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Solar neutrino physics with Borexino
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Abstract

We present the most recent solar neutrino results from the Borexino experiment at the
Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos
produced in the pp fusion chain have been made. It is the first time that the same detector
measures the entire range of solar neutrinos at once. These new data weakly favor a
high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.
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1 Introduction: solar neutrinos and Borexino

We know that the Sun is fueled by nuclear reactions fusing protons (hydrogen) into helium.
The set of reactions accomplishing this is summarized as:

4p −→ 4He+ 2e+ + 2νe + (24.7+ 2mec2)[MeV ].

In the Sun, 99% of the times this process is carried out through a set of reactions known as
the pp-chain, initiated by the fusion of two protons as illustrated in Fig. 1. Fig. 2 shows the
reactions believed to contribute the remaining ∼1%, in which proton fusion is catalized by
heavier elements, enhanced by higher metallicity (in astrophysics, all elements heavier than
helium are call metals). Also shown is the spectrum of solar neutrinos predicted by the Stan-
dard Solar Model (SSM). A comprehensive review of solar neutrino physics, with connections
to their experimental investigation, their role in the discovery of neutrino oscillations, and the
definition of neutrino flavor conversion parameters is found in [1].

Figure 1: The solar pp fusion chain.

Borexino measures solar (and other low energy) neutrinos interacting with a spherical
target of ∼300 tonnes of organic liquid scintillator. The scintillator is contained within a thin,
transparent nylon vessel and is surrounded by ∼1 kilo-tonne of buffer liquid. Scintillation
pulses from neutrino interactions, as well as other (mostly background) ionizing events are
detected by∼2,000 8-inch photomultiplier tubes uniformly mounted to point radially inwards
on a 13-meter diameter stainless steel sphere containing the fluid buffer. A water tank operated
as a Čerenkov muon detector hermetically surrounds the inner detector. Neutrinos are detected

Figure 2: Left: the CNO solar fusion cycle. Right:the SSM solar neutrino spectrum.
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Figure 3: The Borexino inner detector filled with scintillator in 2007.

via their elastic scattering off the electrons of the scintillator. The use of liquid scintillator
allows one to operate with a very low threshold compared to other techniques. The scintillation
signal, however, is isotropic and does not thus preserve directional information of events.
For this reason (i.e. the lack of specificity of neutrino interactions with respect to that of
most backgrounds), the detector requires unprecedented purity from any radioactivity in the
scintillator and all construction materials. A picture of the Borexino scintillator target and
inner detector is shown in Fig. 3. The Borexino detector and its design characteristics are
described in detail in [2].

In the following, we provide a summary of the main results from Borexino. Sec. 2 gives
an overview of pre-2018 results, Sec. 3 reports on recent measurements that cover the entire
pp chain, Sec. 4 provides a status update on attempting to measure CNO solar neutrinos, and
Sec. 5 offers brief conclusions.

2 Brief summary of Borexino results

Borexino has been running continuously since May 2007, measuring the entire solar neutrino
energy spectrum with increasing precision. It immediately showed unprecedented low levels
of radioactive background (in the form of 40K, 232Th, 238U) which made it possible to observe
the existence of 7Be solar neutrinos with just a few weeks of data. Over the following three
years (the so-called Phase I), Borexino has:

• measured the interaction rate of 7Be neutrinos with better than 5% precision, i.e. more
precise than the SSM uncertainty;

• excluded, with high sensitivity, any day-night asymmetry in the 7Be solar neutrino flux,
setting a stringent limit on electron flavor regeneration for solar neutrinos traversing the
earth and providing further confirmation of the validity of the MSW-LMA solar neutrino
oscillation model;
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• provided evidence on the existence of pep neutrinos;

• yielded the strongest upper bound for the CNO solar neutrino interaction rate;

• measured 8B solar neutrinos with the lowest detection energy threshold;

• tested the existence of a variety of ultra-rare, non-standard processes such as the exis-
tence of a neutrino magnetic moment.

These results are included for reference in the table in Fig 5. An account of the Borexino
Phase-I results and analysis methods can be found in Ref. [3] and references therein.

Following a period of about two two years during which the Borexino scintillator was
further purified from radioactivity, in 2012 the detector began its Phase II data collection. The
purification achieved the goal of reducing 232Th, 238U contamination to the 10−19 gram-of-
contaminant per gram-of-scintillator level, three orders of magnitude lower than the initial
Borexino specifications. Noteworthy results prior to 2017 include:

• the first spectral measurement of pp solar neutrinos [4];

• evidence that the 7Be neutrino interaction rate displayed a seasonal modulation consis-
tent with the varying solid angle between the earth and the sun [5];

• the detection of geo-neutrinos (i.e. anti-neutrinos from radioactivity in the earth) with
high significance, along with the ∼1,000 km-baseline detection of anti-neutrinos from
distant nuclear reactors in France [6];

• searches for neutrino signals in coincidence with gamma ray bursts and gravitational
waves [7,8].

3 Latest results from Borexino

Phase II Borexino data provided the opportunity to perform higher precision measurements of
all solar neutrino fluxes [9]. Firstly, reduced radioactive backgrounds with respect to Phase I,
specifically 85Kr, 210Bi, and 210Po contributed to a better measurement of 7Be neutrinos. Radio-
purity, however, was not the only factor in better measurements. A greatly-improved Monte
Carlo simulation package was developed [10] that allowed a more accurate determination
of the energy response over a wide energy range, and background-suppressing analysis tools
were refined, adding to the intrinsic improvement provided by an extended data set.

A multi-variate approach was used to identify and suppress the cosmogenic 11C background
(∼30 minute half life)), a β+ emitter covering the energy range relevant for pep and CNO neu-
trino detection. Positron emission with the production (50% of the times) of 3 ns-lived ortho-
positronium and the production of annihilation gamma rays (extended and with a slightly
different ionization density profile in the scintillator) produces a statistically distinguishable
time profile of the scintillation pulse from that of electron events. A likelihood was built using
such a pulse shape parameter, the radial distribution of events, and the simultaneous fit of
11C-rich and 11C-subtracted energy spectra. This procedure for determining neutrino fluxes
is illustrated in Fig.4, and allowed us to simultaneously fit the Borexino data between ∼200
keV and ∼2.5 MeV, including the interaction rate of pp, 7Be, pep, and CNO solar neutrinos and
the overlapping backgrounds (previous measurements were carried out focusing on narrower
energy regions).

25.5

https://scipost.org
https://scipost.org/SciPostPhysProc.1.025


SciPost Phys. Proc. 1, 025 (2019)

Figure 4: Illustration of the Phase II Borexino fitting strategy used to simultaneously
determine the interaction rate of pp, 7Be, and pep solar neutrinos. The fit also returns
an upper limit for CNO neutrinos, as well as rates for all relevant background sources.

The 8B solar neutrino rate was measured separately, albeit with the same data set. This
choice was dictated by the need to boost the statistics for this dimmer solar neutrino compo-
nent. In fact, the entire scintillator volume was used, instead of an innermost fiducial volume.
This choice was possible due to the higher energy of most of the 8B spectrum, placing a lower
energy cut of 3.2 MeV, above much of the natural radioactivity.

The Phase II results are collected in the table in Fig. 5. The 7Be neutrino interaction rate
is now measured with a precision of <3%. This is twice as small than the theoretical uncer-
tainty from the SSM, and can be used, in combination with assumptions on the solar neutrino
oscillation parameters, to better our understanding of the sun. The uncertainty on the pp neu-
trino rate is reduced to ∼10%. This is no small feat, given that its very measurement went
beyond what Borexino had proposed to do and that it was believed a dedicated experiment
was necessary to measure this low energy component of the flux. The pep neutrinos are defini-
tively discovered with 5σ significance, and a tight limit of < 8.1 counts per day (cpd)/100t
(95% C.L.) is set for the CNO neutrino rate. The 8B rate is not as precise as that measured
by SuperK [11], but is measured with the lowest energy threshold of all experiments for this
component.

The current goal of solar neutrino physics is to use neutrinos to increase our understand-
ing of solar models. Borexino Phase II data allows us for the first time to study the sun’s
metallicity, i.e the abundance of elements heavier than helium. High- and low-metallicity so-
lar models (referred to as HZ and LZ, respectively) result from contrasting measurements.
Helio-seismological data prefer HZ solar photospheric abundances. Solar metallicity affects
solar neutrino fluxes, most prominently that of CNO neutrinos with a ∼30% higher flux pre-
dicted by the HZ model compared to the LZ one. However, both the 7Be and 8B fluxes are
∼10% higher in the HZ SSM, while the pp and pep fluxes are higher for the LZ SSM [1]. Thus
the solar metallicity question could be addressed with high-precision measurements of these
fluxes.

The 7Be and pp neutrino fluxes can be used to compare the relative weight of the two
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Figure 5: Phase-II Borexino solar neutrino results compared to pre-2018 measure-
ments.

helium-helium fusion reactions by computing

R≡
3He+4 He
3He+3 He

=
2φ(7Be)

φ(pp) +φ(7Be)
,

which is predicted to be (0.180± 0.11) and (0.161± 0.10) for HZ and LZ SSM, respectively.
This ratio measured by Borexino is RBX = 0.178+0.027

−0.023.
Similarly, the measured 7Be and 8B can be used together and compared with SSM HZ and

LZ cases, as shown in Fig. 6. Borexino data alone mildly prefer the HZ SSM. This hint is
weakened by including all solar neutrino data, which notably provides a more precise value
for the 8B neutrinos as measured by the SuperK experiment, in the analysis. In addition,
theoretical uncertainties barely differentiate the two scenarios in this case.

Figure 6: Left: Phase-II Borexino and solar neutrino experiments 7Be and 8B solar
neutrino results compared against theoretical predictions from HZ and LZ SSM. El-
lipses indicate 1 σ contours. Right: the electron flavor survival probability of the
solar neutrino components measured with Borexino. The pink band represents the
energy-dependent survival probability under the assumption of HZ SSM.

4 Outlook: measuring CNO neutrinos

Of great astrophysical interest is the measurement of CNO neutrinos, as they are arguably the
most direct probe of solar metallicity. In order to assess how far Borexino is from measuring
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CNO neutrinos, the current Borexino limit < 8.1 cpd/100t (95% C.L.) should be compared
with SSM HZ and LZ predictions of 4.91±0.52 cpd/100t and 3.52±0.37 cpd/100t, respectively.
On one hand, this extra factor of two seems at arm’s reach of the experiment. On the other,
one background exists that poses a serious challenge, the β emitter 210Bi.

210Bi is a decay product of 222Rn, and because of this is found in air and on virtually
all surfaces. It is sustained by its long-lived daughter 210Pb, and is followed by a relatively
long-lived α emitter, 210Po. The 210Bi β spectrum is quasi-degenerate with that of electrons
recoiling off CNO neutrinos, as shown in Fig. 4. Detection of CNO neutrinos thus hinges on
having very low and well measured 210Bi background. One could determine the 210Bi activity
by measuring the supported 210Po component after the fraction which is out of equilibrium
has decayed away, as proposed in Ref. [12]. Fig. 7 shows the 210Po activity in the Borexino
fiducial volume versus time for approximately the past three years. A precise determination of
the steady-state component is made difficult by background fluctuations caused by scintillator
mixing due to convective motions with timescales of several months.

In 2015, the entire Borexino detector was thermally insulated from the air of the experi-
mental hall, the effect of which can be appreciated in Fig. 7. The collaboration is looking hard
into whether, with this stabler detector, 210Bi is low and constrained enough to allow for a
measurement of CNO neutrinos in the near future.

Figure 7: Left: The 210Po activity in the inner part of the Borexino scintillator volume
versus time for the Phase II dataset. The data is divided between top and bottom
half of the volume. It shows deviations from a pure exponential decay with the 210Po
half life (138 days), a behavior consistent with ’dirtier’ scintillator from outside the
fiducial volume entering and leaving it as a result of convective motions. Right: the
effectiveness of thermally insulating the Borexino tank is evident from the ensuing
layering of the 210Po activity inside the fiducial volume.

5 Conclusion

Borexino has been running for more than ten years, measuring the entire solar neutrino energy
spectrum with increasing precision. Noteworthy is the first measurement of 7Be neutrinos, the
prominent piece of the "solar neutrino puzzle", eventually solved by the discovery of neutrino
flavor transformation.

Borexino has set a new standard in levels of trace levels of radioactive impurities for large,
rare event experiments, making it possible to produce the crispest measurement to date of
solar neutrinos over their entire spectrum. The precision on the 7Be rate is a factor of two
better that the SSM uncertainty on this component. The improved measurement of the pp and
pep rates, which are consistent with each other based on known nuclear physics cross sections,
and consistent with our understanding of the sun and the solar luminosity, reinforce our ability

25.8

https://scipost.org
https://scipost.org/SciPostPhysProc.1.025


SciPost Phys. Proc. 1, 025 (2019)

to experimentally confirm that the sun is in thermodynamic equilibrium on a scale of 104−105

years [13].
In the next few years, Borexino will attempt to measure the CNO solar neutrino interaction

rate, which could resolve the solar metallicity puzzle, an important open question about the
sun.
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