle in AdS Carroll does not move. The Carroll particle in flat space time is obtained by
sending R — oo and it can be written as

S— JdT(—M\/?ZJr MpR), (5.132)

which can be interpreted!® as a timelike relativistic particle which is at rest in a given point
in space: X = 0 [35]. The field theory associated to this particle model is the Carroll electric
Klein-Gordon field theory as in equation (7.18) [98].

The massless Carroll particle is obtained by putting M = 0 in (5.131).

5.6.2 Carrollian limit of relativistic tachyon

We consider the action of a relativistic tachyon in configuration space the action is given by
S= —ch'dT (X)2 — (x0)2. (5.133)

In order to take the carrollian limit, it is useful to introduce the carrollian time and mass M
given by
s=C, x®=Cect and mc=MC. (5.134)

Substituting in the action, we obtain

. 52
SzMCJdT\/)‘c’Z—éz. (5.135)

The Carroll limit in these variables is given by taking
s—o0 and MC— M. (5.136)
The Carroll action of a tachyon is given by [99]

L= My (X)2. (5.137)

18We acknowledge discussions with Roberto Casalbuoni on this point.
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The canonical action is given by

szjdr(—ﬁﬂa.%—;(ﬁz—mz)—pE). (5.138)

The quantisation of the constraints gives the Helmholtz equation

(V24+M?)D(t,X) =0  and %db(t,i{) =0. (5.139)

Note that the Helmholtz equation as also appearing the quantisation of massless galilean
particles. The relation among Galilei and Carroll particles in its v/c coorrections is analysed
in [100].

This ends our discussion of the dynamics of non-lorentzian particles.

6 Gravity

This section contains three subsections. In the first two subsections we will describe gravity
from a kinematical point of view by a gauging procedure that uses the Lie algebra of symmetries
that underlies the theory as a starting point. We call it a gauging procedure because there are
additional steps involved as compared to gauging a Lie algebra of internal symmetries leading
to Yang-Mills which makes the relation between the final result and the original Lie algebra
less direct (see, e.g., [115]). In the first subsection we explain this gauging procedure for the
relativistic case while in the second subsection we will focus on three non-Lorentzian algebras:
the Bargmann algebra underlying Newton-Cartan gravity, the Galilei algebra and the Carroll
algebra. In the third subsection we will describe Newton-Cartan gravity from a dynamical point
of view by defining a suitable non-relativistic limit of the Einstein equations of motion. Next,
we will discuss the non-Lorentzian gravity theories underlying the Galilei and Carroll algebras,
called Galilei gravity and Carroll gravity, respectively.

6.1 Gauging the Poincaré algebra

We first consider the relativistic case. Our starting point is the Poincaré algebra

[Pa,Ps] =0, (6.1a) Mag, Mcpl =4MacMpig;,  (6.10)
[MAB: PC] = 2nC[BPA} N (61b)

where Po and M s g are the generators of spacetime translations and Lorentz transformations,
respectively. The capital indices run over A =0, ..., d and we have chosen the Minkowski metric
to have mostly plus signature. In this subsection we will apply a gauging procedure to this
Poincaré algebra keeping the relativistic symmetries intact.

As a first step in the gauging procedure, we associate to the translation and Lorentz rotation
generators the independent gauge fields E,,* and QP which we call the Vielbein and Lorentz
spin-connection, respectively:

1

ALT = E *Pa + EQHABMAB . (6.2)
These gauge fields transform as covariant vectors under a general coordinate transformation
with parameter & while their P-transformations corresponding to the translation generators
Pa, with parameters 1, and their Lorentz transformation rules corresponding to the Lorentz
generators M a g, with parameters A*B, follow from the structure constants f! jk of the Poincaré
algebra:

SA], = EPONAL + 0 EMAL + 9N — FIATAK, (6.3)
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or

SELA = EOE N 0.8 N + 0™ — QuMen® + AMBELE, (6.4a)
8NP = £ 00 AP 0,0 + 0, AN 4 24 Bl (6.4D)

We now wish to argue that in the context of general relativity, the general coordinate
transformations, Lorentz rotations and P-transformations do not define three independent
symmetries of the Einstein-Hilbert action. To write down such an Einstein-Hilbert action we
first define the curvature tensors associated to each gauge field as follows:

Ruv ' (T) =29, AL, + %fl jKALAY (6.5)

or
R (P) = 29, E,* —20Q,*sE,", (6.6)
Riv*B(M) = 23,0, +20,7°Q,,B¢. (6.7)

The Ricci tensor and Ricci scalar are defined by
RuA (M) = —EY Ry A (M), R(M) = E* AR A (M), (6.8)
where we have used the inverse Vielbein field E* 5 defined by
EMAE,B =648, EHAELN =57, (6.9)
We now consider the Einstein-Hilbert action (without cosmological constant)

B 1
o 167’EGN

Sen Jdd“x ER(M), (6.10)
where E is the determinant of the Vielbein field E,,* and Gy is Newton’s constant. By construc-
tion this action is invariant under general coordinate transformations and Lorentz rotations.
However, except for d = 2, it is not manifestly invariant under the P-transformations given
in equation (6.4a) of the Poincaré algebra. This can for instance be seen by writing the
Einstein-Hilbert action (6.10) in the equivalent form!?

1
a 167’[GN

Sen J A9 xero ey A B B MR MM (M) L (6.12)

The special thing about d = 2 is that the Einstein-Hilbert action as given in (6.12) reduces to
the Chern-Simons form

Sen stxe“VpeABCEHARVpBC(M), (6.13)

~ 167Gy

which is manifestly invariant under all the gauge symmetries of the three-dimensional Poincaré
algebra. In d = 3, one could consider, besides the term

EHVPGEABCDEHAEVBRPGCD(M) (614)

19The equivalence between the expressions (6.10) and (6.12) can be seen by writing out the definition of the
determinant E in equation (6.10):

EHOII'HdEAO...AdEHOAO"'EHdAd. (611)

(d+1)!
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given in (6.12) the so-called Holst term [116]

xe"VPIE AL BR oA (M), (6.15)

where « is a real parameter. The two terms together give rise to the usual Einstein equations.
This can be seen by first noting that varying the action with respect to the spin-connection
gives the same equation of motion as without the Holst term. This follows from the following
identity:

XAB + aerBPXcp=0 — XAP =0, (6.16)

where XAB is a three-form given by

X3 =R

nwve — V[A(P)ED}B]' (6.17)

w

The field equation XAB = 0 implies R,,v*(P) = 0 which is a curvature constraint that can
be used to solve for the spin-connection as will be explained below, see the solution given in
equation (6.29). Next, varying the action with respect to the Vielbein, the Holst term does not
contribute to the equations of motion for a dependent spin-connection due to the Riemann
tensor identity Ragcip(M) = 0.

Although, for d > 2, the Einstein-Hilbert action is not invariant under P-transformations, it
does transform into terms that vanish upon using the equation of motion of the spin connection
field which is given by

Ruv*(P) =0. (6.18)

Such a variation can always be cancelled by adding terms to the P-transformation rule of the
spin connection. After a long calculation one finds the result given in equation (6.26). Note
that, except for the first term, all terms in the transformation rule (6.26) are proportional to
the Ricci tensor and Ricci scalar and therefore vanish upon using the equations of motion
corresponding to the inverse Vielbein field E* 4, i.e. the Einstein equations:

R, (M) —2E,*R(M) = 0. (6.19)

One thus ends up with a set of P-transformations that do not straightforwardly follow from
the Poincaré algebra. Instead of doing the long calculation mentioned above to obtain the
transformation rule (6.26), there is an easier way to derive the P-transformations of the spin-
connection field by making use of the fact that these P-transformations are not new but,
instead, related to the general coordinate transformations and the Lorentz transformations
of the Poincaré algebra. To show this relation we need to make use of a special symmetry
which in the literature is called a ‘trivial’ or ‘equation of motion’ symmetry (see, e.g., [117].
These symmetries, which are easier to derive than the P-transformation of the spin-connection
field, are called ‘trivial’ because they have the distinguishing feature that all terms in the
transformation rules vanish upon using the equations of motion. They therefore correspond to
vanishing Noether charges. A most simple example of a trivial symmetry is provided by the
following action describing two real Klein-Gordon scalars A and B:

S= J ddtix % (ADA + BOB). (6.20)

This action is invariant under the trivial symmetries with parameter A
SA =AOB, 0B = —ADA. (6.21)

2) s 3 () > 6.
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for ¢! = (A, B) and using the fact that QY = eV is anti-symmetric.
Similarly, the Einstein-Hilbert action is invariant under the following trivial symmetries
with parameters o”:

SELY = RuwM(P)oY, (6.23a)

— 1EHV\RCB]U\/L)GC + ZEH[AR(M)GB} ,  (6.23b)

50 AB
. 2

I
|
~
—S:r—‘
>
=
a
=

with 0¥ = oBEV5g. Like in the example of the two scalar fields the Vielbein field transforms
to the equation of the spin-connection field while the spin-connection field transforms to the
equation of motion of the Vielbein field leading to a zero variation of the action as follows:

5S
5S 8S 0 EHCEpA SELA
85 ~ (5EuA 5QPCD) <_F_HCEPA 0 Mf%CD op =0. (6.24)
P

Using these trivial symmetries, we can write the P-transformation given in equation (6.4a)
of the Vielbein field as the sum of a special general coordinate transformation, Lorentz trans-
formation and trivial symmetry transformation with parameters given by

gh=nt, AP =nPO\NP, ot =n", (6.25)
B

with n* = n”EHg. Since the same decomposition rule must apply to the spin-connection field,
it follows that the P-transformation of this spin-connection field is given by

50, = 1P RAAP (M) +RUAMNPT + E AR MINS + ELAR(M)NPT, (6.26)

which is the same expression that one obtains by requiring that the Einstein-Hilbert term is
invariant under P-transformations.

Summarizing, the P-transformations given in eqs. (6.4a), (6.4b), (6.26) and the general
coordinate transformations given in the same equations (6.4a) and (6.4b) do not define two
independent symmetries of the first-order Einstein-Hilbert action (6.10). In fact, if they would
be independent symmetries, the theory would have no propagating degrees of freedom left. Both
symmetries have their advantages. On the one hand, the general coordinate transformations
have a nice geometrical interpretation, but, on the other hand, the P-transformations are more
directly related to the underlying Poincaré algebra.

When taking the non-relativistic limit of general relativity in subsection 6.3 , we prefer to
work with the second-order formulation of general relativity. The reason for this is that for
matter-coupled gravity theories, such as supergravity, it is more convenient to work in such
a second-order formulation. In that case, it is understood that the equation of motion (6.18)
has been used to solve for the spin-connection field Q in terms of the Vielbeine E,* and their
inverses E* 5. To solve this constraint it is convenient to introduce the notation

En? =0, En?, (6.27)

and to write the constraint (6.18) in terms of flat indices as
2Eagc — Qace + Ogca =0. (6.28)

Following the solution of the Christoffel symbol in general relativity, we add three times this
equation with the flat indices cyclic interchanged and multiply one of the three equations with
a minus sign. Adding up the three resulting equations leads to the solution

Opgc =2Eapc) + Epca or QAP = —2F ABI L EAB (6.29)
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The independent fields are then given by the Vielbein fields E,”* only. They transform
under general coordinate transformations and local lorentz rotations as follows:

SEN = EPNEN + 0 EAM + AMBELD. (6.30)

The general coordinate transformations are not affected by the NR limit we consider in subsec-
tion 6.3, they are the same before and after taking the limit.

6.2 Gauging non-lorentzian algebras

We next consider the non-lorentzian case. There are several non-lorentzian algebras we could
consider. As specific examples we will consider the Galilei algebra, its central extension called
the Bargmann algebra and the so-called Carroll algebra.

The Galilei algebra. Before discussing the Bargmann algebra that underlies the symmetries
of NC gravity, we will first, as a warming up exercise, shortly discuss the special case of the
Bargmann algebra with zero central extension, i.e. the Galilei algebra. In the next Chapter,
we will show how the symmetries corresponding to the Galilei algebra arise if one takes the
so-called Galilei limit of a real Klein-Gordon scalar field. Here, we will show how the Galilei
algebra can be obtained as a particular contraction of the Poincaré algebra and how the structure
constants of this Galilei algebra fix the transformation rules of the gauge fields under the Galilei
symmetries.

To show how the Galilei algebra is obtained by a contraction of the Poincaré algebra, we
first decompose the relativistic flat Lorentz index A into A = {0, a} with a = (1,...,d), and
redefine, using a contraction parameter w, the Poincaré generators according to

Po = w 'H, (6.31)
Joa = wGg, (6.32)

where H and G, are the generators of time translations and boosts, respectively. The generators
P, of space translations and |, of spatial rotations are not redefined. Next, taking the limit
w — oo we obtain the following Galilei algebra:

Uab, Pc] = 26(:[an} ) Uab, Gc] = 26c[aGb] 5
Uab: ]cd] - 46[a[d Ic}b] 5 [H: Ga] = Pa . (6'33)

Following [118], we next associate to each generator of the Galilei algebra a gauge field as
follows:

1
AuTE = TuH + ey *Pa + 5wy Jab + Wy Ga. - (6.34)

Using the general formula (6.3), the gauge fields transform as 1-forms under general coordinate
transformations while under spatial rotations with parameters A%y, and Galilean boosts with
parameters A® they transform as follows:

5t, = O, (6.35)
Sen® = A%ty +A%e.’, (6.36)
Swu® = (D), (6.37)
Swu® = (DA + A% w,". (6.38)

Here D, 1is the covariant derivative with respect to spatial rotations, e.g.,
(DuA)® = 9,A% — w, “pAL.
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The Bargmann algebra. Our starting point is now the centrally extended Galilei algebra which
is called the Bargmann algebra. The reason that we need to add one more generator to the
Galilei algebra, which has the same number of generators as the Poincaré algebra, is that in
the relativistic case energy is equivalent to mass but in the non-relativistic case energy and
mass are two separately conserved quantities. The corresponding Noether symmetries lead
to two generators in the Bargmann algebra: the time translation generator corresponding to
the conservation of energy and the central charge or mass generator corresponding to the
conservation of mass.

The Bargmann algebra can be obtained by performing a special Wigner-Inénii contraction
of the direct product of the Poincaré algebra given in equation (6.1) with a U(1) algebra with
generator Z. As a first step we make the following invertable redefinition of the relativistic
generators

1
POZEH“FG)Z, Mab = Jab > Mao = w Gg,
1 (6.39)
Pqa =Pq, ZZ*H_wZ’
2w

where w is a (dimensionless) contraction parameter and where we have decomposed the flat
space-time index A into a time-like O-index and spatial a-indices as A = (0, a). Note the
off-diagonal nature of the redefinitions. Would we have restricted to rescaling each generator
separately, we would only be able to obtain the Galilei algebra times U(1). Using the redefinition
(6.39), we find that the redefined generators, after taking the limit that w goes to infinity,
generate the following Bargmann algebra:

[Pa, ]bc] =204 Pe1> Uab: ]cd} =4d1alc Jav > (6.40)
[Ga: ]bC] :Zéa[b GC]) [H; Ga] :P(l) [Pa’ Gb} :6abZ,

where the generator Z has taken the role of the central charge generator.
We next associate to each generator of the Bargmann algebra a gauge field as follows:

1
AuTr =M+ €y *Pa + 5wy ab + Wy Ga + MuZ. (6.41)

Using the general formula (6.3), the gauge fields transform as 1-forms under general coordinate
transformations while under spatial rotations with parameters Ay, Galilean boosts with
parameters A® and central charge transformations with parameter o they transform as follows:

ot =0,
Sepn® =A% e + A%y,
5w, 4P =9, A 422l W, o), (6.42)
Swyu® =AY + A% Wy’ — w, A AC,
dmy =0,0+Aqe. .

Using the general formula (6.5) the curvatures corresponding to these gauge fields that trans-
form covariantly under these symmetries are given by

Ruv(H) = 23,7y, (6.43)
Riv®(P) = 29,64 — 2w, *Peypp — 2w, Ty, (6.44)
Raiv®®()) = 29,w4)*® + 2w, *“wy ., (6.45)
Riv®(G) = 20wy — 2w, *pwy®, (6.46)
Ruv(Z) = 20;m,y) — 2w, “eyiq- (6.47)
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Note that the curvature R~ (H) corresponding to T, does not contain any of the other gauge
fields. It therefore can describe an intrinsic torsion [74]. Imposing a constraint on this curvature
leads to a purely geometric constraint.? This is quite different from the conventional curvature
constraints, to be discussed below, that will be used to solve some gauge fields in terms of the
others. Instead of R, (H) we will sometimes use a notation in terms of the torsion tensor

Tu'v = a[HTV] . (648)

One may distinguish between the following three different cases:?!

Tuv =0 : zero torsion, (6.49)
Tapb =0 :  twistless torsional (6.50)
Tuv #0 :  general torsion. (6.51)

We have used here the projective inverse NR Vielbeine T+ and e", defined by
Tt =1, Tuetq=1"e, =0, e %eVq+TuT =0,". (6.52)
to convert curved indices into flat indices. For instance,
Tab =e"qeVp Ty - (6.53)

The zero torsion case defines a Newtonian spacetime with a codimension-1 foliation oz, equi-
valently, a preferred time direction t given by T, = 0, t. Any observer traveling along a curve
C from a time slice X, att =ta to a time slice Z;, at t = tg will measure a time difference
AT given by .
AT = J ’ dxMT, =t —ta, (6.54)
ta

independent of the curve C. The twistless torsional case leads to a spacetime with a hypersurface
orthogonality condition of the clock fucction t,,. Such spacetimes are encountered in Lifschitz
holography [3].

Using the projective inverses of the timelike and spatial Vielbein fields T, and e, the
so-called ‘conventional constraint’ equations®?

Ruv®(P) =Ry (Z) =0 (6.55)

provide precisely sufficient equations to solve the spin-connection fields for spatial rotations
and Galilean boosts in terms of the other independent gauge fields. For the zero torsion case
these gauge fields are solved, by doing a similar calculation as in the relativistic case (see after
equation (6.28)), as follows:

wuab('t, e,m)= —Zeu[ab} + eluceabC — Tumab , (6.56a)
w4 (t,e,m) = e 0 —euceo*  +m,“ — TumaO. (6.56b)

Here we have defined
em,a = amev]a B muv = 6[umv} . (657)

Furthermore, we have again used the inverse NR Vielbeine to convert curved indices into flat
indices. For instance
e =T ey . (6.58)

20The following discussion on the intrinsic torsion also applies when we gauge the Galilei algebra.
210ne cannot impose Ty, = 0 since such a constraint is not invariant under Galilean boost transformations.
22For the use of conventional constraints in gravity and supergravity, see, e.g., [117,119].
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We note that the transformation of the dependent spin-connection fields is identical to the
transformations of the independent spin-connection fields as given in eq (6.42), i.e.

b

b(r,e,m) = dw*”, dwp (T, e,m) =dw, . (6.59)

dwy @
This is due to the fact that the curvatures in the conventional constraint equations (6.55) do
not transform to any of the other curvatures under spatial rotations, Galilean boosts and central
charge transformations. From now on we will assume that the spin-connections are dependent
fields but we will not indicate their dependence anymore. Finally, we note that, by solving the
conventional constraints (6.55), we work by definition in a second-order formulation.
Sofar, we did not yet discuss the Po = (Pg, Pq)-transformations with parameters (1,n®) of
the gauge fields. According to the Bargmann algebra they are given by

Sty = Oum, (6.60)
de,* = Oun“ — wuabnb s (6.61)
dmy, = —wuam®. (6.62)

To show how these P-transformations are related to general coordinate transformations, we
consider the following general identity valid for any Lie algebra with structure constants f!j:

0=38gct(EMNAL + R =) S(EAV)ALS, (6.63)
{7}

where the index I labels the gauge fields A, ! and corresponding curvatures R, !(T) of the
gauge algebra. The sum in the last term is over all gauge fields. To see how this identity works,
let us set, for instance, I = a for the P,-transformations and consider the parameters

B =t™+e® or n=&, n%=E"%\". (6.64)

We can then bring the contribution of e, to the sum in the last term of (6.63) to the left-
hand side of the equation to obtain the following relation between a P,-transformation with

parameter ¢ and a general coordinate transformation with parameter £é* = e, n%:

Sp(nP)eft = 8gct(EM)ed + EMRun A (P) — Sm (£ wyP)ed . (6.65)

The same kind of identity holds for each gauge field that transform under a P-transformation,
i.e., in our case T, ,e,® and m,, see equation (6.60): one can relate the P-transformation
of these gauge fields to a general coordinate transformation plus other symmetries of the
Bargmann algebra by setting the curvature of these gauge fields to zero. Following this rule
we precisely obtain the zero torsion constraint (6.49) and the two conventional constraints
(6.55). Remarkably, these constraints allow us to solve for the remaining gauge fields, i.e. the
two spin-connection fields, and hence, as dependent gauge fields, they automatically have a
P-transformation that is related to a general coordinate transformation since this was already
proven for all the independent gauge fields.

We note that for non-zero torsion, the conventional constraints (6.55) do not transform
to each other anymore under all the symmetries of the theory. To achieve this, one needs to
add to these conventional constraints additional (independent) torsion tensors with the correct
transformation properties. This leads to a notion of torsional NC geometry that is discussed
in [120].

The Carroll algebra. Carroll symmetries emerge if one considers an ultra-local limit of general
relativity which is the opposite of taking a NR limit. At first sight this seems a strange thing to
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do. However, Carroll symmetries have shown up in several recent investigations in different
connections such as strong coupling limits of gravity [121,122], flat space holography [14],
black hole horizons [13], de Sitter cosmology and dark matter [99] and even fractons [82,123].
Here, for completeness, we shortly discuss the gauging of the Carrol algebra and point out
some differences with the Galilei algebra.

To define the contraction of the Poincaré algebra that gives rise to the Carroll algebra,
we decompose the A-index into A = {0, a} with a = (1,...,d), and redefine the Poincaré
generators according to

Po = wH, (6.66)
]Oa = wGgq, (6.67)
where H and G are the generators of time translations and boosts, respectively. The generators

P, of space translations and J 41, of spatial rotations are not redefined. Next, taking the limit
w — oo we obtain the following Carroll algebra:

Uab: Pc] - 25c[an] > Uab: Gc] - 26c[aGb] 5

Uab; ]Cd] = 46[a[d Ic]b] P [Pa; Gb] =0qpH. (6.68)

We next associate to each generator of the Carroll algebra a gauge field as follows:

1
ALTE =T H + e *Pa + 5wy Jab + Wy Ga - (6.69)

Using the general formula (6.3), the gauge fields transform as 1-forms under general coordinate
transformations while under spatial rotations with parameters A%, and Carroll boosts with
parameters A® they transform as follows:

0ty = en“Aq,
Sey® = A%e.’,
Sw,® = (DuA)°P, (6.70)
dw, ¢ = (Duh)a—i-?\abwub,

where D, is the covariant derivative with respect to spatial rotations. Note that, in contrast to
the Galilei algebra, T,, transforms under a boost transformation while e, ¢ is invariant. Another
important difference with the Galilei algebra is that the Carroll algebra does not allow for a
central extension.

Unlike the Galilei or Bargmann algebra, all Carroll curvatures contain a spin-connection
field. A priori such curvatures are part of conventional constraints, needed to solve for the
spin-connection fields, and, therefore cannot describe an intrinsic torsion like the tensor T in
the Galilei and Bargmann case. However, given the R, (P) curvature

Ruv(P) = ey — w[uabev]b , eyt =0ue " —0ven®, (6.71)

it turns out that the following boost-invariant projection K¢® = K?® does not contain any
spin-connection field:

Kb = thevlaR P (P) = te¥ (%, P (P). (6.72)

Using that te,,® = 0 one can show that K®? is nothing else as than the spatial components of
the extrinsic curvature:

Kab = €a"ep Ky, Kuv = ™ 0ahyuy + 0™ hay + 0y hay, (6.73)

: _ b
with hyy = e %ey°dqp.
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6.3 Taking limits

The aim of this section is to define the limits of general relativity that correspond to the non-
lorentzian algebras we defined in the previous section as Wigner-Inonii contractions of the
Poincaré algebra. Our main target is the Bargmann algebra but, for completeness, we will also
shortly discuss the limits corresponding to the Galilei and Carroll algebra leading to Galilei and
Carroll gravity, respectively.

Generically, to define a limit in all three cases, we will perform the following two steps:

* we make an invertible field redefinition writing all relativistic fields in terms of the
would-be fields of the limiting theory and a dimensionless contraction parameter w. The
invertibility implies that the number of fields before and after taking the limit remains the
same. The would-be limiting fields only become the true limiting fields after taking the
NR limit in the second step. Before this step we are just rewriting the general relativity
theory.

* FEither in the action or equations of motion we take the limit that w goes to co. We do
not allow divergent terms in the action. A noteworthy feature of several of the limits that
we will be taking is that they are based upon a cancellation of the leading divergence by
different contributions. The limiting action is given by all terms of order w®. Taking the
limit of the equations of motion the resulting equations of motion are given by the terms
of leading order in w. Independent of this we will also take the limit of the transformation
rules.

One should distinguish between taking limits from making expansions. In an expansion each
field is expanded as an infinite sum of terms of increasing powers of w~!. The leading terms in
such an expansion do not necessarily correspond a redefinition defining a limit. For instance,
in a post-Newtonian expansion of general relativity one does not introduce the additional field
M,,. Instead, m,, occurs as the sub-leading term in an expansion of E,,°. Some results about
limits can, however, be read off from making an expansion. For instance, the first leading term
in the expansion in w of a relativistic Lagrangian is always invariant under the corresponding
non-lorentzian symmetry [50,51].

Galilei gravity. We first consider the case of Galilei gravity. Using a first-order formulation, an
invariant action for Galilei gravity can be obtained by taking a specific NR limit of the Einstein-
Hilbert action. To define this limit, we redefine the gauge fields and symmetry parameters with
a dimensionless parameter parameter w as follows [51]:

E?l = wT,, Q?f = w_lwﬁ, (6.74)
ES = el, Q5 = wf®, (6.75)
Ale = Ipze, AQb — pab, (6.76)

Substituting the above field redefinitions into the Einstein-Hilbert action, redefining New-
ton’s constant Gn = wGg and taking the w — oo limit we end up with the following Galilei

action 1
SGal = —%JeRW“b(])eﬁeﬁ, (6.77)

where k = 8nGg and e = det (7, e,®) is the non-relativistic determinant. The projective
inverses T and e" transform under the Galilei boosts and spatial rotations as follows:

STH = —A%!, Selt = APelt. (6.78)
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One may verify that the Galilei action (6.77) is not only Galilei invariant but it also has an
emergent local scaling symmetry given by

T — AT, ed = Ax)ed, (6.79)

where A(x) is an arbitrary function. This emergent local scaling symmetry implies that there is
a so-called ‘missing’ equation of motion that does not follow from the variation of the Galilei
action (6.77). This missing equation of motion can be obtained by taking the limit of the
relativistic equations of motion. We will encounter a similar situation when discussing NC
gravity below.

For any d > 2 the equations of motion that follow from the variation of the Galilei action
(6.77) lead to the following constraint on the geometry

Tab = egengv =0. (6.80)

This constraint means that this geometry has twistless torsion.
For d > 2 the equations of motion can be used to solve for the spatial rotation spin
connection w,, *® as

4
Wi =T, A te (ep[“eb]"apef, +ePlaeclvy eb — ep[bechap(ﬁ) +t93 2eLaTb]O , (6.81)

except for A®° which is an undetermined anti-symmetric tensor component of w,, °. In the
second order formulation the constraint (6.80) arises from the variation with respect to AP,
Hence, we can interpret A®® as a Lagrange multiplier. Indeed, in the case d > 2, plugging
expression (6.81) into the action (6.77) to obtain it in a second order formulation leads to

1
Seal = 5 J e (Ruv®(Jeley| pav_g + A°Tap) (6.82)

This makes manifest the fact that the variation with respect to A®? of the second order action
in equation (6.82) reproduces the constraint (6.80).

The case d = 2 is special. In that case we may write w,*° = e*°w, and it turns out
that this w, cannot be determined from the field equations, i.e. there is no second-order
formulation. Also, in contrast to the d > 2 case, the equations of motion imply a stronger
geometrical constraint, namely the zero torsion constraint

ab ab

Tuv =0. (6.83)

Using the identity eeabeﬁeg = 2eM"VPt,, which is valid for d = 2, the Galilean action (6.77)
can be rewritten as

1
SGal3p = o J el dvwy. (6.84)

This form of the action makes manifest that its variation with respect to w,, precisely reproduces
the zero torsion constraint (6.83). We note that the Galilei algebra in d = 2 only allows for a
degenerate invariant bilinear form. The above action corresponds to the Chern-Simons action
for the Galilei algebra with this degenerate bilinear form. The degeneracy of the form explains
why not all fields occur in the action.

NC gravity We will now derive the equations of motion describing pure Newton-Cartan (NC)
gravity in d 4+ 1 dimensions by taking a specific non-relativistic (NR) limit of general relativity.

In the second-order formulation that we are using here, we need to express the relativistic
Vielbein field E,,* into the would-be non-relativistic fields of NC gravity, that we described in
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the previous subsection, in an invertible way using a contraction parameter. Inspired by the
standard Wigner-Inonu contraction of the Poincaré algebra we first write

£ =wr,, E % =e.%, (6.85)

where we have decomposed A = (0, a), w is a dimensionless parameter, T, is the clock function
and e, @ are the rulers. It is clear that this limit cannot give rise to NC gravity because in the
NR case energy is not the same as mass and hence we need two gauge fields, one for energy
and one for mass, that in the previous subsection we called T, and m,,, respectively. Indeed,
the NR limit defined by equation (6.85) gives rise to the Galilei gravity we discussed above.
The additional mass operator gives rise to a central extension of the Galilei algebra called the
Bargmann algebra. We saw in the previous subsection that, in order to obtain this Bargmann
algebra from the Wigner-Inonii contraction of a relativistic algebra, we must extend the Poncaré
algebra with an additional U(1) generator. In terms of gauge fields this implies that we should
extend general relativity with an additional gauge field M, before taking the limit. 2* In order
not to extend general relativity with extra degrees of freedom we impose by hand that the field
equation of M,, is given by the following zero flux condition >4

M,y = 0,My — 3y M, =0. (6.86)

Note that, without extending general relativity any further, this field equation does not follow
from a relativistic action and therefore the specific limit we are considering can only be taken
at the level of the equations of motion, i.e. the Einstein equations.

Given the extended general relativity theory, we consider the following redefinitions [124]:

1
B0 = wr, + %mu, E%=e.®, M, = wt, + %mu, (6.87)

where « is a real parameter related to the following field redefinition:

X omy (6.88)

Ty — Ty +
o S

From now on, we will take o« = 0:

a

1
E.0 = wty, + My, E.%=e,%, M, = wT,. (6.89)
Note that the relativistic inverse Vielbeine are redefined as follows

Eg:$1“+~~, Eta=eta+--, (6.90)
where the NR inverse Vielbeine t" and e", were defined in equation (6.52). We have only
given here the leading order redefinitions. The lower order dotted terms in (6.90) do not
contribute to the final answer when taking the NR limit.

As a simple example of how the limit works we consider the following Lagrangian describing
a relativistic particle of mass M:

S=-M J dt \/ —E AXMEVBX A — M X" (6.91)

The last term represents a coupling of the gauge field M,, to the particle via a Wess-Zumino
term. Substituting the field redefinitions (6.89) into this action and redefining the mass M

23We note that in a Post-Newtonian approximation of general relativity there is no need to add this extra gauge
field M,, since the lowest order terms in such an approximation do not need to constitute an invertible field
redefinition.

24Here and in the following we will indicate the equation of motion of a field with square brackets.
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with M = wm, we obtain, after taking the limit w — co and expanding the square root, the
following Lagrangian describing the coupling of a non-relativistic particle of mass m with
embedding coordinates X*(t) to a NC background [125]:

X e, X8 .
s—7 J dr { Su :V)_(p ab _ ZmHX“} . (6.92)
P

One can show that this action, due to the second term, is invariant under Galilean boost
transformations. For a flat spacetime with T, = 6, 0,e,% =6, = éui and m, = 0,c the

action reads o
v
m XX 65 )

Sﬂat spacetime — E J dt { % - ZC} P (6.93)
which describes the coupling of a massive particle to a Newton potential ®, which is in
accordance with equation (5.38) for R — oo.

We now consider the relativistic Einstein equations

_ 1 d+1 AruB
0S = 787‘[GN J' d xEOE,E (GlaB, (6.94)
with 1
[GlaB =RaB(Q) — ET]ABR(-Q) =0. (6.95)

This field equation is symmetric in the A and B since the Ricci tensor is symmetric 2°
RaB(Q) =Rpa(Q). (6.96)

Performing the field redefinitions (6.89) and (6.90) we find

0,0 — 2,00+ & b (6.972)
_O_HOa = w éBI»la + w_l(EJLa -+ ... , (697b)

where the w’s denote expansion coefficients of the relativistic spin-connection fields Q. The

. . . (0) 1) . . D .
special expansion coefficients w, *® and w, @ will serve as spin-connection fields in the non-
relativistic case and will be denoted by

(2) ab ab =1 g a
W =w*?, Wt =w, . (6.98)

We find that the different expansion coefficients are given by

W, = —7, TP (6.99a)
W, %P = —2e,%0 + e, —1,mab, (6.99b)
W,® = e, TP — 27, T, (6.99¢)
W =euo® —epceo® +my®* —1,m. (6.99d)
Here we have defined
euv® = 0rey?, Myy = 0[, My . (6.100)

Like before, we have used the inverse NR Vielbeine to convert curved indices into flat indices.

25This follows from inserting into the Bianchi identity for the curvature corresponding to the spacetime translation
generator the (conventional) constraint that this curvature is zero.
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We now substitute the expansions (6.97) of the relativistic spin-connection fields into the
Einstein equations (6.95) and the expansion (6.89) of the relativistic vector field M, into the
additional equation of motion (6.86). The leading terms in the expressions for the relativistic
spin-connection fields are all proportional to the torsion tensor T,. Upon inserting these terms
into the Einstein equations will lead to leading order and sub-leading order terms that are also
proportional to T,,. On the other hand, looking at the leading order term of the additional
equation of motion (6.86) we already conclude that the torsion is zero: T, = 0. Substituting
this zero torsion constraint into the expanded Einstein equations, we find that the leading order
terms of these equations are not anymore given by the terms proportional to the vanishing
torsion but instead by terms that involve the NR fields w, *®* and w,®. We thus find that
the different components of the relativistic Enstein tensor [G] A give rise to the following NC
equations of motion:

[Gloo : Roa®(G) =0, (6.101)
(Gloq : ROcaC(I) =0, (6.102)
[Glab : Racv(J) =0, (6.103)

where the curvatures for the Galilean boosts and spatial rotations have been defined in the
previous subsection. To derive these equations of motion, we have made use of the identity

Rab " (G) = Ropal(]), (6.104)

which follows from taking the NR limit of the relativistic identity (6.96).
In a flat Newtonian spacetime we have

T, =8,°, et =38,°, My =T, @, (6.105)

where O is the (time-independent) Newton potential. The only non-trivial spin-connection
field for this special case is given by wo® = 9¢® and the only non-trivial equation of motion
reads

Roa®(G) = 0qwp® = 040D =0, (6.106)

thus recovering the well-known sourceless Laplace’s equation for the Newton potential. The
restrictions (6.105) can be seen as gauge-fixing conditions for the diffeomorphisms restricting
to frames with constant acceleration only. The NC equations (6.101)-(6.103) can then be
viewed as the extension of the Laplace equation (6.106) to arbitrary frames.

Carroll gravity Finally, we consider the case of Carroll gravity.?® We will derive an invariant
action for Carroll gravity by taking the ultra-local limit of the Einstein-Hilbert action. To
define this limit, we redefine the gauge fields and symmetry parameters with a dimensionless
parameter w as follows [51]:%7

B, = o'lty, 0% = wlwf, (6.107)
Ed = el, Qs® = wib, (6.108)
A% = wTTAY, AP = 0P, (6.109)

Substituting the field redefinitions (6.107) and (6.108) into the Einstein-Hilbert action, rede-
fining Newton’s constant as G = w ™ 'G¢ and taking the w — oo limit, we end up with the

26For other recent work on Caroll gravity, see [53-56].
2’For a different approach to Carroll gravity, see [79].
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8

following Carroll action?

1

Scar = ~16nGe J e (21"eYR(G) v + etepR(]) v *P) . (6.110)

Here e = det (1, e, ®). The projective inverses T and et transform under boosts and spatial
rotations as follows:

5T =0, el = —A%TH + APell . (6.111)

The field equations corresponding to the first-order Carroll action (6.110) can be used to
solve for the spin connections

wu® = Tt e Ty + €YD Ty + SPep, (6.112)

W, = —2ep[“a[pe2]]+emep“e”a[pe$], (6.113)

except for a symmetric component $¢° = §(a®) = gr(ay,%) of the boost spin connection w,,
which remains undetermined.

Plugging the dependent expressions for the spin connections (6.112) and (6.113) into the
Carroll action (6.110) we obtain

1

Scar = " 16nGe

[ € (25€2R(6) ¢ lgan g+ lebRUI o + 2KaS — 268K S°4)

(6.114)
From this expression of the action it follows that the equation of motion for S*® implies that
Kab = 0. In other words, we conclude that S®? is actually a Lagrange multiplier that enforces
the intrinsic torsion constraint K, = 0 with K4, defined in equation (6.73). This corresponds
to the totally geodesic Carroll structure mentioned in section 4.3.4.

Finally, we note that in d = 2 the Carroll algebra can be equipped with a non-degenerate,
invariant bilinear form and as a consequence it is possible to write down a Chern-Simons action
for the Carroll algebra. This Chern-Simons action is precisely the same as the action given
above for d = 2.

7 Field Theories

In this section we will discuss the non-lorentzian (NL) field theories for a complex and real
massive spin-0 particle, a massive spin-1/2 particle and a massless spin-1 particle.?® There
are two approaches here. Either one takes the NL limit of the relativistic field theory in a flat
Minkowski background and after taking the limit one couples the theory to NL gravity or one
first couples the model under consideration to general relativity and next takes the NL limit of
the matter coupled to gravity system using the NL limits we derived in the previous section. We
will opt for this second option. In particular, for spin-0, we will discuss the Galilei, Bargmann
and Carroll limits while for spin-1/2 and spin-1 we will only discuss the Bargmann limit.

28This limit shows similarities with the strong coupling limit considered in [121], [122]. Note that both limits
lead to a theory with a Carroll-invariant vacuum solution. This suggests that, although looking different at first
sight, the result of the two limits might be the same up to field redefinitions.

2There is a huge literature on field theories with Galilean and Carrollian symmetries, see e.g. [126,127] for
some early references.
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7.1 Real Massive Spin-0

We first discuss the Galilei and Carroll limits of a real massive scalar field. This leads to the
following four cases:

spin-0 Galilei. We consider the following Lagrangian for a real scalar field:
—1 1 wOEvOo 1 narvb 1 2 M2
E Lrelz—i—EE E aud)avd)—EE E éabaud)aV(D—EeM o°, (7.1)

where € = +1 and € = —1 corresponds to a massive particle and a tachyon, respectively.
Performing the Galilei redefinitions (6.74) and (6.75), we obtain

_ 1 1 1
e 1 L = +5 7T T 00D — 5 e"9e¥?8,p0, 00, D — 5eMZcDZ, (7.2)

where e = det(t,, e, *) and where we have ignored an overall power of w.2° There are now
two ways to proceed. First, by choosing e = —1 and taking the limit w — oo, we obtain the
following ‘magnetic’ Galilei Lagrangian:

_ 1 v 1
e’ Lmagnetic Galilei = ) ete béabauq)avq) + §M2CD2 . (7.3)
The flat spacetime Lagrangian and the corresponding transformation rules are given by
. 1 2, 1y 000
Lmagnetic Galilei(ﬂat spacetlme) = _5 (ai(D) + EM o, (7.4)

and
5 = (€0, + E1Dy — A3y — WA 3, ). (7.5)

This limit was considered in the context of taking the limit of a tachyonic particle Lagrangian
[112] where it leads to the massless Galilei particle of Souriau with ‘colour’ M [45].

A second option is to first redefine ® = wp, M = w~'m and obtain the following Lag-
rangian:

1 1 1
e 1 L = +5 ™V, POy d — 5 w?ere¥P8,1,0,povd — Eequ)Z ) (7.6)

To deal with the quadratic divergence in the second term, we use a result of [33] and rewrite
the Lagrangian, introducing auxiliary fields x¢, as follows: 3!

_ 1 1 1
e 1 Ly = +3 TV, b0y D + Z—wzxaxQ +x%H 0,0 — Eemzq>2 ) (7.7)

Next, choosing € = +1 and taking the limit w — oo the auxiliary fields x* become Lagrange
multipliers and we obtain the following Lagrangian:

_ 1 1
e! Lelectric Galilei = +§ THTVaH(bav(b + Xaeuaaud) - Emzd)z . (7.8)

The flat spacetime Lagrangian and the corresponding transformation rules are given by

. 1 ; 1
Lelctric Galilei(ﬂat spacettme) = +§ (at(b)z + Xlaid) - Emzd)z P (79)

30Such an overall power can be cancelled by a further redefinition of the fields.
31The general expression is that for each X, the quadratic divergence w?X? can be rewritten, introducing an
auxiliary field x, as — 25 x* — 2xX.
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and

b — (c d+EHd —ALtd; AT ai)q>, oxt = (c de+E19—N £ 3;—IAK; ak)xiﬂi(atcp).
(7.10)

spin-0 Carroll. This case was recently considered in [99] in connection with dark matter and
inflation and in [53] using field theory in an Hamiltonian formulation. The two types of Carroll
limits considered here have also been considered in the context of p-brane sigma models using
a Lagrangian formulation [128]. The fact that there are two types of Carroll limits also follows
from the duality between the Galilei and Carrol symmetries considered in [35].

We consider the same Lagrangian for a real scalar field as in the Galilei case:

1 1 1
E 1L = +5 EHOEY0), 00, D — 3 EMOEYP5,,0, 00, D — 5eMZcDZ, (7.11)

but now perform the Carroll redefinitions (6.107) and (6.108). In this way we obtain
—1 1 2 W1 v 1 a,vb 1 2m2
e L = +§ w*ttv0, 00, D — 3 e"e¥P8,p0, D0, D — EeM (ORI (7.12)

where e = det(t,, e, ) and where we have ignored an overall power of w.

Like in the Galilei case, there are now two options to proceed. First, to deal with the
quadratic divergence in the first term, we rewrite the Lagrangian introducing an auxiliary field
x as follows:

_ 11 1 1
e 1 L= ) EXZ —xt™0, D — 3 e"e¥P5,,0, 00, D — EGMZ(DZ . (7.13)
Next, choosing € = —1 and taking the limit w — oo, we see that x has become a Lagrange

multiplier and we obtain the following magnetic Carroll Lagrangian:
—1 u 1 pa,vb 1 2m2
e~ Lmagnetic Carroll = —XT"0,, @ — 3 e"e¥’0,p0, D0, D + EM (O (7.14)

The flat spacetime Lagrangian and the corresponding transformation rules are given by

) 1 1
L magneric carroll(flat spacetime) = —x(3:®) — 5 (0: @)% + EM%DZ, (7.15)

and

5D — (c d+E1D;—Aix; 3 —IAL; ai)q), 5y = (c d+E10;—Aix; 3 —IAY ai)xﬂi(aiq)) .

(7.16)

A second option is to first redefine ® = %d), M = wm. We then choose ¢ = +1 and take
the limit w — oo after which we obtain the following Lagrangian [98]:

_ 1 1
€ ! Lelectric Carroll = +§ THTVaud)an) - Emzcbz . (7-17)

The flat spacetime Lagrangian and the corresponding transformation rules are given by [98]

. 1 1
€ ! Lelectric Carroll(ﬂat spacetlme) = +§ (atd))z - §m2¢2 s (7~18)

and
5 — (c d¢ + £19; — Alx; 9y — WA ai)q>. (7.19)

This concludes our discussion of the four limits of a real massive spin-0 particle.
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7.2 Complex Massive Spin-0

Following [124], we now discuss the standard Bargmann limit of a complex Klein-Gordon scalar
field in a curved background. In contrast to the real scalar discussed above the introduction of
an extra vector gauge field has the effect that the quadratic divergences cancel and there is
only one way to take the limit.

Our starting point is a Lagrangian for a relativistic massive complex scalar @, with mass M,
minimally coupled to an arbitrary gravitational background and the extra zero-flux U(1) gauge
field M,, that we introduced in the previous section:

MZ

B 1 .
E 1Lre1:_§ 9"V DL DV<D—7\<D|2. (7.20)

Here the covariant derivative is given by
D@ =0,0—iMM, ®. (7.21)

Apart from invariance under diffeomorphisms, the above Lagrangian is also invariant under a
local U(1) symmetry given by the transformation rule

3D =iMAD. (7.22)

The conserved current associated to this local U(1) symmetry, which is given by

it = 5 (0D 0 —oD*0r), (7.23)

expresses conservation of the number of particles minus the number of antiparticles.
Using the redefinitions of the previous section and redefining the mass parameter M as

M = wm, (7.24)

one finds that the O(w?) contribution to the Lagrangian cancels with one contribution coming
from the mass term and another one from the term that is quadratic in the U(1) gauge field.
Therefore, the w — oo limit is well-defined and leads to the following Lagrangian for a
Schrédinger field coupled to an arbitrary Newton-Cartan background:32:33

- iz N
T —— [5 (qa Do® — 0D, ) -5 |Da®|2], (7.25)

where we have defined
D, ® =03, +imm,®. (7.26)

The Lagrangian (7.25) is invariant under diffeomorphisms (with parameter &") and the local
U(1) central charge transformation of the Bargmann algebra (with parameter o), under which
O transforms as

3D =10, 0 —imod. (7.27)
One can then define the current associated to the central charge transformation by
: 1 [ = N
ibon o = THOR + et 5 (0" D0 — 0D 0" ) . (7.28)

32We have ignored an overall factor of w coming from the redefinition of E = we + O(w1!). This factor is
irrelevant as it amounts to an overall rescaling of the Lagrangian that could be compensated by a redefinition of the
scalar field.

33We have turned curved indices into flat indices using the inverse Newton-Cartan Vielbeine. Thus Dy, D are
shorthand for ™D, e*,D, . Spatial flat indices are raised and lowered with a Kronecker delta.
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When choosing a flat background

TH:(SL, et =0, e®=357, my, =0, (7.29)

this current corresponds to the usual current of particle number or mass conservation. We
thus explicitly see that, as expected for a non-relativistic limit, our NR limit procedure has
suppressed antiparticles.

It is instructive to look at the action on @ of the symmetries that are left when the flat
background (7.29) is chosen. The transformation rules (7.27) then reduce to those that
leave these flat background fields invariant. They are determined by the following NR Killing
equations

it =0, & +A =0,
. ' (7.30)
0i& +N; =0, 0to =0, 0;i0+ Ay =0.
The solution to these equations is given by
E'xM) =0, E(M) =& —At=AYd,  o(xM) =o— X, (7.31)

where the parameters (, &', Al, AV, o are now constants. These correspond to the usual
time translation, spatial translations, Galilean boosts, spatial rotations and central charge
transformation of the rigid Bargmann algebra. One thus finds that @ transforms as follows:

50 — (c 00+ &40y — AL tdy — 0N 0 —imo +imAX!) 0. (7.32)

The last term in this transformation rule corresponds to the phase factor acquired by a
Schrodinger field under rigid Galilean boosts, that is necessary to show Galilei invariance
of the flat space Schrodinger Lagrangian. We note that this same Schrédinger Lagrangian is
also invariant under an extra dilatation and special conformal transformation, that extend
the symmetries of the Bargmann algebra denoted in (7.32) to the ones of the Schrodinger
algebra [129]. So, even though we started from a relativistic theory with no conformal invari-
ance, we end up with a NR theory that is invariant under non-relativistic conformal Schrédinger
symmetries.

7.3 Massive Spin-1/2

Following [124], our starting point is the Dirac Lagrangian for a d = 3 massive spin 1/2 particle
described by a 4-component spinor ¥ coupled to an arbitrary gravitational background and the
U(1) gauge field M ,:

E 1L, = VDY — MWY + hec., (7.33)

where the covariant derivative is given by

1
DY =0,¥— ZQuAByAB‘PJriMMHW. (7.34)

Before taking the limit, it is convenient to define projected spinors in terms of the original
spinor as follows [130]:

W, — % (ﬂ iiyo)\lf, W, :\If% <ﬂ iiy0> . (7.35)
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Besides redefining the bosonic gravitational fields we also redefine these projected spinors as
follows [130]:

1
Y, =V, Y. = ﬁﬂ)—- (7.36)

Using all these redefinitions and taking M = wm, one finds that the action (7.33) upon taking
the w — oo limit reduces to

eilﬁnon—rel = 1L+VODO¢+ + d’—b—yaball)— + IL—YGD apy —2 mli)—ll)— +h.c., (7.37)

where we have used the covariant derivatives

. 1 .
Dby = by — 7 0 **yapbs —immuy,
1 1 (7.38)
Dy =0 — 4 wuabyabw— + 2 Wp Yooy —immy P .
Note that all divergences have canceled. The invariance of the Lagrangian (7.37) under Galilean

boosts is not manifest but can be checked by using the transformation rules

1 .
oy = P A Pyapby +imopy,

1w 1. . (7.39)
511)—217\ Yablb——EA Yaob4 +imoyp_,

that are easily found by applying all field redefinitions in the relativistic transformation rules
and taking the limit w — oo.

The equations of motion corresponding to the non-relativistic Lagrangian (7.37) are given
by the Lévy-Leblond equations

vY’Dov; + v Da— =0,

. (7.40)
Y*Daby —2mip_ =0.

The second equation can be used to solve for the auxiliary spinor {_ and eliminate it from the
Lagrangian (7.37). Substituting the solution for \_ back into the first equation we obtain the
curved space generalization of the so-called Schrédinger—Pauli equation:

- 1 ~ -
O —_— a f—
[y Do+ 5D Da]xp+ 0. (7.41)

7.4 NR massless spin 1

We now consider the massless spin 1 case. Our starting point is the Lagrangian of a real,
massless, relativistic vector field coupled to gravity:

1
E 1L, = ~Z EREPAERE P FivFoo, (7.42)

where F, is the usual Maxwell field strength. Like for the spin O case, one can take an electric
or magnetic Galilean limit of electrodynamics or even an electric and magnetic Carrollian limit.
We will only discuss here the magnetic Galilean limit since it shows the additional feature
of an emergent symmetry, something that does not occur in the spin-0 case. Redefining the
gravitational background fields like in the previous section leads to the following non-relativistic
Lagrangian

1 1
e_lLrel = _zszuTVFp.aFva - Z FabFab . (7.43)
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Taking the limit w — oo, we obtain for a flat spacetime

1 ..
Lnon—rel = _Z FijFU . (7~44)

Due to the absence of the field A this Lagrangian has an emergent Stueckelberg symmetry
dAo(x) = p(x) while the corresponding field equation of Ay does not follow directly from the
non-relativistic Lagrangian (7.44). The situation is very similar to what happens when taking
the limit of Neveu-Schwarz gravity where the Poisson equation of the Newton potential is
missing [131]. The missing equation of motion can be obtained by taking the limit of the
relativistic equations of motion. The complete set of non-relativistic equations of motion form
a reducible but indecomposable representation under Galilean boosts which means that the
equation of motion corresponding to A transforms to the equations of motion corresponding
to A; but not the other way around. This shows the following connection between the equation
of motion corresponding to Ay and the Lagrangian (7.44): the missing equation of motion
corresponding to Ay is not invariant under Galilean boosts by itself but, instead transforms
into the equations of motion that follow from the non-relativistic Lagrangian (7.44).

7.5 Massless Spin 1 with an additional scalar field

Allowing the option to add extra fields to the Lagrangian, there is yet another way to obtain
a non-relativistic Lagrangian from a relativistic one. To be precise, extending the relativistic
Lagrangian with a massless scalar p we consider the following Lagrangian [124]:

1 1

E 1L, = ~Z EREPAEYE PF v Foo — 5 EREY0,p0vp. (7.45)
Defining two fields A and B as follows:
A =EM9A, —p, B =EMyA, +p, (7.46)

one can redefine the bosonic background fields like in the previous section supplemented with

the redefinitions 1

A=A, B = wB, (7.47)
w
to obtain the following non-relativistic Lagrangian in the w — oo limit 3#
-1 I os s 1 5045 1 ab 1 =a B
e Lion_rel = 3 00B 0B + 3 D,AQ%B — 2 FapF*° — 5 D%Aq00B, (7.48)
where the following derivatives were used
DA = 0,4 + wa®Ad,
o 1 ~
DuAa = ap.Aa—(»UuabAb + E(,UMQB. (7.49)

Note that the basic variables are a spatial vector A , with spatial flat indices and two extra fields
A, B. These fields transform non-trivially under local spatial rotations and Galilean boosts as
follows:

SA = —A%Ag, §B=0,

1 -
8Aq = AgPAp — > ASB, (7.50)

34For a flat spacetime, the same Lagrangian can be obtained by a null reduction [132]. A ‘T-dual way’ to obtain
the same Lagrangean is to take a so-called string limit of Maxwell in one dimension higher and to reduce over the
spatial direction longitudinal to the string [133].
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while they transform as scalars under general coordinate transformations. It is with respect to
these transformations that the above derivatives (7.49) are defined. The Lagrangian (7.48) is
also invariant under the U(1) gauge transformation

SA = THO, A, §Aq = €M g0, A, (7.51)

although this invariance is not manifest.
To get a better physical understanding of the Lagrangian (7.48), we consider the equations
of motion when restricted to the flat background (7.29) (such that i = a):

'9;B =0,
;0B +d'F;; =0, (7.52)
0¢0{B —20'0;A +20,0'A; =0.

One can consistently set B to zero in these equations since this constraint is invariant under
all the symmetries of the theory. The remaining equations for A and A; then coincide with
the equations of Galilean electromagnetism in the magnetic limit, where A plays the role of
the electric potential. This theory is not only invariant under the Galilei group, but also under
the Galilean conformal group [129,134-136]. The latter is the conformal extension of the
Galilei group that is obtained by performing an Inénii-Wigner contraction of the relativistic
conformal group. Since the relativistic Lagrangian we started from is conformally invariant
when restricted to flat space, it is not surprising to see that the non-relativistic limit is invariant
under Galilean conformal transformations.

8 Conclusion

In this review we summarised the basic properties of a number of non-lorentzian theories.
We first discussed the kinematical spaces and corresponding symmetry algebras of these non-
lorentzian theories. We next constructed a number of actions describing the dynamics of
particles moving in these kinematical spaces. For this, we applied the method of nonlinear
realisations and explained the relation between this method and the coadjoint orbit method. We
have also analysed the non-lorentzian particles as a suitable non-relativistic limit of relativistic
particles. We also discussed three types of non-lorentzian gravity theories: Galilei gravity,
Newton-Cartan gravity and Carroll gravity. We not only showed how these gravity theories can
be obtained by applying a gauging procedure to an underlying non-relativistic Lie algebra but
also by taking a special non-relativistic limit of general relativity. Introducing matter, we discuss
the coupling of gravity to field theories describing particles of different spin. We achieved
this by starting from the relativistic field theories coupled to general relativity and taking a
non-relativistic limit.

There are several ways to extend the results presented in this review. As mentioned in the
introduction, one could extend the degenerate geometries we considered here to geometries
that are characterised by a foliation of a higher codimension. In particular, the geometries with
a codimension-2 foliation play an important role in describing non-relativistic string theory, as
in the article by Oling and Yan [21].
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