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Abstract

These are a brief set of lectures notes for lectures given at the Les Houches Summer
School in Theoretical Biological Physics in July 2023. In these notes, I provide an intro-
duction to some of the theoretical frameworks that are used to understand how the brain
makes sense of incoming signals from the environment to ultimately guide effective be-
havior. I then discuss how we can apply these frameworks to understand the structure
and function of real brains.
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1 Introduction

The brain is responsible for a myriad of different computations that enable animals to behave
effectively in an ever-changing world. The brain must sense signals in the environment, make
inferences and predictions about the causes and consequences of those signals, and must plan
and execute appropriate behavior based on those inferences and predictions.

One way that we try to test our understanding of such computations is by building artifi-
cial systems that can mimic the computations and behaviors of real animals. To date, our best
artificial systems pale in comparison to the capabilities of real brains (but large language mod-
els provide an interesting counterpoint); real brains continue to outperform our best artificial
systems. And yet, real brains have many limitations that artificial systems do not—limitations
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in speed and precision, and in energy use and storage capacity, for example. In order to
overcome these limitations, it is thought that brains have evolved smart strategies to exploit
the lawfulness of the world in order to achieve “good enough” performance. This can hap-
pen over many different timescales: over the course of evolution, development, learning, and
adaptation. This idea necessarily implies that there are better and worse solutions for exploit-
ing the lawfulness of the world to secure a performance advantage. One goal of theoretical
neuroscience is to understand the space of such solutions—how many there might be, their
advantages and disadvantages, and, ultimately, why biology might have persisted with one
solution over another. This involves understanding the possible functions of, and constraints
faced by, different biological systems.

In the following notes, I broadly organize these computations beginning with sensory input
and moving toward motor output. In between, the brain has to transform sensory input into
appropriate inferences, decisions, and plans of action. In the first section, I begin by discussing
some theoretical frameworks that are used to understand computation across animals and
brain regions. In the second section, I discuss how we can use these frameworks to try to close
the loop in a single system.

1.1 The normative approach

Before diving in, it’s worth briefly discussing the philosophical and methodological approach
that we will take throughout these discussions. Much of theoretical and computational neu-
roscience concerns itself with how the brain works: if I can give you a mathematical model
that accurately reproduces an experimental finding and makes testable predictions for new
experiments, I have understood something about how a certain biological process might un-
fold. A smaller swath of theoretical neuroscience concerns itself with understanding not just
how a process might unfold, by why it unfolds in this particular way. Why, of all of the possible
strategies that the brain could have adopted to solve a particular problem, is this the strategy
it adopted? There are many possible answers to this question, some of which could be ‘this is
just what evolution stumbled upon’. But in many cases, the putative answer to this question
helps us understand how a given strategy might be advantageous with respect to performing
a particular function, in a particular setting, and subject to a particular set of biological or
physical constraints.

To give a more concrete example: consider your own visual perception of the world. This
perception is something that can be measured and tested by asking you to discriminate dif-
ferent visual stimuli. By designing those stimuli in a way that isolates different statistical
properties of the world, it is possible to examine which properties of the visual world are easy
for you to see, and which are more difficult. This is the purview of the field of psychophysics.

For example, if you are presented with visual patterns hidden in a noisy background, you
could be asked to locate the pattern in the noise. The more accurately you can do this, the
better you are able to discriminate these patterns from random noise. It is possible to design
these visual patterns with certain statistical structure by enforcing certain multi-point corre-
lations in light intensity between nearby pixels [1, 2]. Now, if we pick a particular order of
correlation—say, 4th order—it turns out that people can easily discriminate some 4th order
patterns, but struggle to discriminate others, even though they have the same amount of sta-
tistical structure [3]. This is an empirical observation, and we could use this to build a model
that can reproduce this finding. But why it is that we should be better able to see some patterns
over others? Why those particular patterns?

The answer is that the patterns that we can easily discriminate are those patterns that are
most informative about our natural visual world [3, 4]. Were our visual world organized in
some different way, this would imply that we would be good at seeing different sets of patterns.
Just by knowing the statistical structure of the visual world, we can predict how sensitive
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Figure 1: The brain has to use its limited resources to make sense of signals in the
environment and guide appropriate actions.

a person will be to different types of visual patterns in the world, and we can do this in a
parameter-free manner. This same idea—that we should be most sensitive to sensory signals
that are most informative about our surroundings—has been used to explain a wide range of
neural and behavioral responses across different species and different sensory systems.

Implicit in this statement, however, is the fact that our sensory systems are constrained:
we have to prioritize some sensory signals, some visual patterns, over others. If we had infinite
resources, we would not need to prioritize—we would in principle be able to fully discriminate
any visual pattern from any other. So a more precise version of the previous statement is
that our sensory systems should use minimal resources to maximize the information that they
convey about the natural world in which we operate.

This is an example of a ‘normative’ statement: it postulates a goal or a function that a
system is trying to achieve (potentially at the expense of other goals). The mere fact that we
can propose and test normative statements reflects that fact that the world around us obeys
predictable laws that can be exploited by biological systems, and that these systems themselves
are limited in their ability to exploit these laws. If biological systems had infinite memory of all
past states of the world and could perfectly predict and access all future states, there would be
no need to prioritize some goals over others. Similarly, if the world were completely random
and unstructured, there would be nothing to prioritize. In this way, normative theories relate
the lawfulness of the world to the performance advantage that can be achieved by exploiting
that lawfulness. In formulating a normative theory, we postulate (i) a function to be performed,
(ii) a context in which that function will be performed, and (iii) a set of constraints on the
system that performs the given function in the given context. We then derive the optimal
solution for achieving this particular function in this context and subject to these constraints.
In the example above about our own visual sensitivity to different patterns, (i) the function
was to maximize information about incoming visual signals, (ii) the context was the natural
visual world, and (iii) the constraints were limitations in bandwidth (i.e., how many signals
could be reliably transmitted downstream).

In what follows, we will use this normative approach to consider how sensory systems
might optimally encode and infer features of the external environment, and how downstream
brain regions can in turn guide optimal behavior based on these inferences (Figure 1).

2 Frameworks that bridge systems

In this first section, we will briefly discuss three different normative theoretical frame-
works—efficient coding (Section 2.1), Bayesian inference (Section 2.2), and reinforcement
learning (Section 2.3)—that have been used to understand the computational processes in-
volved in sensory coding, inference, and action selection.
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2.1 Sensory coding

The world around us is full of different signals—patterns of light, sounds, smells—that we use
to make sense of our surroundings. At the very earliest stages of processing, the brain must
encode these external signals in internal ones. These internal signals are then used to build
our perceptions of the world, and make decisions based on them. It is remarkable that our
entire understanding of the world is created internally and is built from signals that are first
transduced in our peripheral nervous system.

From the perspective of the brain, external signals in the world are not directly accessible,
and can at best be disambiguated from the responses of neurons. This places limitations on the
accuracy with which the brain can “know” the actual state of the environment. To examine the
process of disambiguation, let’s take a brief detour to consider the following example (taken
from David MacKay’s book [5]), which might already be familiar to many readers: you are
given 12 balls that look identical, but one ball is heavier or lighter than the rest. You are given
one scale that can compare any two sets of balls. How do you determine which ball is the odd
ball, and whether it is heavier or lighter, in as few uses of the scale as possible? If you haven’t
already solved this problem before, it’s worth sketching out your solution before moving on.

Stated another way, the goal is to design a set of measurements to disambiguate a set of
hypotheses about the world as efficiently as possible (Figure 2). Here, there are 24 hypotheses
in total: there are 12 balls, and each ball could be heavier or lighter, for a total of 24 possibili-
ties. Each measurement corresponds to a usage of the scale, and there are 3 possible outcomes
per measurement: the lefthand side of the scale is heavier, lighter, or equal to the righthand
side. Thus, given 2 measurements, it is possible to disambiguate 32 = 9 hypotheses; given 3
measurements, it is possible to disambiguate 33 = 27 hypotheses. From this, we know that it
is possible to disambiguate all 24 of our hypotheses with a total of 3 measurements. The next
step is to design those measurements.

The most efficient way to design a measurement is to maximize the entropy over the set of
possible outcomes for that measurement. Here, by “most efficient”, we mean that the measure-
ment will reduce our uncertainty as much as possible, given the resolution of the measurement
device. This is an example of a normative statement: it posits an optimal solution (maximizing
the entropy over possible measurement outcomes) for a particular problem (disambiguating
a fixed set of hypotheses as quickly as possible) and subject to a particular set of constraints
(subject to the resolution of the measurement device).

For example, if we begin with 24 hypotheses and have 3 possible outcomes, we want to
assign 24/3 = 8 hypotheses to each outcome. One way to do this would be to divide our 12
of balls into 3 sets: balls 1-4 (set 1), balls 5-8 (set 2), and balls 9-12 (set 3). We can then
compare any two sets (e.g. sets 1 and 2). There are then three possible outcomes that evenly
break apart our hypothesis space:

1. Set 1 is heavier. There are then 8 remaining hypotheses: set 1 has the heavier ball (4
hypotheses), or set 2 has the lighter ball (4 hypotheses)

2. Set 1 is lighter. There are again 8 remaining hypotheses: set 1 has the lighter ball, or
set 2 has the heavier ball

3. Both sets are equal. Again, 8 remaining hypotheses: set 3 has the heavier ball, or set 3
has the lighter ball

I will leave it up to the reader to carry this logic through to design the remaining two sets of
measurements. When applying this measurement technique in succession, we can identify the
odd ball, and determine whether it is heavier or lighter than the rest, in the fewest possible
measurements (it’s easy to verify that a different measurement scheme would require more
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Figure 2: Designing measurements to disambiguate hypotheses (adapted from [5]).

than 3 measurements on average). This is precisely because we reduce as much as possible
our uncertainty about the unknown input—and gain as much information as possible about
that input—with the outcome of each successive measurement. However, had we been given
only a single measurement, we would not have been able to fully disambiguate the identity
and relative weight of the odd ball. For example, if we performed the single measurement
shown in Figure 2 and observed that the left side of the scale was heavier, we would at best
be able to say that one of balls 1-4 was heavier or one of balls 5-8 was lighter. This highlights
that our ability to disambiguate is limited by the resolution of our measurement device.

We can apply a similar perspective to the process of disambiguating signals in the brain.
For example, consider a neuron that acts as a device to measure incoming light signals. Given
some knowledge about the distribution of light signals that could be present in the environ-
ment, one can ask how to design the response function of the neuron to best disambiguate
these signals subject to the limitations of the device itself. If the neuron can produce a binary
output (e.g., it can spike or not spike), then this optimal response function should partition the
incoming distribution of light signals into two equal probability chunks, and assign one output
to each chunk. This would, for example, lead to a scenario in which the neuron spikes if the
incoming light signal is greater than the median of the distribution, and is silent if the incoming
signal is less than the median. By designing a response function that partitions the incoming
distribution into equal probability chunks, we are guaranteed that the entropy of the neural
response will be maximized given the distribution of input signals. This is often referred to as
‘histogram equalization’, because the histogram of neural responses will be flat. However, it’s
important to note that there are many ways to partition the distribution into equal probability
chunks, and thus we often have to invoke other constraints (such as continuity of the response
function) before comparing to biology.

This idea forms the basis of one of the most influential normative frameworks in neuro-
science: efficient coding. Efficient coding posits that sensory systems maximize the informa-
tion that they convey to downstream brain regions about incoming sensory signals, and in
doing so exploit the statistics of the environment in which an organism must function [6].
This hypothesis was first formulated by Fred Attneave [7] and Horace Barlow [8]. Given an
input message (here, our stimulus S) and an output message (here, our neural response R),
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Figure 3: Maximizing entropy about the distribution of incoming stimuli (adapted
from [9]).

Barlow hypothesized that the goal of the early nervous system is to maximize the information
that the output message conveys about the input message. The mutual information between
the input and output is given by:

I(R; S) = H(R)−H(R|S) , (1)

where H(R) is the entropy of the response, and H(R|S) is the conditional entropy of the re-
sponse given the stimulus (see Appendix A for derivation). In the limit of low input noise
(i.e., the stimulus is reliable), H(R|S) is close to zero, and maximizing mutual information is
equivalent to maximizing the entropy of the neural response. Barlow used this idea to define
a quantity called the ‘redundancy’, R, to be minimized:

R= 1−H(R)/C , (2)

where C is the capacity of the channel along which the messages are sent. It’s worth noting
that entropy maximization, or information maximization more broadly, does not concern itself
with how this information will be used downstream. In fact, Attneave discussed this as one
of the advantages of the efficient coding framework—that it could be used to understand the
first stages of sensory processing, without having to know the putative relevance of different
sensory signals [7].

More broadly, this idea can be used to derive the entropy-maximizing set of neural re-
sponses subject to different constraints on the response distribution (Appendix B). For exam-
ple, given a constraint on the total number N of discriminable responses that a neuron can
produce, the entropy-maximizing response distribution is flat (i.e., P(r) = 1/N ; this is our his-
togram equalization). Given a constraint on the mean firing rate µ of the neuron, the response
distribution is exponential: P(r) = exp(−r/µ)/µ. And given a constraint on the variance in
firing rate σ2, the response distribution is Gaussian: P(r) = exp(−(r −µ)2/2σ2)/

p
2πσ2.
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Figure 4: If the statistics of incoming sensory signals change over time, neural re-
sponses should adapt to the change.

Barlow’s hypothesis was first tested experimentally in 1981 by Simon Laughlin [9], who
showed that he could predict the responses of motion-sensitive neurons in the visual system of
the blowfly using only the distribution of light signals found in the natural environment (Figure
3). Since then, there have been numerous studies that have sought to understand different
aspects of sensory processing in terms of maximizing information about the distribution of
inputs that a sensory system encounters in its environment, or in terms of minimizing error
in the reconstruction of those inputs [6]. The optimal sensory coding scheme depends on the
specific statistics of the environment, the resource limitations and sources of noise within the
encoding scheme, and the specific objective function used to optimize the encoding scheme.
As a result, there is no single characterization of an efficient code. For example, in the limit of
low input noise, when incoming sensory signals are reliable, optimal coding strategies tend to
decorrelate these signals (consistent with Barlow’s redundancy reduction hypothesis). In the
limit of high input noise, optimal coding strategies tend to average incoming signals in order
to combat the adversarial effects of noise. These different coding regimes emerge from the
same underlying framework but under different assumptions, and are predicted at the level of
single cells [10–13], population codes [14,15], and behavior [4].

A key assumption underlying all of this work is that sensory systems have evolved to ex-
ploit the particular statistics of the environment in which an organism must function. If that
environment were to change, we would expect sensory systems to change as well—a point
that we will examine in the next section.

2.2 Inference

This section covers material from Młynarski & Hermundstad (2018) and (2021).

In the previous section, we discussed how sensory systems could have evolved to exploit the
statistics of the environment. This implies that if the environment were to change, sensory
systems should change with it (Figure 4). In this way, efficient coding has provided a normative
perspective on sensory adaptation [16,17].

However, the statistics that are most relevant for adapting to a change in the environment
are not necessarily the same as those that should be optimally encoded in steady state [18].
Moreover, the different sensory signals carry different relevance for downstream computations,
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Figure 5: Example nonstationary environment in which the mean (or variance) of a
Gaussian stimulus distribution switches between a low and high value over time.

which can necessitate different coding strategies [19]. In this section, we treat both of these
questions.

In the previous section, we considered how to best design a neural response function in
order to efficiently encode signals s drawn from a distribution P(s). We will now assume
that this distribution can be parameterized by a latent variable θ , such that we can specify
P(s|θ ) (we will also refer to θ as the “state” of the environment). For example, for a Gaussian
stimulus distribution, θ can paramterize either the mean or the variance of the distribution. We
can then compare a neural response function that maximizes the information about incoming
sensory stimuli (as discussed in the previous section) with a response function that maximizes
information about the underlying latent parameters of the distribution. In other words, when
designing the optimal response function, we can concern ourselves with disambiguating the
current sensory stimulus s or the underlying latent state θ .

The parameter θ is not observable, and thus its value must be inferred from incoming
sensory signals. Such a computations falls within the purview of Bayesian inference, which
specifies the statistically-optimal computation for inferring a latent variable from a set of mea-
surements. We will consider a simple case described above, in which θ specifies either the
mean or the variance of a Gaussian distribution. We will also assume that θ takes on one of
two values—a high value or a low value. Finally, we will assume that the environment can
dynamically switch between these two different values with a small but fixed probability h
per timestep (Figure 5). At each timestep t, a signal st ∼ p(·|θt) is sampled from a distribu-
tion parameterized by θt . This setup mimics one that is widely used in sensory neuroscience
to study the dynamics of adaptation to changes in the mean and variance of sensory stim-
uli [16,17,20–23]. The goal of the inference, then, is to use the history of past sensory signals
sτ≤t determine whether θt is high (θt = θH) or low (θt = θ L) at a particular timestep.

To illustrate the inference process, we will derive an “ideal observer” that has certain knowl-
edge about the environment, and can use this knowledge to optimally perform the inference.
In this setting, we will assume that the observer knows (1) that the environment exists in one
of two states (high or low); (2) the identity of the two states (i.e., the values θH and θ L); (3)
the switching probability h; (4) the form of the stimulus distribution; and (5) the values of
all remaining parameters of the stimulus distribution (i.e., if θ parameterizes the mean of the
Gaussian distribution, we assume that the ideal observer knows the variance of that distribu-
tion; if θ parameterizes the variance, we assume that the ideal observer knows the mean). In
other words, the observer is armed with a great deal of prior knowledge; the only thing that
the observer does not know is the current value of θt , and the specific signal that will be sam-
pled from p(s|θt). To infer θt , the ideal observer can use the history of observed signals sτ≤t
to construct the posterior distribution P(θt |sτ≤t) (also called the “posterior belief”, or “belief
distribution”):

P(θt |sτ≤t) =
1
Ω

P(st |θt)
∑

θt−1

P(θt |θt−1)P(θt−1|sτ≤t−1) , (3)
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where

P(θt |θt−1) =

¨

(1− h) , θt = θt−1 ,

h , θt ̸= θt−1 ,
(4)

specifies the probability that the environment switched states at time t, P(st |θt) is the stim-
ulus distribution, and Ω is a normalization constant (see Appendix C for a derivation of this
distribution). For an environment that consists of only two states (θ L and θH), the poste-
rior distribution is defined over two values, and can thus be specified by a single number
P L

t ≡ P(θt = θ L|sτ≤t) that specifies the probability that the environment is in the low state
(and we can use this to compute PH

t = (1− P L
t )). We can use this to rewrite the posterior as:

P L
t =

1
Ω

P(st |θt = θ
L)
�

(1− h)P L
t−1 + h(1− P L

t−1)
�

. (5)

From this expression, one can see that the posterior belief that the environment was in the low
state at time t depends on the prior belief at time t − 1, weighted by the probability that the
environment stayed in the low state, and by the likelihood of sampling the observed signal st
in the low state.

We can use this belief distribution to construct a point estimate θ̂t of the current state θt ,
for example by computing the mean of the posterior:

θ̂t = 〈P(θt |sτ≤t)〉θt

= θ L P L
t + θ

H(1− P L
t ) .

(6)

We choose this, rather than the maximum a posteriori probability (MAP) estimate, because this
is the optimal point estimate that minimizes the mean-squared error between θt and θ̂t [24].
More generally, in higher dimensional settings, a point estimate serves as a compact summary
of the full posterior distribution.

Standard Bayesian inference assumes that the sensory signal st is directly used to update
the posterior belief P(θt |sτ≤t). However, as discussed in the previous section, any incoming
sensory signals must be encoded in neural responses before they are used to perform any
downstream computations. Because neurons have finite precision and bandwidth constraints,
there is necessarily loss in this encoding step. As a result, the choice of encoding schemes will
impact any downstream inferences (Figure 6).

To mitigate the negative impact of the encoding, we can design an encoding code scheme
that preserves information about the incoming stimuli that is relevant for updating the poste-
rior belief. For example, consider an encoder with a response function of the form:

rt(st ; k, s0) =
1

1+ exp (−k(st − s0))
+η , (7)

where the parameters k and s0 respectively control the slope and offset of this sigmoidal func-
tion, and η is additive noise (alternatively, we can discretize the output rt into a set of N
discriminable response levels, analogous to the encoding scheme discussed in Section 2.1).
This response function has finite resolution that it can devote to incoming signals; because of
the saturating nature of this response function, signals that are sufficiently large or small will
not be distinguishable from one another. The output of this response function, rt , can then be
decoded to construct an estimate ŝt of the incoming sensory signal. For the purposes of this
discussion, we will assume that we can construct and optimize a simple linear decoder to get
the estimate ŝt . The Bayesian observer must then construct a posterior belief P(θt |ŝτ≤t) built
from the history of past signal estimates, rather than directly using the history of true signal
values.
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Figure 6: Different architectures of efficient coding and Bayesian inference.

One advantage of choosing a parameterized encoder is that we can directly optimize the
parameters k and s0 of the encoder (as well as the parameters of the linear decoder). For
the sake of illustration, we will consider two different objective functions for optimizing these
parameters:

argmink,s0




(ŝ− s)2
�

P(st |θ̂t )
(8)

and
argmink,s0


 �

θ̂ (s)− θ̂ (ŝ)
�2 �

P(st |θ̂t )
. (9)

The first of these objective functions prioritizes an accurate estimate of incoming sensory sig-
nals by minimizing the “reconstruction error”; the second of these objectives prioritizes an
accurate estimate of the latent state of the distribution from which the signals were generated
by minimizing the “inference error”. In contrast to typical formulations of efficient coding,
which optimize the encoder based on the true distribution of incoming stimuli P(st |θt), both
of these objective functions optimize the encoder based on the current belief about the incom-
ing stimulus distribution, P(st |θ̂t) [18, 19]. As a result, any inaccuracies in this belief will
shape the current encoding scheme, and any inaccuracies in encoding will in turn shape the
evolution of the posterior belief. This can be viewed as a form of adaptive coding, where the
output of the encoder is used to update the posterior belief, and the posterior belief is used,
in turn, to adapt the encoding on the next timestep. Moreover, rather than using the current
estimate θ̂t to update the encoder, a better strategy is to use a prediction θ⃗t+1 about the state
of the environment at the next timestep, and optimize the encoder based on the distribution
P(st |θ⃗t+1) (note that here and in the following paragraph, we use vectors to denote point pre-
dictions at time t + 1). The point prediction θ⃗t+1 can be obtained analogously to the point
estimate θ̂t , using the predicted posterior:

P(θt+1|sτ≤t) =
∑

θt

P(θt+1|θt)P(θt |sτ≤t) . (10)

As should be expected, the two objective functions in Eqs. 8-9 lead to different optimal pa-
rameters depending on the current prediction θ⃗t+1. Since this prediction is varying in time,
the optimal encoding parameters will also vary in time (Figure 7). This can easily be seen
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Figure 7: Optimal tuning curves (far left schematic) adapt based on uncertainty,
shown for mean adaptation (top row) and variance adaptation (bottom row).
Adapted from [18].

through numerical optimization. For example, the first objective function leads to an encoder
that tracks the current prediction of the incoming stimulus distribution: the optimal offset
tracks the predicted mean of the stimulus distribution, s∗0 = µ⃗t+1, and the optimal slope tracks
the inverse of the predicted standard deviation of the stimulus distribution, k∗ = 1/σ⃗t+1. As
a result, these parameters vary continuously with the current posterior belief (blue curves in
Figure 7). In the limit that the observer is certain about the current state of the environment
and maintains a correct estimate of that state, the encoder is aligned with the true incoming
stimulus distribution, and prioritizes accurate encoding of stimuli from that distribution, anal-
ogous to classic efficient coding. However, when the state of the environment changes, the
current encoder is misaligned with the new distribution, and can thus be slow to detect and
adapt to a change. As a result, when averaged over time, this strategy often suffers from higher
reconstruction error than a strategy that is optimized for inference. This highlights the fact
that an encoding that performs optimal reconstruction of sensory signals does not necessarily
support optimal adaptation to changes in the distribution of those signals.

In contrast, the second objective function is optimized for inference and leads to an en-
coder whose parameters vary discontinuously with the current prediction of the incoming
stimulus distribution (green curves in Figure 7). The resulting encoder performs a form of
uncertainty-dependent change detection: when the observer is certain about the current state
of the environment (and maintains a correct estimate of that state), the encoder shifts its fi-
nite resolution away from the true stimulus distribution, in anticipation of changes that might
occur in the future. When the state of the environment changes and the observer becomes
more uncertain, the encoder takes a form that can best discriminate that change: for mean
estimation, the optimal encoding function is sharp and centered between the two candidate
distributions; for variance estimation, the optimal encoding function is shifted toward the tail
of the high variance distribution (if more certain of the high variance state) or centered about
the low variance distribution (if more certain of the low variance state). As a result, this en-
coder is less accurate in steady state, but more sensitive and faster to adapt to changes, and can
achieve lower average reconstruction error than a strategy that is optimized for reconstruction.
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Figure 8: Optimal neural dynamics exhibit qualitative features of “adapting” (left)
and “sensitizing” (right) retinal ganglion cells in response to switches in stimulus
variance (adapted from [18]).

As highlighted in the previous discussion, both of these strategies are optimized greedily
based on the observer’s current knowledge of the environment, and exhibit different tradeoffs
in performance. One might therefore wonder whether it is possible to leverage the advantages
of both strategies. To explore this question, one can form composite codes that balance these
two objectives:

argmink,s0
α



(ŝ− s)2
�

P(st |θ̂t )
+ (1−α)

 �

θ̂ (s)− θ̂ (ŝ)
�2 �

P(st |θ̂t )
, (11)

where α ∈ [0, 1] is a parameter that balances reconstruction and inference errors. For many
different assumptions about the stimulus distributions and their dynamics, the optimal encoder
balances these two sources of errors, with an optimal value of α that is between 0 and 1
(see [18] for specific examples). This finding suggests that optimally reconstructing signals
in nonstationary environments requires devoting some bandwidth to detecting changes in the
underlying distribution of those signals.

This also provides a normative perspective on the temporal dynamics of sensory adaptation
(Figure 8). Sensory codes that are optimized for reconstruction versus inference show differ-
ent temporal dynamics that mimic those observed in so-called adapting and sensitizing retinal
ganglion cells in the salamander, mouse, and primate [22, 25, 26]. Moreover, this framework
predicts that slower environmental dynamics (smaller values of h) will lead to slower adapta-
tion, because the ideal observer requires more stimulus samples to be convinced of a change.
As a result, the predicted timescale of adaptation scales with the periodicity of changes in the
environment, consistent with experimental observations in the fly, mouse, rat, and electric
fish [17,21,27,28].

2.3 Action selection

This section covers material from Ma & Hermundstad (2024).

In the previous sections, we saw how compressed sensory signals (conveyed through a
resource-constrained encoder) could impact the inference of latent environmental states, and
how this inference, in turn, could be used to dynamically adapt the encoder over time. We
formulated this problem in a passive setting, where we did not consider how the inference
process impacted the downstream selection of actions. We will now consider an active setting,
where inferences guide the selection of actions, which in turn impacts which sensory signals
will be gathered in the future.
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Figure 9: In a example of a nonstationary two-armed bandit task, an agent can sam-
ple one of two reward ports (‘+’ and ‘−’) whose reward probabilities are determined
by a latent state θ that can switch over time.

We will again consider a scenario in which the environment can take on one of two different
states, θt ∈ {θ+,θ−}, that can change with a small but fixed probability h per timestep, as given
in Eq. 4 (note that we have changed our notation from H, L to+,− for convenience). However,
rather than using this state to specify the parameters of a stimulus distribution, we will take this
state to specify the probability of rewards at two different ports that can be sampled by an agent
(Figure 9). This is an example of a “nonstationary two-armed bandit” task (more generally
referred to as a dynamic foraging task) in which an agent is faced with two different levers, or
“bandits”, that deliver rewards with different probabilities. In a nonstationary setting, these
probabilities change over time, and thus the agent is best served by using its past observations
to infer which of the two levers is more rewarding at a particular time. In the simplest version
of this task, the observations o ∈ {o+, o−} are binary: with each lever pull, the agent either
receives a reward (o = o+) or receives nothing (o = o−). This type of task has been used
to study decision making in many different species, including humans [29, 30], non-human
primates [31,32], rodents [30,33–36], and flies [37].

At each timestep, the agent has the option of selecting one of two actions, a ∈ {a+, a−},
that correspond to sampling one of the two levers. When the environment is in state θ+, the ‘+’
lever is more rewarding, and thus the agent should select action a+; when the environment
is in state θ−, the ‘−’ lever is more rewarding, and the agent should select action a−. We
assume that the more rewarding port delivers reward with probability phigh, and that the less
rewarding port delivers reward with probability plow. The reward probability can then be
written as:

p(o | θ , a) =
1+ o (θ a∆p+∆p)

2
, (12)

where ∆p = phigh − plow, p = (phigh + plow)/2, and ∆p̄ = 2p̄ − 1, and where we make use of
the following:

a ∈ {a−, a+}= {−1, 1} ,
o ∈ {o−, o+}= {−1,1} ,
θ ∈ {θ−,θ+}= {−1,1} .

(13)

This task is an example of a partially observable Markov decision process, or POMDP. The
optimal actions in this task can be derived via two separable steps: (1) using Bayesian inference
to derive the ideal observer that optimally infers a belief u about the current environmental
state, and (2) using reinforcement learning to derive the optimal behavioral policy π∗(a|u),
which specifies the optimal actions given the current belief [38–40] (see Appendix D for a brief
primer on reinforcement learning; for a more in-depth treatment, see Massimo Vergassola’s
lectures from the same 2023 Les Houches Summer School in Theoretical Biological Physics).
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As in the previous section, we can derive the ideal observer model that optimally infers
the current environmental state based on its prior knowledge. We assume that the observer
knows (1) that the environment exists in one of two states (+ or −); (2) the values of phigh and
plow; and (3) the switching probability h. The goal of the inference is then to use the history
of past observations oτ≤t and actions aτ≤t to determine the current state θt . Following the
derivations in Appendix C, we can write:

p(θt | aτ≤t , oτ≤t) =
1
Ω

p(ot |θt , at ,���aτ<t ,���oτ<t)p(θt |��at , aτ<t , oτ<t)

=
1
Ω

p(ot |θt , at)
∑

θt−1

p(θt |θt−1)p(θt−1|aτ<t , oτ<t)

=
1
Ω

∑

θt−1

p(θt |θt−1)
︸ ︷︷ ︸

world dynamics

p(ot |θt , at)
︸ ︷︷ ︸

reward delivery

p(θt−1|aτ≤t−1, oτ≤t−1)
︸ ︷︷ ︸

prior at time t−1

.

(14)

To simplify the final expression of the belief, we define ut to be the difference in belief values
between the two states:

ut ≡ P(θt = θ+|oτ≤t , aτ≤t)− P(θt = θ−|oτ≤t , aτ≤t) . (15)

Using this, together with the results from Eq. 12 for p(ot |θt , at , ot) and Eq. 4 for p(θt |θt−1),
we can write the belief as:

ut = (1− 2h) ·
at ot ∆p+ (1+ ot∆p) ut−1

at ot ∆p ut−1 + (1+ ot∆p)
. (16)

Given the belief u, we can then determine the optimal value function v∗(u) that specifies how
‘good’ it is (in terms of future accumulated rewards) to maintain a particular belief u (see
Appendix D for a discussion of value functions). We do this using a technique called value
iteration [40] that iteratively updates the value function over time based on the outcomes of
different actions (note that we first must discretize u before performing value iteration):

vt(u) =max
a

∑

u′,o

p(u′, o | u, a)
�

o+ (t − 1)vt−1(u
′)
�

/t

︸ ︷︷ ︸

q(u,a)

.
(17)

Note that this is modified from standard value iteration to include a running average of ex-
pected reward [41]; see Eq. D.11 for the standard form. Analogously to the value function
v(u), the action-value function q(u, a) quantifies the value of taking a particular action a given
a particular belief u. These value functions stabilize to their optima relatively quickly; we can
then use them to specify the optimal policy:

π∗(a|u) = argmaxa q∗(u, a) = sgn u . (18)

Note that this corresponds to a purely greedy policy given the current belief:

agreedy ≡ argmax
a
〈r(o | u, a)〉

= argmax
a

p(o = o+ | u, a)

= argmax
a

1+ a ∆p u+∆p
2

= sgn u .

(19)
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Figure 10: Top row: we can create a compact agent by transforming an optimal
Bayesian agent into a discrete Markov chain that specifies actions conditioned on
past outcomes. Bottom row: by varying the elements of the Markov chain, there
are many ways to build compact agents that achieve good performance (adapted
from [41]).

This illustrates how we can use an optimal belief, derived through Bayesian inference, to de-
termine the optimal actions conditioned on that belief. In contrast to the previous section,
here we assume that the agent can precisely measure observations in the environment (a rea-
sonable assumption if, as in this case, the observations are binary). However, this also assumes
that agent can precisely track its current belief. Just as we explored how the compression of
incoming sensory signals impacts inference, so too can we consider how the compression of
an internal belief can impact the action selection process. However, as soon as we attempt
to compress the belief u, there is no guarantee that the optimal (compressed) policy can be
derived via the two separable steps of deriving the ideal observer model and deriving the op-
timal policy conditioned on the observer model. In fact, there are many compressed policies
that achieve near optimal performance [41] (see [42] for a general treatment of the tradeoff
between optimal performance and computational complexity).

To see this, consider discretizing the belief update in Eq. 16 under the optimal policy in
Eq. 18 (Figure 10). This update can be transformed into a Markov chain that consists of n ∈ N
states corresponding to each of the discretized belief values. These states can be labeled ac-
cording to the actions that they specify; all states with u(n) > 0 are labeled +, and all states
will u(n) < 0 are labeled −. There are 2N transitions between states, corresponding to the
two observations that can be obtained from taking the action specified by each state; these
transitions can be determined from Eq. 16. In the limit as N →∞, this Markov chain will
approximate the optimal belief update and action selection. However, in the limit that N is
finite, the Markov chain can deviate significantly from the optimum, depending on its archi-
tecture. For N small, we can directly enumerate all possible Markov chains and compare their
performance. For N states, there are at most 2N N2N possible Markov chains (corresponding
to 2 labels for each of N states, times N target states for each of 2N possible transitions). For
N = 5 states, this amounts to a whopping 312, 500,000 possibilities. Luckily, 99.9% of these
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are repeats that generate identical behavior under the symmetric task that we’ve considered;
a total of 263, 428 are unique. This is still a staggering number; again, luckily for us, only a
fraction of these—on the order of 5, 000—exhibit high performance. Of these, only a small
fraction exhibit behavior that can be interpreted analogously to the belief update of a Bayesian
agent [41]. Thus, by considering compact systems that have limited resources for perform-
ing inferences and guiding actions, we can discover a myriad of solutions that achieve good
performance.

2.4 Summary

In this section, we have introduced some key normative frameworks—including efficient cod-
ing (Section 2.1), Bayesian inference (Section 2.2), and reinforcement learning (Section 2.3)—
that have been used to understand optimal sensory coding, inference, and action selection.
These frameworks allow us to understand the nature of computations that generalize across
species, brain regions, and modalities. We have also seen examples of how these frameworks
inform and constrain one another: for example, in Section 2.2, we saw how different sensory
coding schemes impact the process of inference, and how inference, in turn, can be used to
guide adaptive coding schemes; in Section 2.3, we saw how optimal inferences can be used to
select actions in uncertain and changing environments, and how compact representations of
those inferences can yield a diversity of different strategies for guiding effective behavior.

In the next section, we will use these approaches to understand neural dynamics and be-
havior in a specific system, and we will follow a set of computations from the encoding of
sensory stimuli to the selection of actions (and back).

3 Closing the loop in a single system

We now consider a specific system—visually-guided navigation and learning in the fruit fly—
where we can, in principle, follow an entire stream of computations, from the encoding of
sensory stimuli, to their use in building and modifying internal representations of stored vari-
ables, to the selection of actions based on these internal representations. Flies have a rea-
sonably rich behavioral repertoire that allows us to study how behavior changes over time in
response to new experience. Moreover, there is a massive genetic toolkit that enables us to
monitor and manipulate specific cell types during behavior. Finally, with the recent release of
a synaptic-level connectome, it is now possible to relate the physiology of these cell types to
their morphology and connectivity.

For the purposes of this discussion, we will consider a class of behaviors in which flies asso-
ciate rewards and punishments with stimuli that signal different locations in the environment,
and use these associations to modify their behavior over time, for example to navigate to good
locations or away from bad ones. As an agent in such an environment, this type of navigation
is enabled by knowing (A) where you are, (B) where you want to go, and (C) how to get from
A to B. In what follows, we will consider how these quantities are represented in the brain and
updated based on experience.

3.1 Using sensory stimuli to build accurate internal representations

This section covers material from Noorman, Hulse, Jayaraman, Romani, & Hermundstad (2022)
and Kim, Hermundstad, Romani, Abbott, & Jayaraman (2019); see also: Fisher, Marquis,
D’Alessandro, & Wilson (2019).

We begin by asking how an animal knows where it is—i.e., how the brain keeps track of where
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an animal is relative to its surroundings. This is something that many animals do effortlessly.
For example, if I asked you to close your eyes, and with your left index finger, point to the door
that you used to enter the room you’re currently in—you would be able to do this without any
external sensory signals, and without knowing in advance that this is something you’d have
to remember upon entering the room. Our brains use sensory signals to build maps of our
surroundings, and we can use these maps ‘offline’ when we no longer have direct access to
those signals.

For several decades now, we have had a theoretical framework that explains how a network
of neurons might build and maintain an internal sense of direction [43–51] (see [52–55] for
recent reviews). The theory of ‘attractor networks’ posits that a population of neurons can en-
code and update internal representations of a variable (such as which direction you’re facing)
through their recurrent activity. To give some intuition for how this could work, consider build-
ing a neural compass, made from a population of neurons, that keeps track of your current
direction. There are a few key requirements that we might have for this compass: (1) we want
one single compass needle (no more, no fewer), (2) we want the needle to move when we
turn, and (3) we want the needle to stop when we stop turning. We can build such a compass
with a population of neurons that respond to different orientations; i.e., when you’re facing
north, one group of neurons responds, and when you’re facing east, another group responds.
If we arrange these neurons along a ring based on this tuning, then we can figure out how to
connect these neurons together to meet all of the requirements listed above. To build a single
compass needle, we can connect nearby neurons on the ring with local excitatory connec-
tions...but if all neurons locally excite their neighbors, then any activity in one position along
the ring will spread to fill the entire ring, and we will lose our compass needle. To prevent this
from happening, we can have neurons broadly inhibit distant neurons around the ring; this
will keep any activity localized in one region of the ring. With these two ingredients—local
excitation and broad inhibition—we can create a single compass needle in the form of a local-
ized bump of neural activity (Figure 11). This motif of local excitation and broad inhibition
is observed in many different biological settings. In cortical circuits, for example, a tight bal-
ance between excitation and inhibition is thought to be important for shaping neural response
properties [56], and such “balanced networks” have been proposed to enhance coding effi-
ciency and capacity [57]. More broadly, the so-called local excitation, global inhibition (LEGI)
model has been used to describe how chemotaxing cells can generate an internal (signalling)
compass by spatially regulating the activity of signalling pathways [58]. In our context, we
use local excitation and broad inhibition to show how networks of neurons can generate an
internal (neural) compass by maintaining a persistent bump of neural activity.

To move this bump of activity, we need to invoke additional mechanisms: we can do this by
including additional inputs to the ring that are tuned to angular velocity, and that effectively
‘push’ the bump around the ring when turning right or left. And to keep the bump still when
those inputs are removed, we need to ensure that the activity pattern that holds the bump
is stable, and can persist at the same orientation along the ring without any external inputs.
Theoretically, this typically requires that we use an infinitely large population of neurons to
build the compass (see [44, 49, 50, 59] for studies that use large networks to approximate
the precision of infinite networks, and [60–62] for studies that highlight failure modes of
small networks). However, biology seems to be able to construct a neural compass from only
a handful of neurons. The fruit fly, for example, maintains an internal sense of direction
in a donut-shaped brain structure called the Ellipsoid Body (EB). A population of “compass
neurons” maintains a persistent bump of activity that encodes the fly’s current heading [63],
and that can be updated by integrating the fly’s angular velocity [61, 64] (Figure 12). The
connectivity [65, 66] and dynamics [67, 68] of this network are consistent with theoretical
accounts of a continuous attractor network, with one notable exception: the fly network is
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Figure 11: A ring attractor network can maintain a localized bump of neural activity,
and can shift the bump by integrating self-motion input.

Figure 12: The fly maintains an internal sense of direction in a neural compass. Left:
schematic of the fly brain. Middle: schematic of neurons that innervate a donut-
shaped brain region called the ellipsoid body (EB). Right: it is possible to image
calcium activity of compass neurons in the EB while the fly is tethered under a mi-
croscope and walking on an air-lifted ball. The activity of the compass neurons forms
a localized bump that moves around the donut and tracks the movements of the fly
relative to the world.

composed of a very small number of computational units (on the order of 8 units), rather than
the extremely large network that we’d expect to need. In what follows, we will explore how
it is possible to accurately build, maintain, and update an internal sense of direction in such a
small network.

3.1.1 Maintaining persistent internal representations in the absence of input

To see how we go about building such a network, let’s begin with a population of neurons,
indexed i ∈ [1, ..., N], that have neural activities r1, ..., rN . Let’s consider the case where we
can describe these activity with a linear system of equations:

ṙ= −r +W r+ C0 , (20)

where W is a connectivity matrix that specifies the strength of excitatory or inhibitory con-
nections between all pairs of neurons, and C0 is a constant that specifies feedforward activity
that is injected into the network. To build some intuition, consider the following connectivity
matrix:

W =

�

λ1 0
0 λ2

�

, (21)
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Figure 13: Fixed points of the linear system in Eq. 22, with λ2 < 0 (adapted
from [69]).

where λ2 < 0. This defines a linearly-independent system of equations (adapted from Steven
Strogatz’s book [69]):

�

ṙ1
ṙ2

�

=

�

λ1 − 1 0
0 λ2 − 1

��

r1
r2

�

+ C0 , (22)

whose solutions are:

r1(t)∝ A1 + B1 exp
�

(λ1 − 1)t
�

,

r2(t)∝ A2 + B2 exp
�

(λ2 − 1)t
�

,
(23)

where A1, A2, B1, B2 are constants. The entries of W determine the dynamics of this system. If
λ1 < 1, there is one stable fixed point in the network (also called a ‘point attractor’); the value
of λ1 (and specifically whether it is less than or greater than λ2), determines the relative rate
at which r1 and r2 approach the fixed point (Figure 13). Alternatively, if λ1 > 1, there is a
single saddle point; the dynamics are stable along the r2 axis, and unstable along the r1 axis.
In the special case that λ1 = 1, there is a continuum of stable fixed points along the r1 axis
(also called a ‘line attractor’).

In the case where the system of equations is not linearly independent, the same logic
applies to the system of equations. The eigenvectors ξ of W specify the axes of flow, and the
sign and magnitude of the eigenvalues λ specify the direction and rate of flow, respectively.
If the system has a single unity eigenvalue and all other eigenvalues less that one, then there
is a continuum of stable fixed points. This continuum can be used to stably encode a single
linear variable via appropriate combinations of r1 and r2. This idea was used to propose how
a network of as few as two neurons, with activities r1 and r2, could stably encode a linear
variable like the position of an animal’s eyes [43].

However, this formulation cannot encode a circular variable like orientation. Instead, one
can build a ring of stable fixed points by stitching together multiple line attractors over fixed
intervals (Figure 14). For this to work, there must be a precise handoff between line attractors,
which requires a nonlinearity in the network (and some additional fine tuning, which we will
come to). We can consider a simple nonlinear network of the form:

ṙ= −r+Wφ(r) + C0 , (24)

whereφ(·) is a nonlinear function. For illustrative purposes, we will takeφ(·) to be a threshold
linear function. This form of nonlinearity ensures that only a subset of neurons in the network
is active at any given time; importantly, the dynamics of these active neurons are governed
by a set of linear equations via an active submatrix Wact of the full connectivity matrix W. As
before, the eigenvalues and eigenvectors of this active submatrix determine the fixed point
structure of these dynamics. Thus, by appropriately choosing a connectivity matrix W, it is
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Figure 14: Left: a linear system can encode a continuum of marginally-stable fixed
points. Middle, right: in a nonlinear system, a ring attractor can be constructed by
stitching together line attractors [68].

possible to ensure that all active submatrices of W have a single unity eigenvalue, and all
other eigenvalues less than one. Each active subsystem can thus be constructed to encode a
line attractor over a finite interval, and these line attractors can then be stitched together to
form a more complex attractor structure [68].

To construct a ring attractor, we want a rotationally invariant set of line attractors. This
can be achieved by choosing W to be a circulant matrix. A common choice is:

W=
1
N

�

JI + JE cos(θi − θ j)
�

, (25)

where JI controls the broad inhibition in the network, and JE control local excitation between
neurons with preferred headings θi and θ j . With appropriate choices of JE , the active sub-
matrices of W are identical, and each has a single unity eigenvalue. For example, given four
neurons with activities r1, r2, r3, and r4, a ring attractor can be constructed by stitching to-
gether four line attractors spanned by ordered pairs of units: (1) r1 and r2, (2) r2 and r3, (3)
r3 and r4, and (4) r4 and r1. In this case, the preferred headings θi and θi±1 are all separated
by 90◦, and the full connectivity matrix is:

W =
JI

N
+

JE

N







1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1






. (26)

The 2× 2 active submatrix has a connectivity structure:

Wact =
1
N

�

JI + JE JI
JI JI + JE

�

. (27)

If we diagonalize this active submatrix, the eigenvectors are ξ1 = [−1, 1] and ξ2 = [1, 1],
with corresponding eigenvalues λ1 = JE/N and λ2 = 2JI/N+JE/N (note that here, we assume
JI < 0, in which case λ1 ≥ λ2; more generally, it is possible to derive the maximal values of
JI for which the network will generate a stable bump of activity [68]). With N = 4 neurons,
the leading eigenvalue is 1 if JE = 4. This solution guarantees that the bump of activity can
persist anywhere along a continuum of orientations between θi and θi±1 (and one can show
that this is a solution for all even-sized networks of size N ≥ 4; see Figure 15 and [68]).
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Figure 15: Larger networks have more ways to tune the local excitation in order to
generate a ring attractor (adapted from [68]). Circles and squares denote optimal
solutions for networks with even and odd numbers of neurons, respectively.

The corresponding eigenvector describes a situation in which any increases in the activity
of one neuron are offset by decreases in activity of the other, and the resulting population
activity pattern is marginally stable. This type of formulation can be used to construct a ring
attractor that can encode a continuum of values on a circle with a localized bump of activity.
For a network of N = 4, there is one single setting of the local excitation that can generate a
continuum of fixed points with line attractors spanning 2 neurons. For a network size N = 6,
there are 3 ways to generate this continuum from line attractors spanning either 2, 3 or 4
neurons. More generally, for a network of N neurons, there are N − 3 ways to generate a
ring attractor from line attractors spanning n = [2, ..., N − 2] neurons. Thus, the larger the
network, the easier it is to find a parameter setting that will generate a continuum of fixed
points around a ring.

This construction assumes that the local excitation, JE , can be chosen optimally. If JE is not
chosen optimally, the full connectivity matrix W will have two different active submatrices that
differ in size (Figure 16). The larger of these two active submatrices, with a bump spanned
by Nact = n+ 1 active neurons, has a leading eigenvalue greater than one, and thus generates
an unstable fixed point; the smaller of these active submatrices, with a bump spanned by
Nact = n active neurons, has a leading eigenvalue less than one, and generates a single stable
fixed point. The bump of activity will then be pushed away from the unstable fixed point
and pulled toward the stable fixed point. As it does so, the bump transitions between the
two different linear regimes that maintain the bump of activity with n + 1 versus n active
neurons. The angular span of these two different regimes is closely related to the drift rate
within each regime—i.e., how quickly the bump is pushed from or pulled toward a fixed point.
As a result, the dynamics of the bump are governed by three factors: the orientations of the
stable and unstable fixed points, the rate at which the bump is pulled toward or pushed from
these fixed points, and the angular span of each stable and unstable regime. In the limit that
JE approaches an optimal value, the drift rate in one regime tends to zero as the angular span
of that regime grows to fill the entire ring. Thus, a ring attractor emerges in the limit that the
bump drifts infinitely slowly over an increasingly large fraction of the ring.

Up until now, we have built intuition about this ring attractor solution by patching to-
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Figure 16: Left, middle: optimal values of local excitation generate a continuum of
marginally-stable fixed points on a ring. Right: non-optimal values of local excitation
generate a ring of stable and unstable fixed points.

Figure 17: Non-optimal values of local excitation lead to a hilly energy landscape
(left); optimal values flatten this landscape (right).

gether linear dynamical systems. An alternative formulation of this solution can be derived
by computing the “energy landscape” (a Lyapunov function) of the dynamical system (Figure
17). This energy landscape describes the states to which the system will evolve in the long-
time limit. In the limit of an infinitely large network with connectivity given by Eq. 25, the
energy landscape will be flat as a function of orientation. For a finite network with naively-
chosen JE , the energy will be hilly, with discrete basins (corresponding to stable fixed points)
separated by energy barriers (corresponding to unstable fixed points). The optimal values of
JE will flatten this energy landscape. To derive these values, one can first perform a discrete
Fourier transform on the system of nonlinear equations in Eqs. 24-25 to transform a system
of N equations that describe the dynamics of individual neurons into a system of 3 equations
that describe the dynamics of the amplitude ac , width wc , and orientation θc of the compass
bump (because of the choice of connectivity, only the DC mode and first modes survive the
Fourier transform, after initial transients). This set of equations can then be used to construct
the energy of the system. One can then derive the Hessian matrix, which captures the local
curvature of the landscape. When computed at the orientations of the stable fixed points,
the Hessian separates into a block-diagonal matrix, with a single eigenvector aligned with the
orientation θc . The corresponding eigenvalue, ∂ 2E/∂ θ2

c , depends only on JE , N , and Nact.
Thus, for a given network size, it is possible to find the values of JE that will locally flatten the
energy as a function of orientation. One can further show that these same values of JE agree
with those derived from the linear systems perspective, and they guarantee that the energy
is globally flat as a function of orientation (see the SI of [68] for more details). Our ability
to treat this problem analytically relies heavily on the assumption that φ(·) is a threshold lin-
ear function; however, one can numerically find such optimal settings in small networks with
other nonlinearities (see SI Figure S3 of [68]).
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3.1.2 Accurately updating internal representations via internal input

In the previous subsection, we showed how it was possible to maintain a persistent bump of
activity at any of a continuum of orientations along a ring. For this bump of activity to function
as a compass needle, it must be able to be updated based on changes in orientation. This can
be done by injecting self-motion input into the network; the network then has to integrate this
input to appropriately shift the bump of activity to the correct location along the ring (note
that this self-motion input is thought to be computed from a combination of motor and optic
flow inputs [70], which raises an interesting question about whether these inputs are optimally
combined to estimate self-motion; see [71] for a perspective on this issue). A simple way to
do this is to add two additional “side rings” to the network that are gated by clockwise or
counterclockwise angular velocity [72]; these side rings inherit the bump of activity from the
primary, or “center” ring, and project back to the center ring with shifted connections. Thus,
clockwise turns will push the bump in one direction around the ring, and counterclockwise
turns will push the bump in the opposite direction. In the limit that the time constants of these
side rings are very fast, we can approximate their dynamics with a set of velocity-dependent
inputs into the network:

ṙ j = −r j +
1
N

∑

k

�

W sym
jk + vinW asym

jk

�

φ (rk) + C0 , j = 1, . . . , N , (28)

where vin is the input velocity, and where

W sym
jk =

1
N

�

JI + JE cos(θ j − θk)
�

,

W asym
jk =

1
N

sin(θ j − θk) ,
(29)

consistent with Eq. 25 (note that we typically include an integration time constant τ, which
we have taken to 1). If the excitation is chosen optimally, this network can perfectly integrate
its inputs. However, if the excitation is not optimally chosen, the movement of the bump will
feel the effects of the stable and unstable fixed points in the network: the bump will move
faster than the input velocity as it accelerates away from an unstable fixed point, and the
bump will move slower than the input velocity as it decelerates toward a stable fixed point.
These dynamics are again determined by the angular orientations of the unstable and stable
fixed points, the angular span of the linear regimes about each fixed point, and the drift rate at
which the bump is pushed away from or pulled toward these fixed points. In the limit of small
velocity inputs, the drift rates and angular spans of each regime will remain unchanged, but
the orientations of the fixed points will shift; the stable fixed points will shift in the direction
of the input velocity, and the unstable fixed points will shift against the direction of the input
velocity. So long as the stable and unstable fixed points remain within their respective regimes,
the bump will evolve toward and persist at the stable fixed point, and the network will fail to
continuously integrate its inputs. However, above a particular threshold velocity, the stable
fixed point will move into the unstable regime, and the unstable fixed point will move into the
stable regime. As a result, when in the stable regime, the bump will be pulled toward a stable
fixed point, but can never reach it; instead, it will transition into the unstable regime, where
it will be pushed away from an unstable fixed point. This push and pull will cause the bump
to speed up and slow down as it transitions between regimes.

In the view of the energy landscape, the drift rates determine the local curvature of the
energy landscape within each linear regime. As the velocity increases, the fixed points will
move, but the local curvature about those fixed points will remain approximately unchanged.
This leads to a tipping of the energy landscape in the direction of the input velocity. If the input
velocity is very small, the degree of tipping will be small, and the bump will still get stuck at
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the stable fixed points in the network. As the input velocity increases, the tipping will be more
severe. Again, above a given threshold velocity, the bump will move continuously down the
energy landscape without getting stuck, but will speed up and slow down as it feels the effect
of the curvature of the landscape.

3.1.3 Reliably tethering internal representations to the external world

The previous subsections highlighted how we could build a network that maintains and up-
dates an internal sense of direction, even in the absence of external sensory cues. However, to
function in an external environment, this internal representation must be tethered to cues in
that environment. In the fly compass network, these external sensory cues reach the compass
through another set of “ring neurons” [66]. There are many different classes of ring neurons
that bring in information about polarized light [73–75], wind direction [76], and local visual
features [77–80]. This again raises an interesting question as to whether and how these differ-
ent inputs are combined to (optimally?) infer an estimate of orientation, something we will not
discuss in detail here. For the sake of illustration, we will focus one modality that is encoded
by visual ring neurons that respond to local spatiotemporal features in a scene [77, 79]. The
response properties of these neurons are well captured by Gabor-like spatial filters combined
with biphasic temporal filters, a structure that is thought to efficiently exploit the structure of
spatiotemporal correlations in natural scenes (as discussed in Section 2.1; [81, 82]). At the
simplest level, this means that a given ring neuron will be active whenever a particular feature
in the visual scene is present at a particular location relative to the fly. The presence of multiple
inputs to the compass—here, external sensory inputs and internal self-motion inputs—raises
the question as to how the compass network can reliably keep these sets of inputs in register
to accurately update a single, self-consistent internal representation of heading.

This is thought to be achieved through plasticity between ring neurons and compass neu-
rons [83–86]. Each ring neuron makes all-to-all synapses onto compass neurons [66], and
these synapses are plastic and can be modified over time based on experience [85–87]. As a
result, plasticity is thought to “map” the external world onto the compass, and several lines of
ongoing work are focused on how this map remains self-consistent [85–88]. One set of ideas
stems from Kohonen’s ‘self-organizing map’, which is an unsupervised competitive learning
algorithm that tries to iteratively map a high-dimensional input space into a low-dimensional
‘map space’ [89] (Figure 18). Given an input space spanned by input patterns {p} and a map
space spanned by output patterns {q}, this is achieved through plasticity in weights Wi j that
link the two:

∆Wi j = αθ ( j)(pi −Wi j) . (30)

Figure 18: Illustration of self-organizing map developing over time (adapted from
Wikipedia, user:Mcld).
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For a given input pattern p, this rule updates the weights in the local neighborhood θ ( j) around
the most strongly responding output unit q j (also referred to as the ‘best matching unit’). The
parameter α is a learning rate that determines how quickly the weights will update over time.

If we define the input patterns to be the responses of the ring neurons, and the output
patterns to be the responses of the compass neurons, then the ring attractor enforces a natural
neighborhood function defined by the bump of compass activity. The rule then becomes:

∆Wi j = αr c
j (r

r
i −Wi j) , (31)

where r r
i and r c

j define the activity of the ring and compass neurons, respectively. This rule is
similar to a classic Hebbian learning rule in which neurons that “fire together, wire together”—
in other words, coactivity between neurons i and j will lead to a strengthening of the weights
that link them.

In the case of the fly’s neural compass, the ring neurons are thought to be inhibitory [90,
91], and so the appropriate learning rule is “anti-Hebbian” (i.e., coactivity between neurons
i and j will weaken, rather than strengthen, the weights that link them). Moreover, evidence
suggests that the learning rate α scales with the fly’s angular velocity v [85,87], and thus has
a form similar to:

∆Wi j = −v2r c
j (r

r
i −Wi j) . (32)

This velocity-dependent learning rate ensures that the map is only updated when the fly turns,
and does not update when the fly persists at the same orientation for longs periods of time.

As the fly explores a new visual scene, this plasticity rule will generate a self-consistent
mapping of the visual world onto the compass, such that turns that drive the bump of activity
are matched by weak inhibition from ring neurons that respond to the corresponding features
in the visual scene (Figure 19). For example, consider a visual scene that consists of a single
visual feature, like a vertical bar. And consider that a given ring neuron r r

i , which responds
to features at an orientation φi , is co-active with a given compass neuron r c

j , which responds

Figure 19: Plasticity creates a self-consistent mapping between visual and self-motion
inputs that drive the compass (adapted from [85]; see also [86]). Left: visual ring
neurons have receptive fields that tile visual space. These neurons make all-to-all
inhibitory synapses onto compass neurons that maintain the compass bump of activ-
ity. Middle, right: as the fly turns, the compass bump moves around the EB, exciting
a different compass neuron (upper row). At the same time, the visual scene moves
relative to the fly, and excites a different ring neuron (middle row). The coactivity
between ring and compass neurons weakens the synapses between them. Over time,
this creates a self-consistent mapping between the visual and self-motion inputs that
drive the compass.
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when the bump is at an orientation θ j . If the fly turns, the visual scene will change by an
orientation ∆φ, such that a ring neuron i +∆φ is now active. At the same time, self motion
inputs will drive the bump to change orientations by some angle ∆θ , such that a compass
neuron j +∆θ is now active. The plasticity rule above will ensure that ring neuron i +∆φ
will have the weakest weight, and thus the smallest inhibition, onto compass neuron j +∆θ .
As a result, the compass bump will move in lock step with the movements of the fly and the
movements of the visual scene.

By this same logic, one can easily construct a scenario that might alter this mapping. For
example, consider a visual scene with a two-fold symmetry, such as two identical bars sepa-
rated by 180◦. This scene will induce identical responses in two ring neurons that respond to
orientations separated by 180◦. However, the plasticity rule introduced above will eventually
weaken synapses at only one location in the compass network, leading the bump to favor one
of the two orientations that are associated with this symmetry. I will leave it to the reader to
speculate as to how this might impact the dynamics of the compass bump; we will return to
this idea in Section 3.3.

3.2 Using internal representations to guide effective behavior

This section covers material from Dan, Hulse, Kappagantula, Jayaraman, & Hermundstad (2024).

We can now consider how this internal sense of direction is used to guide the fly’s behavior.
For this, we will start by analyzing the behavior itself, and those changes in behavior that
arise during learning. We will then explore how these changes in behavior could be mediated
by internal representations in the brain, such as the sense of direction that we have been
discussing.

For this, we will consider a variant of a older learning paradigm [92] in which flies navigate
in a one-dimensional virtual environment (Figure 20; physicist readers might find it interest-
ing to know that these experiments were pioneered by Martin Heisenberg, the son of Werner
Heisenberg, prompting some to ask whether one can formulate an analogous ‘fliesenberg un-
certainty principle’ [93]). This environment consists of an LED screen than spans 330◦ and
displays different visual patterns [94, 95]; this screen surrounds the fly, which is tethered in
place but able to move its wings. The orientation of the patterns on the screen is then coupled
to the fly’s movements; when the fly tries to turn left, the patterns on the screen are rotated
to the right, and vice versa. In this way, the fly has closed-loop control of the movements of
the patterns on the screen. By tethering the fly, it is then possible to image from the brain
while the fly is navigating. By further pairing orientations of the visual scene with rewards
and punishments, it is possible to study how the fly’s neural activity and behavior change in
response to different types of feedback.

Figure 20: Flies can learn to avoid punishment associated with different visual pat-
terns (adapted from [96]). Left: a visual scene has repeating sets of visual patterns;
one set of patterns is paired with an aversive heat punishment. Right: in a virtual
reality setup, the fly orients relative to the visual scene, and is pinged in the abdomen
with an infrared laser whenever it orients toward one of the punished visual patterns.
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3.2.1 Inferring a generative model of behavior

Flies exhibit different modes of patterned behavior. In flight, they exhibit periods of straight
flight, or ‘fixations’, punctuated by abrupt turns, or body ‘saccades’ [94, 96–98] (Figure 21).
We can segment the behavior into these two different modes, measure how the properties
of these modes vary over time and across flies, and use this to infer a generative model of
behavior. This generative model can be phrased in terms of a behavioral policy π(a|θ ) that
specifies the probability of taking an action a given a particular state θ of the environment [40]
(analogously to our discussion of behavioral policies in Section 2.3).

We begin by assuming that behavior can be structured as a sequence of saccades and fixa-
tions, such that the termination of one mode initiates the other mode, and vice versa. In the
language of reinforcement learning, each action then comes in two different types: a ∈ {F, S}.
Each mode can be specified by an angular velocity, ω, and a duration conditioned on that
angular velocity, ∆t|ω.

Fixations tend to have near-zero angular velocity, so we can approximate this as a delta
function: P(ω) = δ(ω). The distribution of fixation durations—whether measured across
time or flies—is well fit by an inverse Gaussian distribution:

P(∆t;µ,λ) =

√

√ λ

2π∆t3
exp

�

−
λ(∆t −µ)2

2µ2∆x

�

. (33)

This distribution is appealing because we can specify a process that generates it. Consider the
following stochastic process:

X t ∼ νt +σWt , (34)

where Wt is standard Brownian motion, and ν is a drift term (this process is often called a
‘drift diffusion’ process). The first passage time of this process, given a fixed threshold ρ > 0,
follows an inverse Gaussian distribution, with µ = ρ/ν and λ = (ρ/σ)2 [99–101]. Thus, we
can capture a single fixational event by sampling from this process; the fixation terminates
when the process crosses a threshold ρ.

This process requires specifying three parameters: the threshold ρ, the drift rate ν, and
the diffusion spread σ. In principle, any or all of these parameters could vary over time based

Figure 21: Left: flies fixate (F) and saccade (S). These flight patterns vary in angular
velocity ω and duration ∆t. Right: we can use the statistics of these flight patterns
to infer a generative model of behavior (adapted from [96]).
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Figure 22: We can use reinforcement learning methods to learn an optimal behavioral
policy, and compare it to the behavior of real flies (adapted from [96]).

on experience, and the variation in each of these parameters would manifest in predictable
changes in the mean and variance of the inverse Gaussian distribution. To see this, note that
the mean mean= µ and variance var= µ3/λ are related by: log(var) = 3 log(mean)−λ. If, for
example, the variability in behavior is explained by changes in the drift rate ν alone (with fixed
threshold ρ and spread σ), we would expect to see the relationship between the variance and
mean of fixation durations to follow a line with a slope of 3 and offset of −λ = −ρ2/σ2. By
fitting this distribution across time and across flies (or, alternatively, by measuring the mean
and variance empirically), we can show that the behavior is indeed most consistent with a
model in which the drift rate is changing over time. Thus, we can model fixations as events
with near-zero angular velocity, and with durations generated by a drift diffusion process with
an adaptable drift rate.

Saccades follow a similar structure, but on a different time scale. In contrast to fixations,
these events are thought to be ballistic, such that they cannot be interrupted or modified dur-
ing their execution. Using the same types of analyses, we can show that the angular velocity of
saccades is well fit with two log-normal distributions (corresponding to clockwise and counter-
clockwise saccades), but with an adaptable bias that captures the tendency to initiate saccades
in one direction versus another. We find that the duration of saccades, analogously to fixations,
also follows an inverse Gaussian distribution. However, rather than having a flexible drift rate,
the distribution of saccades is consistent with an angular-velocity-dependent drift rate. Thus,
we can model saccades as events with nonzero angular velocity drawn from a lognormal distri-
bution with an adaptable bias, and with a duration generated by a drift diffusion process with
an angular-velocity-dependent drift rate. The similarity in the statistical structure between
fixations and saccades suggests that, in both cases, a drift diffusion process can be used to
keep time and thereby specify the duration of different behavioral modes. The parameters of
that process can then be used to adjust these durations based on other kinematic properties,
or based on experience.

3.2.2 Learning the parameters of a generative model based on experience

Given a parameterized generative model of behavior, or behavioral policyπ(a; ψ⃗), we can now
ask how the parameters ψ⃗ of that policy should be modified over time based on experience.
To this end, we can construct an agent that comes embodied with this generative model, and
the study how the behavior of that agent changes as we update the generative model based
on experience (Figure 22).
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In problems of spatial navigation, a common approach is to discretize the environment into
states θ , and construct a lookup table q(ψ⃗,θ ) that specifies the optimal parameter settings
for each state. In our setting, these states correspond to different orientations of the agent.
Moreover, since we are modeling an agent that uses a neural compass to maintain an internal
representation of its own orientation, we will take these states to correspond to the compass
heading θc (see Section 3.1 for a discussion of the compass heading). The agent then uses
the current parameter settings, together with its own compass heading, to select actions, and
then iteratively updates the parameters based on the outcomes of those actions in the current
environment. This process can be quite slow, because there is typically no a priori structure
built into the lookup table, and thus the agent has to experience the consequences of each
parameter setting at each compass heading in order to make adjustments to these parameters
(see Appendix D for more details).

To speed up this process, the agent can instead learn a continuous function that specifies
the parameter settings over space. For example, rather than specifying parameter settings
at each of a set of discretized compass headings, one can use a discrete set of continuous
basis functions to tile the space of headings, and learn a discrete set of weights on those basis
functions (Figure 22). This can speed up the learning process because any parameter changes
that are learned at one heading are immediately used to update parameters at nearby headings
(if the basis functions are localized in space).

We can use this to learn a policy with the following structure:

ν(θc; ψ⃗ν) = fν
�

ψ⃗ν · g⃗(θc)
�

, (35)

b(θc; ψ⃗b) = fb

�

ψ⃗b · g⃗(θc)
�

, (36)

where ν and b specify the drift rate of fixations and turn bias of saccades derived in the previous
section, and g⃗(θc) specifies a set of basis functions that tile compass headings θc . Informed
by what we know about the fly’s internal compass, we choose a set of 8 von Mises functions;
the shape of this function closely matches the shape of the compass bump, and the number
mimics the known discretization of the compass (see Section 3.1). We can then use a common
policy-gradient algorithm to update the policy parameters based on experience (see Appendix
E for a derivation of this algorithm):

sample action from policy

a ∼ π(·|θc; ψ⃗) ,

take action, gather reward

R= r(a,θc) ,

update parameters

∆ψ⃗= αR∇ψ⃗ log
�

π(a|θc; ψ⃗)
�

,

update state θc ,

(37)

where r(a,θc) is a reward function that we will discuss shortly. Using this algorithm, this
agent can be trained through experience to reliably gather rewards or avoid punishments by
iteratively updating the parameters of its behavioral policy. We can then compare the output
of this trained agent to the behavior of real flies after they have gone through the learning
paradigm schematized in Figure 20.

In this paradigm, different orientations of the visual scene are paired with rewards or
punishments. The visual scene itself consists of a set of 4 visual patterns, each separated by
90◦. The scene was chosen to have a two-fold symmetry, such there are two distinct visual
patterns, A and B, each repeated twice (i.e., ABAB). One set of patterns (either A or B) is
paired with an aversive heat punishment that is delivered by pinging the fly in the abdomen
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with an infrared laser. Thus, if pattern A is punished, the fly would experience heat whenever
it orients within ±45◦ of the center of pattern A (we refer to this region as the “danger zone”,
and the unpunished region as the “safe zone”). Because we do not know whether learning is
driven by the negative effects of punishment or the positive effects of relief from punishment,
we treat the former as generating a negative reward (R = −1), and the latter as generating a
positive reward (R= +1; note that one can use techniques from inverse reinforcement learning
to try to deduce this reward function from observed behavior [102]).

When we train an artificial agent in this same paradigm, the agent learns to generate
fixations and saccades who drift rates ν(θc; ψ⃗ν) and turn biases b(θc; ψ⃗b) vary approximately
sinusoidally with the compass heading θc (Figure 22):

ν(θc; ψ⃗ν)∝ (1− cos(θc − θsafe))/2 ,

b(θc; ψ⃗b)∝ (1− sin(θc − θsafe))/2 ,
(38)

where θsafe denotes the center of the safe zone. Low drift rates lead to long fixations at the
center of the safe zone; a high turn bias to the left of the safe zone generates directed turns
toward safety.

When we compare this learned behavior to the behavior of real flies, we see that flies
exhibit similar structure to their behavior (to see this, we must align the fixations and saccades
of individual flies to heading at which these actions were initiated relative to the center of the
safe zone, and then average across flies; signatures of this structure can also been seen on
an individual fly basis). However, this behavioral structure is apparent in flies even before
they experience any laser punishment, provided that we align the behavior to the preferred
heading of each fly prior to averaging. The fact that both naive and trained flies exhibit the
same behavioral structure suggests that this is not something that needs to be learned in a new
environment; rather, this behavioral structure seems to innately guide how flies sample their
surroundings. If this is the case, learning need only shift and scale this behavioral structure,
rather than build it up from scratch.

Such a formulation—in which the behavioral policy has a fixed functional form, but flexible
parameters—dramatically changes the learning process. Rather than building an agent that
learns individual associations between policy parameters and locations, this suggests that the
agent should come pre-equipped with a policy that specifies functional relationships between
policy parameters at all locations in the environment. By building this sort of function into
the agent, any changes that are learned at one location can be used to update behavior at
all locations (rather than being restricted to the immediate vicinity of the agent). This can
significantly speed up the learning process, but comes at the cost of restricting the space of
behavioral policies that the agent can learn. Moreover, for this to work in real brains, neural
circuits must be able to enforce this behavioral structure while flexibly shifting and scaling this
structure to direct movements to different parts of the environment. In the next section, we
discuss how the brain might achieve this.

3.2.3 Building a structured behavioral policy

To construct the policy given in Eq. 38, we use simple operations that could feasibly be per-
formed by neural circuits (Figure 23). We assume that the fly maintains encodes its current
compass heading in a sinusoidal activity profile fc(θ ;θc) = cos(θ − θc), where θc denotes the
current compass heading, and θ describes an anatomical axis that encodes orientation. Note
that this profile takes on a von Mises shape in the brain region that first encodes the com-
pass heading, but is reformatted into a sinusoidal shape before propagating to downstream
brain regions [65]. This sinusoidal shape is thought to support a range of different vector
computations [103].
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Figure 23: Convolving a sinusoidal compass heading with an arbitrary goal profile
leads to a structured motor output (adapted from [96]; see also [104]).

We assume that the fly maintains a goal activity profile fg(θ ) that can take on an arbitrary
shape. When we convolve these two activity profiles— fc(θ ;θc) and fg(θ )—the output is si-
nusoidal and peaks when the compass heading is aligned with the circular mean of the goal
activity profile (Figure 23; see Appendix F for brief derivation). We can thus define the goal
heading, θg , to be the circular mean of the goal activity profile fg(θ ).

If we use the output of this convolution as a motor drive, this operation will guarantee
that the motor drive is strongest when the compass heading is aligned with the goal heading.
However, the profiles given in Eq. 38 require motor drives that are peaked 90◦ and 180◦ away
from the goal heading. This can be achieved by phase-shifting the compass heading (and thus
the compass activity profile) before convolving it with the goal activity profile. For a phase
shift of φ, the resulting motor drive will be peaked when the compass heading is aligned with
θg −φ (Appendix F). To create the profiles in Eq. 38, we need phase shifts:

φν = 180◦ ,

φb = 90◦ .
(39)

This formulation guarantees that the motor drive will be sinusoidally structured, regardless of
the shape of the goal activity profile, and leads to a policy of the form:

ν(θc; ψ⃗ν)∝ Ag cos(θc − θg +φν) + Bν ,

b(θc; ψ⃗b)∝ Ag cos(θc − θg +φb) + Bb ,
(40)

where Ag and θg are the strength and orientation of the circular mean of fg(θ ), respectively,
and (Bν, Bb) are offsets. This formulation means that the goal activity profile can be updated
over time based on experience, without disrupting the motor drive profile. We can thus use
simple Hebbian plasticity rules (analogous to those presented in Section 3.1.3) to update the
goal profile over time:

∆ fg(θ ,θc; fg) = αg∆g , (41)

where

∆g =











+
�

fc(θ ;θc)− fg(θ )
�

+Θ(1− fg)−
�

fg(θ )− fc(θ ;θc)
�

+Θ( fg) , R(θ )> 0 ,

−
�

fc(θ ;θc)− fg(θ )
�

+Θ( fg) +
�

fg(θ )− fc(θ ;θc)
�

+Θ(1− fg) , R(θ )< 0 ,

0 , R(θA) = 0 .

(42)
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Figure 24: Left: Neurons in the fly central brain implement an anatomical reference
frame tethered to the fly’s current heading. Center: additional populations of neu-
rons implement anatomical phase shifts in this reference frame. Right: putative goal
neurons could store and update goal headings (adapted from [66] and [96]).

Here, [·]+ denotes rectification, and Θ(·) is the heaviside function. This plasticity rule will
strengthen the goal profile at the current compass heading when the fly is being rewarded
(R> 0), and will weaken the goal profile at the current compass heading when the fly is being
punished (R< 0).

The fly central brain has circuit motifs that could plausibly implement this set of computa-
tions [66,96] (Figure 24). As discussed in Section 3.1, the compass heading is maintained by a
ring attractor network in a region of the brain called the ellipsoid body (EB). From the EB, the
compass activity profile is reformatted from a von-Mises-like shape to a sinusoidal shape [65]
before traveling to a downstream region called the fan-shaped body (FB) that is thought to
carry and combine internal representations about the fly’s goals and future actions [66]. There
are two populations of neurons—so-called PFL2 and PFL3 populations—that are thought to
implement the phase shifts in Eq. 39, respectively, and that project either bilaterally or uni-
laterally to pre-motor regions that are involved in initiating rightward and leftward turns.
The PFL2 population implements a 180◦ phase shift and projects bilaterally to both premotor
regions, and is thus well-positioned to control straight flight. The two PFL3 populations im-
plement ±90◦ phase shifts and project unilaterally to one or the other premotor regions, and
are thus well-positioned to control directed turns. Finally, there are dopaminergic neurons
that synapse onto both PFL2 and PFL3 populations, and that themselves receive inputs that
are shaped by the fly’s current compass heading; thus, these neurons are well-positioned to
update the strength of goal synapses in a heading-dependent manner, which could in turn be
used to drive behavior through the PFL populations.

3.3 Coupling sensory representations and behavior in closed loop

In Section 3.1, we saw how small neural circuits could maintain and accurately update an
internal representation of heading, and could tether this representation to sensory cues in
the environment through a form of unsupervised learning. In Section 3.2, we saw how this
internal representation of heading could be used to update an internal representation of goals
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in the environment through a form of reinforcement learning. These two systems—learning
where you are in your environment, and learning goals in that environment—are coupled
through the same internal representation of heading, and through the actions that are selected
by the behavioral policy that is tethered to this representation (Figure 25). As a result, any
inaccuracies in this representation will impact the formation of goals, the selection of actions,
and the subsequent sensory stimuli that are used to update this representation. As a result,
the coupling of these systems can shape individual variability in behavior and learning.

This becomes apparent if we revisit the ideas from Section 3.1.3, about how the internal
representation of heading becomes tethered to the outside world. At the end of that section, we
introduced the idea that symmetries in the visual scene can lead to a scenario in which plasticity
tethers the bump to one of two symmetric location in the environment. If two ring neurons are
active for a particular view of a symmetric scene, but one strongly inhibits the bump and the
other only weakly inhibits the bump, this induces competition between these two ring neurons,
and the bump will tend to jump to the location of weakest inhibition. In other words, the
compass will develop a two-to-one mapping, in which two different symmetric orientations of
the scene will be mapped onto a single compass heading. This type of confusion is analogous
to the confusion you might expect to experience inside a room with two identical doors on
opposite sides of the room. When you initially enter the room, you might remember which
of the two doors you used to enter, but after some time, you might get confused about which
door is which. We can see this confusion in the dynamics of the compass bump, and we can
watch the compass bump jump between different orientations that correspond to symmetric
views of the visual world [96].

This highlights the important difference between the absolute properties of the visual en-
vironment and the relative nature of the internal constructs that we build to represent that
environment. In many cases, these are closely matched, but in some cases, our internal per-
ceptions differ markedly from the outside world. This has interesting implications for any
downstream behavior that is tethered to these representations. For example, if the fly’s ac-
tions are tethered to this internal representation, as evidence suggests, then its actions will
follow this representation, even as that representation is jumping over time. This can be ad-
vantageous in an environment where rewards and punishments are coupled to these same
symmetries of the environment. For example, given a policy that is tethered to the difference
between the fly’s current and goal headings (Eq. 40), a jumping heading bump will serve to

Figure 25: Two learning systems interact to guide behavior. One learning system
(pink) maps visual inputs onto an internal compass heading; a second learning sys-
tem (green) uses the compass heading to learn a goal heading and guide actions via
a behavioral policy. Plasticity acts at specific locations (white circles) to allow these
representations to change over time based on experience.
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copy over this policy at the arena headings that correspond to symmetric views of the visual
scene. The means that the fly need only learn one goal heading; its neural circuits will effi-
ciently structure behavior about that goal heading, and its jumping compass bump will copy
that structure at multiple locations that share the same visual patterns and reward structures.

For this to work effectively, the mapping of the visual world onto the compass must be
stabilized, which takes time in a new environment. As a result, stronger initial goal headings,
which lead to more exploitative behavior about the goal heading, can help to quickly anchor
the mapping of the visual world onto the compass, particular in the presence of visual sym-
metries. This, in turn, can help the fly more quickly update its goal heading in the face of
rewards and punishments. Weak goal headings, on the other hand, can lead to more diffusive,
exploratory behavior, can slow the development of the visual map in the presence of symme-
tries, and can lead to misalignment between the learning of the visual map and the learning
of goals tethered to that visual map. This, in turn, can slow the overall learning process. As a
result, individual variability in learning can arise purely because of the dynamics that couple
these multiple internal representations. See [96] for further discussion.

3.4 Summary

In this section, we explored some of the challenges of building compact internal represen-
tations of the outside world, bootstrapping these representations by using one evolving rep-
resentation to update another, and ultimately tethering efficient behavior to these internal
representations. One of the major insights from this line of work is that pre-motor circuits in
the brain seems to employ hardwired anatomical motifs for exploiting structure in an animal’s
predictable relationship to its surroundings, just as early sensory circuits exploit predictable
structure in incoming sensory signals. In the field of machine learning, these architectural
constraints are often called ‘structural priors’ or ‘inductive biases’, and ongoing work in the
field seeks to understand what sorts of inductive biases can lead to more flexible and gener-
alizable architectures [105, 106]. Here, we saw how inductive biases in the fly brain—in the
form of anatomical motifs that efficiently structure behavior about a single goal heading—can
significantly speed learning by reducing the number of associations that an animal has to ex-
perience. This suggests an exciting direction for future research, in terms of understanding
how the brain should best balance the speed enabled by hardwired circuits, and the flexibility
afforded by plasticity within these circuits. More broadly, this prompts the question as to what
additional features of an animal’s relationship to its environment are predictable enough to
warrant hard-wired solutions—something that will be aided by quantitative analyses of natural
behavior in the context of ethologically-relevant tasks.

4 Outlook

In these notes, we have touched upon different theoretical frameworks—including efficient
coding, Bayesian inference, and reinforcement learning—that are used to understand sensory
coding, inference, and action selection. We then used aspects of these frameworks in the
context of a specific example—navigational learning in the fruit fly—to understand how real
brains make sense of incoming sensory stimuli, build internal representations of their relation-
ship to the external world, and use these internal representations to guide behavior. In both of
these contexts, we discussed how these frameworks provide a perspective on not only how the
brain operates, but also why it might operate in one manner versus another. Looking ahead,
one major opportunity in theoretical neuroscience is to understand how these different frame-
works relate to one another, and how they inform and constrain one another. We saw how
resource constraints, as considered in the framework of efficient coding, can impact the speed
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and accuracy of Bayesian inference, and how constraints on the precision of inference can
in turn impact action selection. We also saw how behavioral policies can exploit the reliable
statistics of movement to speed learning, just as sensory codes can exploit the reliable statistics
of sensory stimuli to speed inference. Finally, we saw that it is becoming possible to test the
predictions of these interconnected frameworks in real brains, where the fruit fly—with its
targeted genetic tools, near-complete connectome, and behavioral repertoire—provides one
exciting test bed to link multiple successive computations in closed-loop.
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A Decomposing mutual information

The mutual information between X and Y is defined as:

I(X ; Y ) =
∑

x∈X ,y∈Y

P(x , y) log
�

P(x , y)
P(x)P(y)

�

. (A.1)

We can write P(x , y) = P(x |y)P(y), which allows us to re-express mutual information:

I(X ; Y ) =
∑

x∈X ,y∈Y

P(x |y)P(y) log
�

P(x |y)P(y)
P(x)P(y)

�

=
∑

y∈Y

P(y)
∑

x∈X

P(x |y) [log P(x |y)− log P(x)] .
(A.2)

Noting that the conditional entropy of X given Y is defined as:

H(X |Y ) =
∑

y∈Y

P(y)

�

−
∑

x∈X

P(x |y) log P(x |y)

�

, (A.3)

we can use this to rewrite the mutual information as:

I(X ; Y ) = −H(X |Y )−
∑

x∈X ,y∈Y

P(x , y) log P(x)

= −H(X |Y )−
∑

x∈X ,y∈Y

P(y|x)P(x) log P(x)

= −H(X |Y )−
∑

x∈X

P(x) log P(x)
∑

y∈Y

P(y|x)

= −H(X |Y ) +H(X ) ,

(A.4)

where we have used the fact that H(X ) = −
∑

x∈X P(x) log P(x), and
∑

y∈Y P(y|x) = 1.
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B Maximum entropy distributions

Consider a neuron that can produce a discrete set of discriminable responses. The entropy of
the response distribution is:

H = −
∑

i

pi log(pi) , (B.1)

subject to the constraint
∑

i pi = 1.
To find the entropy-maximizing distribution of responses, we can define the Lagrangian L

with Lagrange multiplier λ0:

L(p,λ0) = −
∑

i

pi log(pi) +λ0

�

∑

i

pi − 1

�

. (B.2)

Maximizing this with respect to pi gives:

∂L(p,λ0)
∂ p

= 0=⇒− log(pi)− 1+λ0

=⇒ pi = exp(λ0 − 1) .
(B.3)

Imposing the constraint
∑

i pi = 1 means:
∑

exp(λ0 − 1) = 1

=⇒ N exp(λ0 − 1) = 1

=⇒ pi = 1/N .

(B.4)

Intuitively, given a constraint on the number of discriminable response levels, the maximum
entropy distribution is flat (and corresponds to ‘histogram equalization’).

If we now consider a continuous distribution of responses but impose a constraint on the
mean firing rate mu, this gives:

L(p,λ0,λ1) = −
∫

p(r) log(p(r))dr +λ0

�∫

p(r)dr − 1

�

+λ1

�∫

rp(r)dr −µ
�

, (B.5)

and

∂L
∂ p
= − log(pi)− 1+λ0 +λ1r = 0 ,

=⇒ p(r) = exp(λ0 − 1)exp(λ1r) .
(B.6)

Plugging this back into the equations for our constraints, we have:

λ1 = −1/µ ,

exp(λ0 − 1) = 1/µ ,

which gives

p(r) =
1
µ

exp
�

−
r
µ

�

. (B.7)

Thus, given a constraint on the mean firing rate, the distribution of neural responses is expo-
nential. It is straightforward to use the same logic to show that an additional constraint on
the variance of neural responses leads to a Gaussian distribution.
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C Bayesian ideal observer model in a switching environment

Here, we derive the ideal observer model for the scenario described in Section 2.2, which must
infer the current state θt of the environment given the history of past sensory signals sτ≤ t.

Given random variables A and B, Bayes Rule states:

P(A|B) =
P(B|A)P(A)

P(B)
. (C.1)

For three variables A, B, C , this becomes:

P(A|B, C) =
P(B|A, C)P(A|C)

P(B|C)
. (C.2)

We can now make the substitutions: A= θt , B = st , and C = sτ<t :

P(θt |st , sτ<t) =
P(st |θt , sτ<t)P(θt |sτ<t)

P(st |sτ<t)
. (C.3)

This distribution must be normalized, which gives:

∑

θt

P(θt |st , sτ<t) = 1=
∑

θt

P(st |θt , sτ<t)P(θt |sτ<t)
P(st |sτ<t)

. (C.4)

Since the distribution in the denominator does not depend on θt , we can pull it out of the sum
and define this to be the normalization constant Ω:

Ω≡ P(st |sτ<t) =
∑

θt

P(st |θt , sτ<t)P(θt |sτ<t) . (C.5)

We now have:

P(θt |st , sτ<t) =
1
Ω

P(st |θt , sτ<t)P(θt |sτ<t) . (C.6)

The second distribution can be expanded and simplified as follows:

P(θt |sτ<t) =
∑

θt−1

P(θt |θt−1, sτ<t)P(θt−1|sτ<t) (C.7)

=
∑

θt−1

P(θt |θt−1)P(θt−1|st−1, sτ<t−1) . (C.8)

Putting this together, we have:

P(θt |st , sτ<t) =
1
Ω

P(θt |st)
∑

θt−1

P(θt |θt−1)P(θt−1|st−1, sτ<t−1) . (C.9)

For the specific case of a two-state environment, we can define P L
t ≡ P(θt = θ L|st , sτ<t),

and PH
t = (1− P L

t ). The posterior distribution is thus fully specified by a single number: the
probability that the environment is in the low state, given the history of past observations. In
matrix notation, we now have:
�

P L
t

1− P L
t

�

=
1
Ω

�

P(st |θt = θ L) P(st |θt = θH)
�

�

1− ps ps
ps 1− ps

��

P L
t−1

1− P L
t−1

�

. (C.10)

Or equivalently,

P L
t =

1
Ω

P(st |θt = θ
L)
�

(1− ps)P
L
t−1 + ps(1− P L

t−1)
�

. (C.11)
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D Primer on reinforcement learning

This is meant to provide a quick-and-dirty tutorial on reinforcement learning; for a more thor-
ough overview and background, please refer to Sutton & Barto [40], which provided the source
for these notes. Massimo Vergassola covered this topic in depth in the same 2023 Les Houches
Summer School; his lectures notes (in preparation) will also provide a more thorough back-
ground.

Reinforcement learning considers the process of learning to select appropriate actions a in
particular states θ of the environment, based on feedback from the environment in the form
of rewards r. Note that it is typical to denote states with the variable s, instead of θ ; here we
use θ to highlight that these states are typically hidden from the agent must be inferred from
sensory signals, which we denote s. In Section 2.2, we used such latent states to parameterize
distributions of sensory stimuli; in Section 2.3, the latent state specified the reward probability
of different levers that could be sampled by an agent. And in Section 3, the latent state specified
the animal’s heading in the environment, which must be inferred from visual and self-motion
signals.

The goal of a reinforcement learning agent is to maximize long-term accumulated reward,
which is called the return Gt and is defined as the total sum of all rewards received at future
times t ′ > t:

Gt ≡ Rt+1 + Rt+2 + Rt+3 + . . . (D.1)

As written, this expression assumes that all future rewards are equally important. To account
for the fact the immediate rewards might be more valuable than rewards in the distant future,
we can “discount” future rewards with a discount factor γ ∈ [0,1]:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + . . .

=
∞
∑

t ′=t+1

γt ′−1Rt ′

= Rt+1 + γGt+1 ,

(D.2)

where γ = 1 defines a far-sighted agent that values all rewards equally, and γ = 0 defines a
purely myopic agent that only values immediate rewards.

The return Gt represents the sum of actual future rewards, which is not knowable to any
agent. Instead, an agent can compute the expected future rewards, starting in state θ and
following a policy π(a|θ ). The policy specifies the probability of selecting a given action a
from a state θ . If it is helpful to have a concrete example in mind, consider a scenario in which
an agent navigates in 2D environment to gather rewards that are given when the agent reaches
specific locations in the environment. A typical way to treat this scenario is to discretize the
environment into a grid of locations; these locations then serve as our states (so, in a 10× 10
grid, there are 100 states). At any grid location, it is often assumed that there are at most 5
available actions: stay, move 1 step up, move 1 step down, move 1 step left, or move 1 step
right. A policy can then be specified as the probability of taking each of the 5 actions from
each of the 100 states in the environment.

With this example in mind, we can start by computing the expected future rewards that
will be obtained one timestep in the future:

Eπ[Rt+1|θt = θ] =
∑

a

π(a|θ )
∑

θ ′

p(θ ′|θ , a)r(θ , a,θ ′) , (D.3)

where p(θ ′|θ , a) governs the dynamics of the environment and specifies the probability that
the agent transitions to a state θ ′ when beginning in state θ and taking action a; the reward
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function r(θ ′, a,θ ) specifies the reward received under the same transition. We can use Eq.
D.3 to define a state-value function vπ(θ ) that defines how ‘good’ it is (in terms of expected
return) to begin in state θ and follow the policy π:

vπ(θ )≡ Eπ
�

Gt

�

�θt = θ
�

. (D.4)

Using the result from Eqs. D.2-D.3, we can write this as:

vπ(θ ) = Eπ
�

Rt+1 + γGt+1

�

�θt = θ
�

=
∑

a

π(a|θ )
∑

θ ′

p(θ ′|θ , a)
�

r(θ , a,θ ′) + γEπ
�

Gt+1

�

�θt+1 = θ
′�
�

=
∑

a

π(a|θ )
∑

θ ′

p(θ ′|θ , a)
�

r(θ , a,θ ′) + γvπ(θ
′)
�

.

(D.5)

This is the recursive Bellman equation for the state-value function [107]. We can also use this
to define a state-action value function qπ(θ , a) that defines the value of starting in a state θ ,
taking an action a, and following the policy π from then onward:

qπ(θ , a)≡
∑

θ ′

p(θ ′|θ , a)
�

r(θ , a,θ ′) + γvπ(θ
′)
�

, (D.6)

for which there is an analogous Bellman equation:

qπ(θ , a) =
∑

θ ′

p(θ ′|θ , a)
�

r(θ , a,θ ′) + γ
∑

a′
π(a′|θ ′)qπ(θ ′, a′)

�

. (D.7)

The optimal value function satisfies the Bellman optimality equation:

v∗(θ ) =max
a
Eπ
�

Rt+1 + γv∗(θt+1)
�

�θt = θ , at = a
�

=max
a

∑

θ ′

p(θ ′|θ , a)
�

r(θ , a,θ ′) + γv∗(θ
′)
�

,
(D.8)

and analogously for q∗(θ , a).
Note that one can use a value function vπ(θ ) or action-value function qπ(θ , a) to define

a policy. For example, a purely greedy policy would select actions that maximize the current
value:

A= argmaxaq(θ , a) . (D.9)

If q = q∗ is the optimal action-value function, then Eq. D.9 defines the optimal policy
π∗(a|θ ) = argmaxa(q∗(θ , a)). However, if q is not optimal, it can be advantageous to use
a policy that balances exploitative actions (which maximize the current estimate of q) with
exploratory actions (which have lower expected value but could result in higher long-term
payoffs). A simple version of such a policy is called an ‘epsilon-greedy’ policy, in which the
agent chooses the greedy (exploitative) action with probability (1−ε), and chooses a random
(exploratory) action with probability ε, where ε ∈ [0, 1] is typically chosen to be small. Al-
ternatively, one can tie the degree of exploration to the value function by choosing a ‘softmax’
policy:

π(a|θ )∝ exp(βq(θ , a)) , (D.10)

where β →∞ drives purely exploitative actions that maximize q, and β → 0 drives purely
random actions.

A goal of reinforcement learning is to use value functions to determine the optimal poli-
cies that maximize the return G. Historically, there have been three main sets of methods for
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learning value functions. The first are dynamic programming methods, which assume a model
of the environment in the form of p(θ ′|θ , a) and r(θ , a,θ ′), and learn v∗, q∗, and π∗ via boot-
strapping (i.e., updating an estimate of one quantity based on an estimate of another quantity).
Value iteration, which we introduced in Section 2.3, is one such method that converts Eq. D.8
into an update rule for the value function:

vt+1(θ ) =max
a

∑

θ ′,r

p(θ ′|θ , a)
�

r(θ , a,θ ′) + γvt(θ
′)
�

. (D.11)

The second set of methods are Monte Carlo methods, which do not assume a model of the
environment, and instead directly estimate v∗, q∗, and π∗ via sampling (i.e., from the outcome
of simulated experiences). An example of a Monte Carlo update is the following:

vt+1(θ ) = vt(θ ) +α[Gt − vt(θ )] , (D.12)

where the return Gt must be computed from the outcome of simulated experiences. Gt is then
used as a target to update vt .

A third class of methods, temporal difference (TD) methods, combine aspects of dynamic
programming and Monte Carlo methods to learn from experience via bootstrapping [40]. The
simplest TD method replaces the return Gt in Eq. D.12 with the estimate Gt ≊ Rt+1+γvt(θt+1):

vt+1(θt) = vt(θt) +α
�

Rt+1 + γvt(θt+1)− vt(θt)
�

, (D.13)

qt+1(at ,θt) = qt(a,θt) +α
�

Rt+1 + γqt(at+1,θt+1)− qt(at ,θt)
�

. (D.14)

Here, δt = Rt+1 + γvt(θt+1) − vt(θt) (and similarly δt = Rt+1 + γqt(at+1,θt+1) − qt(at ,θt))
is often referred as the TD error. Eq. D.14 forms the basis of the so-called SARSA learning
algorithm. Note that the updating of the value functions depends on the actions taken and
rewards received, which in turn depend on the policy used to select those actions. Thus, when
using one of the policies defined in Eqs. D.9-D.10, the actions selected via the policy will
change over time as the value functions are updated via Eqs. D.13-D.14.

With an algorithm like SARSA, the agent can only update the value of states as these states
are visited. To update states that were visited in the past, we can augment this update rule
with an eligibility trace Zt(θ ) that allows previously-visited to be eligible for updating:

vt+1(θt) = vt(θt) +α
�

Rt+1 + γvt(θt+1)− vt(θt)
�

Zt(θt) , (D.15)

where Zt(θ ) follows its own update rule:

Zt(θ ) =

¨

λγZt−1(θ ) , θ ̸= θt ,

1+λγZt−1(θ ) , θ = θt .
(D.16)

Here, λ ∈ [0,1] is a trace-decay parameter that specifies how quickly the eligibility of each
state will decay over time. When λ = 0, only the current state can be updated; when λ = 1,
the eligibility of an unvisited state falls by γ with each timestep. Larger values of λ cause the
agent to associate previously-visited states with current rewards.

E Derivation of policy gradient algorithm

This follows the derivation given in Sutton & Barto [40]. We begin by defining a performance
measure J(ψ⃗) that we want to maximize, given a policy π(a|θ ; ψ⃗) parameterized by ψ⃗:

J(ψ⃗)≡ vπψ⃗(θ ) , (E.1)
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where vπψ⃗(θ ) is the value for a policy π, parameterized by ψ⃗, starting in state θ .
We want to find the parameter update that increases performance over time:

∇ψ⃗vπ(θ ) =∇ψ⃗

�

∑

a

π(a|θ )qπ(θ , a)

�

=
∑

a

�

qπ(θ , a)∇ψ⃗π(a|θ ) +π(a|θ )∇ψ⃗qπ(θ , a)
�

.
(E.2)

The second term in this sum, *, can be written as:

∗= π(a|θ )∇ψ⃗
∑

θ ′,r

p(θ ′, r|θ , a)(r + vπ(θ
′))

= π(a|θ )∇ψ⃗
∑

θ ′

p(θ ′|θ , a)∇ψ⃗vπ(θ
′) .

(E.3)

We can now note that

∇ψ⃗vπ(θ ) =
∑

a

�

qπ(θ , a)∇ψ⃗π(a|θ ) +π(a|θ )
∑

θ ′

p(θ ′|θ , a)∇ψ⃗vπ(θ
′)

�

, (E.4)

and in a similar manner, ∇ψ⃗vπ(θ ′) can be ‘rolled out’ and expressed in terms of ∇ψ⃗vπ(θ ′′):

∇ψ⃗vπ(θ ) =
∑

a

�

qπ(θ , a)∇ψ⃗π(a|θ ) +π(a|θ )
∑

θ ′

p(θ ′|θ , a)

×
∑

a′

�

qπ(θ
′, a′)∇ψ⃗π(a

′|θ ′) +π(a′|θ ′)
∑

θ ′′

p(θ ′′|θ ′, a′)∇ψ⃗vπ(θ
′′)
��

..
(E.5)

Note that the first two rows of the above equation are identical in form, but are weighted
by the probability of transitioning between states under policy π. Replacing θ with its value
sampled at time t, we can write:

∇ψ⃗J(ψ⃗) = Eπ
�

∑

a

qπ(θt , a)∇ψ⃗π(a|θt ; ψ⃗)
�

= Eπ





∑

a

π(a|θt ; ψ⃗)qπ(θt , a)
∇ψ⃗π(a|θt ; ψ⃗)

π(a|θt ; ψ⃗)





= Eπ

�

∑

a

π(a|θt ; ψ⃗)qπ(θt , a)∇ψ⃗ logπ(a|θt ; ψ⃗)

�

,

(E.6)

where we have multiplied and divided by π(a|θt , ψ⃗) in the second line, and written
∇x/x = ∇ log x in the third line. If we now replace a by a sampled action at ∼ π(·|θt),
we have:

∇ψ⃗J(ψ⃗) = Eπ
�

Gt∇ψ⃗ logπ(at |θt ; ψ⃗)
�

, (E.7)

where Gt is the return at time t, and where we have written qπ(θt , at) = Eπ[Gt |θt , at]. The
argument of this expectation can be sampled on every timestep, and the expectation of this
quantity is equal to the gradient ∇ψ⃗J(ψ⃗) [108]. This gives the update rule that we used in
Eq. 37:

ψ⃗t+1 = γ⃗t +αRt∇ψ⃗ logπ(at |θt ; ψ⃗) , (E.8)

where we replaced the full return Gt with the instantaneous reward Rt (i.e., we considered a
purely myopic agent).
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F Structuring a motor drive about a goal heading

We consider a motor drive m of the form:

m=

∫ 2π

0

dθ cos(θ − θc) fg(θ ) , (F.1)

where cos(θ−θc) is an activity profile that encodes the current compass heading θc , and where
fg(θ ) is an arbitrary activity profile that encodes the goal heading.

Expanding the cos, we have:

m=

∫ 2π

0

dθ
1
2

�

ei(θ−θc) + ei(θ−θc)
�

fg(θ )

=
e−iθc

2

∫ 2π

0

dθ eiθ fg(θ ) +
eiθc

2

∫ 2π

0

dθ e−iθ fg(θ ) ,

(F.2)

where
∫ 2π

0

dθ e±iθ fg(θ )≡ rg e±iθg , (F.3)

defines the circular mean of the function fg(θ ), and rg and θg are the modulus and orientation
of the circular mean, respectively.

This allows us to write:

m= m(θc ,θg) =
rg

2

�

e−iθc eiθg + eiθc e−iθg
�

= rg cos(θc − θg) ..
(F.4)

Thus, when integrated over a full period, the product of the goal and compass activity profiles
will be largest when the compass heading is aligned with the circular mean of the goal activity
profile. We can then use this circular mean to define the goal heading.

If we now add a phase shift φ to the compass heading, this becomes:

m(θc ,θg ,φ) =

∫ 2π

0

dθ cos
�

θ − (θc +φ)
�

fg(θ )

= rg cos(θc +φ − θg) ,

(F.5)

which peaks at θc = θg −φ. Different phase shifts can then be used to generate motor drives
that peak at different compass headings relative to the goal heading. Importantly, the motor
drive will retain a sinusoidal profile regardless of the shape of fg(θ ), and thus regardless of
the goal heading θg . As a result, we can use any method we like for updating the goal activity
profile, and it will not disrupt the structure of the motor drive.
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[14] G. Tkačik, J. S. Prentice, V. Balasubramanian and E. Schneidman, Optimal popu-
lation coding by noisy spiking neurons, Proc. Natl. Acad. Sci. 107, 14419 (2010),
doi:10.1073/pnas.1004906107.

[15] E. Doi and M. S. Lewicki, A simple model of optimal population coding for sensory systems,
PLoS Comput. Biol. 10, e1003761 (2014), doi:10.1371/journal.pcbi.1003761.

[16] N. Brenner, W. Bialek and R. de Ruyter van Steveninck, Adaptive rescaling maximizes in-
formation transmission, Neuron 26, 695 (2000), doi:10.1016/s0896-6273(00)81205-
2.

[17] A. L. Fairhall, G. D. Lewen, W. Bialek and R. R. de Ruyter van Steveninck, Efficiency and
ambiguity in an adaptive neural code, Nature 412, 787 (2001), doi:10.1038/35090500.

[18] W. F. Młynarski and A. M. Hermundstad, Efficient and adaptive sensory codes, Nat. Neu-
rosci. 24, 998 (2021), doi:10.1038/s41593-021-00846-0.

[19] W. F. Młynarski and A. M. Hermundstad, Adaptive coding for dynamic sensory inference,
elife 7, e32055 (2018), doi:10.7554/eLife.32055.

44

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.83
https://doi.org/10.1073/pnas.0914916107
https://doi.org/10.7554/eLife.03722
https://doi.org/10.1146/annurev.neuro.24.1.1193
https://doi.org/10.1037/h0054663
https://doi.org/10.7551/mitpress/9780262518420.003.0013
https://doi.org/10.1515/znc-1981-9-1040
https://doi.org/10.1098/rspb.1982.0085
https://doi.org/10.1162/neco.1990.2.3.308
https://doi.org/10.1162/neco.1992.4.2.196
https://doi.org/10.1007/BF00203134
https://doi.org/10.1073/pnas.1004906107
https://doi.org/10.1371/journal.pcbi.1003761
https://doi.org/10.1016/s0896-6273(00)81205-2
https://doi.org/10.1016/s0896-6273(00)81205-2
https://doi.org/10.1038/35090500
https://doi.org/10.1038/s41593-021-00846-0
https://doi.org/10.7554/eLife.32055


SciPost Phys. Lect. Notes 83 (2024)

[20] I. Dean, N. S. Harper and D. McAlpine, Neural population coding of sound level adapts
to stimulus statistics, Nat. Neurosci. 8, 1684 (2005), doi:10.1038/nn1541.

[21] B. Wark, A. Fairhall and F. Rieke, Timescales of inference in visual adaptation, Neuron
61, 750 (2009), doi:10.1016/j.neuron.2009.01.019.

[22] D. B. Kastner and S. A. Baccus, Coordinated dynamic encoding in the retina using opposing
forms of plasticity, Nat. Neurosci. 14, 1317 (2011), doi:10.1038/nn.2906.

[23] I. Nemenman, Information theory and adaptation, in Quantitative biology, CRC Press,
Boca Raton, USA, ISBN 9780429193415 (2012), doi:10.1201/b12676.

[24] C. Robert, The Bayesian choice: From decision-theoretic foundations to computational im-
plementation, Springer, New York, USA, ISBN 9780387715988 (2007), doi:10.1007/0-
387-71599-1.

[25] D. B. Kastner and S. A. Baccus, Spatial segregation of adaptation and
predictive sensitization in retinal ganglion cells, Neuron 79, 541 (2013),
doi:10.1016/j.neuron.2013.06.011.

[26] T. R. Appleby and M. B. Manookin, Neural sensitization improves encoding fidelity in the
primate retina, Nat. Commun. 10, 4017 (2019), doi:10.1038/s41467-019-11734-4.

[27] B. N. Lundstrom, M. H. Higgs, W. J. Spain and A. L. Fairhall, Fractional differentiation by
neocortical pyramidal neurons, Nat. Neurosci. 11, 1335 (2008), doi:10.1038/nn.2212.

[28] S. E. Clarke, A. Longtin and L. Maler, Contrast coding in the electrosensory system: Paral-
lels with visual computation, Nat. Rev. Neurosci. 16, 733 (2015), doi:10.1038/nrn4037.

[29] J. O’Doherty, M. L. Kringelbach, E. T. Rolls, J. Hornak and C. Andrews, Abstract reward
and punishment representations in the human orbitofrontal cortex, Nat. Neurosci. 4, 95
(2001), doi:10.1038/82959.

[30] P. Vertechi, E. Lottem, D. Sarra, B. Godinho, I. Treves, T. Quendera, M. N.
Oude Lohuis and Z. F. Mainen, Inference-based decisions in a hidden state foraging
task: Differential contributions of prefrontal cortical areas, Neuron 106, 166 (2020),
doi:10.1016/j.neuron.2020.01.017.

[31] L. P. Sugrue, G. S. Corrado and W. T. Newsome, Matching behavior and the representation
of value in the parietal cortex, Science 304, 1782 (2004), doi:10.1126/science.1094765.

[32] V. D. Costa, V. L. Tran, J. Turchi and B. B. Averbeck, Reversal learning and dopamine:
A Bayesian perspective, J. Neurosci. 35, 2407 (2015), doi:10.1523/JNEUROSCI.1989-
14.2015.

[33] B. A. Bari, C. D. Grossman, E. E. Lubin, A. E. Rajagopalan, J. I. Cressy and J. Y. Cohen,
Stable representations of decision variables for flexible behavior, Neuron 103, 922 (2019),
doi:10.1016/j.neuron.2019.06.001.

[34] M. P. Karlsson, D. G. R. Tervo and A. Y. Karpova, Network resets in medial pre-
frontal cortex mark the onset of behavioral uncertainty, Science 338, 135 (2012),
doi:10.1126/science.1226518.

[35] Y. Liu, Y. Xin and N.-l. Xu, A cortical circuit mechanism for structural knowledge-
based flexible sensorimotor decision-making, Neuron 109, 2009 (2021),
doi:10.1016/j.neuron.2021.04.014.

45

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.83
https://doi.org/10.1038/nn1541
https://doi.org/10.1016/j.neuron.2009.01.019
https://doi.org/10.1038/nn.2906
https://doi.org/10.1201/b12676
https://doi.org/10.1007/0-387-71599-1
https://doi.org/10.1007/0-387-71599-1
https://doi.org/10.1016/j.neuron.2013.06.011
https://doi.org/10.1038/s41467-019-11734-4
https://doi.org/10.1038/nn.2212
https://doi.org/10.1038/nrn4037
https://doi.org/10.1038/82959
https://doi.org/10.1016/j.neuron.2020.01.017
https://doi.org/10.1126/science.1094765
https://doi.org/10.1523/JNEUROSCI.1989-14.2015
https://doi.org/10.1523/JNEUROSCI.1989-14.2015
https://doi.org/10.1016/j.neuron.2019.06.001
https://doi.org/10.1126/science.1226518
https://doi.org/10.1016/j.neuron.2021.04.014


SciPost Phys. Lect. Notes 83 (2024)

[36] C. C. Beron, S. Q. Neufeld, S. W. Linderman and B. L. Sabatini, Mice exhibit stochastic
and efficient action switching during probabilistic decision making, Proc. Natl. Acad. Sci.
119, e2113961119 (2022), doi:10.1073/pnas.2113961119.

[37] A. E. Rajagopalan, R. Darshan, K. L. Hibbard, J. E. Fitzgerald and G. C. Turner, Reward
expectations direct learning and drive operant matching in drosophila, (bioRxiv preprint)
doi:10.1101/2022.05.24.493252.

[38] K. J. Åström, Optimal control of Markov processes with incomplete state information, J.
Math. Anal. Appl. 10, 174 (1965), doi:10.1016/0022-247X(65)90154-X.

[39] L. P. Kaelbling, M. L. Littman and A. R. Cassandra, Planning and acting in par-
tially observable stochastic domains, Artif. Intell. 101, 99 (1998), doi:10.1016/S0004-
3702(98)00023-X.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, MIT Press, Cam-
bridge, USA, ISBN 9780262039246 (2018).

[41] T. Ma and A. M. Hermundstad, A vast space of compact strategies for effective decisions,
Sci. Adv. 10, eadj4064 (2024), doi:10.1126/sciadv.adj4064.

[42] N. Tishby and D. Polani, Information theory of decisions and actions, in Perception-action
cycle, Springer, New York, USA, ISBN 9781441914514 (2010), doi:10.1007/978-1-
4419-1452-1_19.

[43] H. S. Seung, How the brain keeps the eyes still, Proc. Natl. Acad. Sci. 93, 13339 (1996),
doi:10.1073/pnas.93.23.13339.

[44] M. Camperi and X.-J. Wang, A model of visuospatial working memory in prefrontal cor-
tex: Recurrent network and cellular bistability, J. Comput. Neurosci. 5, 383 (1998),
doi:10.1023/a:1008837311948.

[45] D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, in
Methods in neuronal modeling: From synapses to networks, MIT Press, Cambridge, USA,
ISBN 9780262111331 (1998).

[46] M. Tsodyks, Attractor neural network models of spatial maps in hippocampus,
Hippocampus 9, 481 (1999), doi:10.1002/(SICI)1098-1063(1999)9:4<481::AID-
HIPO14>3.0.CO;2-S.

[47] A. Compte, Synaptic mechanisms and network dynamics underlying spatial work-
ing memory in a cortical network model, Cereb. Cortex 10, 910 (2000),
doi:10.1093/cercor/10.9.910.

[48] A. Samsonovich and B. L. McNaughton, Path integration and cognitive mapping
in a continuous attractor neural network model, J. Neurosci. 17, 5900 (1997),
doi:10.1523/JNEUROSCI.17-15-05900.1997.

[49] S. M. Stringer, T. P. Trappenberg, E. T. Rolls and I. E. T. d. Araujo, Self-organizing contin-
uous attractor networks and path integration: One-dimensional models of head direction
cells, Netw.: Comput. Neural Syst. 13, 217 (2002), doi:10.1088/0954-898X/13/2/304.

[50] Y. Burak and I. R. Fiete, Accurate path integration in continuous attrac-
tor network models of grid cells, PLoS Comput. Biol. 5, e1000291 (2009),
doi:10.1371/journal.pcbi.1000291.

46

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.83
https://doi.org/10.1073/pnas.2113961119
https://doi.org/10.1101/2022.05.24.493252
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1126/sciadv.adj4064
https://doi.org/10.1007/978-1-4419-1452-1_19
https://doi.org/10.1007/978-1-4419-1452-1_19
https://doi.org/10.1073/pnas.93.23.13339
https://doi.org/10.1023/a:1008837311948
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4%3C481::AID-HIPO14%3E3.0.CO;2-S
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4%3C481::AID-HIPO14%3E3.0.CO;2-S
https://doi.org/10.1093/cercor/10.9.910
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1088/0954-898X/13/2/304
https://doi.org/10.1371/journal.pcbi.1000291


SciPost Phys. Lect. Notes 83 (2024)

[51] H. S. Seung, Continuous attractors and oculomotor control, Neural Netw. 11, 1253
(1998), doi:10.1016/s0893-6080(98)00064-1.

[52] M. S. Goldman, A. Compte and X.-J. Wang, Neural integrator models, in Encyclope-
dia of neuroscience, Elsevier, Amsterdam, Netherlands, ISBN 9780080450469 (2009),
doi:10.1016/B978-008045046-9.01434-0.

[53] J. J. Knierim and K. Zhang, Attractor dynamics of spatially correlated neural activity in
the limbic system, Annu. Rev. Neurosci. 35, 267 (2012), doi:10.1146/annurev-neuro-
062111-150351.

[54] R. Chaudhuri and I. Fiete, Computational principles of memory, Nat. Neurosci. 19, 394
(2016), doi:10.1038/nn.4237.

[55] B. K. Hulse and V. Jayaraman, Mechanisms underlying the neural computation of head
direction, Annu. Rev. Neurosci. 43, 31 (2020), doi:10.1146/annurev-neuro-072116-
031516.

[56] J. S. Isaacson and M. Scanziani, How inhibition shapes cortical activity, Neuron 72, 231
(2011), doi:10.1016/j.neuron.2011.09.027.

[57] S. Denève and C. K. Machens, Efficient codes and balanced networks, Nat. Neurosci. 19,
375 (2016), doi:10.1038/nn.4243.

[58] P. A. Iglesias and P. N. Devreotes, Navigating through models of chemotaxis, Curr. Opin.
Cell Biol. 20, 35 (2008), doi:10.1016/j.ceb.2007.11.011.

[59] K. Wimmer, D. Q. Nykamp, C. Constantinidis and A. Compte, Bump attractor dynamics in
prefrontal cortex explains behavioral precision in spatial working memory, Nat. Neurosci.
17, 431 (2014), doi:10.1038/nn.3645.

[60] I. Pisokas, S. Heinze and B. Webb, The head direction circuit of two insect species, eLife
9, e53985 (2020), doi:10.7554/eLife.53985.

[61] D. Turner-Evans, S. Wegener, H. Rouault, R. Franconville, T. Wolff, J. D. Seelig, S. Druck-
mann and V. Jayaraman, Angular velocity integration in a fly heading circuit, eLife 6,
e23496 (2017), doi:10.7554/eLife.23496.

[62] K. S. Kakaria and B. L. de Bivort, Ring attractor dynamics emerge from a spik-
ing model of the entire protocerebral bridge, Front. Behav. Neurosci. 11 (2017),
doi:10.3389/fnbeh.2017.00008.

[63] J. D. Seelig and V. Jayaraman, Neural dynamics for landmark orientation and angular
path integration, Nature 521, 186 (2015), doi:10.1038/nature14446.

[64] J. Green, A. Adachi, K. K. Shah, J. D. Hirokawa, P. S. Magani and G. Maimon, A neu-
ral circuit architecture for angular integration in drosophila, Nature 546, 101 (2017),
doi:10.1038/nature22343.

[65] D. B. Turner-Evans et al., The neuroanatomical ultrastructure and function of a biological
ring attractor, Neuron 108, 145 (2020), doi:10.1016/j.neuron.2020.08.006.

[66] B. K. Hulse et al., A connectome of the drosophila central complex reveals network motifs
suitable for flexible navigation and context-dependent action selection, eLife 10, e66039
(2021), doi:10.7554/eLife.66039.

47

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.83
https://doi.org/10.1016/s0893-6080(98)00064-1
https://doi.org/10.1016/B978-008045046-9.01434-0
https://doi.org/10.1146/annurev-neuro-062111-150351
https://doi.org/10.1146/annurev-neuro-062111-150351
https://doi.org/10.1038/nn.4237
https://doi.org/10.1146/annurev-neuro-072116-031516
https://doi.org/10.1146/annurev-neuro-072116-031516
https://doi.org/10.1016/j.neuron.2011.09.027
https://doi.org/10.1038/nn.4243
https://doi.org/10.1016/j.ceb.2007.11.011
https://doi.org/10.1038/nn.3645
https://doi.org/10.7554/eLife.53985
https://doi.org/10.7554/eLife.23496
https://doi.org/10.3389/fnbeh.2017.00008
https://doi.org/10.1038/nature14446
https://doi.org/10.1038/nature22343
https://doi.org/10.1016/j.neuron.2020.08.006
https://doi.org/10.7554/eLife.66039


SciPost Phys. Lect. Notes 83 (2024)

[67] S. S. Kim, H. Rouault, S. Druckmann and V. Jayaraman, Ring attractor dynamics in the
drosophila central brain, Science 356, 849 (2017), doi:10.1126/science.aal4835.

[68] M. Noorman, B. K. Hulse, V. Jayaraman, S. Romani and A. M. Hermundstad,
Accurate angular integration with only a handful of neurons, (bioRxiv preprint)
doi:10.1101/2022.05.23.493052.

[69] S. H. Strogatz, Nonlinear dynamics and chaos with student solutions manual: With ap-
plications to physics, biology, chemistry, and engineering, CRC Press, Boca Raton, USA,
ISBN 9780429399640 (2018), doi:10.1201/9780429399640.

[70] B. K. Hulse, A. Stanoev, D. B. Turner-Evans, J. D. Seelig and V. Jayaraman, A rotational
velocity estimate constructed through visuomotor competition updates the fly’s neural com-
pass, (bioRx preprint) doi:10.1101/2023.09.25.559373.

[71] J. Laurens and D. E. Angelaki, The brain compass: A perspective on how
self-motion updates the head direction cell attractor, Neuron 97, 275 (2018),
doi:10.1016/j.neuron.2017.12.020.

[72] K. Zhang, Representation of spatial orientation by the intrinsic dynamics of
the head-direction cell ensemble: A theory, J. Neurosci. 16, 2112 (1996),
doi:10.1523/JNEUROSCI.16-06-02112.1996.

[73] B. J. Hardcastle, J. J. Omoto, P. Kandimalla, B.-C. M. Nguyen, M. F. Keleş, N. K. Boyd,
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