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Latest results of the OPERA experiment
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Abstract

OPERA is a long-baseline experiment designed to search for νµ → ντ oscillations in
appearance mode. It was based at the INFN Gran Sasso laboratory (LNGS) and took
data from 2008 to 2012 with the CNGS neutrino beam from CERN. After the discovery of
ντ appearance in 2015, with 5.1σ significance, the criteria to select ντ candidates have
been extended and a multivariate approach has been used for events identification. In
this way the statistical uncertainty in the measurement of the oscillation parameters and
of ντ properties has been improved. Results are reported.
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1 Introduction

Originated by the neutrino mass and the mixing between flavour and mass eigenstates, neu-
trino oscillations are now established thanks to intense experimental efforts. In 1998, the first
evidence of neutrino oscillations was provided by the Super-Kamiokande experiment, show-
ing the disappearance of atmospheric muon neutrinos [1]. This result was consistent with the
transition of νµ to ντ or to a new type of neutrino, still not known. At that time, moreover,
the ντ neutrino had not been observed yet.

The OPERA experiment [2] was designed to conclusively prove the existence of νµ → ντ
oscillations. It was operated underground at the Gran Sasso INFN Laboratory (LNGS), 730
km away from the muon neutrino source at CERN, and collected data from 2008 to 2012.
The direct search for ντ appearance was based on the detection of τ leptons produced in ντ
charged current interactions (CC). The challenging detection of the short-lived τ lepton (cτ =
87 µm), out of almost twenty thousands νµ interactions, was achieved exploiting the nuclear
emulsions sub-micrometric spatial resolution.

2 The CNGS beam and the OPERA detector

The OPERA detector was located at the underground Gran Sasso Laboratory (LNGS), 730 km
away from the neutrino source, in the high energy CERN to LNGS beam (CNGS) [3, 4]. The
average neutrino energy was ∼ 17 GeV, the ν̄µ contamination was 2.1% in terms of interac-
tions, the νe and ν̄e together were below 1%, while the number of prompt ντ was negligible.
The detector was a hybrid apparatus consisting of an emulsion/lead target complemented by
electronic detectors. It was made up of two identical super-modules aligned along the CNGS
beam direction, each made of a target section and a muon spectrometer. Each target section
consisted of a multi-layer array of 31 target walls interleaved with pairs of planes of plastic
scintillator strips. Target walls were made of Emulsion Cloud Chamber target units, called
bricks, which were, in total, 150000. Each brick consists of 57 emulsion films, 300 µm thick,
interleaved with 56 lead plates, 1 mm thick.The target total mass was 1.25 ktons. The elec-
tronic detectors were used to identify the brick containing the neutrino interaction, for muon
identification and its charge and momentum determination.

3 Event selection and analysis

Once a neutrino interaction was reconstructed in the electronic detectors, the bricks most
probably containing the interaction vertex was identified by a dedicated offline algorithms
and extracted from the walls. The nuclear emulsions were eventually developed and scanned
to search for τ decays. The scanning was performed with automated optical microscopes
installed in Laboratories in Europe and in Japan. If a secondary vertex was found, a full kine-
matic analysis was performed combining the nuclear emulsion data with those from the elec-
tronic detectors. The momentum of charged particles in emulsions was determined by Multiple
Coulomb Scattering [5]. For muons crossing the spectrometers, the momentum was measured
with a resolution better than 22% up to 30 GeV/c, and the charge sign determined [6].

The appearance of the τ lepton was identified by the detection of its characteristic decay
topologies, either in one prong (electron, muon or hadron) or in three prongs. A first hint of a
decay topology was the observation of an impact parameter larger than 10 µm, defined as the
minimum distance between the track and the reconstructed vertex, excluding low momentum
tracks. Kinematic selection criteria were then applied according to the decay channel.
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4 First phase of the OPERA experiment

In the first phase of the OPERA experiment, very stringent kinematical selection criteria for ντ
candidate selection were applied, allowing a signal-to-background ratio of ∼ 10.

Five ντ candidates were observed: three in the τ → 1h decay channel [7–9], one in the
τ→ 3h [10] and one in the τ→ µ [11] decay channel. In the sample analysed up to 2015,
corresponding to 5408 neutrino interactions, 0.25± 0.05 background events were expected,
coming mainly from events with an undetected primary muon, hadronic re-interactions and
large angle muon scattering. The observation of five candidates results in 5.1σ significance
for the exclusion of the background only hypothesis [9].

5 Second phase of the OPERA experiment

A new goal has been set. In order to estimate the oscillation parameters with reduced statistical
uncertainty a new analysis procedure was implemented.

Given the validation of the Monte Carlo simulation of ντ events, based on different control
data samples [12–14], a new analysis strategy was developed, fully exploiting the features
of expected ντ events. A multivariate approach to improve signal to noise separation was
applied to candidate events selected by means of moderately tight topological and kinematical
cuts. The new selection was applied to the complete data sample, corresponding to 5603 ν
interactions. Details about the new selection method are reported in [15]. The total expected
signal is (6.8± 1.4) events, whereas the total background expectation is (2.0± 0.4) events.

Ten events (Nobs) survived all the topological and kinematical cuts. The distribution of
their visible energy, i.e. the scalar sum of the momenta of charged particles and γs, is shown
in Fig. 1, where it is compared to Monte Carlo simulation.
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Figure 1: Stacked plot of visible energy: data are compared with the expectation.
Monte Carlo simulation is normalised to the expected number of events [15].

Different multivariate techniques have been considered and their performances for signal
to background discrimination compared. The one with the best discrimination power was the
Boosted Decision Tree (BDT).

5.1 ντ appearance statistical significance

The statistical analysis used to re-evaluate the significance for the ντ appearance is based on
an extended likelihood constructed as the product of a probability density function given by
the BDT response, a Poisson probability term which takes into account the number of observed
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events and the expected background in each decay channel, and a Gaussian term which ac-
counts for systematics. The discovery significance of ντ appearance is expressed in terms of
a hypothesis test where the background only hypothesis plays the role of the null hypothesis
and the signal-plus-background hypothesis is the alternative one. The null hypothesis was
excluded with the improved significance of 6.1 σ [15].

5.2 First measurement of |∆m2
23| in appearance mode and of ντ CC cross-section

on Lead

The number of observed ντ candidates after background subtraction is a function of the prod-
uct of ντ CC cross-section (σCC

ντ
) and the oscillation parameter ∆m2

23.

The squared mass difference ∆m2
23 was evaluated for the first time in appearance mode:

assuming sin2 2θ23 = 1, |∆m2
23| is equal to (2.7+0.7

−0.6) · 10−3eV2. The result is consistent with the
measurements performed in disappearance mode by other experiments and with the Particle
Data Group best fit [16].

The ντ CC cross-section on the OPERA lead target was also estimated: it is equal to
(5.1+2.4

−2.0) · 10−36cm2, assuming |∆m2
23|= 2.50 · 10−3 eV2. It is the first measurement of the

ντ CC cross-section with a negligible contamination from ν̄τ.

5.3 ντ lepton number

The OPERA experiment allowed to distinguish neutrinos from anti-neutrinos by the charge
of the muon in τ muonic decays. This charge was determined as negative at 5.6 σ level for
the τ → µ candidate. Performing a dedicated BDT analysis which included also the back-
ground from 2% ν̄µ beam contamination, the first direct evidence for the leptonic number of
τ neutrinos with a significance of 3.7σ was obtained.

Conclusions

OPERA claimed the discovery at 5.1σ of νµ → ντ appearance in the CNGS neutrino beam
from the detection of five ντ events, with a background of 0.25 events. A new analysis strategy
was applied for the selection of additional ντ candidates, in order to measure the oscillation
parameters with reduced statistical error.

With the identification of five additional ντ candidates, an overall sample of ten ντ can-
didates was collected, with 2.0± 0.4 expected background events. The discovery of νµ → ντ
oscillations in appearance mode is confirmed with an improved significance of 6.1 σ.

Assuming sin2 2θ23 = 1, the first measurement of |∆m2
23| in appearance mode yields

(2.7+0.7
−0.6) · 10−3eV2, while the measured ντ CC cross-section on the lead OPERA target is

(5.1+2.4
−2.0) · 10−36cm2, assuming |∆m2

23|= 2.50 · 10−3 eV2.
Furthermore, a dedicated BDT analysis in the τ→ µ channel allows claiming for the first

direct observation of the ντ lepton number with a significance of 3.7 σ.
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