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Abstract

This is a review of Glauber’s asymptotic diffraction theory, in which diffractive scattering
is described in terms of interference between semiclassical amplitudes, resulting from
a stationary-phase approximation. Typically two such amplitudes are sufficient to accu-
rately describe elastic scattering, but the stationary points are located at complex values
of the impact parameter. Their separation controls the interference pattern, and their
offsets from the real axis determine the overall fall-off with momentum transfer. Asymp-
totically, at large momentum transfers, the stationary points move towards singularities
of the profile function. I also include some reminiscences from our collaboration.
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1 Introduction

I had the pleasure of working with Professor Roy Glauber on and off for more than 40 years,
starting as a postdoctoral fellow at Harvard in 1976, and up to the recent completion of our
book [1]. In this note, I first give some brief comments to his vita, then outline representative
elements of our book, before concluding with some reminiscences from our many years of
interactions.

2 A Personal View of Roy Glauber’s Vita

In the preparation of this talk, I consulted the “Academic tree” webpage [2]. Here, I found
interesting information on the academic ancestors of his PhD supervisor, Julian Schwinger, as
well as a list of “children”, basically PhD students. However, the latter were mostly related to
his activity in Quantum Optics, for which he was awarded one half of the 2005 Nobel Prize in
Physics, with the citation: “for his contribution to the quantum theory of optical coherence”.
Missing from that list was a student who was very much involved in Roy’s early work on
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multiple scattering theory, namely Victor Franco (see Fig. 1). However, the list reminds us
of Roy’s impact also on other fields (other than Quantum Optics and Scattering Theory), like
Mathematics and Statistical Physics.

Roy Glauber vita

+ Victor Franco

Figure 1: Edited excerpt from “Academic tree” webpage on Roy Glauber [2].

I was not aware of Roy’s participation in the Manhattan Project until I got hold of a copy
of his CV in 2007 for the purpose of nominating him for an honorary degree. He had never
mentioned it, so I was left wondering whether he perhaps had mixed feelings about it. Anyway,
it is listed as his first appointment, 18 years old, in the 1997-version of his CV, see Fig. 2 (and
described in some detail in his biography at the Nobel Foundation website [3]). After the war,
he returned to Harvard, completed his PhD with Schwinger in 1949, and after a few years at
Princeton (1949–1951) and Caltech (1951–1952), he returned to Harvard in 1952. Starting
as a lecturer, he was subsequently promoted to assistant and associate professor, and then full
professor in 1962 and Mallinckrodt Professor of Physics in 1976.

The first papers listed in his CV are from his contributions to the Manhattan Project: The
Critical Masses of Tamped Spheres (1944–1945), The Stopping of Multiplication in Expanding,
Tamped Spheres (1944–1945), and Neutron Diffusion in Spherical Media of Radially Varying
Density (1944–1945). His PhD thesis (1949) was on The Relativistic Theory of Meson Fields,
and then in the early 50s he started writing papers on electron diffraction and scattering theory.

The famous “multiple-scattering” papers Deuteron Stripping Processes at High Energies and
Cross Sections on Deuterium at High Energies appeared in 1955, and it is natural to speculate
whether the multiple-scattering branch of his work grew out of the experience from the Man-
hattan project. Then, in 1959, came his Boulder Lectures: High Energy Collision Theory, which
for many became a “bible” of hadron-nucleus scattering.

The work on Quantum Optics, for which he was awarded the Nobel Prize, started in 1962,
with the publication of Photon Correlations [4] and follow-up papers. Gradually, this became
his main interest and activity. But he did not abandon the field of scattering theory, something
I was to benefit from.

3 Asymptotic Diffraction Theory

Around 1980, various proton elastic and inelastic scattering experiments were performed at
the Los Alamos National Laboratory, aimed at the investigation of nuclear structure. For a
heavy target, like 208Pb, the differential cross section was rather monotonous, roughly given
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CV date: 1997

Figure 2: From Roy Glauber’s CV dated ’97, with his Manhattan Project position
highlighted.

by a periodic oscillatory pattern that had an exponentially falling envelope, as illustrated in
Fig. 3. Returning to Harvard in 1981, I learned that Roy and Marek Bleszynski had been work-
ing on a simplified description of proton-nucleus scattering, an activity I immediately joined.
The work was relevant to those experiments at Los Alamos, in particular, to the activity of
G. Hoffmann and collaborators [5].1 Roy was to spend the summer of that year at CERN,
and before his leaving Cambridge, we quickly patched together a manuscript on our “simpli-
fied” understanding of these differential cross sections [7], to be hand delivered by Roy to the
Physics Letters B editor at CERN.

The study was further developed during another stay at Harvard in the mid-80s, and during
visits by Roy to Bergen in the early 90s. It then lay dormant until 2006, at which point also a
conversion of all illustrations to electronic versions was started.

The theory is based on the Kirchhoff integral representation of Fraunhofer diffraction [8],

f (k ′, k) =
ik
2π

∫

e−iq ·b�1− eiχ(b)
	

d2 b. (1)

Our sign convention2 is such that q = k ′−k. Here, the “1” only contributes a delta function in
the forward direction, and our approach was to evaluate the remaining integral by the method
of stationary phase. The points of stationary phase are given by

q =∇bχ(b). (2)

While q is a real quantity, the phase shift function is in general complex. Thus, the solutions
for b will in general be located off the real axes in the two-dimensional b plane.

1The work may have been inspired by earlier work using asymptotic approximations to the Bessel function [6].
2In Ref. [7]. the opposite sign convention for q was used.
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Figure 3: Differential cross section for elastic proton-lead scattering at 800 MeV [5].

If b0 is a point of stationary phase, the stationary-phase approximation to the integral (1)
is obtained by expanding χ(b) to second order in the deviations

∆b = b− b0 = (∆bx ,∆by) = (x , y), (3)

and performing the two Gaussian integrals over x and y . Here, x is along the positive q
direction and y is along the normal to the scattering plane. One thus finds for the amplitude
corresponding to one particular point of stationary phase, b0 [1]

f0(k
′, k) =

k
i

� −b0 x

qχ ′′(b0 x)

�

1
2

e−iqb0 x+iχ(b0 x ), (4)

where azimuthal symmetry has been assumed and the second derivative in y has been ex-
pressed in terms of q and the x-component of b0. Thus, it is given by the integrand at the
point of stationary phase, multiplied by a “prefactor” determined by the second derivatives.
Typically, there will be contributions from two or more points of stationary phase.

3.1 Classical scattering

Before illustrating applications of the approximation (4) to some representative phase shift
functions, let us first consider a particle in a classical potential V (r ), where r = κ̂z + b, with
κ = 1

2(k + k ′). It will experience a transverse force −∇bV (b + κ̂z). Integrated over time
( dt = dz/v), we get the transfer of momentum to the scattered particle,

ħh(k ′ − k) = ħhq = ħh∇bχ(b), (5)

with χ related to the potential by

χ(b) = −
1
ħhv

∫ ∞

−∞
V (b+ κ̂z)dz. (6)

We note that the classical condition (5) is just the condition of stationary phase, Eq. (2). It is
easy to see [1] that the classical cross section will be given by the square of the modulus of the
expression (4).
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3.2 Example 1. Coulomb scattering

Consider scattering from a point Coulomb charge,

V (r ) =
Ze2

4πr
. (7)

The phase shift function is actually infinite, but if we introduce a screening radius R (for sim-
plicity, we consider a sharp cut-off), it can be written as

χ(b) = −
2Ze2

4πħhv

∫ R

b

dr
p

r2 − b2
= 2η log

�

b
2R

�

+O
�

b2

R2

�

, (8)

where v is the projectile velocity, and we have introduced the Sommerfeld parameter [9]

η=
Ze2

4πħhv
. (9)

There is only one stationary point, given by

bx =
2η
q

. (10)

It is on the real bx -axis, and has the same sign as η, i.e., positive for repulsive forces and
negative for attractive ones. The resulting amplitude is

f (k ′, k) =
2ηk
q2

exp
§

−2iη log
qR
η
− 2iη+

iπ
2

ª

, (11)

and the differential cross section, dσ/dΩ = | f (k ′, k)|2, is identical to the Rutherford cross
section (the phase is unobservable).

We shall in section 3.5 consider scattering from a distributed charge, leading to interference
phenomena and also a rainbow.

3.3 Example 2. Paired trajectories, rainbows

Let us consider a simple, real, phase shift function, which for by = 0 has a shape given by
X (bx) = χ(bx , 0), qualitatively as illustrated in Fig. 4. It is even in bx , and its derivative will
thus be an odd function. In this example, it is seen that for q less than some critical value,
there will be two solutions to the stationary phase condition (2). There will be two interfering
amplitudes, each of the form (4).

However, for q equal to some critical value (denoted qR), the two stationary points merge,
and the amplitude, inversely proportional to the square root of the second derivative, diverges.
This is a rainbow. For q > qR, there is apparently no solution. This is however no longer true
if we allow for complex values of the impact parameter bx . The two roots that for q < qR were
located on the real axis, will for q > qR move into the complex bx -plane, one above and one
below the real axis.3 It is easy to see [1] that (with our sign convention for the momentum
transfer) it is only the root bx that is below the real axis that will be encountered along the
path of integration over bx .

Beyond the rainbow point (q > qR), since the stationary point moves into the complex bx
plane, the amplitude gets a factor exp( Im bxq) and the differential cross section will fall off
exponentially. This is no surprise, since we are in a region that is classically forbidden.

One can easily imagine phase shift functions whose derivatives have more extrema, and
thus more rainbows [1].

3Mathematical note: we assume that X ′′(bx ) is analytic and has a simple zero at this point.

016.5

https://scipost.org
https://scipost.org/SciPostPhysProc.3.016


SciPost Phys. Proc. 3, 016 (2020)

′

Figure 4: (a) A simple, real, phase shift function X (bx) and (b) its derivative X ′(bx).
For values of q that are not too large, there are paired trajectories at b1x and b2x .
The stationary points are located at negative values of bx , since a positive phase shift
function corresponds to attraction.

3.4 Example 3. Absorption

Inelastic scattering, or absorption, can be represented by a complex phase shift function. As
a simple illustration of the associated elastic scattering, let χ(b) be pure imaginary, and have
a shape similar to that shown in Fig. 4. Its derivative, on the real axis, will again be like in
Fig. 4. However, it will be pure imaginary, and thus nowhere satisfy Eq. (2). If we move off
the real axis, the situation changes dramatically.

For illustration, consider the inverse cosh phase shift function,

χ(b) =
χ0

cosh(b/β)
, (12)

with χ0 purely imaginary. We need the derivative of this function, with respect to bx , for
by = 0. Rather than writing this out, let us just note that for by = 0 we have

X (bx) =
2χ0

ebx/β + e−bx/β
. (13)

This has simple poles for

bx

β
= 1

2 log(−1) =
±i
2
{π, 3π, etc.}. (14)

Consequently, the first derivative will have double poles at these locations, and at large q, the
stationary points will approach the poles. Actually, since the poles are on the imaginary axis,
it is only the one nearest to the real axis, bpole

x = −iπβ/2, that is relevant for the path of
integration.

With X (bx) having a simple pole at bpole
x , the derivative will have a double pole. With

bx = bpole
x +ρeiφ , (15)

in the neighbourhood of this pole we have

X ′(bx)∝
χ0 sinh(bx/β)
ρ2e2iφ

, (16)
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with sinh(bx/β) predominantly imaginary. For the whole expression to be real, and satisfy
Eq. (2), we need 2φ = nπ (since χ0 is pure imaginary). This example will thus at large
momentum transfers give two points of stationary phase, located in the lower complex plane,
at an angle of ±π/2 with respect to the positive imaginary axis. (The requirement that X ′(bx)
be real and positive removes solutions with an odd multiple of π.) Let us denote them bxα and
bxβ .

The facts that

1. there are two points of stationary phase, and

2. these are located below the real axis,

mean that (1) the differential cross section will exhibit periodic oscillations, with a period
determined by the separation of the two stationary points along the real axis, Re (bxα − bxβ),
and (2) the envelope of the differential cross section will be exponentially damped, with a
slope given by Im bxα = Im bxβ . The two points of stationary phase will in this case be
symmetrically located with respect to the imaginary axis, and the amplitudes will be of equal
magnitude.

If χ0 were not pure imaginary, the two points of stationary phase would have been lo-
cated at different offsets from the real axis, Im bxα 6= Im bxβ . The two amplitudes fα(k

′, k)
and fβ(k

′, k) would then have different exponential fall-offs with q, one amplitude would
eventually dominate, and the oscillations would not persist at high values of q.

3.5 Example 4. Coulomb scattering from a distributed charge

For an extended charge distribution, there will be at least two points of stationary phase, and
thus interference phenomena. We shall illustrate this for a Gaussian distribution, modified by
a polynomial prefactor,4

ρ(r) =
1

π3/2β3

1

1+ 3
2α

�

1+α
r2

β2

�

e−r2/β2
, (17)

as might be encountered in shell-model descriptions of light nuclei. The phase shift function
will involve an exponential integral, but its derivative (for by = 0) is rather simple,

X ′(bx) =
2η
bx

�

1−
�

1+
α

1+ 3
2α

b2
x

β2

�

e−b2
x/β

2
�

. (18)

In addition to a “far-out” stationary point, bx ∼ 2η/q (cf. section 3.2), there is now also a
stationary point at the scale defining the charge distribution, bx = O(β). The corresponding
two amplitudes will create an interference pattern. Furthermore, there is a point bx ,R where
X ′′(bx ,R) = 0, i.e., a rainbow point. The corresponding momentum transfer will be qR = cη/β ,
with c a function of the coefficient α in Eq. (17).

In Fig. 5 we show the resulting differential cross section for a rather large value of the
Sommerfeld parameter, η = 10, normalized to the Rutherford cross section. Also shown, are
the partial contributions of the two stationary points, labelled α and γ. The cross section
exhibits a rainbow singularity, located at (in this case, for α = 0) qR = 1.276η/β . The inset
shows the locations of the two stationary points, labelledα and γ, for a range of the momentum
transfers, with the arrows indicating how they move with increasing values of momentum
transfer. Beyond the rainbow point, the point labelled α moves down into the complex bx -
plane, giving an exponentially damped contribution, whereas the other, labelled γ, moves up
into the complex plane, evading the path of integration.

4The coefficient α should not be confused with the point of stationary phase labelled α.
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°

Figure 5: Scattering from the charge distribution (17), normalized to the Rutherford
cross section. The dotted curves show the individual contributions from the two
stationary points. The inset shows how the stationary points move with increasing
momentum transfer.

Two aspects of the interference pattern are worth noting. (i) The period of oscillation in-
creases as q increases towards qR. This is caused by the fact that the two points of stationary
phase approach each other. (ii) The amplitude of the oscillation increases towards the rain-
bow point. This is obviously a reflection of the fact that the two amplitudes become more
comparable in magnitude, as also seen from the two dotted curves in Fig. 5.

4 Conclusion

The asymptotic evaluation of the diffraction integral (1) provides a rather precise approxima-
tion to the numerically “exact” result (see Ref. [1]). The contribution from integrating over
the whole scattering plane (

∫

d2 b) can be represented by contributions from a small number
of stationary phase points. The number and location of these points of stationary phase of-
fers valuable qualitative insight into the scattering process. At large momentum transfers, the
points of stationary phase will approach the singularities (normally, in the complex plane) of
the phase shift function.

Acknowledgements

It is a pleasure to thank the organizers, in particular Professors Natalia Timofeyuk and Jim Al-
Khalili, for setting up a very interesting conference, and Professor Colin Wilkin for his initiative
towards organizing a special session dedicated to the memory of Roy Glauber and his seminal
contributions to this field. Furthermore, I would like to thank Marek Bleszynski and Lanny Ray
for correspondence. The figures 3, 4 and 5 are reprinted from Ref. [1] with kind permission
from Cambridge University Press.

Funding information This work is supported in part by the Research Council of Norway,
http://dx.doi.org/10.13039/501100005416, contract number 255182.

016.8

https://scipost.org
https://scipost.org/SciPostPhysProc.3.016


SciPost Phys. Proc. 3, 016 (2020)

Personal reminiscences

Figure 6: Roy Glauber lecturing at a summer school in Hercegnovi, September 1969.
Photo: P. Osland

A Personal reminiscences

I first met Roy Glauber at a Summer School in Hercegnovi (then Yugoslavia), in 1969. He was
lecturing on scattering theory. This was of great interest to me, as I had done some multiple-
scattering calculations for my thesis work in Trondheim. The formulas on the board (see Fig. 6)
are reminiscent of his famous Boulder lectures [8].

I next had a year of overlap with him at CERN, around 1972, before being invited to
Harvard, as a postdoc, in 1976, and then again in 1981. As mentioned at the beginning of
Section 3, this is when we started working on the asymptotic scattering, with Marek Bleszynski.
In the early 1990s Roy briefly visited me in Bergen two summers, continuing our work on “the
manuscript”. But then we both got distracted by other “urgent” matters, and this work became
another “stack of papers” in our offices.

In the aftermath of the Nobel Prize celebrations, in 2006, Roy suggested we should pick it
up again. By then, the technology had thoroughly changed, all illustrations had to be provided
in electronic form. This was a welcome opportunity to re-learn everything, and we continued
our work during visits to Bergen, Harvard, and various European research centers, like CERN,
Nordita and ICTP.

Roy had a fantastic memory. He had met all the significant physicists of his epoch, and had
detailed and interesting stories to tell about them all. There exist recordings of him talking
about the Manhattan Project [10].
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Personal reminiscences

Figure 7: Stockholm, December 2005. Photo: P. Osland

Figure 8: CERN, Colloquium, August 2009. Photo: P. Osland
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Personal reminiscences
ICTP 2014

Figure 9: Roy Glauber admired and photographed by the younger generation, at the
ICTP 50-year celebration, October 2014. Photo: P. Osland

Figure 10: Roy Glauber in his Lyman Lab office 331, January 2015. Photo: P. Osland
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