Hilbert space structure and classical limit of the low energy sector of U(N) quantum Hall ferromagnets

Manuel Calixto$^{1,2,*}$, Alberto Mayorgas$^1$ and Julio Guerrero$^{2,3}$

1 Department of Applied Mathematics, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
2 Institute Carlos I for Theoretical and Computational Physics, University of Granada, Fuentenueva s/n, 18071 Granada, Spain
3 Department of Mathematics, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain

$^*$calixto@ugr.es

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

1 Introduction

The magnetic interaction between adjacent $\langle \alpha, \beta \rangle$ dipoles is described by the U(2) (two-component electrons) Quantum Heisenberg Model Hamiltonian

$$H = -\frac{1}{2} \sum_{\langle \alpha, \beta \rangle} \mathcal{J}_x \sigma_x(\alpha) \sigma_x(\beta) + \mathcal{J}_y \sigma_y(\alpha) \sigma_y(\beta) + \mathcal{J}_z \sigma_z(\alpha) \sigma_z(\beta),$$

with $\sigma_{x,y,z}(\alpha)$ Pauli matrices at site $\alpha$ and $\mathcal{J}_{x,y,z}$ coupling constants. For positive $\mathcal{J}$, the dominant coupling between two dipoles may cause nearest-neighbors $\langle \alpha, \beta \rangle$ to have lowest energy when they are aligned (ferromagnetic case). The generalization of this model to $N$-component
electrons arises in, for example, the two-body exchange interaction for \(N\)-component planar electrons in a perpendicular magnetic field \([1]\), which adopts the form of a \(U(N)\) Quantum Hall Ferromagnet (QHF) Hamiltonian on a square lattice

\[
H = -\mathcal{J} \sum_{(\alpha, \beta) i, j=1}^{N} S_{ij}(\alpha) S_{ji}(\beta),
\]

written in terms of \(U(N)\)-spin operators

\[
S_{ij}(\alpha) = c_{i}^{\dagger}(\alpha) c_{j}(\alpha), \quad [S_{ij}(\alpha), S_{kl}(\beta)] = \delta_{\alpha\beta} (\delta_{jk} S_{il}(\beta) - \delta_{il} S_{kj}(\beta)),
\]

realized in terms of creation \(c_{i}^{\dagger}(\alpha)\) and annihilation \(c_{i}(\alpha)\) operators of an electron with component \(i, j \in \{1, \ldots, N\}\) in a given Landau/lattice site \(\alpha \in \{1, \ldots, L\}\) of a given Landau level (namely, the lowest one). The sum over \((\alpha, \beta)\) extends over all near-neighbor Landau/lattice sites, and \(\mathcal{J}\) is the exchange coupling constant (the spin stiffness for the XY model).

In particular, the electrons become multicomponent when, for example, in addition to the usual two spin components \(\uparrow\) and \(\downarrow\), they acquire extra “pseudospin” internal components associated with: (a) layer (for multilayer arrangements), (b) valley (like in graphene and other 2D Dirac materials), (c) sub-lattice, etc. In the case of a bilayer quantum Hall system in the lowest Landau level, one Landau site can accommodate \(N = 4\) internal states/components \(|i\rangle, i = 1, 2, 3, 4\) (“flavors”)

\[
|1\rangle = |\uparrow t\rangle, \quad |2\rangle = |\uparrow b\rangle, \quad |3\rangle = |\downarrow t\rangle, \quad |4\rangle = |\downarrow b\rangle,
\]

where \(t\) and \(b\) make reference to the “top” and “bottom” layers, respectively. Since the electron field has \(N = 4\) degenerate components, the bilayer system possesses an underlying \(U(4)\) symmetry. Likewise, the \(\ell\)-layer case carries a \(U(2\ell)\) symmetry.

For \(N\)-component electrons, the Pauli exclusion principle allows \(M \leq N\) electrons per Landau/lattice site (the filling factor). Selecting a ground state \((|0\rangle)\) denotes de Fock vacuum

\[
|\Phi_{0}\rangle = \Pi_{\alpha=1}^{N} \Pi_{i=1}^{M} c_{i}^{\dagger}(\alpha)|0\rangle_{F},
\]

which fills all \(L\) lattice sites with the first \(M\) internal levels \(i = 1, \ldots, M \leq N\), spontaneously breaks the \(U(N)\) symmetry (SSB) since a general unitary transformation mixes the first \(M\) “spontaneously chosen” occupied internal levels with the \(N - M\) unoccupied ones. The ground state \(|\Phi_{0}\rangle\) is still invariant under the stability subgroup \(U(M) \times U(N - M)\) of transformations among the \(M\) occupied levels and the \(N - M\) unoccupied levels, respectively. Therefore, the transformations that do not leave \(|\Phi_{0}\rangle\) invariant are parametrized by the Grassmannian coset \(G_{M}^{N} = U(N)/U(M) \times U(N - M)\), which reduces to the well known Bloch sphere \(S^{2} = U(2)/U(1) \times U(1)\) for \(N = 2\) spin components and \(M = 1\) electron per Landau site (“symmetric multi-qubits” \([2]\)).

In this article, we aim to describe the carrier Hilbert space associated with these \(U(N)\) representations, their coherent states \([3]\), and the classical limit. The structure of the Hilbert space for a \(U(N)\) QHF with \(L\) Landau/lattice sites and filling factor \(M\) is sketched in Section 2. \(U(N)\) irreducible representations (IRs) are classified with Young diagrams. Lieb-Mattis ordering of electronic energy levels (based on the pouring principle for Young diagrams) identifies rectangular Young diagrams of \(L\) columns and \(M\) rows as the carrier Hilbert space of the lower energy sector. We also provide a Fock (boson and fermion) representation of basis states alternative to the Young tableau representation.

In the classical/continuum limit \(L \to \infty\) (large \(U(N)\)-spin representations or large number of lattice sites), the \(U(N)\)-spin operators \(S_{ij}\) become c-numbers, and the low energy \(U(N)\)-spinwave coherent excitations are named “skyrmions” \([4-6]\). These coherent excitations turn out
to be governed by a ferromagnetic order parameter associated with this SSB and labeled by 
\((N - M) \times M\) complex matrices \(Z\) parametrizing the complex Grassmannian manifold \(G_{M}^{N}\) 
in Section 3. In fact, Grassmannian nonlinear sigma models (NLoS) describe the classical 
dynamics associated with these SU\((N)\) quantum spin chains \([7–12]\), generalizing the 
SU\((2)\) NLoS for the continuum dynamics of Heisenberg (anti)ferromagnets \([13–15]\). In references 
such as \([9, 10]\), \(N\) represents the number of fermion “flavors”, whereas \(L\) is referred to as the 
number of “colours” \(n_{c}\).

2 Lieb-Mattis theorem and low energy U(N) ferromagnetism

Given the Fourier transform

\[
S_{ij}(q) = \sum_{a=1}^{L} e^{iqa} S_{ij}(a),
\]

(6)

the long-wavelength (low momentum \(q \approx 0\)) ground state excitations of QHFs are described 
by the collective operators

\[
S_{ij}(0) = \sum_{a=1}^{L} S_{ij}(a),
\]

(7)

which are invariant under site permutations \(a \leftrightarrow a'\). The kind of IRs of U\((N)\) related to 
translation invariance are those described by rectangular Young diagrams of \(M\) rows and \(L\) columns

\[
\left[ L^{M} \right] = M\left\{ \begin{array}{cccc}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \right\}.
\]

(8)

This means that physical states are symmetric (bosonic) under permutations of the \(L\) lattice 
sites and antisymmetric (fermionic) under permutation of the \(M\) electrons (the filling fac-
tor) at each lattice site. This reasoning gives an introductory and heuristic proof of the main 
Proposition 2.

As an interesting comment, in the quantum Hall effect approach, each electron occupies 
on average a surface area of \(2\pi \ell_{B}^{2}\) (a Landau site, with \(\ell_{B}\) the magnetic length) that is pierced 
by one magnetic flux quantum \(\phi_{0} = 2\pi \hbar/e\). This image allows for a dual bosonic Schwinger 
realization of collective U\((N)\)-spin operators

\[
S_{ij} = \sum_{\mu=1}^{M} a_{i\mu}^{\dagger} a_{j\mu}, \quad i, j = 1, \ldots, N,
\]

(9)

this time in terms of creation \(a_{i\mu}^{\dagger}\) and annihilation \(a_{j\mu}\) boson operators of magnetic flux quanta 
attached to the electron \(\mu = 1, \ldots, M\) with component \(i = 1, \ldots, N\). From the usual bosonic 
commutation relations \([a_{i\mu}, a_{j\nu}^{\dagger}] = \delta_{ij} \delta_{\mu\nu}\) we recover the U\((N)\)-spin commutation 
relations (3). We shall not further pursue this bosonic picture here. For more information, 
we address the reader to the Reference \([16]\).

The Hilbert space of a U\((N)\) QHF with \(L\) Landau/lattice sites at integer filling factor \(M\) 
is the \(\binom{N}{M}^{L}\)-dimensional \(L\)-fold tensor product space \(\mathcal{H}_{N}^{\otimes L}[1^{M}] = \otimes_{a=1}^{L} \mathcal{H}_{N}^{\otimes a}[1^{M}]\). In Young 
diagram notation

\[
M\left\{ \begin{array}{cccc}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \right\} \otimes L \text{times} \otimes \left\{ \begin{array}{cccc}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} \right\} \leftrightarrow \left[ 1^{M} \right]^{\otimes L} = \left[ 1^{M} \right] \otimes \ldots \otimes [1^{M}],
\]

(10)
Basis vectors of $\mathcal{H}_N^N[1^M]$ are the $M$-particle Slater determinants (for $M = 1$ we have “quNits”, as a $N$-ary quantum-digit generalization of qubits) written in Fock and Young tableau notation as

$$\Pi^M_{\mu=1} c^\dagger_\mu(\alpha)|0\rangle_F = \begin{array}{c} \vdots \\ \vdots \\ 1_1 \\ \vdots \\ 1_M \end{array},$$

(11)

obtained by filling out columns of the corresponding Young diagram with components $i_\mu \in \{1, \ldots, N\}$ in strictly increasing order $i_1 < \cdots < i_M$. One can see that there are exactly $\binom{N}{M}$ different arrangements of this kind (the dimension of $\mathcal{H}_N^N[1^M]$). This tensor product representation of $U(N)$ is reducible. For example, the Clebsch-Gordan decomposition of a tensor product of $L = 2$ IRs of $U(N)$ of shape $[1^M]$, with filling factor $M = 2$ and $N \geq 4$ components, is represented by the following Young diagrams

$$\begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \end{array} \otimes \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ 1_1 \\ \vdots \\ 1_M \end{array} \end{array} \oplus \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \end{array} \oplus \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \end{array} \leftrightarrow [2^2] \otimes [1^2] = [2^2] \oplus [2, 1^2] \oplus [1^4],$$

(12)

where we have highlighted in red the rectangular case $[2^2]$ for later discussion. The $P(=ML)$-particle ground state (5) can be written in Young tableau notation

$$|\Phi_0\rangle = \Pi^L_{i=1} \Pi^M_{\alpha=1} c^\dagger(\alpha)|0\rangle_F = \begin{array}{c} \begin{array}{c} 1 \ldots 1 \\ \vdots \\ M \ldots M \end{array} \end{array},$$

(13)

and then it belongs to the carrier Hilbert space $\mathcal{H}_N[\Lambda]$, the rectangular IR $[L^M]$ with dimension

$$D[L^M] = \prod_{i=2}^{N} \prod_{j=1}^{i-1} \prod_{i=2}^{M} \prod_{j=1}^{i-1} (i+L-1) = \frac{(L+N-1)_{N-2}}{L} \rightarrow \frac{N=2}{L} L + 1.$$  

(14)

Note that $\mathcal{H}_2[\Lambda]$ is just the usual $(2j+1)$-dimensional Hilbert space for the angular momentum $j = L/2$ representation of $SU(2)$. We denote Young diagrams of $P = ML$ boxes/particles by (a partition of $P$)

$$h = [h_1, \ldots, h_N] = \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \\ h_1 \end{array} \geq \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \end{array} \cdots \begin{array}{c} \begin{array}{c} \cdots \\ \cdots \\ \cdots \\ \cdots \end{array} \\ h_1 \end{array} \geq \cdots \geq h_N,$$

$$h_1 + \cdots + h_N = P.$$  

(15)

The shorthand $[h, m, h, 0, \ldots, 0] = [h^M]$ is often used. Before presenting the central proposition of this work, we should define the concept of “dominance order $\geq$” of Young diagrams of $P$ particles as: $h$ dominates $h'$ ( $h$ is “more symmetric” than $h'$) if

$$[h_1, \ldots, h_N] \geq [h'_1, \ldots, h'_N] \Leftrightarrow h_1 + \cdots + h_k \geq h'_1 + \cdots + h'_k \text{ \forall } k.$$  

(16)

Lieb-Mattis' theorem 17 states that, under general conditions on the symmetric Hamiltonian of the system, if $h \geq h'$ then $E(h) < E(h')$, with $E(h)$ the ground state energy inside each IR $h$ of $U(N)$. Then we can establish the following

**Proposition:** The rectangular Young diagram of shape $[L^M]$ dominates all Young diagrams arising in the Clebsch-Gordan direct sum decomposition of the $L$-fold tensor product (10).

Therefore, the ground state will always belong to the rectangular $[L^M]$ sector. For instance, the rectangular sector $[2^2] \geq [2, 1^2] \geq [1^4]$ dominates in the Clebsch-Gordan decomposition (12). Intuitively, dominance means that one can go from $h$ to $h'$ by moving a certain
number of boxes from upper rows to lower rows, so that $h$ is “more symmetric”. Therefore, we shall concentrate on the low-energy carrier Hilbert space $\mathcal{H}_N[L^M]$ of the rectangular IR $[L^M]$ to which the ground state $|\Phi_0\rangle$ in (5) belongs. In particular, we shall construct coherent (Skyrmion) ground state excitations. For the role of other mixed permutation symmetry sectors we address the reader to [18].

3 Grassmannian coherent states and nonlinear sigma models

Grassmannian (fermionic) coherent states can be seen as $U(N)$ rotations/excitations over the ground state $|\Phi_0\rangle$

$$|Z\rangle^L = \frac{\exp\left[\sum_{1\leq j\leq M, M+1\leq i\leq N+M} Z_{ij} S_{ij}\right]|\Phi_0\rangle}{\sqrt{\det(1_M + Z^\dagger Z)}} ,$$

created by applying $U(N)$-spin collective $S_{ij}, i > j$, ladder operators. These Grassmannian coherent states are then labeled by $(N-M) \times M$ complex matrices $Z$. For $N = 2$ spin components, $\uparrow$ and $\downarrow$, and $M = 1$ we recover spin $j = L/2$ (atomic) coherent states

$$|z\rangle^L = \frac{e^{zs_{21}|\Phi_0\rangle}}{\sqrt{1 + |z|^2}} = (1 + |z|^2)^{-j} \sum_{m=-j}^{j} \sqrt{\binom{2j}{j-m}} z^{j-m}|j,m\rangle,$$

where we have spanned in terms of the usual angular momentum (Dicke) states $\{|j,m\rangle, m = -j, \ldots, j\}$, with $|\Phi_0\rangle = |j,-j\rangle$ and $z = \tan(\theta/2)e^{i\phi}$ is the stereographic projection of the Bloch sphere $S^2$ onto the complex plane $\mathbb{C}$. Actually, atomic coherent states can also be written as a tensor product of qubits

$$|z\rangle^L = \left[\cos(\theta/2)|\uparrow\rangle + \sin(\theta/2)e^{i\phi}|\downarrow\rangle\right]^\otimes L = |z\rangle^\otimes L .$$

For $L = 2 \Rightarrow j = L/2 = 1$, we identify the spin triplet $|j, m\rangle$ states

$$|1,1\rangle = |\uparrow\uparrow\rangle, \quad |1,0\rangle = \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}, \quad |1,-1\rangle = |\downarrow\downarrow\rangle .$$

For $N = 4$ and filling factor $M = 1$ we have

$$|Z\rangle^L = \frac{[|1\rangle + z_2|2\rangle + z_3|3\rangle + z_4|4\rangle]}{\sqrt{1 + |z_2|^2 + |z_3|^2 + |z_4|^2}}^\otimes L ,$$

where $Z = (1, z_2, z_3, z_4)^t$ denotes a point on the complex projective space $CP^3 = U(4)/U(1) \times U(3)$ or the Grassmannian $G^4_{11}$.

In order to study the semi-classical/thermodynamical limit $L \rightarrow \infty$ of $U(N)$ QHE one has to replace $U(N)$-spin operators $S_{ij}$ by their coherent state expectation values $\langle Z|S_{ij}|Z\rangle$, which play the role of a matrix order parameter

$$S(Z) \equiv \frac{2}{L} \langle Z|\left(S - \frac{L}{2}1_N\right)|Z\rangle^L = Q(Z)^\dagger E_M Q(Z),$$

$$E_M = \text{diag}(1, M, 1, -1, N-M, -1),$$

with

$$Q(Z) = \left(\begin{array}{cc} \Delta_1 & -Z^\dagger\Delta_2 \\ Z\Delta_1 & \Delta_2 \end{array}\right) ,$$
\[ \Delta_1 = (1_M + Z^\dagger Z)^{-1/2}, \quad \Delta_2 = (1_{N-M} + ZZ^\dagger)^{-1/2}. \]  

(25)

The low energy physics of the U(N) QHF [when considering only nearest-neighbor interactions \( J_{\alpha\beta} = J_{\alpha,\beta \pm 1} \) in the exchange Hamiltonian (1)] is described by a NLSM field theory with action in the continuum limit (\( L \to \infty \) and lattice constant \( \ell \to 0 \))

\[ A[Z] = \int dx_0 dx_1 dx_2 \left[ \text{tr}(E_M Q^\dagger \partial_{x_0} Q) + J \text{tr}(\bar{\nabla} S \cdot \bar{\nabla} S) \right], \]  

(26)

where \( \partial_{x_0} \equiv \partial_t \) means partial derivative with respect to time \( t = x_0 \), \( \bar{\nabla} = (\partial_{x_1}, \partial_{x_2}) \equiv (\partial_1, \partial_2) \) is the gradient and \( \bar{\nabla} S \cdot \bar{\nabla} S \) is the scalar product. The first (kinetic) term of the action is the Berry term, provided by the coherent state representation of the path integral quantization. The second term describes the energy cost when the order parameter \( S \) is not uniform (see [7–12] and [16] for more information). The topological current

\[ J^\mu = \frac{i}{16\pi} \epsilon^{\mu\nu\lambda} \text{tr}(S \partial_\nu S \partial_\lambda S) \]  

(27)

(\( \epsilon \) is the Levi-Civita antisymmetric symbol in \( 1+2 \) dimensions), leads to the topological (Pontryagin) charge or Skyrmion number

\[ C = \int dx_1 dx_2 J^0. \]  

(28)

See e.g. Ref. [12] for more information.

4 Conclusion

We have presented several group-theoretical tools to study interacting \( N \)-component fermions on a lattice, like U(N) quantum Hall ferromagnets arising from two-body exchange interactions of \( N \)-component fermions. In particular, we have restricted ourselves to the lower energy permutation symmetry sector (according to the Lieb-Mattis theorem) corresponding to fermion mixtures described by rectangular Young diagrams with \( M \) rows (the filling factor) and \( L \) columns (Landau/lattice sites).

The “spontaneously chosen” ground state \( |\Phi_0 \rangle \) breaks the original U(N) symmetry and the associated U(N) ferromagnetic order parameter \( S \) [the expectation value of collective U(N)-spin operators \( S \) in a Grassmannian coherent state \( |Z \rangle \)] describes coherent state excitations (“Skyrmions”) in the semi-classical \( L \to \infty \) limit, whose dynamics is governed by a Grassmannian nonlinear sigma model.

The subject of SU(N) fermions and SU(N) magnetism has been recently further fueled in condensed matter physics with exciting advances in cooling, trapping and manipulating fermionic alkaline-earth atoms trapped in optical lattices (see e.g. [19, 20] for a realization of a SU(N) generalization of the Hubbard model). Multilayer quantum Hall arrangements, bearing larger U(N) symmetries, also display interesting new physics (see [21] for the bilayer case); Such is the case of superconducting properties of twisted bilayer (and trilayer) graphene predicted by [22] and observed by [23]. Furthermore, magnetic Skyrmion materials display a robust topological magnetic structure, being a candidate for the next generation of spintronic memory devices.

Acknowledgements

We thank the organizers of the 34th edition of the ICGTMP for their hospitality and the preparation of the congress. We are also glad to have shared interesting discussions with J.P. Gazeau,
M.A. del Olmo, M.A. Lledó, P. Van Isacker, D. Schuch, and F.J. Herranz during the sessions.

Author contributions Conceptualization, M.C.; methodology, M.C.; software, A.M.; validation, M.C., A.M. and J.G.; formal analysis, M.C.; investigation, M.C., A.M. and J.G.; resources, M.C.; data curation, M.C. and A.M.; writing—original draft preparation, M.C.; writing—review and editing, M.C., A.M. and J.G.; visualization, A.M.; supervision, M.C.; project administration, M.C.; funding acquisition, M.C. and J.G.

Funding information We thank the support of the Spanish MICINN through the project PGC2018-097831-B-100 and Junta de Andalucía through the projects FEDER/UJA-1381026, UHU-1262561 and FQM-381. AM thanks the Spanish MIU for the FPU19/06376 predoctoral fellowship.

References


