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Abstract

The out-of-equilibrium dynamics of quantum systems is one of the most fascinating
problems in physics, with outstanding open questions on issues such as relaxation to
equilibrium. An area of particular interest concerns few-body systems, where quan-
tum and thermal fluctuations are expected to be especially relevant. In this contribu-
tion, we present numerical results demonstrating the impact of conserved quantities (or
‘charges’) in the outcomes of out-of-equilibrium measurements starting from realistic
equilibrium states on a few-body system implementing the Dicke model.
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1 Introduction

Understanding how a generic (many-body) physical system evolves in time from an arbitrary
initial state and relaxes (or not) to an equilibrium state is a fundamental problem underlying
questions from the cooling of neutron stars [1,2] to the design of materials that quickly remove
excess heat from computing chips in cell phones [3,4].

In classical physics, conservation laws (e.g., on energy, momentum, angular momentum)
can severely constrain the phase space available to the system, thus enabling to make precise
predictions on some of these questions. In quantum physics, conservation laws play a similarly
strong role. This was strikingly demonstrated in the quantum Newton’s cradle experiment [5].
In this experiment, a one-dimensional (1D) gas of strongly-interacting bosons in a harmonic
trap was initialized in a highly-non-equilibrium state, and observed not to relax even after a
long time evolution (hundreds of trap periods, which sets the natural timescale of the problem
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and imply thousands of atomic collisions). This behaviour is understood by noting that the
systems, in the limit of infinitely-strong interactions, is best described as a Tonks-Girardeau
gas [6, 7], which is an an integrable model, i.e., it features an extensive number of conserved
charges. These are operators, M̂k, that commute with the system’s Hamiltonian, [Ĥ, M̂k] = 0
(k = 1, . . . , Ncons). In this limit of strong interactions, one can calcualte the expectation values
of few-body observables after relaxation by describing the relaxed state of the system by a
generalization of the Gibbs ensemble (GGE) [8], see Eq. (1). In the conditions of isolation in
which the experiment occurs, the system is unable to change the value of these charges, which
effectively precludes relaxation to a Gibbs equilibrium state [5,8].

More recently, Schmiedmayer et al. have presented a series of experiments on similar 1D
Bose gases [9–12] (see also [13,14]). By subjecting the system to quenches, they explored the
emergence, at long but intermediate timescales, of a (pre-)thermalised state, which is deter-
mined by the values of the conserved charges at the start of the evolution. These experiments
brought to light the need to include information on the charges in the description of the equi-
librium state of a quantum many-body system, when the system’s Hamiltonian supports them.
These findings are in agreement with very general theoretical principles from quantum ther-
modynamics [8,15,16], that demand that the equilibrium state of such a system be described
by a density matrix of the form of the generalised Gibbs ensemble (GGE), namely

ρGGE = exp

�

−β Ĥ −
∑

k

βkM̂k

�

/ZGGE , (1)

ZGGE ≡ ZGGE(Ĥ,β , {M̂k,βk}) = tr

�

exp

�

−β Ĥ −
∑

k

βkM̂k

��

. (2)

Here, β is the usual inverse temperature, while {βk}(k = 1, . . . , Ncons) are called generalised
inverse temperatures.

The fact that the equilibrium state is of the GGE form has implications for the expectation
values of measurements done on the system in equilibrium, as has been extensively analysed
with numerical simulations on a range of models [8, 17–21]. It is more difficult to make
generic statements on the implications of the charges on non-equilibrium measurements of a
quantum many-body system. A milestone result in classical non-equilibrium thermodynamics
is the discovery of exact relations between equilibrium and non-equilibrium measurements,
starting with the theorems on the large fluctuations of entropy production in fluids under shear
stress [22–24], and including the Jarzynski equation between work and free energy [25].

Several authors have derived analogous relations, dubbed quantum fluctuations relations
(QFRs), for closed quantum systems, assuming their state at the start of the process is of the
standard Gibbs form:

ρGibbs = exp
�

−β Ĥ
�

/Z , Z ≡ Z(Ĥ,β) = tr
�

exp
�

−β Ĥ
��

. (3)

More recently, the present authors have generalised these QFRs to the case that the equilibrium
state is of the GGE form and for an arbitrary number of charges for the initial and final states,
thus notably expanding the rage of non-equilibrium problems that can be tackled [26]. In
particular, our formalism is explicitly able to deal with processes where the number of charges
of the initial and final Hamiltonians differ (cf. [27]), and thus enables one to address funda-
mental open questions on the thermalization of integrable systems when perturbed away from
integrability [5,9,11,28,29].

An important question that remained unanswered in [26] was: how sensitive are the gen-
eralised QFRs to the initial state not being a perfect GGE? In other words: if we have a system
with charges, and can only generate an imperfect equilibrium state that is only approximately
given by Eq. (1), will non-equilibrium measurements be able to distinguish this from a ‘simple’
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Gibbs state (3)? In this contribution, we provide numerical evidence supporting an affirmative
answer to this question.

2 Review of generalized quantum fluctuation relations

We start by briefly reviewing the main results in Ref. [26], in particular the generalised ver-
sions of the quantum Jarzynski [30–32] and Tasaki-Crooks [33] relations. In analogy to the
derivations of the standard QFRs [30–33], we consider an initial equilibrium state. In agree-
ment with Jaynes’ information-theory formulation of statistical mechanics, if the Hamiltonian
features some charges M̂k, this initial equilibrium state will be of the GGE form (1), with the set
of generalised inverse temperatures ~β = {β , {βk}} determined by requiring that the following
equalities on expectation values are satisfied:

tr
�

ρGGE( ~β)Ĥ
�

= E (4)

tr
�

ρGGE( ~β)M̂k

�

= Mk , k = 1, . . . , Ncons . (5)

Here, E is the energy of the initial state, and Mk the expectation value of operator M̂k in the
initial state.

We then submit the system to an out-of-equilibrium process by changing its Hamiltonian
from the initial value Ĥ to some new final Hamiltonian Ĥ ′. In general, we expect the set of
operators that commute with Ĥ ′ to be different from that of charges of Ĥ, and we label the
latter M̂ ′k, [Ĥ ′, M̂ ′k] = 0 (k = 1, . . . , N ′cons).

To quantify the amount of energy, and the energy fluctuations, imparted on the system
by this process, we consider a generalised version of the two-energy-projection measurement
(TPM) protocol [34], as introduced in [26]:

1. At time t = 0, we project the initial state onto the basis of eigenstates of the ini-
tial Hamiltonian,

�

�n, i1, . . . , iNcons

�

, with the spectral decomposition of the Hamiltonian
Ĥ
�

�n, i1, . . . , iNcons

�

= En

�

�n, i1, . . . , iNcons

�

, and that for the charges,
M̂k

�

�n, i1, . . . , iNcons

�

= Mk,ik

�

�n, i1, . . . , iNcons

�

. In other words, n stands for the quantum
number that identifies the energy eigenvalue, En, while ik is the quantum number la-
belling the eigenvalues, Mk,ik , of the charge operator M̂k. We obtain a definite value for
the energy, Eini ∈ {En}, and the other charges, µk,ini ∈ {Mk,ik} (k = 1, . . . , Ncons).

2. Next, we drive the system out of equilibrium by steering its Hamiltonian, Ĥ 7→ Ĥ(t), for
times 0 < t < tfin. We impose no limitation in the form of the time dependence. This
driving defines a unitary time-evolution operator U(t) that is the solution of
iħh∂t U(t) = Ĥ(t)U(t), with U(0) = I, the identity operator in the system’s Hilbert space.

3. Finally, at time t = tfin, we project the system on the eigenbasis of the final Hamil-

tonian, Ĥ ′ = Ĥ(tfin),
�

�

�m′, i′1, . . . , i′N ′cons

¶

, with Ĥ ′
�

�

�m′, i′1, . . . , i′Ncons

¶

= E′m

�

�

�m′, i′1, . . . , i′Ncons

¶

,

and the corresponding charges, M̂ ′k

�

�

�m′, i′1, . . . , i′Ncons

¶

= M ′k,ik

�

�

�m′, i′1, . . . , i′Ncons

¶

. This gives

definite values for the final energy, Efin ∈ {E′m}, and the other charges, µk,fin ∈ {M ′k,ik
}

(k = 1, . . . , N ′cons).

Together with this ‘forward’ (FW) protocol, we consider a twin protocol, that starts at time
t = 0 with the system in the GGE equilibrium state of the Hamiltonian Ĥ ′ and changes it
into Ĥ following the time-reversed evolution, i.e., with the unitary U−1(t). Note that the
initial state of this ‘backward’ (BW) protocol will have associated in general a different set of
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generalised inverse temperatures, ~β ′ = {β ′, {β ′k}}. We define the work, w, and generalised
work, W , done on the system after a single run of these protocols as:

w= Efin − Eini, (6)

W =

�

β ′Efin +
∑

k

β ′kµk,fin

�

−

�

βEini +
∑

k

βkµk,ini

�

. (7)

These are stochastic quantities, as they depend on the result of projective measurements at
the start and end of the process. The Tasaki-Crooks relation [33] is the following relationship
between the probability distribution functions (PDFs) of the variable w in the FW and BW
processes:

PFW(w)
PBW(−w)

e−βw =
Z(Ĥ ′,β ′)

Z(Ĥ ′,β)
≡ exp(−β∆F) , (8)

where ∆F = Z(Ĥ ′,β)/Z(Ĥ,β) is the difference in free energies between the two equilibrium
states, with the partition functions defined as in Eq. (3). By multiplying both sides of (8) by
PBW(−w) and integrating over w one retrieves the quantum Jarzynski equality [30–32]:

〈exp(−βw)〉= exp(−β∆F), (9)

where 〈·〉 stands for an average over many runs of the protocol. Eqs. (8) and (9) hold when
the initial state is of the form of a Gibbs state, Eq. (3).

In Ref. [26] we have shown that when the initial state is of the form of the GGE form,
Eq. (3), the PDF of of generalised work, W , satisfies instead a generalised Tasaki-Crooks rela-
tion that reads:

PFW(W)
PBW(−W)

e−W =
ZGGE(Ĥ ′,β ′, M̂ ′k,β ′k)

ZGGE(Ĥ,β , M̂k,βk)
≡ exp(−∆F) , (10)

with the partition functions in the GGE, ZGGE, defined in (1), and ∆F = F ′ − F the differ-
ence in generalised (dimensionless) free energy functions, F = − ln ZGGE and F ′ = − ln Z ′GGE.
Analogously to above, if we multiply both sides of Eq. (10) by PBW(−W) and integrate over
W , we obtain the following equality:

〈exp(−W)〉= exp(−∆F) . (11)

This is the generalised quantum Jarzynski equality [26].

3 Testing the generalized QFRs with an imperfect GGE

3.1 Dicke model

In Ref. [26] we presented extensive numerical results testing both the standard, Eqs. (8)
and (9), and generalised QFRS, Eqs. (10) and (11). We found that when the initial state
of either one or both initial equilibrium states in the FW and BW processes is not of the Gibbs
form but a GGE, the standard relations fail, while the generalised ones are satisfied perfectly.

Here, we consider a more general question, which is to what extent it is necessary for the
system to be in a perfect GGE equilibrium state for the generalised QFRs to provide a good
prediction for the statistics of generalised work in out-of-equilibrium processes.

To this end, following Ref. [26], we consider a system composed of N two-level systems,
with energy splitting ωat, coupled with equal strength g to a bosonic field of frequency ωb,
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i.e., the N -particle Dicke model [35–37]. We write the Hamiltonian describing this system in
the form [38–41]:

H = ħhωb b̂† b̂+ħhωat Ĵz +
2g
p

N

�

(1−α)
�

Ĵ+ b̂+ Ĵ− b̂†
�

+α
�

Ĵ+ b̂† + Ĵ− b̂
�

�

, (12)

where b̂† and b̂ are the operators creating and annihilating excitations in the bosonic field,
and Ĵs (s = z,+,−) are Schwinger spin operators describing the collective internal state of the
two-level systems, with J = N/2. This model was introduced to describe the coupling of atoms
to light fields [35]. More recently, it has been implemented in systems of trapped ions [41].

In Eq. (12) we have introduced g, the coupling strength between two-level systems and
the boson field, and the parameter 0 ≤ α ≤ 1. When α = 0 or α = 1, the Dicke Hamiltonian
reduces to the Tavis-Cummings model, which is integrable and has an additional conserved
quantity, the total number of excitations in the system, M̂ = Ĵ + Ĵz + b̂† b̂; otherwise, for
0 < α < 1, the model is in the chaotic regime [26, 38–40, 42]. Thus, we can analyse the
behaviour of this system in the integrable and non-integrable limits simply by considering
cases with α ∈ {0,1} and α 6∈ {0,1}, respectively. In Ref. [26] we have discussed how this
tuning can be accomplished in trapped-ion setups by controlling the intensity of the light fields
implementing the red- and blue-sideband transitions with respect to the centre-of-mass mode,
that plays the role of the bosonic field, b̂.

3.2 Numerical results

Our numerical studies testing the standard and generalised QFRS in Ref. [26] were obtained
assuming that the system is initially equilibrated, and hence perfectly described by either a
Gibbs, with inverse temperature β , or a GGE density matrix, with two generalised tempera-
tures, β and βM . A recent work by one of us [42] shows that the usual concept of thermalisa-
tion —the equivalence between microcanonical ensemble and long-time averages of physical
observables— is not always enough to guarantee the applicability of standard quantum fluc-
tuation relations. Here, we show that our generalised QFRs are robust and provide a good
description of non-equilibrium processes starting from real equilibrium states in integrable
systems.

To tackle this question we design the following protocol:

1. We start from a thermal Gibbs state, with β = 0.02, in a chaotic configuration of the
Dicke model, with α= 1/2 and g = ε0, being ε0 the energy scale of the problem.1

2. We perform the forward protocol directly quenching the system onto an integrable con-
figuration, with α = 0 and g = 6ε0, i.e., the time-dependence of the Hamiltonian pa-
rameters reads

α(t) =

�

1/2 t < 0
0 t ≥ 0

, and g(t) =

�

ε0 t < 0
6ε0 t ≥ 0

.

We emphasize that our generalised QFRs do not depend on this specific choice of time
dependence, and we have chosen it for computational convenience. Other variations of
(α, g) with the same initial and final values would render the same results on the left-
and right-hand sides of Eqs. (10) and (11), see [26].

1In our numerical calculations, we set N = 7, ħhωb = 3ε0, ħhωat = 10ε0, and include up to n = 800 in the
bosonic field. As the dimension of the bosonic Hilbert space is actually infinite, this high number has been chosen
to guarantee that all the Fock states with non-zero occupation probability are included in our simulations. In an
experimental implementation of the Dicke model with trapped ions [26, 41, 43], the energy scale can be fixed to
be of the order of the trapping frequency, ε0 = h× 1 MHz (with h Planck’s constant) [41,43–45].
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3. We perform the backward protocol from the resulting state2.

We calculate statistics of work for the forward process —i.e., the PDFs PFW(w) and PFW(W)—
from steps 1-2, and for the backward process from steps 2-3. We compare these statistics of
work with two reference distributions: a GGE with the values β and βM obtained from least-
square fits of the actual time-evolved state after step 2 to the expected values of 〈Ĥ〉 and 〈M̂〉;
and a standard Gibbs ensemble, with β obtained from a least-square fit to the expected value
of 〈Ĥ〉.

It is worth noting that this protocol challenges our QFRs in the most demanding scenario.
When describing the initial equilibrium state by means of a GGE, both the number of conserved
charges and the values of the generalised temperatures are different from the ones in the state
from which the forward protocol starts. In the other case, when a standard Gibbs ensemble is
taken as a reference, the number of charges is the same —just the Hamiltonian itself—, but
the values of the temperatures are different.

Results are summarized in Fig. 1. Panels (a) and (c) show that the equilibrium state after
the forward protocol is pretty well described by means of a GGE with β = 2.76 · 10−3 and
βM = 1.41 · 10−1 (see the caption for more details), and poorly described by means of a stan-
dard Gibbs ensemble with β = 6.02 ·10−3. As the quench ends in an integrable configuration,
the role of the conserved charge M̂ is essential to properly describe the equilibrium state.

Fig. 1(b) and (d) summarize the results testing the Tasaki-Crooks relation and its gener-
alised version. Fig. 1(b) shows that the generalised version, Eq. (10), accounts for the statistics
of the generalised work, W , with high precision. Only two points around W ≈ 1.2 are overes-
timated by the formula. This reinforces the former conclusion stating that the GGE provides
a very accurate picture of the state after the forward part of the protocol. Our results point
out that this is true, not only for expectation values of physical observables in equilibrium, but
also for the statistics of work and other conserved charges in non-equilibrium processes.

In contrast to this, Fig. 1(d) clearly shows that the standard version of the Tasaki-Crooks
relation, Eq. (8), fails to account for the statistics of work. This fact is directly linked to the
results shown in Fig. 1(c): As the occupation probabilities after the forward part of the protocol
are not well described by a standard Gibbs ensemble, the statistics of work resulting from such
a state does not follow the standard Tasaki-Crooks relation.

4 Conclusion

In summary, we have presented generalized versions of the Tasaki-Crooks and Jarzynski quan-
tum fluctuation relations, that are suitable to study the out-of-equilibrium dynamics of systems
with an arbitrary, possibly time-dependent, number of charges [26]. These exact relations as-
sume that the state of the quantum system at the start of the out-of-equilibrium process is
of the form of the generalized Gibbs ensemble, in accordance with very general principles of
quantum statistical mechanics.

In this contribution, we have tested the validity of our generalised QFRs [26] to a more
stringent test by considering a more realistic situation, in which the system is not allowed an
infinite time to relax to its equilibrium state in contact to baths. Our robust numerical cal-
culations support that, when the Hamiltonian describing the system has conserved charges,

2To be sure that we start from an equilibrium state, we must let the system relax in the final Hamiltonian, α= 0
and g = 6ε0, before starting the backward part of the protocol. However, this relaxation time is irrelevant for
our numerical simulation. All our results are based on the two-projective measurement scheme. Hence, if the
actual state of the system at a certain time t is |Ψ(t)〉 =

∑

n Cn(t) |Φn〉, where |Φn〉 are the eigenfunction of the
Hamiltonian, only the square moduli of the coefficents, |Cn|

2, are relevant. Therefore, the dephasing introduced
by the relaxation procedure does not play any role in the results.
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Figure 1: Panels (a) and (c) compare the numerical results for the occupation num-
bers in the state after the forward quench (solid histograms) with the reference
distributions (diamonds). In panel (a), the reference distribution is a GGE with
β = 2.76 · 10−3 and βM = 1.41 · 10−1 (values obtained from a least-square fit to the
values of 〈Ĥ〉 and 〈M̂〉). In panel (c), the reference distribution is a standard Gibbs
with β = 6.02 ·10−3 (value obtained from a least-square fit to the value of 〈Ĥ〉). Pan-
els (b) and (d) show the results for the (generalised version of) the Tasaki-Crooks
theorem. Results for the forward distributions are displayed with solid histograms,
and results for the backwards, together with the factors eW−∆F or eβ(w−∆F), with
diamonds. Panel (b) refers to the GGE case, and panel (d) to the standard Gibbs
ensemble.

the statistics of work produced by a non-equilibrium process that starts from such a realistic
equilibrium state cannot be described by using the standard QFRs (which disregard the ef-
fect of charges). On the contrary, work statistics is accurately described by our generalised
QFRs, Eqs. (10)-(11). This points to the importance of the role of charges in realistic non-
equilibrium processes, such as equilibration in quasi-integrable systems [28], and dissipation
and relaxation in driven systems with conservation laws [46,47]. A case of particular theoret-
ical interest for future exploration arises when the charges supported by the Hamiltonian do
not commute with each other [29, 48–51]. Our results also call attention to the relevance of
charges in the work statistics of realistic cyclic processes where the system is driven to an inter-
mediate state with charges, an issue that may be exploited to design more efficient quantum
engines [52–55].
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