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Influence of the Pauli principle on two-cluster potential energy
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Abstract

We study effects of the Pauli principle on the potential energy of two-cluster systems.
The object of the investigation is the lightest nuclei of p-shell with a dominant α-cluster
channel. For this aim we construct matrix elements of two-cluster potential energy be-
tween cluster oscillator functions with and without full antisymmetrization. Eigenvalues
and eigenfunctions of the potential energy matrix are studied in detail. Eigenfunctions
of the potential energy operator are presented in oscillator, coordinate and momentum
spaces. We demonstrate that the Pauli principle affects more strongly the eigenfunctions
than the eigenvalues of the matrix and leads to the formation of resonance and trapped
states.
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1 Introduction

In the present paper, we have considered how the Pauli principle affects a cluster-cluster in-
teraction. We follow a microscopic method, an algebraic version of the resonating group
method [1], and consider the lightest nuclei of p-shell with a dominant α-cluster channel.
Correct account of the Pauli principle is known to be of paramount importance in description
of bound and low-energy resonance states in light nuclei with a prominent cluster structure.
However, proper account of the antisymmetrization of nucleons belonging to different cluster
is quite a tricky problem. Popular cluster models, which treat the antisymmetrization ap-
proximately, use a folding cluster-cluster potential. Hence, it is necessary to know what the
difference between the folding and exact cluster-cluster potential is. Our paper provides an
answer to this question. We found an unexpected impact of the Pauli principle on the potential
energy.

Due to the antisymmetrization the potential of interaction between the composite systems
is a nonlocal operator. In [2] we formulated an algorithm for studying potential energy of
a two-cluster system in a discrete representation. Our method allows reducing the nonlo-
cal interaction to a local form. As a result, one can study effects of the Pauli principle or
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effects of other factors or forces on the interaction between complex systems, where the an-
tisymmetrization plays an important role. We would like to stress that this method is quite
universal, because it can be applied to any pairs of interacting many-particle systems, such as
baryons comprised of quarks, or atoms consisting of electrons.

It is important to notice that the total interaction of two-cluster system originates from
nucleon-nucleon interaction and also from the kinetic energy operator. The influence of the
Pauli principle on the kinetic energy of relative motion of two clusters has been investigated
in Refs. [3–6]. In the present paper we will consider only the first part of the cluster-cluster
potential.

The paper is organized as follows. In Section 2 a short explanation of the suggested method
is given. Results are discussed in Section 3 and conclusions are stated in Section 4.

2 Method

A wave function of A-nucleon systems for the partition A= A1 + A2 is

ΨLM = ÒA
�

[ψ1 (A1, s1, b)ψ2 (A2, s2, b)]S fL (q)YLM (bq)
	

, (1)

where ψν (Aν, sν, b) is a fully antisymmetric function, describing internal structure of the νth
cluster, ÒA is the antisymmetrization operator permuting nucleons belonging to different clus-
ters and q is the Jacobi vector determining distance between interacting clusters. We assume
that we deal with the s-clusters only, it means that the intrinsic orbital momentum of each
cluster equals to zero. The total spin S is a vector sum of the individual spins s1 and s2.

Inter-cluster wave function fL (q) is a solution to the integro-differential equation. This
equation can be much easily solved, when the function (1) is expanded into a complete set of
the antisymmetric cluster basis functions

|nL〉C = ÒA
�

[ψ1 (A1, s1, b)ψ2 (A2, s2, b)]S ΦnL (q, b)YLM (bq)
	

, (2)

where n is the number of radial quanta, b is the oscillator length b. Functions |nL〉C are
normalized not to unity, but to eigenvalues ΛnL of the norm kernel:

〈nL|enL〉C = ΛnLδn,en.

By using the cluster basis functions (2), one obtains the two-cluster Schrödinger equation
in the form

∑

m=0

�


nL
�

�
ÒH
�

�mL
�

C − EΛnLδn,m

	

CmL = 0, (3)

where



nL
�

�
ÒH
�

�mL
�

C is a matrix element of a microscopic two-cluster Hamiltonian, CnL is the
expansion coefficient.

If we omit the antisymmetrization operator in the expression for the wave function, we
have got the so-called folding approximation.

Ψ
(F)
LM = [ψ1 (A1, s1, b)ψ2 (A2, s2, b)]S f (F)L (q)YLM (bq) . (4)

This approximate form is valid when the distance between clusters is large and effects of the
Pauli principle are negligible small. The exact two-cluster potential is a nonlocal operator, as
opposed to the folding cluster-cluster potential. The idea is to compare the exact and folding
two-cluster potentials via separable representation of the potentials. As a tool for this study we
employ the method suggested in our recent paper [2]. We will construct matrix of potential
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energy and then analyze its eigenvalues and eigenfunctions of the matrix. The eigenfunc-
tions will be analyzed in the oscillator, coordinate and momentum representations. Involving
three different spaces allows us to get more complete picture on the nature and properties of
potential energy eigenfunctions.

Having constructed matrix of potential energy









nL
�

�
bV
�

�mL
�



 of dimension N × N , we
can calculate eigenvalues λα (α=1, 2, . . . , N) and corresponding eigenfunctions

�

Uαn
	

of the
matrix. Diagonalization of the potential energy matrix generates a new set of inter-cluster
functions φα and two-cluster wave functions Ψα

φα (q, b) =
∑

n

UαnΦnL (q, b) (5)

Ψα = ÒA {ψ1 (A1)ψ2 (A2)φα (q, b)YLM (bq)} . (6)

The functions φα (q, b) and eigenvalues λα enable us to construct inter-cluster nonlocal po-
tential

bVN (q,eq) =
N
∑

α=1

φα (q, b)λαφα (eq, b) . (7)

In what follows we are going to study properties of the eigenvalues and eigenfunctions of
the potential energy operator in the oscillator representation

�

Uαn
	

, coordinate φα (q, b) and
momentum φα (p, b) spaces.

For a two-body case, the eigenfunctions φα (q, b) or φα (p, b) would immediately define
a wave function and t-matrix, as it was demonstrated in Ref. [2]. However, in two-cluster
systems the antisymmetrization is known to affect the kinetic energy and norm kernel and
thus the kinetic energy and norm kernel participate in creating the effective cluster-cluster
interaction as well.

In the present paper we consider only the part of the cluster-cluster potential generated
by the nucleon-nucleon potential with the focus on the Pauli effects. The first effect of the
Pauli principle on two-cluster systems is connected with appearance of the Pauli forbidden
states, which correspond to zero eigenvalues of the norm kernel. The second effect of the
Pauli principle is related to the eigenvalues of the Pauli-allowed states which are not equal
to unity. It has been shown in [3] that the kinetic energy operator of two-cluster relative
motion modified by the Pauli principle generates an effective interaction between clusters. It
is interesting to analyze how the eigenvalues of the norm kernel change potential energy of
two-cluster system.

3 Results and discussion

The object of the investigation is the lightest nuclei of p-shell with a dominant alpha-cluster
channel shown in Table 1.

Table 1: List of nuclei and two-cluster configurations

Nucleus Configuration
5He 4He+n
5Li 4He+p
6Li 4He+d
7Li 4He+3H
7Be 4He+3He
8Be 4He+4He
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Table 2: Oscillator length b in fm for different nuclei and different potentials.

Nucleus VP MHNP MP
5He, 5Li 1.38 1.32 1.28

6Li 1.46 1.36 1.31
7Li, 7Be 1.44 1.36 1.35

8Be 1.38 1.32 1.28

We employ three nucleon-nucleon potentials which have been often used in different real-
izations of the cluster model. In our calculations we involve the Volkov N2 (VP) [7], modified
Hasegawa-Nagata (MHNP) [8, 9] and Minnesota (MP) [10] potentials. Coulomb forces are
also involved in calculations and treated exactly. For the sake of simplicity we neglect the
spin-orbit forces, thus the total spin S and the total orbital momentum L are good quantum
numbers. Oscillator length b is selected to optimize energy of the lowest decay threshold for
each nucleus and for each NN potential. In what follows, it is assumed the energy of two-
cluster systems is determined with respect to the two-cluster threshold.

The optimal values of b are shown in Table 2.
Figure 1 shows the eigenvalues of the exact and folding potential energy matrix generated

by the MHNP for the 1− state of 7Be.
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Figure 1: Eigenvalues of the exact (solid circles) and folding (open circles) potential
energy matrix for the 1− state of 7Be. Results are obtained with the MHNP.

We can observe from Fig. 1 that the eigenvalues of the potential energy matrix calculated
with antisymmetrization are very close to those determined in the folding approximation. The
lowest eigenvalues almost coincide indicating that both potentials have the same depth. One
can also see that exact potential is less attractive at the range 5< α < 30. For α > 50 the exact
potential is very close to the folding potential. Similar behavior of eigenvalues is observed for
all lightest nuclei of the p-shell and for all NN potentials involved in our calculations.
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Figure 2: Eigenvalues of the exact (a) and folding (b) potential energy matrix as a
function of the number N of oscillator functions involved in calculations. Results are
obtained for the 1− state in 7Be with the MHNP.

Figure 3: The eigenfunctions of the exact (solid circles) and folding (open circles)
potential energy in oscillator representation for the 1− state in 7Be (left panel) and
the 0+ state in 8Be (right panel). Results are obtained with the MHNP.

In Fig. 2 we show dependence of the eigenvalues λα on the number of oscillator functions
involved in calculations. These results are obtained for Lπ = 1− state of 7Be with the MHNP.
As can be seen from Fig. 2, the dependence of eigenvalues of the exact potential on the
number of functions exhibits resonance behavior. Contrary, none of the eigenstates of the
folding potential has a resonance behavior.

In Fig. 3 we compare eigenvectors for 8Be and 7Be with and without antisymmetrization
for the MHNP. One can see that they are quite different. The Pauli principle makes zero the
first 50 expansion coefficients Uαn . So, we can conclude that the eigenfunctions of the exact
potential corresponding to non-resonance values of α are suppressed at the range n < 50
due to the influence of the Pauli principle. The eigenfunctions of the folding potential have a
maximum at lower number of quanta than the eigenfunctions of the exact potential. It is also
worth noting that different behaviour of the eigenfunctions of the folding potential at small
values of n for 7Be and 8Be is caused by different values of orbital momenta.

Figure 4 presents the eigenfunctions of the potential energy operator for the 0+ state in
8Be in the momentum space for α = 1, 2 and 3. A huge repulsive core in the MHNP and the
Pauli principle make eigenfunctions φα (p) to vanish in a large range of 0< p < 10 fm−1.

Now let us consider wave functions of trapped and resonance states in the two-cluster
systems. Wave functions of the resonance states in 8,7Be and 6Li in oscillator and momentum
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Figure 4: The eigenfunctions of the potential energy operator for the 0+ state in 8Be
in the momentum representation. Results are obtained with the MHNP.

Figure 5: Wave functions of the resonance states in 8,7Be and 6Li in oscillator rep-
resentation (left panel) and momentum representation (right panel). Results are
obtained with the MHNP

representation are shown in Fig. 5. We can conclude that the eigenfunctions of resonance
states describe a compact configuration, because they are localized at low values of oscillator
quanta and momentum.

Eigenvalues of the potential energy matrix generated by the Volkov N2 potential are shown
in Fig. 6 for the 1− state of 5He. The eigenvalues of the exact VP differ from those of the folding
potential at a single point α = 1. The eigenvalue λα=1 corresponds to a "trapped" state. This
conclusion follows from Fig. 7, where the dependence of the eigenvalues of the potential
energy matrix as a function of the number of oscillator functions involved in calculations is
shown for the 1− state in 5He. Figure 7 shows fast convergence of the first eigenvalue of the
exact potential energy matrix.
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Figure 6: Eigenvalues of the exact (solid circles) and folding (open circles) potential
energy matrix for the 1− state of 5He. Results are obtained with the VP.

Figure 7: Eigenvalues of the exact (right pane) and folding (left panel) potential
energy matrix as a function of the number of oscillator functions involved in calcu-
lations. Results are obtained for the 1− state in 5He with the VP.

Wave functions of the trapped state in 5He, 6Li and 7Be in oscillator representation are
shown in Fig. 8. The wave functions of the trapped state have an exponential asymptotic
behavior. Thus, there is a full resemblance of these functions with a true bound state wave
function which is usually observed in coordinate space. The asymptotic part of the wave func-
tions of resonance states has an oscillatory behavior (Fig. 5). The node of the trapped state
wave functions appears due to the orthogonality of this state to the Pauli forbidden states in
two-cluster systems.

It is interesting to note that a “trapped” state in the VP appears only for the cluster configu-
rations characterized by the eigenvalues of the norm kernel Λn > 1. Namely, the VP generates
a “trapped” state in the states of normal parity in 5He, 5,6,7Li and 7Be. MP also produces a
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Figure 8: Wave functions of the trapped state in 5He, 6Li and 7Be in oscillator repre-
sentation. Results are obtained with the VP.

“trapped” state in 6Li.

4 Conclusion

We have studied influence of the Pauli principle on the interaction between two clusters within
a microscopic method – an algebraic version of the resonating group method. Due to the Pauli
principle, a cluster-cluster interaction is a nonlocal potential within the standard version of the
resonating group method. We employed the algebraic version of the method, which involves a
complete basis of oscillator functions to expand a two-cluster wave function. In the framework
of the latter method, a nonlocal cluster-cluster interaction was represented as a matrix. Our
main aim was to study properties of matrix of the potential energy operator generated by a
nucleon-nucleon and Coulomb potentials. We constructed the matrix with and without full
antisymmetrization. These two matrixes allowed us to reveal explicitly the influence of the
Pauli principle on the shape of the cluster-cluster interaction.

Eigenvalues and eigenfunctions of the folding cluster-cluster potential have been compared
with those of the non-local cluster-cluster potential for the lightest nuclei of the p-shell: 5He,
5Li, 6Li, 7Li, 7Be and 8Be. All these nuclei were considered as two-cluster systems composed
of an alpha particle and a nucleus of the s-shell. We employed the Minnesota potential, the
modified Hasegawa-Nagata potential and Volkov N2 potential to investigate the dependence
of cluster-cluster interaction on the shape of the potential.

It was demonstrated that eigenvalues of the folding two-cluster potential coincide with the
potential energy in coordinate space at some specific discrete points. It was also shown that
the eigenfunctions of the folding potential energy matrix are the expansion coefficients of the
spherical Bessel functions in a harmonic oscillator basis.

In general, the eigenvalues of the folding and exact cluster-cluster potential do not diverge
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considerably. However, the dependence of the exact cluster-cluster potential on the number
of the invoked functions reveals a number of resonance states which are absent in the case
of folding potential. The structure of the resonance states is much different from the eigen-
functions of the folding potential. Such resonance states are mainly localized in the region of
small number of quanta in discrete space and, consequently, in the region of small distances
between clusters in coordinate space.
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