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Abstract

We review our recent work [1] where we studied the chaotic property of the two coupled
Sachdev-Ye-Kitaev systems exhibiting a Hawking-Page like phase transition. By comput-
ing the out-of-time-ordered correlator in the large N limit by using the bilocal field for-
malism, we found that the chaos exponent of this model shows a discontinuous fall-off
at the phase transition temperature. Hence in this model the Hawking-Page like transi-
tion is correlated with a transition in chaoticity, as expected from the relation between
a black hole geometry and the chaotic behavior in the dual field theory.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [2–4], a 1d system of N Majorana fermions with all-to-all
disordered interaction, is attracting attention for the following features. First, this model is
considered to be dual to AdS2 black hole geometry since they shares common descriptions at
low energy (near the AdS boundary) [5]. The second interesting feature of the SYK model is
that it is a highly tractable model with strongly chaotic dynamics.

Among the others there are the following two ways to characterize the chaoticity of a
quantum system. One way is to use the fluctuation property of the energy levels: a quantum
chaotic system shows the same level correlations as that of the random matrix ensemble which
reflects the time reversal property of the system Hamiltonian [6], while for a non-chaotic
system the level fluctuations are not correlated to each other [7]. Another way is to use the
out-of-time-ordered correlator (OTOC) [8]: for a quantum chaotic system the following four
point function shows an exponential growth at late time for a generic choice of two operators
bV ,cW [9]:

Tr
�

bV
�3β

4
+ i t

�

cW
�β

2

�

bV
�β

4
+ i t

�

cW (0)e−βÒH
�

∼ 1−
1
L

eλL t , (1)
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(L: system size) where β is the inverse temperature, which is a quantum analog of the initial
value sensitivity ∆x(t)/∆x(0) ∼ eλ

(cl)
L t in a classical chaotic system. In the SYK model the

regularized OTOC (1) can be analyzed in the large N limit [10]. In particular, in the strong
coupling or the low temperature limit one can show analytically that the chaos exponent λL
saturates the bound [9]

λL ≤
2π
β

. (2)

One can also study the level statistics by the numerical exact diagonalization of the Hamil-
tonian for each disorder realization, which indeed was found to coincides with that of the
random matrix ensemble GUE/GOE/GSE depending on N mod 8 [11–13].

On the other hand some quantum chaotic property can be derived holographically from
the black hole geometry. For example the OTOC can be computed holographically as a scat-
tering process near the horizon of the black hole [14]. This also supports the proposed duality
between the SYK model and the AdS2 black hole.

As the black hole geometry explains the dual field theory to be strongly chaotic, if we con-
sider a model which exhibits a phase transition between a phase dual to black hole geometry
and another phase which is not, it is expected that the chaotic property of the system also
changes drastically at the phase transition [15]. This phase transition is known in the gravity
side as the Hawking-Page transition [16] and was also realized in the field theory side in such
as the four dimensional N = 4 Yang-Mills theory [17]. Our aim is to realize the Hawking-Page
like transition in a deformation of the SYK model, study its quantum chaotic property in detail
and confirm whether the phase transition is accompanied with a transition in the chaoticity as
expected.

Such model was already proposed in [18]. They considered the one dimensional quantum
mechanical system with the following Hamiltonian

H = HSYK(Ji jk`,ψ
L
i ) +HSYK(Ji jk`,ψ

R
i ) + iµ

N
2
∑

i=1

ψL
i ψ

R
i , (3)

where HSYK is the SYK Hamiltonian

HSYK(Ji jk`,ψi) =
N
∑

i< j<k<`

Ji jk`ψiψ jψkψ`, (4)

ψL
i and ψR

i are Majorana Fermions {ψa
i ,ψb

j } = δabδi j and Ji jk` are
�N

4

�

independent random
variables obeying the following Gaussian distribution:

P(Ji jk`) =

√

√ N3

12πJ 2
· exp

�

−
N3

24J 2
J2

i jk`

�

, (no sum) (5)

with J = 1. Note that we have chosen the random couplings for L system and those for the
R system perfectly correlated J L

i jk` = JR
i jk` = Ji jk`. From the analysis in the large N limit the

following features were found. At low temperature the system is gapped due to the LR inter-
action term, and the system does not show the large O(N) entropy. This region corresponds to
the global AdS2 spacetime where the two boundaries corresponds to the L/R SYK system. As
the temperature is increased a new solution starts to exist which has the entropy of O(N) and
corresponds to the two sided AdS2 black hole. In the canonical ensemble the system shows
a phase transition between the two solutions. It was also found that when the LR coupling
is larger than some critical value µc the two phases are smoothly connected and there are no
phase transition.
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In [19]we studied the chaotic property of this model by using the level statistics. We found
that the adjacent gap ratio [20] reproduces the value for the random matrix ensemble (GOE
for this model) rGOE for the bulk of the spectrum, while it takes substantially small value close
to the edge of the spectrum. We also found that for µ ¦ µc the adjacent gap ratio coincides
with rGOE for all region of the spectrum.

The observations in [19] suggests that the chaoticity of the two coupled model (3) depends
on the energy scale and the transition may be correlated with the Hawking-Page like phase
transition. However, since the analysis of the level statistics was restricted to finite N , it was
not clear whether it was reasonable to compare our result with the large N phase transition.
To avoid this subtlety, in [1] we adopted the OTOC to characterize the quantum chaos which
we can analyze directly in the large N limit. As a result we found that the chaos exponent
varies discontinuously at the phase transition temperature from the high temperature value
λL ∼O(2π/β) to the low temperature value which is exponentially small with respect to the
temperature.

This review is organized as follows. In section 2 we review the bilocal field (GΣ) formalism
for the two coupled model in the large N limit, where we also display the phase diagram which
was obtained through this formalism. In section 3 we review the analytic continuation of the
GΣ formalism to the Lorentzian real time, briefly review the computation of the OTOC and
display the results of the chaos exponent. In section 4 we summarize.

2 Bilocal field (GΣ) formalism and phase diagram

In this review we define the expectation value of an operator O[ψa
i ] for the disordered sys-

tem (3) as the disorder average of unnormalized vev divided by the disorder average of the
partition function (annealed averaging) instead of the disorder average of the normalized vev
(quenched averaging). For the quantities we consider in this review (the two point functions
and the four point functions), one can show that the two results coincide in the large N limit
up to O(N−2). In this rule, the free energy at temperature T = β−1 is given as

F(β) = −
1
β

log〈Z(β)〉Jα , (6)

where Z(β) is the thermal partition function

Z(β) =

∫

∏

a,i

Dψa
i (τ)e

−
∫ β

0 dτ(
∑

i,aψ
a
i ∂τψ

a
i +H), (7)

and 〈· · · 〉Jα is the disorder average

〈· · · 〉Jα =
∫

∏

i< j<k<`

dJi jk`P(Ji jk`)(· · · ), (8)

with P(Ji jk`) and H defined in (5) and (3).
The averaged partition function 〈Z(β)〉Jα can be rewritten by using the bilocal field

Gab(τ1,τ2) = (1/N)
∑N

i=1ψ
a
i (τ1)ψb

i (τ2) as [1,18]

〈Z(β)〉Jα =
∫

∏

a,b

DGab(τ1,τ2)DΣab(τ1,τ2)e
−NSeff[Gab ,Σab], (9)
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with

Seff[Gab,Σab]

= −
1
4

log det

�

−δ(τ−τ′)∂τ′ +
ΣLL(τ,τ′)−ΣLL(τ′,τ)

2
ΣLR(τ,τ′)−ΣRL(τ′,τ)

2 − iµδ(τ−τ′)
ΣRL(τ,τ′)−ΣLR(τ′,τ)

2 + iµδ(τ−τ′) −δ(τ−τ′)∂τ′ +
ΣRR(τ,τ′)−ΣRR(τ′,τ)

2

�

+
∑

a,b

1
4

∫

dτdτ′
�

Σab(τ,τ′)Gab(τ,τ′)−
J 2

2
Gab(τ,τ′)4

�

. (10)

HereΣab(τ1,τ2) are auxiliary fields introduced to treat Gab(τ1,τ2) as independent integration
variables from ψa

i (τ).
The overall factor N in the exponent (9) implies that in the large N limit the averaged

partition function can be evaluated by the saddle point approximation

〈Z(β)〉Jα ≈
∑

saddles

e−NSeff[G
(saddle)
ab ,Σ(saddle)

ab ], (11)

where G(saddle)
ab ,Σ(saddle)

ab are the solutions to the equations of motion
δSeff/δGab = δSeff/δΣab = 0, or explicltly [1]

∂τ1
Gab(τ1,τ2)−

∑

c

�

−iµεacGcb(τ1,τ2) +

∫ β

0

dτ3Σab(τ1,τ3)Gcb(τ3,τ2)
�

= δabδ(τ1 −τ2),

Σab(τ1,τ2) = 2J 2Gab(τ1,τ2)
3. (12)

Solving the equations of motion (12) numerically, we obtain two different solutions; one
exists for T > Tc,BH and the other exists for T < Tc,WH, with some µ-dependent temperatures
Tc,BH,Tc,WH (Tc,BH < Tc,WH) [18]. In figure 1 (left) we have displayed Seff evaluate at each
solution. The high temperature solution corresponds to the two sided AdS2 black hole. It
gives the entropy −∂T (Seff/β) of O(N), and the free energy Seff/β asymptotically approaches
that of the two uncoupled SYK systems in the high temperature limit since the LR coupling
is irrelevant at high energy. In the low temperature solution the free energy respects the fact
that the system is gapped, that is, it is almost constant given by the ground state energy with
the contributions of the excited states which are exponentially suppressed in β . In this regime
the τ-dependence of the two point funcitons are also dominated by the first excited states
with discrete energy levels. In particular, the real time two point functions oscillate rapidly
compared with the timescale of the decay [21, 22]. This is in contrast to the monotonically
decaying behavior in the high temperature phase and reflects the traversable feature of the
dual geometry which is global AdS2. For Tc,BH < T < Tc,WH both of the two solutions exist and
the values of Seff intersect at some Tc , where the system exhibits a first order phase transition.
The coexisting region Tc,BH < T < Tc,WH becomes narrower as µ increases, and it disappears at
µ= µc ≈ 0.177 (figure 1 (right)). For µ > µc there is only one solution which is continuously
connected to both of the black hole solution and the wormhole solution, and there are no
phase transition.

3 Out-of-time ordered correlator and chaos exponent

We consider the following OTOC

1
N2

N
∑

i, j=1

〈ψa
i (u1)ψ

b
i (u2)ψ

c
j(u3)ψ

d
j (u4)〉, (13)
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Figure 1: Left: Seff evaluated with the two solutions of the equations of motion (12)
compared with the value for the two uncoupled SYK systems (dashed black line);
Right: The temperatures Tc,WH,Tc,BH at which one of the two solutions disappears
and the critical temperature Tc .

with u1 = 3β/4+ i t1, u2 = β/4+ i t2, u3 = β/2, u4 = 0. Here 〈·〉 is defined by taking both
the thermal average and the disorder average 〈O〉 = 〈TrT Oe−βH/Z(β)〉Jα . By approximating
the quenched disorder average by the annealed disorder average as
〈O〉 ≈ 〈Z(β)TrT Oe−βH〉Jα/〈Z(β)〉Jα , the OTOC (13) can be written in the GΣ formalism as

1
〈Z(β)〉Jα

∫

�

∏

a,b

DGabDΣab

�

Gab(u1, u2)Gcd(u3, u4)e
−NSeff[Gab ,Σab]. (14)

If u1, u2, u3, u4 were real numbers, the OTOC (13) could be evaluated in the large N limit by
expanding Gab,Σab around the dominant saddle, as [1]

1
N2

N
∑

i, j=1

〈ψa
i (τ1)ψ

b
i (τ2)ψ

c
j(τ3)ψ

d
j (τ4)〉

= G(0)ab (τ1,τ2)G
(0)
cd (τ3,τ4) +

1
N
Fabcd(τ1,τ2,τ3,τ4) +O(N−2), (15)

with

Fabcd(τ1,τ2,τ3,τ4)

= F0,abcd(τ1,τ2,τ3,τ4) +
∑

e, f

∫ β

0

dτdτ′Kabe f (τ1,τ2,τ,τ′)Fe f cd(τ,τ′,τ3,τ4),

F0,abcd(τ1,τ2,τ3,τ4) = −G(0)ac (τ1,τ3)G
(0)
bd (τ2,τ4) + G(0)ad (τ1,τ4)G

(0)
bc (τ2,τ3),

Kabcd(τ1,τ2,τ3,τ4) = −6J 2G(0)ac (τ1,τ3)G
(0)
bd (τ2,τ4)G

(0)
cd (τ3,τ4)

2. (16)

The actual OTOC (13) can be obtained by analytically continuing these results. In the
path integral formalism of a quantum mechanical problem, the time evolution of an inserted
operator in the operator formalism 〈ψ| · · · eiÒHt

ÒOe−iÒHt · · · |ψ〉 results in a non-single valued
configuration of the path integral fields (see figure 2 (left)). This effect can be taken care of
by introducing two different components >,< of the bilocal fields

G>ab(t1, t2) = −i lim
ε→+0

Gab(ε+ i t1,−ε+ i t2),

G<ab(t1, t2) = −i lim
ε→+0

Gab(−ε+ i t1,ε+ i t2), (17)
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t

γ

e−iĤt

eiĤtÔe−iĤt =

∫
Dφ(t′)O(t)ei

∫
γ
dt′L(φ,φ̇)

eiĤt

u1 u2

u3 u4

β

u, u′

Figure 2: Left: Path integral contour corresponding to the real time evolution of
an operator for a generic quantum mechanical problem. The configuration of φ(t)
on the blue line and that on the red line are regarded as independent path integral
variables. Right: The integration contour C for the real time continuation of the
ladder equation (16).

and the equations of motion (12) are continued as [1]
�

eGR
LL(ω) eGR

LR(ω)
eGR

RL(ω) eGR
RR(ω)

�

=
1

(ω− eΣR
LL(ω))(ω− eΣ

R
RR(ω))− (eΣ

R
LR(ω) + iµ)(eΣR

RL(ω)− iµ)

×
�

ω− eΣR
RR(ω) eΣR

LR(ω) + iµ
eΣR

RL(ω)− iµ ω− eΣR
LL(ω)

�

,

GR
ab(t) =

∫ ∞

−∞

dω
2π

e−iωt
eGR

ab(ω), Σ>ab(t) = −
J 2

4
G>ab(t)

3, Σ<ab(t) = −
J 2

4
G<ab(t)

3, (18)

where

GR
ab(t) = θ (t)(G

>
ab(t)− G<ab(t)). (19)

Note that in (18) and (19) we have assumed that the configurations of the bilocal
fields Gab(u1, u2),Σab(u1, u2) depends on u1, u2 only through the difference
Gab(u1, u2) = Gab(u1 − u2),Σab(u1, u2) = Σab(u1 − u2). The equations of motion (18) gives a
closed system together with the relation between > component and the retarded component
(19), and the following KMS condition with temperature T = β−1:

Gab(u) = i

∫ ∞

−∞

dω
2π

e−ωu
eGR

ab(ω)− (eG
R
ab(ω))

∗

1+ e−βω
. (u= τ+ i t, 0< τ < β) . (20)

The ladder equation for real time OTOC is obtained from (16) by replacing G(0)ab with the

solution of the real time equations of motion (18)-(20) and the integration contour
∫ β

0 dτdτ′

according to the rule depicted in figure 2 (left), which result in
∫

C dudu′ with the contour C
depicted in figure 2 (right). If we further assume that Fabcd(u1, u2, u3, u4) grows exponentially
as Fabcd(u1, u2, u3, u4)≈ eλL(t1+t2)/2 fabcd(t12) and keep only the contributions relevant to this
late time growth, we end up with

fabcd(t12)≈ −6J 2
∑

e, f

∫ ∞

−∞
d te−

λL (t12−t)
2

�

∫ ∞

−∞
d t ′G(0)Rae (t12 − t − t ′)G(0)Rb f (−t ′)eλL t ′

�

G(0)e f

�β

2
+ i t

�

fe f cd(t). (21)
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Figure 3: Chaos exponent compared with the value for pure SYK (dashed black line).
The vertical dashed red line is T = Tc(µ= 0.07)≈ 0.024.

The real time ladder eqaution (21) has a non-trivial solution fabcd(t) only if λL is not larger
than the actual value of the chaos exponent (1). Hence we can obtain the chaos exponent by
varying λL and finding the value where the largest eigenvalue of the ladder operation in the
right-hand side of (21) crosses 1. This procedure can be performed numerically and we obtain
the chaos exponent as figure 3.

4 Conclusion

In this article we have briefly reviewed [1] where we have computed the chaos exponent
of the model (3) consisting of two SYK systems coupled by a uniform quadratic interaction.
This two coupled model exhibits a Hawking-Page like phase transition in the large N limit for
µ < µc ≈ 0.177 [18], as displayed in figure 1. In [1] we computed the chaos exponent of this
model in the large N limit in the whole parameter regime including the region close to the
phase transition point. As a result we found that as the temperature is decreased the chaos
exponent varies discontinuously at the phase transition point T = Tc from the value of order
the chaos bound 2π/β to an extremely small value, as displayed in figure 3. This result is
in agreement with our expectation that the Hawking-Page like transition would be correlated
with a transition in the chaoticity [15,19].

In the large N limit both the free energy and the out-of-time-ordered correlators are deter-
mined by the bilocal fields Gab(u1, u2) satisfying the equations of motion (12) and (18)-(20).
Although the Euclidean equations of motion (12) and its real time continuation (18)-(20) are
slightly different, the solutions are always in one-to-one correspondence (20). Therefore, at
Tc , where the Euclidean solution giving dominant contribution to the free energy changes from
the black hole solution to the wormhole solution, the real time solution also switches, hence
the chaos exponent changes discontinuously from the value for the black hole solution to the
value for the wormhole solution. From this viewpoint the correlation between the Hawking-
Page like phase transition and the transition in the chaoticity for an SYK-like model would
be trivial. Nevertheless, it was still non-trivial how the chaos exponent for the two solutions
behaves.

Another interesting point in our result is that the chaos exponent is small but non-zero
even in the wormhole phase; the system is weakly chaotic even in the wormhole phase. This
is surprising but consistent with the fact that the two point function decays exponentially even
in the wormhole phase [21], which is another criterion for the quantum chaos. Note that

006.7

https://scipost.org
https://scipost.org/SciPostPhysProc.4.006


SciPost Phys. Proc. 4, 006 (2021)

this is not a generic feature of the systems exhibiting the Hawking-Page like phase transition.
For example in the four dimensional N = 4 Yang-Mills theory on S3 in the weak coupling
limit [17], a two point function does not show an exponential decay in the low temperature
confined phase [23, 24]. It would be interesting to clarify what the origin for this difference
is.
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