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Abstract

We use a new compilation of the hadronic R-ratio from available data for the process
e+e− → hadrons below the charm mass to determine the strong coupling αs, using
finite-energy sum rules. Quoting our results at the τ mass to facilitate comparison to
the results obtained from similar analyses of hadronic τ-decay data, we find
αs(m2

τ) = 0.298 ± 0.016 ± 0.006 in fixed-order perturbation theory, and
αs(m2

τ) = 0.304± 0.018± 0.006 in contour-improved perturbation theory, where the first
error is statistical, and the second error combines various systematic effects. These val-
ues are in good agreement with a recent determination from the OPAL and ALEPH data
for hadronic τ decays. We briefly compare the R(s)-based analysis with the τ-based anal-
ysis.
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1 Introduction

Recently, new compilations of data for the R-ratio R(s), measured in the process e+e−→ hadrons(γ),
have appeared, mostly motivated by the aim to improve the dispersive prediction for the
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Figure 1: Left panel: R-ratio data from Ref. [2], as a function of s, the hadronic
invariant squared mass. The three-flavor, massless parton-model value is 2. Right
panel: A blow-up of the region 2≤ s ≤ 6 GeV2.

hadronic vacuum polarization part of the muon anomalous magnetic moment [1–3]. As R(s)
is directly proportional to the electromagnetic (EM) QCD vector spectral function, it also gives
access to other QCD quantities of interest. One of those is the strong coupling αs, which can
be extracted from R(s) using finite-energy sum rules (FESRs) similarly to the extraction of αs
from the QCD spectral functions measured in hadronic τ decays.

The extraction of αs from R(s) is interesting because it provides us with an alternative de-
termination of the strong coupling from data at relatively low energies, thus providing another
direct test of the running of the strong coupling as predicted by perturbation theory. It can also
directly be compared with the determination from hadronic τ decays. In this talk, we give a
brief overview of the determination of αs from R(s), summarizing Ref. [4], to which we refer
for details.

2 A new compilation of R-ratio data

The data set we employed for our work is that of Ref. [2], and it is shown in the left panel
of Fig. 1. This plot shows R(s) as a function of the square of the center-of-mass energy s, in
GeV2, below the threshold for charm production. At large s, R(s) is expected to approach the
parton-model value R= 2, plus small perturbative corrections.

In the right panel of Fig. 1 we show a blow-up of these same data, for 2 GeV2 ≤ s ≤ 6 GeV2.
This plot shows more clearly that there are a lot more data in the region s ≤ 4 GeV2, where R(s)
was compiled from summing exclusive-channel experiments, than in the region s ≥ 4 GeV2,
where R(s) was compiled from inclusive experiments.1 This implies that an extraction of αs
using all data below 4 GeV2 will yield a value with a much smaller error than an extraction
of αs from R(s) for a value of s where QCD perturbation theory directly applies. As will be
explained in the next section, FESRs provide us with the tool to use all data above threshold
(s = m2

π).

1For a much more detailed description and discussion of the compilation we refer to Refs. [2,4].
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Re q2

Figure 2: Analytic structure of Π(q2) in the complex z = q2 plane. There is a cut on
the positive real axis starting at s = q2 = m2

π (see text). The solid curve shows the
contour used in Eq. (2).

3 Finite energy sum rules

We consider the EM vacuum polarization Π(z = q2), and integrate its product with a polyno-
mial weight function w(z/s0) along the contour shown in Fig. 2, where the circle has radius
s0. Π(q2) is analytic everywhere in the complex q2 plane except along the positive q2 axis,
and Cauchy’s theorem thus implies that the integral around this contour vanishes. Splitting
the integral into one part along the circle, and one part going back below and forth above the
positive axis, and using that

ρ(s) =
1
π

ImΠ(s) =
1

2πi
(Π(s+ iε)−Π(s− iε)) , (1)

we find, using also ρ(s) = 1
12π2 R(s), the FESR with weight w

I (w)(s0)≡
1
s0

∫ s0

m2
π

ds w(s/s0)
1

12π2
R(s) = −

1
2πis0

∮

z=|s0|
dz w(z/s0)Π(z) . (2)

In this equation, the left-hand side represents the “data” side, and it incorporates all data
between threshold and s = s0. The right-hand side represents the “theory” side, and, if s0 is
large enough, perturbation theory should provide a good representation of the theory.

In more detail, if s0 is large enough, we can use the theory representation

Π(z) = Πpert(z) +ΠOPE(z) +ΠDV(z) . (3)

The first term, Πpert(z), is obtained from massless perturbation theory, and is known to or-
der α4

s [6]. The OPE (operator product expansion) part can be parametrized in terms of the
“condensates” C2k as

ΠOPE(z = q2) =
∞
∑

k=1

C2k

(−q2)k
, (4)

while the “duality-violation” part ΠDV(z) represents contributions to Π(z) manifested by the
presence of resonance peaks, which are not captured by perturbation theory or the OPE. The
D = 2k = 2 term in the OPE corresponds to the mass corrections that can be calculated in
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Table 1: R-ratio and moments for the weights I (wi)(s0) of Eq. (5) evaluated for
s0 = 4 GeV2 from the data of Ref. [2], with errors propagated from those data, shown
in the third column. The second column shows which terms in the OPE (4) contribute
to each of the moments.

quantity OPE coefficients: D = 2k error at s0 = 4 GeV2

R(s0) – 4.3%
I (w0)(s0) D = 2 1.04%
I (w2)(s0) D = 2, 6 0.73%
I (w3)(s0) D = 2, 6, 8 0.56%
I (w4)(s0) D = 2, 6, 10 0.59%

perturbation theory, and is thus known. Condensates with D = 2k > 2 are not known, and
will be treated as free parameters in our fits.2

In our analysis, we will employ the weight functions

w0(y) = 1 , (5)

w2(y) = 1− y2 ,

w3(y) = (1− y)2(1+ 2y) ,

w4(y) = (1− y2)2 .

From Eq. (2), one sees that, apart from C2, C6 contributes to I (w2), C6 and C8 contribute to
I (w3), and C6 and C10 contribute to I (w4). We avoid weights with a term linear in y , as it was
argued that perturbation theory for such weights should be expected to have poor convergence
properties [5]. In our analysis, we also included EM corrections to perturbation theory.

Duality violations, represented by the term ΠDV(z), are expected to give a contribution
which decreases with increasing s0. In addition, their largest contribution to the integral on
the right-hand side of Eq. (2) is expected to come from the part of the circle closest to the real
axis, i.e., z ≈ s0. Their contribution is thus suppressed for w = w2, which has a single zero at
z = s0 (w2 is “singly pinched”), and more suppressed for w = w3,4, which both have a double
zero at z = s0 (w3,4 are “doubly pinched”).

Let us compare the experimental values of I (w)(s0) for the four weights (5) with the value
of R(s0) itself, for example at s0 = 4 GeV2, evaluated on the data of Ref. [2]. We show these
values in Table 1.

We see immediately that the spectral moments I (w0,2,3,4)(s0) are known to a much higher
precision than R(s0) from the same data. The reason is of course that the spectral moments
include all data for R(s) from threshold to s = s0. Similar observations apply to values of s0
other than 4 GeV2. This explains why the application of FESRs to the R-ratio data leads to a
much more precise determination of αs from these data than a direct determination from R(s)
at a fixed value of s.

2In reality, the coefficients C2k are logarithmically dependent on q2. However, this dependence can be safely
neglected in the application of FESRs to the R(s) data, given their precision, at least for k > 1 (we do take this q2

dependence into account for k = 1). Likewise, the up and down quark masses can be safely set equal to zero, and
C2 can thus be expressed in terms of the strange quark mass ms(q2) and αs(q2).
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Figure 3: Comparison of the data for I (w)(s0) with the fits on the interval smin
0 = 3.25

to 4 GeV2, for w= w0 (upper left panel), w= w2 (upper right panel), w= w3 (lower
left panel), and w = w4 (lower right panel). Solid black curves indicate FOPT fits,
dashed curves CIPT. The fit window is indicated by the dashed vertical lines.

4 Results

We now summarize the results of our fits of the FESRs (2) to the data. Our fits were carried out
on a window s0 ∈ [smin

0 , smax
0 ], with 3.25 GeV2 ≤ smin

0 ≤ 3.80 GeV2 and smax
0 = 4 GeV2, finding

good stablity for these values of smin
0 . In Fig. 3 we show typical fits for all four weights (5), with

smin
0 = 3.25 GeV2. Fits were carried out neglecting the duality-violating term ΠDV in Eq. (3).

All fits are correlated, and have p-values varying from 0.09 to 0.42.
We note that the values of s0 used in our fits are all larger than the square of the τ mass

m2
τ, the kinematic end point for a similar analysis of spectral functions measured in hadronic

τ decays. In particular, we notice that in the e+e− case good fits are obtained neglecting
duality violations, in contrast to the τ-decay case (see Sec. 5 below). For w = w0, a remnant
of integrated duality violations (the small oscillation) is visible, but the fit is consistent with
the data, visually, and as confirmed by the quality of the fit. For higher weights, all of which
involve pinching, no effect from integrated duality violations is visible at all.

We used two different resummations of the perturbative series commonly employed in
such sum-rules analyses, FOPT (fixed-order perturbation theory) and CIPT (contour-improved
perturbation theory [7, 8]). For a more detailed discussion, we refer to Refs. [4, 5, 9] and
references therein, as well as Refs. [10,11].

In Table 2 below, we show our results for the values of αs(m2
τ) obtained from these fits,

where we quote αs at the τ mass in order to facilitate comparison with values obtained from
hadronic τ decays.

Clearly, there is excellent agreement between the values obtained from different weights.
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Table 2: Values for αs(m2
τ) obtained from the various weights, with FOPT values in

the second column, and CIPT values in the third.

weight αs(m2
τ) (FOPT) αs(m2

τ) (CIPT)
w0 0.299(16) 0.308(19)
w2 0.298(17) 0.305(19)
w3 0.298(18) 0.303(20)
w4 0.297(18) 0.303(20)
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Figure 4: The FOPT strong coupling αs(m2
τ) as a function of smin

0 . Blue data points
(diamonds) represent values of αs(m2

τ) from fits with weight w0, red (open squares)
those from fits with weight w2, green (filled squares) those from fits with weight w3,
all without inclusion of duality violations. (Fits from w4 are not shown to avoid clut-
ter, but look very similar to those for w3.) Black data points (filled circles) correspond
to the values from fits with weight w0, with the inclusion of duality violations. The
solid, purple horizontal line shows the value 0.298, with the dashed horizontal lines
showing the values 0.298 ± 0.005. The red, blue and black data points have been
slightly offset horizontally for visibility.

This agreement is also found for the fit values for C6, between the weights w2, w3 and w4 [4].
The errors shown are a combination of the fit error and the error due to the variation of smin

0 ,
where the first error dominates the total error.3

In Ref. [4] we carried out a number of additional tests. First, we did a number of fits with
smax
0 or both smin

0 and smax
0 in the inclusive region s > 4 GeV2. We found results consistent with

those reported in the table above but including data in the inclusive region does not lead to a
reduction of the errors shown in the table.

Second, while fits without duality violations lead to good p-values, we tested the stability

3Another error, due to the fact that the O(α5
s ) term in perturbation theory is unknown, is negligibly small.
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of the fits with weight w0 against the inclusion of a model for duality violations. We chose the
weight w0 as it is the weight which is most sensitive to duality violations, with no pinching at
z = s0. The model we used is described in detail in Ref. [4], uses input for the I = 1 channel
from τ decays [4,12], and is based on theoretical insights about duality violations developed
in Ref. [13] (and references therein).

Figure 4 shows a summary of this analysis for the FOPT case.4 Colored data points (di-
amonds and squares) show fit values of αs(m2

τ) as a function of smin
0 (with smax

0 = 4 GeV2;
see figure caption for details). These are fits which do not include duality violations, i.e.,
ΠDV(z) in Eq. (3) is omitted in these fits. The purple horizontal line shows the average value
αs(m2

τ) = 0.298, and the dashed horizontal lines show the values 0.298±0.005 with the 0.005
representing the fluctuation in αs(m2

τ) values we find when we let smin
0 vary between 3.25 and

3.80 GeV2.5

The black filled circles represent fit values for αs(m2
τ) from fits with weight w0 which do

include duality violations. Two observations can be made: First, fits for smaller values of
smin
0 than 3.25 GeV2 become more stable; p-values for fits with smin

0 < 3.25 GeV2 become
much larger and acceptable, while p-values for smin

0 values between 3.25 and 3.80 GeV2 range
between 0.20 and 0.50. Second, the central values for αs(m2

τ) with smin
0 between 3.25 and

3.80 GeV2 are completely consistent with the estimate αs(m2
τ) = 0.298± 0.005. We conclude

that indeed our fits are stable with respect to the inclusion of duality violations, and thus that
they can be ignored within current errors in the analysis based on the R-ratio, which allows
us to probe values of s0 significantly larger than m2

τ. We refer to Refs. [4, 13, 14] for more
detailed recent information on the theory and role of duality violations.

5 Difference with determination from hadronic τ decays

In this section, we present a brief comparison between FESR fits of moments of the non-
strange I = 1 vector spectral function obtained from hadronic τ decays [15], and FESR fits of
the EM spectral function proportional to R(s). As we will see in more detail in the next section,
values for αs(m2

τ) are consistent between the two cases. Here, instead, we compare the fits
themselves.

Figure 5 shows fits of the moments I (w0)(s0) (upper panels) and I (w2)(s0) (lower panels),
comparing these fits between fits based on the τ data (left panels) and fits based on the e+e−

data (right panels). The τ-based fits have smax
0 = m2

τ and smin
0 = 1.55 GeV2; the e+e−-based

fits have smax
0 = 4 GeV2 and smin

0 = 3.25 GeV2. In the τ panels, the blue curve represents
FOPT fits with duality violations and the red dashed curve CIPT fits with duality violations.
The black curves represent the perturbation theory plus OPE parts of these fits, omitting the
duality-violating part. In the e+e− panels, which just reproduce the top panels already shown
in Fig. 3, the black curves represent FOPT (solid) and CIPT (dashed) fits, with no duality
violations.

Duality violations show up in the data points as oscillations around the perturbation theory
plus OPE curves (black solid and dashed curves in all panels). Clearly, duality violations are
very visible in the left panels. In contrast, they are barely visible in the upper right panel, and
not visible in the lower right panel. These comparisons of theory with data show that duality
violations cannot be ignored in the τ-based results, while fits of moments of R(s) at sufficiently
higher s0 are consistent with integrated duality violations being small enough at these higher
values to be neglected, within current errors. This is consistent with the expected exponential

4The CIPT case is very similar.
5Note that this is not the full error bar on αs(m2

τ
), because it does not include the fit error. The total error on

fit values for αs(m2
τ
) is much larger, as can be seen from the errors on the individual data points.
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Figure 5: Comparison of FESR fits extracting αs from hadronic τ data (left panels)
vs. e+e−→ hadrons(γ) (right panels). Top panels show fits with weight w0, bottom
panels show fits with weight w2. Because of the comparison between τ-based mo-
ments and e+e−-based moments, we show those obtained from the vector channel in
the plots on the left. For more detail, see main text.

decay of the duality-violating part of the spectral function with increasing s, as discussed in
more detail in Ref. [14].

6 Final results and conclusions

Our final results for αs(m2
τ) from the FESR-analysis of R(s) is

αs(m
2
τ) = 0.298(17) (FOPT) , (6)

= 0.304(19) (CIPT) .

We note that the error is dominated by the fit errors, obtained by propagating the errors on
the data compilation of Ref. [2]. This can be directly compared with the values obtained from
the τ-based analysis [12]:

αs(m
2
τ) = 0.303(9) (FOPT) , (7)

= 0.319(12) (CIPT) .

There is excellent agreement between the results obtained from e+e−, and those obtained from
τ decays. We note the much reduced difference between the FOPT and CIPT values in the e+e−
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analysis, which we believe can be partially ascribed to the fact that these values are extracted
from spectral-weight moments at larger s0, where the convergence properties of perturbation
theory are expected to be better.

We also quote the e+e−-based values after running the values of Eq. (6) to the Z-mass,
converting from three to five flavors:

αs(m
2
Z) = 0.1158(22) (FOPT) , (8)

= 0.1166(25) (CIPT) .

These values are both consistent, within errors, with the world average as reported in Ref. [16],
confirming the running predicted by QCD between the scale of the e+e− analysis and MZ
[17,18].

Finally, we point out that the R-ratio data can be used to test results obtained in the τ-based
approach. Any strategy employed in the application of FESR-based fits to the spectral moments
obtained from hadronic τ decays can be applied to similar spectral moments obtained from
R(s), limiting oneself to the kinematic regime allowed by the τ data, i.e., s0 ≤ m2

τ. Clearly, the
match between theory and data should then also work above the τ mass; in fact, if anything,
it should be better. We have applied this test to the “truncated OPE” strategy employed by
Refs. [15, 19], finding that there are very serious, systematic problems with that approach.
This confirms the conclusions of Ref. [20]. For a preliminary overview of this analysis, we
refer to Ref. [14].
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