All about the neutron from lattice QCD

Rajan Gupta

Los Alamos National Laboratory, Theoretical Division T-2,
Los Alamos, New Mexico 87545, USA

rajan@lanl.gov

51st International Symposium on Multiparticle Dynamics (ISMD2022)
Pitlochry, Scottish Highlands, 1-5 August 2022
doi:10.21468/SciPostPhysProc.15

Abstract

I describe how simulations of lattice QCD using the path integral formulation provide the two basic quantum mechanical properties of QCD, its ground state in which correlation functions are calculated, and Fock state wavefunctions between which matrix elements of operators are calculated. Both constructs are stochastic, so unfortunately one gets no intuitive picture or even qualitative understanding of what they look like, nevertheless they contain and display all the subtleties of the quantum field theory. Today, these simulations provide many quantities that are impacting phenomenology and experiments. I illustrate the methods and the steps in the analysis using, as examples, three observables: the isovector charges of the nucleon, the contribution of the quark’s intrinsic spin to the nucleon spin, and the pion-nucleon sigma term.

Contents

1 Lattice QCD 2
2 Correlation functions and observables 3
3 Renormalization of lattice operators 6
4 Nucleon correlation functions 6
5 Isovector charges of the nucleon 7
6 Contribution of the spin of the quarks to the nucleon spin 9
7 The pion-nucleon sigma term 10
8 Conclusions 11

References 12
1 Lattice QCD

The field of lattice QCD (LQCD)—the theoretical rigorous path integral formulation of QCD discretized on a 4D hypercubic grid by Wilson, and used to provide non-perturbative predictions [1]—has come of age. This formalism converts quantum field theories into statistical mechanics systems, for example, the 3+1 dimensional QCD in Minkowski time becomes, after a Wick rotation to Euclidean time, a classical system of gluon and quark fields on a 3+1 dimensional lattice in Euclidean time (see Fig. 1). Numerical simulations of it [2] are providing first principle results with control over all systematic uncertainties for a large number of physical observables that elucidate the standard model and probe physics beyond it. The Flavor Lattice Averaging Group (FLAG)\(^1\) provides a community based evaluation of quantities that are considered robust\(^2\).\(^3\), 4 With improvements in numerical algorithms and increasing computing resources, the errors on these quantities are being reduced steadily, and many more quantities are being added to the list. At the same time, the need for new ideas for a big leap forward is also evident. In this writeup, I will present an idiosyncratic mixture of topics, starting with explaining what simulations of LQCD give us, and then highlight successes and, at the same time, the need for new ideas for sub-percent precision predictions of the properties of nucleons.

Figure 1: (Left) Discretization of QCD on a hypercubic lattice with quark fields placed on sites and the gluon fields \(A_\mu(x)\) on directed gauge links via SU3 matrices \(U_{x,\mu} = e^{igA_\mu(x)}\) where \(g\) is the gauge coupling and \(\lambda^a\) are the Gell-Mann matrices. This lattice formulation preserves gauge invariance of the continuum theory. (Right) Illustration of the path integral formulation of quantum mechanics of a particle moving between points A and B. Each path \(i\) has coordinate \(x_i\) at time \(t\) and is weighted by \(e^{iA_i}\), where \(A_i\) is the action. All possible paths connecting A and B contribute.

I begin with a brief recap of the path integral formulation of a particle moving in time. Figure 1 (right) illustrates some of the paths that contribute to the quantum mechanical amplitude for the particle to go from point A to point B. In fact, all paths one can draw between those two points contribute. Each path \(n\) has a weight \(e^{iA_n}\), where \(A_n\) is the action of that path. The value of an observable, say the position \(x\) at a prescribed time \(t\) is given by the expectation value

\[^1\text{http://flag.unibe.ch/}\]
\[^2\text{The chapter on Nucleon Matrix Elements (NME) in these reports provides an introduction to the many issues relevant to the calculation of NME discussed in this talk and contains an extensive list of references for the interested reader. Very often I will just refer to the FLAG reports with the understanding that a list of pertinent references is already collected there.}\]
The lattice (see Fig. 1). The specification of the 12 independent entries in each SU(3) matrix, \(C_i \), assigned to each link of the lattice (see Fig. 1). The \(C_i \) have a weight \(e^{-A_i} \), where \(A_i \) is the Euclidean QCD action calculated on configuration \(C_i \). It is a functional of all the \(U_{x,\mu} \). Note, the quark fields are formally integrated out as discussed below, leaving only gauge fields as dynamical variables. Configurations are generated using Markov Chain Monte Carlo Methods with importance sampling and the Metropolis accept/reject step [2]. Conceptually, this algorithm for the generation of the \(C_i \) is the same as used in the classical simulations of spin models, however, simulations are computationally expensive because on a 100\(^3\) lattice, there are \(4 \times 12 \times 10^6 \) independent variables that specify a \(C_i \) (entries in all the SU(3) link matrices) and evaluating the action \(A_i \) is expensive. The full set of the \(C_i \) (called an ensemble) and their associated \(A_i \) provides us the fully quantum mechanical ground state of the field theory, albeit stochastically since only a finite \(C_i \) are sampled in practice. The action \(A \) is characterized by the input parameters of the simulations: quark masses \(m_i \) with \(i \in \{u, d, s, c\} \) flavors, lattice spacing \(a \) (equivalently the gauge coupling \(\beta = 6/g^2 \) via dimensional transmutation) [2], and the lattice volume \(L^3 \times T \).

The full set of configurations is the same independent of the action, \(A(m_i, a) \), i.e., of all input parameters \(\{m_i, a\} \), and depends only on the number of gauge links \((4 \times L^3 \times T) \) and the values they can take. There are \(\infty^2 \) of them: infinite number of variables in the limit the volume \(L^3 \times T \rightarrow \infty \), and each variable is continuous valued between \(\{-1, 1\} \). If even a significant subset of these were needed to calculate observables, precision would not be achieved.

2 Correlation functions and observables

Expectation values of observables \(O \) are obtained from ensemble averages, \(\sum \Gamma(x) e^{-A}/\sum e^{-A} \), of correlation functions \(\Gamma(x) \) measured on the \(C_i \). What saves us from having to consider the \(\infty^2 \) configurations is that the weight \(e^{-A} \) is so very highly peaked about the minimum of \(A \) that \(10^3 - 10^7 \) (depending on the observable) importance sampled and statistically independent configurations suffice to yield expectation values with sufficient precision. The location of the peak of the distribution (minimum of \(A \)) changes with the input parameters, i.e., with the \(\{m_i, a, L, T\} \).

In practice, data (expectation values of correlation functions) are obtained on many ensembles with different \(\{m_i, a, L\} \) so that the limits \(a \rightarrow 0, m_i \) to their physical values set by the experimental values of the masses \(M_\pi, M_N, M_\Omega \) and \(M_P \), and \(L \rightarrow \infty \) can be taken to obtain physical results. Typical in current simulations, \(m_c \) and \(m_s \), being sufficiently heavy, are already tuned to their physical values before starting production, and only \(m_u, d \) are varied. In the isospin symmetric limit, \(m_u = m_d \), it is typical to represent the common light quark mass \(m_{ud} \) by the corresponding value of \(M_\pi \). Again, \(m_{ud} \), is tuned before starting production runs. Today, we can perform simulations at \(M_\pi = 135 \) MeV but very often data are also obtained at a number of heavier values of \(m_{ud} \) (equivalently \(M_\pi \)), and then extrapolated to \(M_\pi = 135 \) MeV using ansatz motivated by chiral perturbation theory. These ideas will be illustrated by the calculations/results reviewed later.
An essential simplification, in fact one that allows simulations of QCD on classical computers in the first place, is that the fermion action for each flavor q,

$$A_F = \bar{\psi} D\psi = \bar{\psi}(\gamma_\mu(\partial_\mu + igA_\mu) + m_q)\psi \rightarrow \bar{\psi}(x + a\hat{\mu})(\gamma_\mu U_{x,\mu})\psi(x) + m_q \bar{\psi}(x)\psi(x),$$ \hspace{1cm} \text{(1)}

is bilinear in the quark fields. Here D is the Dirac operator, which on the lattice is a $(3 \times 4 \times L^3 \times T)^2$ complex matrix that depends only on the $U_{x,\mu}$. The fermions can, therefore, be integrated out exactly from the path integral but contribute the determinant of the Dirac matrix, $\text{Det} D_f$, for each flavor f to the Boltzmann weight, which becomes $
abla_f(\text{Det} D_f) e^{-A_G} = e^{-A_G + \sum_f \text{LnDet} D_f}$ where A_G is the gauge action. They, therefore, continue to impact the $A(m_i, a, L)$, and thus the position of the peak of the distribution specifying the ground state and fluctuations about it. Calculating the contribution of the determinant to the Boltzmann factor used to generate the configurations makes simulations expensive but does not pose a formal obstruction. The inverse of D_f, a sparse matrix, is the all-points-to-all-points Feynman quark propagator. One column (or row) of D_f^{-1} is the point-to-all-points Feynman propagator S_F used to construct correlations functions.

To construct the 2- and 3-point correlation functions of operators composed of quark fields, even though we have integrated them out formally, consider the time-ordered product \mathcal{T} of the pion interpolating operator $\bar{\psi}_5\gamma_5\psi$ and the axial current $\bar{\psi}_5\gamma_5$: \n
$$\Gamma^2_\pi = \langle \mathcal{T}(\bar{\psi}_5\gamma_5|_{\tau} \bar{d} \gamma_5 u|_{0}) \rangle, \hspace{1cm} \Gamma^3_\pi = \langle \mathcal{T}(\bar{d} \gamma_5 d|_{\tau} \bar{d} \gamma_\mu \gamma_5 u|_{\tau} \bar{d} \gamma_5 d|_{0}) \rangle, \hspace{1cm} \text{(2)}$$

with the assumption that all three (actually only 2 since momentum is conserved in LQCD) operators have been projected to zero momentum for simplicity, thus leaving only the time index. The notation $\langle \cdots \rangle$ implies ensemble average over the C_i. At the same time as integrating out the quarks, one can perform a Wick contraction of the fields in Eq. 2 to get

$$\Gamma^2_\pi = \langle S_F(0,\tau)\gamma_5 S_F(\tau,0)\gamma_5 \rangle, \hspace{1cm} \Gamma^3_\pi = \langle S_F(0,\tau)\gamma_5 S_F(\tau,t)\gamma_\mu \gamma_5 S_F(t,0)\gamma_5 \rangle, \hspace{1cm} \text{(3)}$$

where S_F (a column of the inverse of the Dirac matrix D calculated using iterative Krylov solvers) is the Feynman propagator from a point source to all lattice points. Now using the hermiticity property of the Dirac action and its inverse, $S_F(0,\tau) = \gamma_5 S_F^\dagger(\tau,0)\gamma_5$, we get

$$\Gamma^2_\pi = \langle S_F(0,\tau)S_F^\dagger(0,\tau) \rangle, \hspace{1cm} \Gamma^3_\pi = \langle S_F(0,\tau)S_F^\dagger(\tau,t)\gamma_\mu \gamma_5 S_F^\dagger(0,t) \rangle. \hspace{1cm} \text{(4)}$$

Thus performing the Wick contraction replaces the quark fields in correlation functions in terms of $S_F = D^{-1}$, which depends only on the gauge links. In short, both in the generation of the configurations and in the calculation of correlation functions, the quark fields are integrated out exactly. The expressions in Eq. 4 for the pion correspond to the quark line diagrams shown in Fig. 2, whose expectation values give the desired non-perturbative correlation functions.

The question I hope you are dying to ask is how does the quark propagator, S_F, calculated on a given configuration and combined to form the quark-line diagrams shown in Fig. 2, know anything about the non-perturbative propagation of the pion or any of the thousands of possible states of QCD, the analogous quark-line diagrams for which are obtained by simply changing the interpolating operators. As already explained, the interpolating operators create states with given quantum numbers, for example $d\gamma_5 u$ or $d\gamma_0\gamma_5 u$ for the pion. These are propagated in time by the transfer matrix. The non-perturbative properties of the propagating pion and its dynamics arise from the coherent addition of those gauge fluctuations on each configuration that correspond to a pion propagating. The miracle of the ensemble average is that only fluctuations corresponding to states with pion quantum numbers survive. In short, the frothing vacuum has all possible fluctuations present, and the ensemble average picks up those that conform to the quantum numbers of the state created by a given interpolating operator.
Another interesting aside is that $\Gamma_\pi^2 = \langle |S_\pi(0, \tau)^2 \rangle$ in Eq. 4 is a positive definite quantity. So you may ask–how can averaging over only a small “working ensemble” give a precise unbiased result? The answer lies in the fact that configurations importance sampled according to the Boltzmann weight $e^{-\beta}$ provide an unbiased approximating to the full ensemble (path integral). Clearly, to improve statistical precision, one needs to enlarge the “working ensemble”.

Now we come to the last part of the introduction to LQCD–how does one get physics from correlation functions such as those in Eq. 4? For this we invoke the spectral decomposition of Γ_π^2 and Γ_π^3, i.e., the insertion of a complete set of “pion” states $|\pi_i\rangle$ at each intermediate time step, and the evolution between time steps given by the transfer matrix. The result is

$$\Gamma_\pi^2 = \sum_i |\langle 0|\hat{\pi}_i|\pi_i\rangle|^2 e^{-E_i \tau}, \quad \Gamma_\pi^3 = \sum_{i,j} \langle 0|\hat{\pi}_i|\pi_i\rangle^* e^{-E_i(\tau-\tau)} \langle \pi_i|\hat{A}_\mu|\pi_j\rangle e^{-E_i(\tau-0)} \langle \pi_j|\hat{\pi}|0\rangle,$$ \hspace{1cm} (5)

where $\hat{\pi}$ is the pion interpolating operator, and the sum over $\{i, j\}$ is over all the states of the Transfer matrix with the quantum numbers of the pion. Such decompositions of Γ_π^n hold for all interpolating operators and the states they couple to. Simply replace the symbol π by the state of interest. By fitting Γ_π^2 versus τ, we can extract the amplitudes, $|\langle 0|\hat{\pi}_i|\pi_i\rangle|^2$ and the energies E_i for all the “pion” states that couple to $\hat{\pi}$. In the limit $\tau \to \infty$, only the ground (lowest) state contributes, and for $\hat{\pi} = \bar{d} \gamma_4 \gamma_5 u$, one gets from Γ_π^2 the pion decay constant F_π since $|\langle 0|\hat{\pi}_0|\pi_0\rangle|^2 = M_\pi^2 F_\pi^2$, and its mass M_π. Thus 2-point functions give us the amplitudes for creating the state and the spectrum of the theory (actually, in discrete time, of the Transfer Matrix).

Next, consider Γ_π^3. It has an additional operator, \hat{A}_μ, sandwiched between the pion creation and annihilation operators. The propagating tower of “pion” states, $|\pi_i\rangle$, interact with current \hat{A}_μ at time τ, which causes transitions between these states with strength given by the matrix element, $\langle \pi_i|\hat{A}_\mu|\pi_j\rangle$. These ME can be isolated from the fit to Γ_π^3 since all the other terms, can, in principle, be determined from the fit to Γ_π^2. It is easy to check that as $\tau \to \infty$, the ME within the ground state of the pion is given by the ratio Γ_3/Γ_2.

If any two operators in Eq. 4 are projected to $\hat{p} = 0$ (LQCD conserves momentum), then we get the axial charge of the pion. If the axial current \hat{A}_μ inserts momentum \vec{q} and one of the pion interpolating operator removes it, we get the axial form factor describing the semileptonic decay of pions with Euclidean momentum transfer $Q^2 = |\vec{q}|^2 - (E_f - E_i)^2$.

Once data for Γ^2 and Γ^3 are collected at a number of values of $\{m_i, a, L\}$, and fit using Eq. 5 to get data for decay constants, energies E_i and matrix elements, their physical value are obtained by a simultaneous extrapolation: $M_\pi \to 135$ MeV, $a \to 0$, and $L \to \infty$ using physics motivated ansatz. This extrapolation is common to all LQCD calculations as illustrated below.
3 Renormalization of lattice operators

We can write down a number of equally good lattice operators, $O_{\text{latt},n}$, that should give the same results in the continuum limit. At finite a, the results will differ due to their relative normalization and different discretization errors, over and above the known differences coming from the amplitudes, such as $\langle \pi | \hat{\pi}_i | \Omega \rangle$ if different interpolating operators $\hat{\pi}_i$ are used. Lattice renormalization factors, $Z_{O_n}^{\text{latt}}$, relate the different O_n at a given a, and their scaling behavior as $a \to 0$. Results with renormalized operators, say $Z_{A_n}^{\text{latt}}A_{\mu,\nu}^{\text{latt}}$, should agree in the continuum limit.

The experimental results presented by phenomenologists typically use a scheme such as \overline{MS} and a convenient scale such as 2 GeV above which perturbation theory is considered reliable. To translate the lattice result to the \overline{MS} scheme at, say, 2 GeV is a two step process. First one calculates the lattice factors $Z_{O_n}^i$ in some scheme (currently two popular ones are the regularization independent [symmetric] momentum schemes labeled RI-MOM and RI-sMOM [5, 6]), and a second calculation that relates them to \overline{MS} that is typically done in the continuum using perturbation theory, as is the factor for running in the continuum to a specified scale, say, 2 GeV.

For the calculations described here, the renormalization factors are well-determined. Many other operators, such as the CP-violating Weinberg and quark chromo EDM operators of dimension 6 and 5, respectively, have divergent mixing with lower dimension operators. Constructing finite renormalized versions to use in simulations is very non-trivial [7]. In fact, for these two operators, it is still an open problem.

4 Nucleon correlation functions

The quark line diagrams for the nucleon 2- and 3-point functions are shown in Fig. 3. Formally, the mechanics of the lattice calculation is very similar to that for the pion, however there are two very important differences:

- The signal to noise ratio falls exponentially as $\sim e^{-(E_N - 1.5M_\pi)\tau}$ in all nucleon correlation functions, whereas the pion has no degradation. Typical data show that for Γ^2_N a good signal extends to about 2 fm and for Γ^3_N to about 1.5 fm with $O(10^6)$ measurements [8].

- For a number of matrix elements, excited states contributions (ESC) from towers of multi-hadron excited states, $N\pi, N\pi\pi, \ldots$ labeled by their relative momentum, are enhanced and still large at 1.5 fm [8]. Their energies begin at about 1200 MeV, much below radial excitations. Fully removing these ESC in fits to the spectral decomposition of Γ^2 and Γ^3 remains a challenge for many observables.

To determine various quantities, we use appropriate probes. Changing the operator to a scalar, $\hat{S} = \bar{d}u$ or tensor, $\hat{T} = \bar{d}\sigma_{\mu\nu}u$, gives us nucleon’s scalar and tensor charges that are also probed in precision measurements of neutron decay distributions [9]. One link operators give us the momentum fraction, helicity and transversity moments [10]. And the list continues.

Having laid out, hopefully, an intuitive introduction to simulations of lattice QCD, I now discuss three calculations in order of increasing complexity.
5 Isovector charges of the nucleon

The iso-vector axial, scalar, tensor charges of the nucleon, \(g_A^{ud} \), \(g_S^{ud} \), and \(g_T^{ud} \), probed in the \(N \to P \) decay, are extracted from \(\Gamma^3(\vec{p} = 0) \), i.e., from the forward matrix element

\[
\langle P(\vec{p} = 0, s')|Z_0 \, \bar{u} \sigma_{\mu \nu} X_0 |N(\vec{p} = 0, s)\rangle = g_O \, u_p(0, s') X_0 \, \bar{u}_N(0, s),
\]

with Dirac matrix \(X_0 = \gamma_\mu \gamma_5 \), \(\sigma_{\mu \nu} \) specifying the insertion of the axial, scalar and tensor operators at zero momentum transfer. For these iso-vector charges, only the connected quark line diagram (middle panel in Fig 3) contributes in the isospin symmetric limit, and results for the proton and the neutron are the same.

The data in Fig. 4 for \(g_A^{ud} \) from a \(\{a = 0.071 \text{fm}, M_\pi = 170 \text{MeV}\} \) ensemble (see Ref. [8]) illustrate what the presence of ESC does and our goal is to understand and reliably remove them. The data (same in the two panels) display the following features of the ESC:

- The variation of the data with \(t \) and \(\tau \) is the signature of ESC. In the limit \(\tau - t \) and \(\tau \to \infty \), the data (\(\Gamma^3/\Gamma^2 = g_A^{ud} \)) should be flat in \(t \) and lie on top of each other, i.e., independent of \(\tau \) and \(t \), particularly near \(t - \tau/2 \), i.e., away from the source and sink.
- The data should be symmetric about \(t - \tau/2 \) because \(\Gamma^3 \) is. The statistical quality of the data for \(\tau = 19 \) (=1.35 fm) is already borderline in this respect.
- The convergence of the data with \(\tau \) for fixed \(t \) is monotonic and from below. This shows that ESC cause \(g_A^{ud} \) to be underestimated.
- ESC is removed by fitting data at the 3 largest values of \(\tau \) using the spectral decomposition given in Eq. 5 truncated at 3 states (ground plus two excited states). The value for the ground state matrix element, given by the fit, is shown by the grey band.
- The data in the two panels are the same. The fits differ in the energy, \(E_1 \), of the first excited state used. In the left panel it is the output of the fit to \(\Gamma^2 \) while in the right, the energy of the lowest \(N\pi \) state with relative momentum \((0, 0, 1) \) is input using a narrow prior. The motivation for including this \(N\pi \) state is \(\chi PT \)— it contributes at one loop.
- The value of the ground state ME given by the two fits is different but the augmented \(\chi^2/\text{dof} \) are comparable. This highlights a serious problem: current data are not at sufficiently large \(\tau \) nor precise enough for fits to discriminate between different choices of \(E_1 \).
Figure 4: Data for the ratio Γ_A^3/Γ^2 with the insertion of the axial current with $\bar{p} = 0$ at time t are shown with different colors for 4 values of the source-sink separation τ. Results for the ground state ($\tau \rightarrow \infty$) ME ($= g_A$), with two different plausible mass gaps, $a\Delta M_1$, in a 3-state truncation of the spectral decomposition of Γ_A^3, are shown by the grey band, and for different values of τ by lines of the same color as the data. The two estimate of g_A are different but the fits are not distinguished by the χ^2/dof.

- The two first excited-state energies, E_1, selected are, physics wise, reasonable options: the first is given by the fit to Γ^2 and lies close to the N(1440), while in the second fit we input, $N(0,0,1)\pi(0,0,-1)$. Furthermore, $N(0,1,1)\pi(0,-1,-1)$ and the rest of the tower also contributes. In fact, all states with the same quantum numbers contribute! What we do not know, a priori, are the amplitudes, and the size of the contribution of each possible excited state to the ME. In short, the statistical precision of the current data allow fits with three states, however, these fits show that there are large regions in E_1, E_2 and A_i that give similar χ^2/dof but significantly different $\tau \rightarrow \infty$ values.

Bottom line: Until the data are good enough to distinguish between fits with different number or combinations of plausible excited states, and lacking a theoretical reason for a particular choice, the difference between the extrapolated values with different possible excited states can be regarded as an estimate of the systematic uncertainty due to ESC. A factor of 10 increase in statistics will give data for $\tau = \{21,23\}$ with precision similar to $\tau = \{17,19\}$ data shown in Fig. 4. Then, I believe, fits with different E_1 will start to be discriminated by χ^2/dof.

Our data suggest that the uncertainty due to including or not the $N(0,0,1)\pi(0,0,-1)$ state could be a $\sim 5\%$ effect in g_A^{u-d}, but is much smaller in g_S^{u-d} or g_T^{u-d} [8]. At this point in time, controlling ESC remains the key outstanding systematic for achieving sub-percent precision in the prediction of the isovector properties of nucleons.

The next step in the analysis, illustrated using the g_A^{u-d} data, is the chiral-continuum-finite-volume (CCFV) extrapolation using a simultaneous fit in $\{M_{\pi}, a, M_{\pi}L\}$ shown in Fig. 5. The methodology is the same as described in [8], except we now have data on 13 ensembles with different $\{M_{\pi}, a, M_{\pi}L\}$. (Note, \overline{m}_{ud} is specified by M_{π}.) For the three iso-vector charges, the extrapolation ansatz, keeping lowest order corrections in each of the 3 variables, is [8]:

$$g(a, M_{\pi}, M_{\pi}L) = c_1 + c_2a + c_3M_{\pi}^2 + c_4 \frac{M_{\pi}^2e^{-M_{\pi}L}}{\sqrt{M_{\pi}L}}. \tag{7}$$

In such ansatz, the order of the correction terms one needs to include depends, in general, on the level of improvement of the lattice action and the observable. Each panel in Fig. 5 shows the result of this fit versus a single variable with the other two set to their physical values. For example, in the panel versus a, the pink band shows the result with M_{π} set to 135 MeV and
MπL → ∞. The data, however, have not been shifted in these two variables, which is why they do not lie within the pink band.

Such simultaneous CCFV fits are routine for getting physical values of observables. Features in these fits that illustrate the size of the three systematics are

- For the 2+1-flavor clover-Wilson action we have used, the value of g_A^{u-d} decreases by about 10% as a → 0, i.e., the slope with respect to a is positive.
- The value of g_A^{u-d} increases by about 10% over the range of Mπ as Mπ → 135 MeV.
- The dependence on a and Mπ is largely independent of each other, with opposite slopes.
- There are no significant finite volume corrections seen for MπL > 4. This welcome feature has been observed in all calculations involving single nucleon correlation functions.

Phenomenologically, the most interesting of the isovector charges is the axial charge, g_A^{u-d}, which has been extracted from experiments with high precision, g_A^{u-d}/g_V = 1.2754(13) [11]. The precision and robustness of lattice results have increased over the last decade, but my conclusion, in light of possible unresolved ESC of multihadron states such as the Nπ that can cumulatively be as large as ≈ 5%, is we need to better quantify and remove the ESC contributions before we can claim sub-percent precision.

6 Contribution of the spin of the quarks to the nucleon spin

Using Ji’s gauge invariant decomposition 1/2 = \sum_q \langle u, d, s, c \rangle (Δq/2 + L_q) + J_g [12], where L_q is the quark orbital and J_g the gluon total angular momentum, the contribution of the intrinsic spin of a quark with flavor q, Δq/2, to the proton spin is given by a relation very similar to Eq. 6:

\[\langle P(p, s') | Z_A q \bar{q} q | P(p, s) \rangle = g_A^{q} \bar{u}_p(p, s') \gamma_\mu \gamma_5 u_p(p, s), \]

with Δq = g_A^{q} and u and \(\bar{u} \) are the quark spinors. Because the operator is diagonal in flavor, there is now an additional Wick contraction in which the operator forms a closed loop as illustrated in the right panel in Fig. 3. This is called a “disconnected diagram”. The full contribution to g_A^{q} is the sum of the connected (middle) and disconnected (right) quark line diagrams.

The calculation of disconnected diagrams introduces a new layer of computational cost. The straightforward solution to calculate the momentum projected quark loops with operator insertion on all time slices is to calculate the all-to-all quark propagator D^{-1}. This is not practical as it is a (12·10^8) x (12·10^8) complex matrix for a 10^4 lattice. The solution is to construct
7 The pion-nucleon sigma term

The pion–nucleon σ-term, $\sigma_{\pi N}$, is a fundamental parameter of QCD that quantifies the amount of the nucleon mass generated by up (u) and down (d) quarks having non-zero mass. In the “direct” method discussed here, it is, in the isospin symmetric limit $\bar{m}_{ud} = (m_u + m_d)/2$, given by

$$\sigma_{\pi N} \equiv \bar{m}_{ud} g_{A^u + d}^q \equiv m_{ud} \langle N(k,s)\bar{u}u + \bar{d}d | N(k,s) \rangle,$$

where the extraction of \bar{m}_{ud} and $g_{A^u + d}^q$ are done separately. The scalar charge g_S^q is determined from the forward matrix element of the scalar density $\bar{q}q$ between the nucleon state:

$$\bar{u}_N(0,s)g_S^q u_N(0,s) = \langle N(k=0,s) | Z_S \bar{q}q | N(k=0,s) \rangle,$$

where Z_S is the renormalization constant and the nucleon spinor has unit normalization. The scalar charges, $g_S^q = g_{u,d,s,c}^q$, also enters in the search for physics beyond the Standard Model.
Figure 7: Fits to get the scalar charges $g_S^u + g_S^d$ using for the mass gap $a \Delta M_1$ the value obtained from Γ^2 (left) versus the noninteracting energy of the $N\pi$ state (middle). The right panel shows the disconnected diagram, whose contribution is large.

(SM): it determines the coupling of the nucleon to any scalar mediator with quark content of the coupling given by $\bar{q}q$, for example in direct-detection searches for dark matter (DM) scattering off nuclei via a scalar mediator (similarly g_A^q give the spin dependent and g_T^q the tensor couplings); in lepton flavor violation in $\mu \rightarrow e$ conversion in nuclei; and in electric dipole moments. The calculations of g_S^q and g_T^q are similar to that discussed above for g_A^q.

Figure 7 shows data for $g_S^u + g_S^d$ from a physical pion-mass ensemble [23]. Again the two fits have very similar χ^2/dof but the one with E_1 of $N\pi$ as the excited state gives almost 50% larger value. Our NNLO χPT analysis given in Ref. [23] shows that there are two significant ESC, one from $N\pi$ and the other from $N\pi\pi$, and each contribute about 10 MeV to $\sigma_{N\pi}$. These two states are almost degenerate in our lattice calculation, so they effectively contribute as one in the fit to Γ^2, i.e., their amplitudes in the spectral decomposition add as the exponential factors are very similar. The right panel in Fig. 7 shows pictorially why the $N\pi$ state makes a large disconnected contribution: the scalar current has a large coupling to the quark loop, and the configuration shown in the quark-line diagram favors a $N\pi$ intermediate state.

The two analyses with different values of E_1 led to an interesting conundrum. The standard analysis (with $E_1 \sim 1450$ MeV) gave $\sigma_{N\pi} \approx 40$ MeV consistent with previous lattice analyses [3, 4], whereas the analysis with $E_1 = E_{N\pi} \approx 1230$ MeV gave $\sigma_{N\pi} \approx 60$ MeV which is consistent with the dispersive analysis starting with the $N\pi$ scattering data [23]. Our preferred solution is the latter based on the χPT analysis. In that case the tension between LQCD and phenomenological estimates is resolved.

Clearly, the 50% difference between the two analyses with similar χ^2/dof calls for additional LQCD calculations to be done to confirm this exciting result. The key point for future calculations of $\sigma_{N\pi}$, using either the direct method of calculating the charges $g_{u,d}^S$ as defined in Eq. 9 or using the Feynman-Hellmann relation, $\sigma_{N\pi} = m_q \partial M_N / \partial m_q$ where M_N is the nucleon mass, is that they have to be done close to $M_\pi = 135$ as only there the $N\pi$ state becomes much lighter than $N(1440)$ and the ESC are very different and manifest. Our data with $M_\pi > 200$ MeV do not give significantly different results between the two kinds of fits. Thus, extrapolation from heavier M_π ensembles will miss this physics in both methods.

8 Conclusions

Simulations of LQCD provide ensembles of importance sampled configurations whose distribution according to the Boltzmann factor $\text{Det}D e^{-A_0} = e^{-A_0 + \text{det}D}$ constitutes the non-perturbative ground state of QCD. This construction is exact (bias-free) but stochastic. For a given lattice action, ensembles are characterized by six input parameters $\{m_i, a, M_q, L\}$ with $m_i \in \{m_u, m_d, m_s, m_l\}$. Correlation functions of any time-ordered string of operators are given by quark-line diagrams obtained using the Wick contraction. Properties of QCD (spectrum,
matrix elements, EoS, etc) are extracted from expectation values, i.e., ensemble averages, of these correlation functions. The full excursion (possible “paths”) of the quark propagators (and values of link parameters for non-local and gluon operators) in the quark line diagrams over 3-space but at a fixed intermediate time generate the full Fock space wavefunction, a linear combination of all states with the same quantum numbers as the interpolating operator. The propagation of each of these states in Euclidean time τ is damped as $e^{-E_n \tau}$, allowing the ground state with energy E_0 to be isolated in the limit $\tau \to \infty$. Once again, this stochastic description of the wavefunction provides no intuition or visualization but allows the calculation of fully quantum mechanical matrix elements of any operator within this state.

Lattice QCD is called a “black box” because we cannot visualize or represent the vacuum fluctuations or the wavefunctions that get created at intermediate times in the correlation functions Γ^n. Nevertheless, the results obtained are rigorous, display all the subtleties of QCD and confirm that this quantum field theory describes the quantum dynamics of quarks and gluons.

Three kinds of observables have been used to illustrate how LQCD calculations are done and data analyzed. Looking ahead, precision calculations of nucleon correlation functions need to overcome two challenges: the exponential degradation of the signal and how to remove all/most excited state contamination in the wavefunctions to get matrix elements within the nucleon ground state from correlations functions calculated with finite source-sink separation τ. The ESC in current data can be large as illustrated by the pion-nucleon sigma term.

The future is exciting – the FLAG reports provide a growing testimony to LQCD having matured and results having an impact on phenomenology and experiments [3, 4]. Methodology and algorithms for many calculations are robust, however, brute force approach to achieving sub-percent precision in nucleon correlation functions and ME by just increasing the statistics is unlikely to succeed in the next few years. It is, therefore, time for innovation and an exciting challenge to the next generation—to develop new methods and algorithms to reduce systematics and increase statistics efficiently.

Acknowledgments

Many thanks to my collaborators Tanmoy Bhattacharya, Vincenzo Cirigliano, Martin Hoferichter, Yong-Chull Jang, Balint Joo, Huey-Wen Lin, Emanuele Mereghetti, Santanu Mondal, Sungwoo Park, Frank Winter, Junsik Yoo, and Boram Yoon with whom the work presented has been done over the last decade. The calculations used the CHROMA software suite.

Funding information This research used resources at (i) NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Award No. DE-AC02-05CH11231; (ii) the Oak Ridge Leadership Computing Facility through ALCC award LGT107 and INCITE award HEP133; (iii) the USQCD Collaboration, funded by DOE HEP; and (iv) Institutional Computing at Los Alamos National Laboratory. R. Gupta is partially supported by DOE HEP under Award No. DE-AC52-06NA25396 and by the LANL LDRD program.

References

