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Abstract

The alpha-alpha bremsstrahlung is studied using the generalization of the Siegert theo-
rem. The corresponding amplitude is written in the gauge invariant form. Special atten-
tion is paid to taking into account the Coulomb interaction. Some correlation function
is found and its dependence on the strong alpha-alpha interaction is discussed.
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1 Theoretical background

Our departure point in describing electromagnetic (EM) interactions with nuclei (in general,
bound systems of charged particles) is to rely upon the Fock-Weyl criterion and the general-
ization of the Siegert theorem (see [1] for details and [2, 3], where this approach is compared
to that by Friar and Fallieros [4,5]).

The properties of gauge invariance for a quantum-mechanical system that interacts with
an EM field can be formulated by considering the Schrédinger equation

ovw

t=— = Heoral {a,}w €))

and the gradient displacement
Ax,t) —>A;1(x, t)=A,(x,t)+3,G(x,t) 2)

of the EM potential A¥(x,t) = (A°(x, t),A(x, t)) at the space-time point x = (x,t) with an
arbitrary function G(x). The theory is gauge invariant if there exists a unitary transformation
¥ — ¥ = UV after Fock such that Eq. (1) remains unchanged in its form viz.,

o’

,  dU .
lW :Htotal{A‘/u}\If/ — Hiptal {A;,L}:UHtotal{Au}U('i'lEU]- 3)
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In the first order in charge e it gives the continuity equation (CE) for the current operator
JH(x) = (p(x),J(x)):

wdiv J(x) = [H, p(x)] = [P,J(0)] = [H, p(0)], 4

where H is the nuclear part of H,,,4 {Au} and we take into account the property of transla-
tional invariance
exp(—1P-a)J(x)exp(iP-a) =J(x+a), (5)

with arbitrary displacement a, P is the total momentum operator for the nucleus (bound sys-
tem).

According to refs. [2,3], the amplitude of the reaction A+ B — A’ + B’ + y for the photon
emission with energy E,, momentum k, and polarization &" = (% ¢)

T, = [22m)°E, |2 (P —k,; f |0, (0)| Pys ) )

can be expressed through electric E(k,) and magnetic H(k, ) field strengths

E(k,) = i [22m)°E, |2 (B e(k,) L, 0(k,)), H(k)=i[202n)7E, |k, x e(k,), (7)

and matrix elements D;¢(k,) and M;¢(k,) of the so-called generalized electric and magnetic
dipole moments of nucleus (bound system)

Tip = E(k,)Dyy (k) + H(k, )My (K, ). (8)

These formulae were derived without separation of the center-of-mass (CM) motion, and
thus they can be used in relativistic nuclear models (see, e.g., [6]).

2 Nonrelativistic consideration

We will confine ourselves to nonrelativistic approach in which the nuclear Hamiltonian

p2
H= m"‘Hmt =Kcym +Hiny 9)
is divided into the kinetic energy operator K., of the center-of-mass (CM) motion, where M
is the total mass of nuclear system and the intrinsic Hamiltonian H;,;, depends on internal
variables of interacting nucleons. For a nonrelativistic system the amplitude (8) is given by
(details in [3]):

Tif = <f|Tint|i>3 Tint = E(ky)D(ky) + H(ky)M(ky), (10)
1 1
D(k,) = %f (P, — Ak, |R[H, p(0)][P;)dA, M(ky):—f (P, — Ak, | R x J(0) [P;) AdA.
0 0

In this context let us recall that the H eigenstates can be factorized as |P;;i) = |P;)|i)

|P; —k,; f) = [P;—k,)|f),where the bracket |) is used to represent a vector in the space of the
CM coordinate R so P|P) = P|P) and |) a vector in the internal space, so H;,,, |i(f)) = E:Fft) li(f)).
Further, with help of the relation [H,R] = —iP/M we find

1

k,-(2P,— 2
(27‘5)3D(k)f)= Eifdl{ [Dint (AkY)’Hi”f]—i_l%

P. — Ak
Djn¢ (Aky)“—l v; L Dint (2k,) },
"9
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Pine(Ak,) = (2m)* (P, — Ak, | p(0) |P),

D10 (A1) = —(27)° (B — 2k, | Rp(0)P) = £V piae (2K,

For the one-body charge-density operator:
[1](X) = Zpa(x): Pa(x) = Pp(X— ra)rcp(a) + pu(x—1,)7,(a), (11)
a

we get the Fourier transforms for

1 8
the charge density pj,(k,) = f defiCh(q) exp (—iq(r; — R))lquk{

0 i=1
1

8

the electric dipole moment D;,(k,) = ivqf d?LZ fiCh(q) exp (—iq(r; — R))quxky
0 i=1

the magnetic moment M;,,(k,) = M‘"b(ky) + prln(k )+ Mmt(k),)

int int

where f OILV (q) is the nucleon form factor (FF).

3 Model calculations in a simple cluster picture

Now, we will consider the following reaction a + a — a+ a +y with the internal Hamiltonian

: : P, —P,)?
im:H;’“+H§"‘+—( 116m2) +V, (12)

H

where Py, P, - the total momentum operators, m - nucleon mass and Hy’ ”“ the exact "micro-
scopic" Hamiltonians

p? 2
12 P; .
HiY =Hy—o= Hip= D, oo+ >, V(LK) (13)

i€ay i<k i,k€a,

of the colliding alpha particles and the interaction V between them, V =) . apkea, V(1K)

An essential simplification of subsequent calculations is achieved via 1) replacing the exact
interaction V in Hy,, by an effective one V,f¢(a;, a;) which depends on the cluster-cluster
relative coordinate r = R; —R,, where R , the corresponding CM coordinates and 2) assuming
that the H;,, eigenvectors are approximated schematically to

|l) = q)alq)azx(+): |f> = <I>a’1q>a’zx(_) >

. . + . .
with the "distorted" waves XIE ) that describe the cluster-cluster scattering

'S +
|:2‘U, eff(abaz)i| |X > rellx ) relll( )>' (14)
Moreover, we will deal with the *He g.s.: Py, =g, =Py, =Py = P4

Here we will confine ourselves only to the first term in Eq.(8). Doing so we have in the
Coulomb gauge

Ty = \/ﬁ e(k,)-m(k,),
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with

' P / /
m(kY):E),J0 [V +2maEY]FCH(q)(I(k k;q) + I(K', k; q))d?t (16)

where Fy(q) is the charge FF of the alpha particle [7] and I(K’,k; q) is the overlap integral
1K,k @) = (7 le 2% P) = J dry (e 2y () (17)

with the stretched photon momentum q = Ak, ..

4 The initial and final state interactions included

In many cases typical of the nuclear physics the distorted waves in Eq.(14) should be evalu-
ated nonperturbatively. Therefore, we prefer to go on addressing the so-called two-potential
problem ( see, e.g., [8]). First, we separate out the point-like Coulomb interaction

V=Ve+(V=V)=Vo+ Vs, Vo=4e?/r, (18)

that allow us to use the following decomposition of the total resolvent
G(z)=(z—H)™", G(z)=Gc()+Gc(2)VesG(2) (19)
with the Coulomb resolvent G.(z) = (z—H¢) ™!, Hc = Hy + V. Such a decomposition gives
27) =i lim eG(Exie)lk) = [7.7) = WpE) + Ge(B = i0)Ves |z ), (20)

with the Coulomb scattering wave function |1/)(Ci11). Further, for the repulsive Coulomb poten-
tial we employ

B £ i0) S dp(W ) ey = D) + POV on
cBE0)= | g, A W= vadr E +i0—E,
which leads to

+ + +

) = W) + GelEi £ 10)Vesl ) (22)

In its turn, overlap integral (17) splits into two parts (cf. decomposition Eq. (1) in [10])
1K,k q) = (1 le 2%y (D) = Ig +Ies, Ies =11, (23)
with the Nordsieck-type integral related to purely Coulomb contribution

Ie(K K q) = (9 le 28 yp D)) (24)

and mixed Coulomb-strong interaction integral

Ies(K,k;q) = (ck/|VCSGC(Ek+lo)e_lzqux(+)> <ck/|€ quGc(Ek+lO)Vcs|X )+ 25)

(1! Xew VesGe (B +i0)e 29 G (Ey + lO)VchC ).
Analytical expression for the integral I can be found in [11] (see Eq. (10) therein). Calcula-

tions of the three dimenslional integral I¢ are reduced to the summation of its partial wave
expansions with radial integrals

oo

1
ICS(Z/? l,L)Zf der(Eqr)[glqwk/l/(r)wkl(r)+Wk/l/(r)wkl(r)—Fl/(k/r)Fl(kr)] , (26)
0
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with wy;(r) = (kr)yy,(r) and quantities gy = 2(sp — 1)(s; — 1) + 3(sp — 1) + 3(s; — 1)
being expressed in terms of the S-matrix elements in the angular momentum representation
s; = €291 where §,(k) are phase shifts for given values of the collision energy and angular
momentum /.

The convergence of the I-¢ partial expansion provided owing to that quantities g;.; vanish
at large [ and [/, since |s; — 1| — 0 and wave function wy;(r) coincides with the Coulomb
function F;(kr) at large . At intermediate energies (E ~ 10MeV) one can confine ourselves
to l! = ln.e = 6. In order to evaluate radial integrals (26) it is convenient to employ the

max
the contour integration method [12] (see also its comparison to other ones in [13]).

5 Results and discussion

One of motivations in studying the a +a — a+a+7 bremsstrahlung is to get a supplementary
information on a strong part of the alpha-alpha interaction. In the context, we will consider
some correlation function do = d°c/ dE,dQ,;dQ;¢, in which one of the outgoing alphas is
detected in coincidence with the emitted photon

o (2m)E2M;
ki \/(kli cos (6y; — 015) — E, cos 0)2 —4M,E,

(92T, (SR + K2 T, ()],

(27)
where ki; = 4/2M,E; momentum of the initial a-particle, E, energy of the emitted photon,
M, the a-particle mass. One of the outgoing alphas has the momentum fixed by the total
momentum conservation kyr = ky; —Kk; ¢ —k,.. The other one with momentum k; is detected
in coincidence with the emitted photon and its kinematically permissible values are given by
kgjf). All momenta have a coplanar disposal, where the photon with its momentum is directed

along the Z-axis and the rest momenta lie in the XZ-plane, viz., Rl =(6,;,0), k; 5 =615, 7). As

|I 20 MeV ]I 40 MeV

do (nb/ MeV sr’)

o 45 %0 85 5 10 18
6, (degrees)

Figure 1: Bremsstrahlung cross section for different values of incident energies E;
and for photon energy E, =1 MeV: calculated for potential by Buck et al. [14] (solid
curve) and potential by Ali Bodmer [15] (dotted). The pure Coulomb contribution
is shown by the dashed curves.

seen in Fig.1, when increasing the incident energy the cross-section becomes more sensitive to
the choice the model a —a interaction. By relying upon this observation it would be desirable
to measure such cross sections at medium a— a collision energies feasible with many available
accelerators. It would allow to make up a scarce information on the interaction between alpha
particles at short distances.
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