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1 Motivation for my analyzing Hawking flux

We will start with a 4D spacetime, then impose some falloff condition to its spatially infinite
region1, which means the spacetime asymptotes to the flat spacetime according to that. Then,
we will consider the diffeomorphism at its spatially infinite region in the range of the falloff
condition (at this time, gauge conditions to eliminate local diffeomorphism ambiguities are
also preserved). Transformation of the spacetime by this diffeomorphism is called asymptotic
(or BMS) symmetry [3,4]. I list several facts known for this.

• Diffeomorphism of the asymptotic symmetry is an infinite dimensional group, which
contains the Poincarè group as its subgroup.

• There are so-called supertranslation and superrotation in the asymptotic symmetry, which
respectively contains the global translation and Lorentz transformation.

• Diffeomorphism of the asymptotic symmetry maps a configuration of an asymptotically
flat spacetime as a solution to an other physically different asymptotically flat spacetime
as a solution in the range of the falloff condition.

• Asymptotically flat spacetime is infinitely degenerated in the range of asymptotic sym-
metry, and the symmetry of theory at that asymptotic region is not Poincarè symmetry
but the one associated with supertranslation and superrotation.

• Infinite number of conserved charges for supertranslation and superrotation can be de-
fined respectively. These can respectively generate these diffeomorphism, however these
are given by 2 parts: so-called hard- and soft-parts, which will become creation and an-
nihilation operators for soft-gravitons at quantum level. For this, the quantum state
for the infinite far region of the asymptotically flat spacetime becomes another one of
asymptotically flat spacetime when these charges act on these, and soft-gravitons can
be considered as a kind of Goldstone boson. In this sense, the asymptotic symmetry is
some kinds of spontaneously broken symmetry [5].

• Supertranslated spacetimes are normal [6], therefore considering asymptotic symmetry
is meaningful realistically.

1Talk slide is in the homepage [1].
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In [2], I obtain the Schwarzschild black hole spacetime with supertranslation correction to
the second-order, which I sketch as

ds2 = −(1− 2m/r + · · ·+O(ε3)) d t2
s + ((1− 2m/r)−1 + · · ·+O(ε3)) dr2

s

+(r2 + · · ·+O(ε3)) dθ2
s + (r

2 sin2 θ + · · ·+O(ε3)) dφ2
s

+2((· · · )ε + · · ·+O(ε3)) drsdθs, (1)

where ε mean the order of supertranslation correction and the full expressions of metrices are
given j(2)µν in (45a)-(49b). We can obtain the position of the horizon from this as

rh,4D = 2m−
15m sin2(2θ )

8π
ε2 +O(ε3). (2)

The correction of supertranslation enters from the second-order, which is the motivation for
our analysis to the second-order. Here, as this is not constant, there may be a concern for the
zeroth law of the black hole thermodynamics. It is no problem since the Hawking temperature
is constant in the range of our analysis’s order, ε2, as shown below.

As for the problem with Birkhoff’s theorem, considering the point that the information is
encoded in the asymptotic region, it is inferred that the deformed near-horizon geometry is
meta-stable and will get settled down to just a Schwarzschild finally, while that in the asymp-
totic region is the stable.

Since the position of the horizon is displaced for supertranslation correction, it is interest-
ing to check how the Hawking temperature is. Its result is

TH = 1/8πm+O(ε3), (3)

which is no difference from just the Schwarzschild (reason is written in Sec.B.2).
Since Hawking temperature can be calculated from Hawking flux, if the Hawking temper-

ature were preserved the Hawking flux would be expected to be preserved. However I have
considered a possibility that supertranslation corrections may be involved in the Hawking flux
but would be canceled out in the Hawking temperature. This is one of my motivations for my
computing the Hawking flux in [2].

There is another motivation, which is that as a result of involving the supertranslation cor-
rections as in (1), it becomes obscure whether field theories can reduce to free 2D or not in the
near-horizon. Originally it should be so for the strongly gravitational force at the horizon, and
if not, it would be physically abnormal. Although it can be shown in Sec.B.5 that the scalar
theory can reduce to free 2D, whether it is possible or not is unclear before trying (I comment
on the key for the feasibility of this in the last of Sec.B.5).

There would be many works analyzing the Hawking radiation in some supertranslated
situations. In these, as the works relating with this study, I take [7–10] in the range I know.
From the research situation mentioned in the following, the analysis in this study would be
worthwhile.

In [7], considering Vaidya spacetime with linear order supertranslation correction, it is
shown that Hawking radiation depends on supertranslation correction if the mass depends on
the advanced time v. Conversely, if the mass is a constant, M ′ = 0, there is no correction
in Hawking radiation. This is consistent with the result in this study, however my analysis is
performed to second-order.

Result in [8] is that Hawking radiation in the asymptotically flat spacetime given by Bondi
coordinates does not get corrected, however the position of the horizon in their analysis is
assumed to be 2GM . The analysis in this study is performed taking the correction to the
position of the horizon into account.
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[9] performs linear order analysis regarding general diffeomorphisms including super-
translation expressed by F (see (7)), then it is concluded the proportional coefficient in the
relation between the surface gravity and Hawking temperature, 1/2π in TH = κ/2π, gets some
correction (see 2 points: “However, macroscopic · · · transformation.” in P.2 and “as expected
· · · and Hawking [68].” in P.9, and (54)). This is against to the conservative results in [7], [8]
and this study.

In [10], a Hawking radiation in a 4D supertranslated Schwarzschild black hole is analyzed
by some expansion around large mass, and its result depends on the angular. This interferes
with the zeroth law of the black hole thermodynamics, and does not agree to [7–9] and this
study. However, remember it is the laws for the stable solutions and the shape of the asymp-
totic region is the key in the information paradox. Then, the interference with the black hole
thermodynamics would not be any problems if the deformation of the near-horizon geometry
is meta-stable, while that in the asymptotic region is stable (as mentioned between (2) and
(3)). As for the disagreement of results, we could not say anything immediately, since the kind
of the expansion is different and cannot compare.

2 What’s supertranslation and its NG boson fields

We start with an expression of general 4D spacetime by the Bondi coordinates (u, r,ΘA) (u= t−r
and ΘA are the spherical coordinates (z, z̄) on the S2) as

ds2 = −Udu2 − e2βdudr + gAB(dΘ
A+

1
2

UAdu)(dΘB +
1
2

UBdu), (4)

where the Bondi gauge is imposed to fix the local diffeomorphisms, which is gr r = 0, grA = 0
and ∂r det(gAB/r

2) = 0. Then, supposing that the spacetime will asymptote to the flat space-
time, let us consider to describe the neighborhood of T +. At this time we need to impose a
falloff condition to the metrices, however there is no systematic ways to determine the falloff
condition, and various falloff conditions can be considered. Typically, it is chosen so that phys-
ical solutions can exist and unphysical solutions do not exist.

As an expansion of (4) to r−1, the following one is conventionally adopted [3,4]:

ds2 =− du2 − 2dudr + 2r2γzz̄dzdz̄

+ 2mB/r du2 + rCzzdz2 + rCz̄z̄dz̄2 + DzCzzdudz

+
1
r
(
4
3
(Nz + u∂zmB)−

1
4
(CzzCzz))dudz + c.c.+O(r−2) , (5)

where Dz is the covariant derivative with respect to γz̄z . It is usual that the structure to r−1 is
important. Czz , Cz̄z̄ , mB and Nz are functions of (u, z, z̄) but not of r, and

• mB is the Bondi mass aspect.
∫

S2 dzdz̄mB gives the Bondi mass, which can be ADM mass
in the cases of black hole spacetimes.

• Nz is the angular momentum aspect.
∫

S2 dzdz̄NzV z gives the total angular momentum,
which is ADM angular momentum in the black hole spacetimes.

• Czz and Cz̄z̄ play the role of potential for gravitational wave (akin to vector potential for
electromagnetic field), and Nzz is the Bondi news given as ∂uCzz (Nz̄z̄ is likewise).

The falloffs of the metrices in (5) are given as follows:

guu = − 1+O(r−1), gur = −1+O(r−2), guz =O(1),
gzz = O(r), gzz̄ = r2γzz̄ +O(1), gr r = grz = 0.

(6)
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Let us turn to the supertranslation. Displacement of metrices, mB, Nzz and Czz in (5) by
the diffeomorphism of the supertranslation is given by the Lie derivatives as

Lξgur = −∂uζ
u +O(r−1),

Lξgzr = r2γzz̄∂rζ
z̄ − ∂zζ

u +O(r−1),

Lξgzz̄ = rγzz̄(2ζ
r + rDzζ

z + rDz̄ζ
z̄) +O(1),

Lξguu = −2∂uζ
u − 2∂uζ

r +O(r−1), (7)

LξmB = f ∂umB +
1
4
(N zz D2

z f + 2DzN zz Dz f + c.c.),

LξNzz = f ∂uNzz ,

LξCzz = f ∂uCzz − 2D2
z f ,

where the vector field proscribing the coordinate transformation in the Lie derivatives above
is given as

ξ= f ∂u +
1
r
(Dz f ∂z + Dz̄ f ∂z̄) + Dz Dz f ∂r . (8)

f is arbitrary function of (z, z̄), and normally spherical harmonics are taken. The field referred
to as NG boson field is defined for one for every f as

LξC(z, z̄) = f (z, z̄). (9)

3 Fun in the asymptotic symmetry

First of all, what 4D Minkowski spacetime has not been an unique vacuum but infinitely de-
generated would be a surprisingly interesting fact. This had been already found in 1962 [3,4],
however it is in just the last decade that hep-th has recognized this problem [11, 12]. As in-
teresting directions from the study of the asymptotic symmetry, the following ones could be
taken: 1) gravitational memory effect, 2) link with soft theorems and holography, and 3) in-
formation paradox.

1) is the variation in the relativistic position of two objects near the future null infinity T +
for the passing of the gravitational wave, which could be measured by the formalism of the
asymptotic symmetry.

Consider the gravitational wave is turned on at u = ui and off at u = u f , and two objects
near T + are exposed it during the time interval ∆u= u f −ui . The Bondi news tensor and the
energy momentum tensors are zero at any time except for the time getting the gravitational
wave. Then, one can evaluate the displaced amount as

∆sz̄ =
γzz̄

2r
∆Czzsz , (10)

where ∆sA = sA|u=u f
− sA|u=ui

(sA mean the relativistic position of the two objects), and
∆CAB = CAB|u=u f

− CAB|u=ui
.

Hence, the passing of gravitational wave is considered to arise the displacement by the
order r−1. Now observation of the gravitational memory effect is undergoing [13–18].

Other types of memory effect are also considered: spin memory effect [19], color memory
effect [20], and electromagnetic memory effect [21–23]. Observing the soft graviton may be
also planed, however it is so silent that it is not caught in our current detection.
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Regarding 2), the equation of the soft theorem can be obtained from the Ward identity
with regard to the asymptotic symmetry ([24,25] and [26–31] for gauge theories and gravity,
respectively). Therefore,

asymptotic symmetry ←→ soft theorem. (11)

Currently the correspondence between the S-matrix in 4D asymptotically flat spacetime
and 2D CFT are ongoing [32–37].

Next, the DC shift (equation given in P.91 of [5]) and “the effect of attaching one soft-
graviton line to an arbitrary Feynman diagrams” can be identical each other via Fourier trans-
formation (with adjustment of some notation’s conventions). From this fact, it is considered
that the gravitational wave from black holes and the soft particles from the elementary parti-
cle’s collisions will show analogous behavior at the long distance in the observation [5]. Thus,
as the phenomena showing analogous behavior [38],

soft theorem ←→ memory effect. (12)

Lastly, the gravitational wave at the long distance can be considered as a kind of diffeo-
morphism of the asymptotic symmetry, and has a relation with memory effect. Hence,

memory effect ←→ asymptotic symmetry. (13)

It is very interesting that different theories and phenomena can get related like the one
above. Same relations can be obtained in the gauge field theories [5]. Therefore, gravita-
tional and gauge theories would be universal in the IR-region.

Regarding 3), an initial configuration to form a star or black hole finally leads to some
deformed spacetimes by supertranslation (for an explicit analysis for this, see [6]), and its
phase space is infinite dimensional. Hence, we can expect that the information of the initial
configuration could be preserved in the final shape of the spacetime, which is the scenario we
can highly expect as the solution to the information paradox [12,39,40].

4 Our 2D effective action with supertranslation correction

From here, I would like to talk on my study. What I want to do first is to obtain the Schwarzschild
black hole metric with the supertranslation correction to the second order in the Schwarzschild
black hole coordinates. For this we will start with the Schwarzschild black hole spacetime given
in the isotropic coordinates:

ds2 = −
(1−m/2ρs)2

(1+m/2ρs)2
d t2

s + (1+m/2ρs)
4(dρ2

s +ρ
2
s dΩ2

s ), (14)

where a flat three-dimensional space part, dρ2
s + ρ

2
s dΩ2

s , is convenient to involve the super-
translation correction according to [6].

Then, writing as dρ2
s +ρ

2
s dΩ2

s = d x2
s + d y2

s + dz2
s and ρ2

s = x2
s + y2

s + z2
s , we involve the

supertranslation correction according to [6]:

xs = (ρ − C) sinθ cosφ + sinφ cscθ ∂φC − cosθ cosφ ∂θC , (15a)

ys = (ρ − C) sinθ sinφ − cosφ cscθ ∂φC − cosθ sinφ ∂θC , (15b)

zs = (ρ − C) cosθ + cosθ cosφ ∂θC , (15c)

where the function C is the NG boson field for supertranslation, which we will take as

C = mε Y 0
2 (θ ,φ). (16)
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• ε is dimensionless, which we attach to measure the order of supertranslations in our
analysis. m is that in (14), which we involve to have C have the same dimension with
ρ (now, G/c2 = 1). The correction of ε appears from the second-order (see (2)) in the
position of the horizon, which is our motivation for the analysis to ε2-order.

• Why we consider Y 0
2 that this mode is expected to be dominant in the process forming

a soft-hairy black hole (e.g. [41]). We have also performed the analysis with Y 0
1 just in

case. Although we have not performed the calculation to the end, it has been seemed to
be essentially same with what will present in the following.

Involving (15) into the isotropic coordinates (14) to ε2-order, we will rewrite it into the
Schwarzschild coordinates (for detail, see Sec.A), and finally obtain like (1).

Then, with these 4D metrics, we consider a complex scalar field theory as

S =

∫

d4 x
p

−g gMN∂Mφ
∗∂Nφ. (17)

Writingφ(t, r,θ ,φ) = φlm(t, r)Y l
m(θ ,φ), and taking near-horizon limit by writing r = rh,4D+∆r,

we can get the 4D near-horizon action as

S =−
∑

l,m

∑

k,n

∫

d tdr(2m)2
¦

φ∗lm

�

−
2m

r − 2m
Λlm, kn −

15m2ε2

4π(r − 2m)2

∫

dΩ sin2(2θ )(Y m
l )
∗Y n

k

�

∂t∂tφkn

+φ∗lm∂r

� r − 2m
2m

Λlm, kn −
15m2ε2

16π

∫

dΩ sin2(2θ )(Y m
l )
∗Y n

k

�

∂rφkn

©

+O(ε3) ,

(18a)

Λlm, kn ≡
∫

dΩ
¦

1+
3
2

√

√ 5
π
(1+ 3cos(2θ ))ε

+
45
2π

�sin(2θ )
4

− cos2(θ ) + 3 cos2(θ ) cos(2θ )
�

ε2
©

(Y m
l )
∗Y n

k . (18b)

Integrating out (θ , φ), we obtain 2D near-horizon effective action as (Sec.B.4 and B.5)

S2D eff =
lmax
∑

l=0

l
∑

|m|=0

∫

d2 x Φlm

�

(geff)
t t
lm ∂tϕ

∗
lm∂tϕlm + (geff)

r r
lm ∂rϕ

∗
lm∂rϕlm

�

, (19)

Φlm = (2(meff)lm, lm)
2, (20a)

(geff)
t t
lm = −1/(geff)

r r
lm = −

2(meff)kn, lm

r − 2(meff)kn, lm
+O(ε3), (20b)

(meff)kn, lm = m+
15m
8πr

IC
kn, lmε

2 +O(ε3). (20c)

(For r-dependence in (meff)kn, lm, see (81)). Whether the 2D near-horizon effective action can
be obtained or not is non-trivial before trying as mentioned in Sec.1, to check which is one of
the motivations in this study.
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5 Result of Hawking flux with supertranslation correction

We obtain Hawking flux by anomaly cancellation method [42,43], in which reducing to 2D is
crucial, because analysis is performed with the 2D anomaly. For details, see Sec.D.

Anomaly cancellation will focus on the fact: 1) At the classical level, there is no outgoing
flux in the near-horizon region for the strong gravitational effect, 2) however, at the quantum
level, outgoing flux will arise by the quantum tunneling [44]. Hence, the outgoing flux exists
in the near-horizon region finally. At this time, if one takes in the analysis as

amount of flux from tunneling= amount of lack of flux at the classical level, (21)

the amount of the flux by the quantum tunneling can be identified as the Hawking flux.

The amount of the outgoing flux is represented by the integral constant obtained from the
formulas of the 2D anomaly:

∇µTµν, lm = −
∂νΦlm

p

−(geff)lm

δS2D

δLΦlm
+ both/either A ±

ν, lm, (22)

which can be fixed by the condition that the system is symmetric, which is at the point where
the variation of the action vanishes:

(δS2D)lm = −
∫

d2 x
Æ

−(geff)lmη
ν∇µ, lmTµν, lm. (23)

The Hawking flux we have obtained has been (127), πT2
H/12, which is the same with just

a Schwarzschild. The reason of this is written in Sec.D.2.

6 Conclusion

Although the position of the horizon has been displaced and whether the near-horizon field
theories can reduce to free 2D has been non-trivial, Hawking temperature and flux have been
obtained without changes. This no changes in Hawking temperature had been already clear
when near-horizon metrices are obtained, however whether Hawking flux can be obtained
without any changes or not is unclear for the reason written in Sec.1.

Furthermore, although there are works relating with this study as mentioned in Sec.1, for
the research situation mentioned there, the analysis in this study would be worthwhile.

The value of the Hawking flux would be always (127) as long as the function C is 1) to
the second-order, and 2) independent of φ. The reason for this is as follows.

First, if the correction is to ε2 but C is some one other than (16) independent of φ,

• highly complicated terms of θ will be newly involved into the each coefficient of ε1,2 in
(18). At this time, the feasibility of the integrate out for (θ , φ) is the problem, however
it would be no problem by using the following formula and (77):

Y m1
l1

Y m2
l2
=
∑

L,M

√

√(2l1 + 1)(2l2 + 1)
4π(2L + 1)

〈l1 0 l2 0|L 0〉〈l1m1 l2m2|LM〉Y M
L , (24)

• coefficients of ε1,2 in (20c) will get highly involved concerning θ , however the structure
of (20b) as the function f would be no changed (see the last of Sec.D.2), since C depends
only on θ and φ by definition.
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Therefore, if the two conditions above are satisfied, one could always get the 2D near-horizon
effective action with the f same with (19) as the structure. On the other hand,

• if the correction of ε were involved more than 3rd-order, the feasibility of the analysis to
get the free 2D theory as in Sec.B.5 gets unclear. See the last line in Sec.B.5. Namely, if
the same behavior with (91) were not held, the analysis to get the free 2D theory would
be impossible.

• If φ-dependence were mixed in the C , the formulas (24) might get unavailable, and we
could not get the 2D action like (19).

This study has considered only Y 0
2 for the NG boson field of the supertranslation, then

given a conclusion considering the contribution of other modes would be qualitatively same.
Therefore this study should be careful on whether other mode’s contributions are qualitatively
the same or not, which point is cared as above.

It is considered from our result, no changes, that Hawking temperature and flux may be
the conserved quantities under the asymptotic symmetry.

Acknowledgment

Upon writing this article, many discussions with Prof.Feng-Li Lin, the collaborator in [2], were
very helpful. Using this opportunity, I would like to offer my thanks to Prof.Hai-Qing Zhang
who could financially support the conference.

010.9

https://scipost.org
https://scipost.org/SciPostPhysProc.4.010


SciPost Phys. Proc. 4, 010 (2021)

Appendix

A Metrices with supertranslation correction

This appendix is the detailed description of [2], and in this section, we obtain the metrices for
a 4D Schwarzschild black hole spacetime with supertranslations to the second-order.

A.1 Introduction of supertranslation

We start with the following coordinate system for a 4D Schwarzschild black hole spacetime:

ds2 = −(1− 2m/rs)d t2
s + (1− 2m/rs)

−1dr2
s + r2

s dΩ2
s . (25)

We refer to this type of coordinate system as the “Schwarzschild coordinates”. In order to
involve the supertranslations, we rewrite (25) into (14), where rs=ρs (1+m/2ρs)

2. We refer
to this type of expression as “isotropic coordinates”.

Note that in this relation, two ρs correspond to one rs as

ρs =
�

−m+ rs ±
q

−2mrs + r2
s

�

/2. (26)

See Fig.1. We can see 1) positions of horizon in isotropic and Schwarzschild coordinates
correspond each other, 2) isotropic coordinates do not cover the inside of the horizon.

-6 -4 -2 0 2 4 6

-15

-10

-5

0

5

10

15

ρs

rs

Figure 1: Plot for rs = ρs (1+m/2ρs)
2 for m= 1.

We denote the supertranslated isotropic coordinates as (t,ρ,θ ,φ). These and (ts, xs, ys, zs)
are related like (15), where

dρ2
s +ρ

2
s dΩ2

s in (14)= d x2
s + d y2

s + dz2
s , ts in (14)= t. (27)

We take C we consider as (16). Description here overlaps with the one under (16) (but one
comment; if we employ Y 0

1 as C , r.h.s. of (27) results in just dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2,
namely no supertranslation corrections, which get involved from (30), supertranslated ρ.)

A.2 Isotropic coordinates with supertranslations

We now write (14) in terms of (t,ρ,θ ,φ). For the parts in (14), we can write as

ρ2
s = x2

s + y2
s + z2

s , (28a)

(1+m/2ρs)
4(dρ2

s +ρ
2
s dΩ2

s ) = gρρdρ2 + gθθ dθ2 + gφφdφ2. (28b)

We can evaluate dρ2
s + dρ2

s dΩ2
s as (27), with which we obtain gMN from now. We write

gMN for the metrices of the supertranslated isotropic coordinates (29a)

jMN for the metrices of the supertranslated Schwarzschild coordinates (29b)

in what follows, where M , N in gMN and jMN refer to (t,ρ,θ ,φ) and (t, r,θ ,φ).
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We can obtain ρs by calculating (30) using (15) to ε2-order as

ρs = ρ −
1
8

√

√ 5
π
εm(3 cos(2θ ) + 1) +

45ε2m2 sin2(2θ )
32πρ

+O(ε3). (30)

With this we can obtain gMN as

• gt t= −
(m− 2ρ)2

(m+ 2ρ)2
−

√

√ 5
π
εm2 (m− 2ρ)

(m+ 2ρ)3
(3cos(2θ ) + 1)−

5ε2m3

8πρ(m+ 2ρ)4
(22mρ − 9m2

+ 14ρ2 + 9 cos(4θ )(m2 + 2mρ − 6ρ2) + 24ρ cos(2θ )(m−ρ)) +O(ε3), (31a)

• gρρ=
(m+ 2ρ)4

16ρ4
+

√

√ 5
π
εm2 (m+ 2ρ)3

32ρ5
(3 cos(2θ ) + 1) +

5ε2m3(m+ 2ρ)2

1024πρ6
(19m− 28ρ

+ 12 cos(2θ )(5m+ 4ρ) + 27cos(4θ )(3m+ 4ρ)) +O(ε3), (31b)

• gθθ=
(m+ 2ρ)4

16ρ2
+

√

√ 5
π
εm(m+ 2ρ)3

3cos(2θ )(5m+ 6ρ) +m− 2ρ
64ρ3

+
5ε2m2(m+ 2ρ)2

2048πρ4
(

12cos(2θ )(39m2 + 76mρ + 20ρ2) + 9 cos(4θ )(27m2 + 44mρ + 4ρ2)

+ 249m2 + 484mρ + 236ρ2) +O(ε3), (31c)

• gφφ=
(m+ 2ρ)4 sin2(θ )

16ρ2
+

√

√ 5
π
εm
(m+ 2ρ)3

64ρ3
sin2(θ )(cos(2θ )(9m+ 6ρ) + 7m+ 10ρ)

+
5ε2m2 sin2(θ )(m+ 2ρ)2

2048πρ4
(249m2 + 484mρ + 236ρ2 + 12cos(2θ )(39m2 + 76mρ

+ 20ρ2) + 9cos(4θ )(27m2 + 44mρ + 4ρ2)) +O(ε3). (31d)

A.3 Rewriting from Schwarzschild to isotropic coordinates

Since we have obtained the metrices in the supertranslated isometric coordinates (t,ρ,θ ,φ),
we will rewrite these to the following Schwarzschild coordinates:

ds2 = −(1− 2µ/r)d t2 + (1− 2µ/r)−1dr2 + jθθ dφ2 + jφφdφ2. (32)

Then, we will find the mass part µ cannot remain constant (if analysis is to ε1-order, it can be
constant). Therefore, we treat µ as µ(ρ). In what follows, we obtain 1) a relation between r
and ρ, and 2) µ(ρ) as the solution, by solving the following relations:

• − (1− 2µ(ρ)/r) = gt t , (33a)

•
1

1− 2µ(ρ)/r

� dr
dρ

�2
= gρρ. (33b)

The argument in µ(ρ) should be ρ. If we express µ(ρ) in terms of r, (37) is plugged in.
We can obtain the r satisfying (33a) to ε2-order as

r =
µ(ρ)(m+ 2ρ)2

4mρ
+

ε

32ρ2

√

√ 5
π
(3cos(2θ ) + 1)µ(ρ)(m2 − 4ρ2)

+
5ε2mµ(ρ)
512πρ3

(9cos(4θ )(3m2 − 8ρ2) + 12m2 cos(2θ )− 7m2 + 72ρ2) +O(ε3). (34)

Let us obtain the µ(ρ). For this, look (33b), then plugging (34) into the r, solve it for µ(ρ)
order by order to ε2-order. As a result we can obtain

µ(ρ) = m+
c1ρε

(m+ 2ρ)2
+

ε2

64πρ2(m+ 2ρ)3
{−24

p
5πc1mρ2 cos(2θ )(m− 2ρ)

+8ρ2(8πc2ρ(m+ 2ρ)−
p

5πc1m(m− 2ρ))

+30m3 sin2(2θ )(m+ 2ρ)(m2 − 12ρ2)}+O(ε3), (35)
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where we took the integral constant at ε0-order so that ε0-order becomes m. c1,2 are the
integral constants at ε1,2-orders (these can depend on (θ , φ) and determined at (41)).

Now we have obtained the relation “r = · · · ” as in (34), with which, rewriting the Schwarzschild
to the isotropic coordinates to ε2-order is possible:

−(1− 2µ(ρ)/r)d t2 + (1− 2µ(ρ)/r)−1dr2 + jθθ dθ2 + jφφdφ2

→ gt t d t2 + gρρdρ2 +
�

jθθ +
1

1− 2µ(ρ)
r

� ∂ r
∂ θ

�2�
dθ2 +

2

1− 2µ(ρ)
r

∂ r
∂ ρ

∂ r
∂ θ

dρdθ + jφφdφ2 .(36)

However what is needed is rewriting from the isotropic to Schwarzschild coordinates.

A.4 Rewriting from isotropic to Schwarzschild coordinates

We will obtain the relation between ρ and r in the form “ρ = · · · ” to ε2-order to become
possible to rewrite (36) in the opposite direction. For this, there are two ways: to solve 1)
(33b) or 2) (34). As a result of our try, if we solve to ε1-order, we can get the same ρ from
either of them (we checked this sameness numerically). However, if we try to obtain to ε2-
order, we can obtain only from 2) (for some technical reason of mathematica).

Writing what we did, plugging µ(ρ) in (35) into the µ in (34), then expanding it to ε2-
order, we can obtain ρ order by order. As a result, four solutions are obtained. At this time,
the ε0-order in the two of these do not agree with (26), while those of the rest two can agree
with (26). Therefore, we employ the latter two, which are

ρ(1,2)(r) =
1
2
(r −m∓

Æ

r(r − 2m)) +
ε

8πmr(2m− r)
{πc1r(r − 2m)±πc1m

Æ

r(r − 2m)

∓πc1r
Æ

r(r − 2m)−
p

5πm2r(3 cos(2θ ) + 1)(r − 2m)} −
ε2

128πmr2(r − 2m)2
[

16πc2(r
4 ∓

Æ

r7(r − 2m))− 120m4r(4r ±
Æ

r(r − 2m))

+60m3(16r3 ± 9
Æ

r5(r − 2m))− 8m2{(60
Æ

r7(r − 2m)∓ 8πc2r2) + r4 ± 75

+4πc2r
Æ

r(r − 2m)}+m{120r5 ± 120
Æ

r9(r − 2m)∓ 2πc1
2
Æ

r(r − 2m)

−64πc2r3 ± 48πc2

Æ

r5(r − 2m)}+ 60mr(2m− r) cos(4θ ){

m2(4r ±
Æ

r(r − 2m)) + 2(r3 ±
Æ

r5(r − 2m))− 2mr(3r ± 2
Æ

r(r − 2m))}
] +O(ε3), (37)

where the 1 and 2 in the ρ(1,2)(r) correspond as

(1,2)→ (+,−) of ± and (−,+) of ∓. (38)

Let us determine which ρ(1,2)(r) we employ and determine c1,2. For this, plugging ρ(1,2)

in (37) into µ(ρ) in (35), write it in terms of r to ε2-order as

µ(1,2)
�

ρ(1,2)(r)
�

= m+
c1ε

4r
+

ε2

8πmr(
p

r(r − 2m)∓ r)3(
p

r(r − 2m)±m∓ r)2
[

π{−4c2m4r
Æ

r(r − 2m) + 48c2m3
Æ

r5(r − 2m)− c1
2m3

Æ

r(r − 2m)

−80c2m2
Æ

r7(r − 2m) + 12c1
2m2r

Æ

r(r − 2m) + 32c2m
Æ

r9(r − 2m)

+r(±7m3 ∓ 28m2r ± 28mr2 ∓ 8r3)(4c2mr + c1
2) + 8c1

2
Æ

r7(r − 2m)

−20c1
2m
Æ

r5(r − 2m)} − 30m4r sin2(2θ ){m2(
Æ

r(r − 2m)∓ 7r)

±3mr(5r ∓ 3
Æ

r(r − 2m)) + 6(∓r3 +
Æ

r5(r − 2m))}] +O(ε3). (39)
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Behavior of these at the distant region is given as

µ(1)
�

ρ(1)(r)
�

=m+ ε
� c1

4r
+O

�

r−2
� �

+ ε2
�15r2 sin2(2θ )

2πm
−

45sin2(2θ )r
2π

+
45m sin2(2θ )

4π

+
15m2 sin2(2θ )/π+ c2

4r
+O

�

r−2
�

�

+O(ε3), (40a)

µ(2)
�

ρ(2)(r)
�

=m+ ε
� c1

4r
+O

�

r−6
� �

+
ε2

4

� c2

r
+

2c1
2 − 45m4 sin2(2θ )/π

8mr2
−

45m4 sin2(2θ )
8πr3

−
105m5 sin2(2θ )

16πr4
−

135m6 sin2(2θ )
16πr5

+O
�

r−6
�

�

+O
�

ε3
�

. (40b)

It can be seen from the above we should discard µ(1) by the reason: It is always diverged at

the distant region irrelevantly of c1,2 for the terms, 15r2 sin2(2θ )
2πm − 45r sin2(2θ )

2π . Thus, it is enough
only with µ(2) in the following, but we proceed with both just in case.

Now we determine c1,2. Since these are integral constants, we are allowed to take these
arbitrarily. However in this study, by the reason written in what follows we will take as

c1,2 = 0. (41)

Looking µ(2)(ρ(2)(r)), we can find that it diverges at m = 0 unless c1 is zero for the term
2c1

2

32mr2 at its ε2-order. Hence we take c1 to 0.
As for our logic for c2, 1) consider starting with just a flat spacetime patched by

Schwarzschild coordinates with the zero mass, therefore µ(2) at the starting stage is zero.
2) Suppose changing it to the isotropic coordinates, involve the supertranslations. Then, back
the coordinates to the Schwarzschild. At this time, the expanded µ(2) is given by (40b). 3) At
this time, the mass should be zero, therefore µ(2) should be zero. However, if c2 is not zero,
we can see µ(2) is not zero for the terms c1

4r at the ε1-order and c2
4r at the ε2-order. 4) As c1 has

been taken to zero in the above, we take c2 to zero.
Above, we have considered in terms of the supertranslation toward the flat spacetime

and based on the consideration that mass in the spacetime should not be changed by the
supertranslation. The same issue is taken up in Sec.24.2 in [45]. There, again mass is not
introduced, though Czz and Cz̄z̄ are introduced.

With (41), (37) and (39) are fixed as

ρ(1,2) =
1
2
(∓
Æ

r(r − 2m)−m+ r) +
1
8

√

√ 5
π
εm(3cos(2θ ) + 1)−

15ε2 sin2(2θ )
16πr2(r − 2m)2

{

−10mr4 ∓ 8m
Æ

r7(r − 2m) + 2(r5 ±
Æ

r9(r − 2m))− 2m3r(4r ±
Æ

r(r − 2m))

+m2(16r3 ± 9
Æ

r5(r − 2m))}+O(ε3), (42)

µ(1,2)(ρ(1,2)(r)) = m+
15ε2m3 sin2(2θ )(m2 − 3(

p

r(r − 2m)±m∓ r)2)

8π(r ∓
p

r(r − 2m))2(
p

r(r − 2m)±m∓ r)2
+O(ε3). (43)

Using these we can rewrite the isotropic to the Schwarzschild coordinates as

gt t d t2 + gρρdρ2 + gθθ dθ2 + gφφdφ2

→ −
�

1−
2µ(ρ)

r

�

d t2 +
�

1−
2µ(ρ)

r

�−1
dr2 +

�

gθθ + gρρ
�∂ ρ

∂ θ

�2�
dθ2

+2gρρ
∂ ρ

∂ r
∂ ρ

∂ θ
dρdθ + gφφdφ2

≡ jt t d t2 + jr r dr2 + jθθ dθ2 + 2 jrθ drdθ + jφφdφ2, (44)

where ρ = ρ(r,θ ) and gMN are in (31). We give the expressions of jMN in the next.
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A.5 Metrices with correction to ε2-order in 4D Schwarzschild coord.

We give the expression of jMN in (44) in the case of (41).

• j(1,2)
t t = − (1−

2m
r
) +

15ε2 sin2(2θ )(m5 − 3m3(
p

r(r − 2m)±m∓ r)2)

4πr(r ∓
p

r(r − 2m))2(
p

r(r − 2m)±m∓ r)2
+O(ε3), (45a)

• j(1,2)
r r =(1−

2m
r
)−1 +

15ε2 sin2(2θ )
4πm(r − 2m)2

{m3 + 3m2r − 6mr2 ± 2(
Æ

r5(r − 2m)± r3)

∓ 4mr
Æ

r(r − 2m)}+O(ε3), (46a)

• j(1)
θθ
= r2 −

3
q

5
πεm cos(2θ )(r −

p

r(r − 2m))4

2(
p

r(r − 2m) +m− r)3
+

15ε2m2

8πr(r − 2m)2(
p

r(r − 2m) +m− r)3

× {r2(r − 2m)2(cos(4θ )(m2 + 6mr − 9r2)− (m2 − 18mr + 15r2))

+ 12m3
Æ

r5(r − 2m)(cos(4θ )− 1) +m2
Æ

r7(r − 2m)(24cos(4θ ) + 72)

−m
Æ

r9(r − 2m)(33cos(4θ ) + 63) +
Æ

r11(r − 2m)(9 cos(4θ ) + 15)}+O(ε3),
(47a)

j(2)
θθ
= r2 +

3
q

5
πεm cos(2θ )(

p

r(r − 2m) + r)4

2(
p

r(r − 2m)−m+ r)3

+
8πr(r − 2m)2{m4 − 4m3(

p

r(r − 2m) + 4r) + 20m2r(
p

r(r − 2m) + 2r)
15ε2m2

−24m
p

r5(r − 2m)− 32mr3 + 8(
p

r7(r − 2m) + r4)}
[

− 4m5r2 + 8m4(2
Æ

r5(r − 2m) + 13r3)− 5m3(32
Æ

r7(r − 2m) + 73r4)

+m2(268
Æ

r9(r − 2m) + 409r5) + cos(4θ ){4m5r2 − 8m4(2
Æ

r5(r − 2m) + r3)

+m3(−32
Æ

r7(r − 2m)− 115r4) +m2(116
Æ

r9(r − 2m) + 191r5)

− 84m
Æ

r11(r − 2m)− 102mr6 + 18(
Æ

r13(r − 2m) + r7)}

+ 30(
Æ

r13(r − 2m) + r7)− 6m(26
Æ

r11(r − 2m) + 31r6)] +O(ε3), (47b)

• j(1,2)
rθ = −

3
q

5
πεm sin(2θ )(r ∓

p

r(r − 2m))4

8
p

r(r − 2m)(
p

r(r − 2m)±m∓ r)3
±

15ε2m4r sin(4θ )

4π(2m− r)(
p

r(r − 2m)±m∓ r)3

+O(ε3), (48a)
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• j(1)
φφ
= r2 sin2(θ )−

3
q

5
πεm sin2(2θ )(r −

p

r(r − 2m))4

8(
p

r(r − 2m) +m− r)3

+
15ε2m2 sin2(2θ )

8πr(r − 2m)2(
p

r(r − 2m) +m− r)3
{12m3 cos(2θ )

Æ

r5(r − 2m)

− 12m3
Æ

r5(r − 2m) + 24m2
Æ

r7(r − 2m) + r2 cos(2θ )(r − 2m)2(m2 − 3r2)

− r2(r − 2m)2(m2 − 6mr + 3r2) + 3 cos(2θ )
Æ

r11(r − 2m) + 3
Æ

r11(r − 2m)

− 9m cos(2θ )
Æ

r9(r − 2m)− 15m
Æ

r9(r − 2m)}+O(ε3), (49a)

j(2)
φφ
= r2 sin2(θ ) +

3
q

5
πεm sin2(2θ )(

p

r(r − 2m) + r)4

8(
p

r(r − 2m)−m+ r)3

+
15ε2m2 sin2(2θ )

4πr2(r − 2m)2(
p

r(r − 2m)−m+ r)4
[−4m5r3 + 8m4(2

Æ

r7(r − 2m) + 7r4)

−m3(64
Æ

r9(r − 2m) + 125r5) +m2(76
Æ

r11(r − 2m) + 109r6)

+ cos(2θ ){4m5r3 − 16m4(
Æ

r7(r − 2m) + 2r4) +m3(16
Æ

r9(r − 2m) + 5r5)

+m2(20
Æ

r11(r − 2m) + 41r6) + 6(
Æ

r15(r − 2m) + r8)

− 6m(4
Æ

r13(r − 2m) + 5r7)}+ 6(
Æ

r15(r − 2m) + r8)

− 6m(6
Æ

r13(r − 2m) + 7r7)] +O(ε3). (49b)

1) numbers in the superscripts mean those jMN are associated with which of ρ(1,2) in (42) with
(38). (Origin of j(1,2)

MN is (37), then it turns out above (41) that µ(1) is unphysical and µ(2) is

physical. j(2)MN is associated with µ(2).) 2) Killing vector in the system above is ξM = (1,0, 0,1)
as well. With either j(1,2)

MN , 3) Einstein eq. is satisfied to ε2-order. Also from either j(1,2)
MN , 4)

(31) can be obtained using following one, (34) with (35) and (41):

r =
m2

4ρ
+m+ρ +

q

5
πm(m2 − 4ρ2)(3cos(2θ ) + 1)

32ρ2
ε −

5m4(1− 12cos(2θ )− 21cos(4θ ))
512πρ3

ε2

+O(ε3). (50)

A.6 Comment on c1,2

Positions of the horizon in supertranslated isotropic and Schwarzschild coordinates are

ρh,4D =
m
2
+

1
8

√

√ 5
π

mε(3 cos(2θ ) + 1)−
45

16π
ε2m sin2(2θ ) +O(ε3), (51)

rh,4D = 2m−
15
8π
ε2m sin2(2θ ) +O(ε3), (52)

where rh,4D gets to this above regardless of j(1,2)
MN . Then it turns out ρh,4D can be transformed

to rh,4D through (34) (µ(ρ) is replaced by (35)), but rh,4D is transformed to

m
2
+

√

√ 5
π

mε(
3 cos(2θ ) + 1

8
−

1
16

Æ

6(−1+ cos(4θ )))−
45ε2m sin2(2θ )

16π
+O(ε3). (53)

through (42).
Since jMN can be transformed to gMN by (42), r-coordinate corresponds to ρ-coordinate

by (42). However, as mentioned above (41), there is freedom for how to take c1,2. Moreover,

010.15

https://scipost.org
https://scipost.org/SciPostPhysProc.4.010


SciPost Phys. Proc. 4, 010 (2021)

as the problem of how the coordinates are patched toward a spacetime, there is ambiguity up
to c1,2 for the mapping of each point in r-coordinate to each point in ρ-coordinate through
(42), and vice verse through (34).

Actually, the position of horizon in the Schwarzschild coordinate is obtained if one proceeds
calculation with unfixed c1,2 as

2m+
c1ε

4m
+ ε2(

c2

4m
−

15m sin2(2θ )
8π

) +O(ε3). (54)

Here, the position of horizon in the Schwarzschild coordinate obtained from ρh,4D through
(34) (this (34) is given with unfixed c1,2) is (54). Therefore, the position of horizon in the
isotropic coordinate is always mapped to that in the Schwarzschild coordinate.

Toward (54), if we take as c1 = 0 and c2 =
15m2 sin2(2θ )

2π , ρh,4D can be obtained through (42)
(this (42) is given with these c1,2). However, the rh,4D at that time is 2m+O(ε3).

One may consider to determine c1,2 based on agreement of the positions of horizon. How-
ever these should be zero for the reason under (41), therefore the positions of horizon deter-
mine to those obtained from c1,2 = 0, (51) and (52).

B 2D effective near-horizon action

We have obtained the metrices with the supertranslation correction to the second-order in the
Schwarzschild coordinates. In this section, obtaining the near-horizon expression of these,
we consider the scalar field theory. Then, expanding the field by the spherical harmonics, we
integrate out its (θ , φ). We will finally obtain 2D effective near-horizon action. The scalar
field theory we consider is

Sscalar =
1
2

∫

d4 x
p

−g jMN∂Mφ
∗∂Nφ, (55)

where M , N = t, r,θ , φ, and jMN mean j(2)MN . We do not include the mass and interaction
terms, since these are ignorable in the near-horizon [46]2.

B.1 Near-horizon metrices

To obtain the near-horizon expression of (55), we first obtain the 4D metrices j(2)MN in Sec.A.5

in the near-horizon. For this, we replace r in those j(2)MN with rh,4D +∆r (∆r = r − rh,4D and
rh,4D is given in (52))3, then expand around ∆r = 0. Writing these as tMN ,

2It is considered that theories effectively become 2D free massless in the near-horizon at the classical level as
the particles effectively fall freely and these longitudinal motions get dominant.

3We give the Jacobian and partial derivatives when we change from r to ∆r. We denote the old and
new coordinates as (r, θ) to (∆r, θ̃). The relations between these are ∆r = r − rh(θ ) and θ̃ = θ .

Then, drdθ =

�

�

�

�

∂ r
∂ (∆r)

∂ r
∂ θ̃

∂ θ
∂ (∆r)

∂ θ

∂ θ̃

�

�

�

�

d(∆r)dθ̃ = d(∆r)dθ̃ . Further, ∂
∂ r = ∂ (∆r)

∂ r
∂

∂ (∆r) +
∂ θ̃
∂ r

∂

∂ θ̃
= ∂

∂ (∆r) and

∂
∂ θ =

∂ (∆r)
∂ θ

∂
∂ (∆r) +

∂ θ̃
∂ θ

∂

∂ θ̃
= − ∂ rh(θ )

∂ θ
∂

∂ (∆r) +
∂

∂ θ̃
.
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t t t =
�

−
∆r
2m
+
∆r2

4m2
+O

�

∆r3
�

�

+ ε2 15 sin2(2θ )
4π

¦3∆r
4m
−
p

2∆r3/2

m3/2
+

3∆r2

4m2

+
∆r5/2

2
p

2m5/2
+O

�

∆r3
�

©

+O(ε3), (56)

tr r =
�2m
∆r
+ 1+O

�

∆r3
�

�

+ ε2 15sin2(2θ )
π

¦ 3m
4∆r

−
p

2m
p
∆r
+

6
4
−

3
p
∆r

2
p

2m
+

2∆r
4m

−
3∆r3/2

16
p

2m3/2
+O

�

∆r5/2
�

©

+O(ε3), (57)

tθθ =
�

4m2 + 4∆rm+∆r2 +O
�

∆r3
�

�

+ ε24

√

√ 5
π

cos(2θ )
¦

m2 −m3/2
p

2
p
∆r

+2m∆r −
5
4

p
2m∆r3/2 +

5
4
∆r2 +O

�

∆r5/2
�

©

+
90ε2

π

¦

2m2 cos2(2θ )

−4
p

2m3/2 cos2(2θ )
p
∆r +

m(41cos(4θ ) + 39)∆r
8

−
p

2m
3
(14 cos(4θ ) + 13)∆r3/2

+
5(21 cos(4θ ) + 19)∆r2

16
+O

�

∆r5/2
�

©

+O
�

ε3
�

, (58)

tφφ = sin2(θ )
�

4m2 + 4∆rm+∆r2 +O
�

∆r3
��

+ 3ε

√

√ 5
π

sin2(2θ )
¦

2m2 − 2
p

2m3/2
p
∆r

+4m∆r − 5
p

m∆r3/2 +
3
2
∆r2 +O

�

∆r5/2
�

©

+ ε2 45sin2(2θ )
π

¦

m2 cos(2θ )

−2
p

2m3/2 cos(2θ )
p
∆r +

m
4
(21 cos(2θ )− 1)∆r +

5(11cos(2θ )− 1)∆r2

8

+
675

2

p
2m(2− 29cos(2θ ))∆r3/2 +O

�

∆r5/2
�

©

+O(ε3), (59)

trθ = −3ε

√

√ 5
π

sin(2θ )
¦m3/2p2
p
∆r

− 2m+
7
2

s

m
2

p
∆r − 6∆r +

27∆r3/2

16
p

2m
−
∆r2

2m

+O
�

∆r5/2
�

©

+ ε2 15sin(4θ )
π

m2

2∆r
−

3m3/2

p
2
p
∆r
+

19m
4
−

41
p

m
p
∆r

4
p

2

+
33∆r

4
−

329∆r3/2

32
p

2m
+

5∆r2

m
+O

�

∆r5/2
�

©

+O(ε3). (60)
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Contravariant metrices toward these are obtained as

t t t =
�

−
2m
∆r
− 1−

∆r
2m
+O

�

∆r2
�

�

− ε2 45 sin2(2θ )
2π

� m
2∆r

−
2
p

2m

3
p
∆r
+ 1−

p
∆r
p

2m

+
7∆r
8m

+O
�

∆r3/2
�

�

+O(ε3), (61)

t r r =
�∆r

2m
+O

�

∆r2
�

�

+ ε2 15sin2(2θ )
π

�3∆r
16m

−
∆r3/2

p
2m3/2

+O
�

∆r2
�

�

+O
�

ε3
�

, (62)

tθθ =
� 1

4m2
−
∆r
4m3

+O
�

∆r2
�

�

+ 3ε

√

√ 5
π

cos(2θ )
�

−
1

2m2
+
p
∆r

p
2m5/2

+O
�

∆r3/2
�

�

+ε2 45
8π

�11 cos(4θ ) + 13
4m2

−
(11cos(4θ ) + 13)

p
∆r

p
2m5/2

+
(65cos(4θ ) + 79)∆r

8m3

+O
�

∆r3/2
�

�

+O(ε3), (63)

t rθ = ε
3
4

√

√ 5
π

sin(2θ )
�

p
∆r

p
2m3/2

−
∆r
m2
+O

�

∆r3/2
�

�

−ε2 15 sin(4θ )
16π

� 1
m
+

6
p
∆r

p
2m3/2

−
16∆r

m2
+O

�

∆r3/2
�

�

+O(ε3), (64)

tφφ =
csc2 θ

4

� 1
m2
−
∆r
m3
+O

�

∆r2
�

�

+ 3ε

√

√ 5
2π

cot2 θ
�

−
1

p
2m2

+
p
∆r

m5/2
+O

�

∆r3/2
�

�

+ε2 45cot2(θ )
π

�cos(2θ ) + 2
4m2

−
(cos(2θ ) + 2)

p
∆r

p
2m5/2

+
(11 cos(2θ ) + 25)∆r

16m3

+O
�

∆r3/2
�

�

+O(ε3). (65)

We can check these are the inverse each other in the range of ε2. (Leading of these are the
same with just a Schwarzschild, which is the technical reason for our result, no change.)

B.2 Hawking temperature in the original 4D

We have given the Killing vector in (A.5), and obtained the position of the horizon in (52) and
the near-horizon metrices. With these and the formula: κ2 = −1

2 DMξN DMξN , the Hawking
temperature in the original 4D spacetime can be obtained as

TH = 1/8πm+O(ε3). (66)

This is the same with the one in just the Schwarzschild. We can understand this as follows.
Generally, TH =

1
4π

�

�∂r f (r)
�

�

r=rh

�

� for ds2 = − f (r)d t2+ f −1(r)dr2+· · · , where f (r)|r=rh
= 0

(these f (r) and rh are irrelevant with this study). However, our f (r) behaves same with just
the Schwarzschild at ∆r = 0 (r = rh,4D) as in (56).

Our Hawking temperature might have been expected to depend on the angular directions,
which breaks the zeroth law of black hole thermodynamics. However, we could expect from
the result above that it would be always out of the analysis’s order.
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B.3 Near-horizon action

Having obtained 4D near-horizon metrices, let us obtain near-horizon action. For this, we
write down (55) term by term, then express each line order by order as to ε2-order as

L of (55)= −φ∗∂t

��p
−t
(0)
+
p
−t
(1)
+
p
−t
(2)��

t t t (0) + t t t (2)
�

∂t

	

φ (67a)

−φ∗∂r

��p
−t
(0)
+
p
−t
(1)
+
p
−t
(2)��

t r r (0) + t r r (2)
�

∂r

	

φ (67b)

−φ∗∂r

��p
−t
(0)
+
p
−t
(1)
+
p
−t
(2)��

t rθ (1) + t rθ (2)
�

∂θ
	

φ (67c)

−φ∗∂θ
��p
−t
(0)
+
p
−t
(1)
+
p
−t
(2)��

tθθ (0) + tθθ (1) + tθθ (2)
�

∂θ
	

φ (67d)

−φ∗∂θ
��p
−t
(0)
+
p
−t
(1)
+
p
−t
(2)��

t rθ (1) + t rθ (2)
�

∂r

	

φ (67e)

−φ∗∂φ
��p
−t
(0)
+
p
−t
(1)
+
p
−t
(2)��

tφφ(0) + tφφ(1) + tφφ(2)
�

∂φ
	

φ, (67f)

where the numbers in the superscripts mean the part of that quantity at that order when that
quantity is expanded with regard to ε 4.

We write the order behavior of the ingredients in (67a)-(67f) based on (61)-(65) as

•
p
−t
(0)
+
p
−t
(1)
+
p
−t
(2) ∼ (1+∆r) + (1+

p
∆r)ε + (1+

p
∆r)ε2,

• t t t (0) + t t t (2) ∼ (∆r)−1 + ε2(∆r)−1,

• t r r (0) + t r r (2) ∼∆r +∆rε2,

• t rθ (1) + t rθ (2) ∼
p
∆rε + (1+

p
∆r)ε2,

• tθθ (0) + tθθ (1) + tθθ (2) ∼ (1+∆r) + (1+
p
∆r)ε + (1+

p
∆r)ε2,

• tφφ(0) + tφφ(1) + tφφ(2) ∼ (1+∆r) + (1+
p
∆r)ε + (1+

p
∆r)ε2.

With these, we can get the order behavior of the each line (67a)-(67f) as

(67a) ∼
� 1
∆r
+ 1+O

�

∆r2
�

�

+ ε
� 1
∆r
+

1
p
∆r
+O

�

∆r3/2
�

�

+ε2
� 2
∆r
+

1
p
∆r
+ 1+O

�

∆r3/2
�

�

+O(ε3),

(67b) ∼
�

1+ 2∆r +O
�

∆r2
�

�

+ ε
�

1+
3
p
∆r

2
+O

�

∆r3/2
�

�

+ε2
�

2+
3
p
∆r

2
+ 2∆r +O

�

∆r3/2
�

�

+O(ε3),

(67c) ∼ ε
� 1

2
p
∆r
+

3
p
∆r

2
+O

�

∆r3/2
�

�

+ ε2
� 1
p
∆r
+ 2+

3
p
∆r

2
+O

�

∆r3/2
�

�

+O(ε3),

(67d) ∼
�

1+ 2∆r +O
�

∆r2
��

+ ε
�

2+ 2
p
∆r + 2∆r +O

�

∆r3/2
��

+ε2
�

3+ 4
p
∆r + 3∆r +O

�

∆r3/2
��

+O
�

ε3
�

,

(67e) ∼ ε
�p
∆r +O

�

∆r3/2
��

+ ε2
�

1+ 2
p
∆r + 2∆r +O

�

∆r3/2
��

+O
�

ε3
�

,

(67f) ∼
�

1+ 2∆r +O
�

∆r2
��

+ ε
�

2+ 2
p
∆r + 2∆r +O

�

∆r3/2
��

+ε2
�

3+ 4
p
∆r + 3∆r +O

�

∆r3/2
��

+O
�

ε3
�

.

We find (67a) is dominant and others are vanish or ignorable compared with (67a) at
∆r → 0. Therefore, from the viewpoint of which parts remain at ∆r → 0, we may remain

4E.g.,
p
−t
(0) +

p
−t
(1) +

p
−t
(2)

means the first three terms writing as
p
−t = (· · · ) + (· · · )ε + (· · · )ε2 + · · · .
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only (67a). However, since the (t, r)-space is crucial in the analysis of Hawking temperature
and flux, the parts on and tangling with the (t, r)-space are indispensable in our analysis.
(Also note that (67b) makes the action at ∆r → 0 finite.) Therefore, remaining (67b), (67c)
and (67e) in addition to (67a), we consider the following action:

(67) =
p
−t(t t t∂tφ

∗∂tφ − t r r∂rφ
∗∂rφ − t rθ∂rφ

∗∂θφ − tθ r∂θφ
∗∂rφ) + · · ·

=
p
−t
�

t t t∂tφ
∗∂tφ + t r r

�

∂rφ
∗ +

tθ r

t r r
∂θφ

∗��∂rφ +
tθ r

t r r
∂θφ

�

−
(tθ r)2

t r r
∂θφ

∗∂θφ
�

,(68)

as the near-horizon action, where “· · · ” is (67d), (67f) (the terms vanishing at ∆r → 0 and
irrelevant for the (t, r)-space) and terms under ε3-order.

Let us look (tθ r)2/t r r and tθ r/t r r in (68). Using (61)-(65), we can write these as

•
tθ r

t r r
= ε

3
2

√

√ 5
π

sin(2θ )
� 1
p

2m
p
∆r
−

1
m
+O

�p
∆r
�

�

− ε2 15
8π

sin(4θ )
� 1
∆r
+

6
p

2m
p
∆r
+O

�

∆r0
�

�

+O(ε3), (69a)

•
(tθ r)2

t r r
= ε2 45sin2(2θ )

16π

� 1
m2
−

4
p
∆r

p
2m5/2

+O
�

∆r1
�

�

+O(ε3). (69b)

Thus, (tθ r)2/t r r is ignorable in the limit ∆r → 0, but tθ r/t r r is not. However tθ r/t r r is
ignorable finally in the analysis of Hawking temperature and flux for the following facts:

• We can regard tθ r

t r r ∂θφ as the r-component of U(1) gauge field in the sense that we
can evaluate the anomalies and currents associated with it using the way to evaluate
those for U(1) gauge field. The point here is that it is composed of the t-independent
r-component only, therefore we can see by looking at (4) in [43] the gauge anomalies
do not arise from tθ r

t r r ∂θφ. Hence, tθ r

t r r ∂θφ is irrelevant of this study.

• Next, as for the gravitational anomalies, since Jµ is zero according to (4) in [43], the
second term in r.h.s. in (16) in [43] is some constants. The first term in the (16) will be
also zero, since our gauge field is composed of only t-independent r-component.

Hence, since tθ r/t r r has nothing to do with gauge and gravitational anomalies, we can ignore
it in our analysis and are allowed to write the near-horizon action we consider as

Snh =
1
2

∫

d x4p−t(t t t∂tφ
∗∂tφ + t r r∂rφ

∗∂rφ). (70)

Let us obtain the concrete expression for (70). For this we write as

L of (70)=−φ∗{(
p
−t)(0) t t t (0)}∂t∂tφ −φ∗∂r{(

p
−t)(0) t r r (0)∂rφ} (71a)

−φ∗{(
p
−t)(0) t t t (2) + ((

p
−t)(1) + (

p
−t)(2))g t t (0)}∂t∂tφ (71b)

−φ∗∂r{((
p
−t)(0) t t t (2) + ((

p
−t)(1) + (

p
−t)(2))t t t (0))∂rφ}, (71c)

where the meaning of the numbers in the superscripts are the same with (67).
We list the ingredients needed to calculate (71) as

• (
p
−t)(0) = 4m sin(θ )(∆r +m), (72a)

•
∑

i=1,2

(
p
−t)(i) =

90ε2m2 sin(θ ) cos2(θ )(3 cos(2θ )− 1)
π

+ 6

√

√ 5
π
εm2 sin(θ )(3 cos(2θ ) + 1),

(72b)

• t t t (0) = −2m/∆r, t r r (0) =∆r/2m, (72c)

• t t t (2) = −45ε2m sin2(2θ )/4π∆r, t r r (2) = 45∆rε2 sin2(2θ )/16πm. (72d)
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Using these, we can obtain the concrete expression of (70) to ε2-order as

(70) = −
∫

d4 x (2m)2 sin(θ )
¦

1+
3
2

√

√ 5
π
(1+ 3cos(2θ ))ε +

45
2π

�sin(2θ )
4

− cos2(θ )

+3 cos2(θ ) cos(2θ )
�

ε2
©

φ∗(t t t∂t∂t + ∂r(t
r r∂r))φ (73)

(t t t , t r r) =
�

−
2m
∆r

,
∆r
2m

�

=
�

−
2m

r − 2m
−

15ε2m2 sin2(2θ )
4π(r − 2m)2

,
r − 2m

2m
−

15ε2 sin2(2θ )
16π

�

. (74)

Note that the mass parts in the denominator of −2m
∆r and numerator of ∆r

2m do not agree each
other. We fix this point in (80b) by defining the effective mass (80d).

B.4 Integrate out of (θ , φ)

We will obtain the 2D effective near-horizon action by integrating out (θ , φ) of (73). For this,
we first expand φ by the spherical harmonics as

φ(t, r,θ ,φ) =
∑

l,m

φlm(t, r)Y m
l (θ ,φ). (75)

Then defining the following Λlm, kn (dΩ= dθdφ sinθ), we can write (73) as

Λlm, kn =

∫

dΩ
¦

1+
3
2

√

√ 5
π
(1+ 3 cos(2θ ))ε

+
45
2π

�sin(2θ )
4

− cos2(θ ) + 3cos2(θ ) cos(2θ )
�

ε2
©

(Y m
l )
∗Y n

k , (76a)

(73) =−
∑

l,m

∑

k,n

∫

d tdr(2m)2
¦

φ∗lm

�

−
2m

r − 2m
Λlm, kn −

15m2ε2

4π(r − 2m)2

∫

dΩ sin2(2θ )(Y m
l )
∗Y n

k

�

∂t∂tφkn

+φ∗lm∂r

� r − 2m
2m

Λlm, kn −
15m2ε2

16π

∫

dΩ sin2(2θ )(Y m
l )
∗Y n

k

�

∂rφkn

©

. (76b)
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We can evaluate all kinds of the (θ , φ)-integrals in (76b) (totally four) using (77) as5

•
∫

dΩ cos 2θ (Y n
k )
∗Y m

l

= −
4m2 − 1

4l2 + 4l − 3
δklδnm +

2(−1)2m
r

((l+1)2−m2)((l+2)2−m2)
(2l+1)(2l+5)

2l + 3
δk−2,lδnm

≡ IA0
lmδklδnm + IA2

lmδk−2,lδnm ≡ IA
lm, kn, (78a)

•
∫

dΩ cos2 θ (Y n
k )
∗Y m

l

=
2l2 + 2l − 2m2 − 1

4(l + 1)2 − 4(l + 1)− 3
δklδnm +

(−1)2m
r

((l+1)2−m2)((l+2)2−m2)
(2l+1)(2l+5)

2l + 3
δk−2,lδnm

≡ IB0
lmδklδnm + IB2

lmδk−2,lδnm ≡ IB
lm, kn, (78b)

•
∫

dΩ sin2(2θ ) (Y n
k )
∗Y m

l

=
8(−1)2m(l(l + 1)(l2 + l − 5) + 2l(l + 1)m2 − 3m4 + 3)

(2l − 3)(2l − 1)(2l + 3)(2l + 5)
δklδnm

+ 4(−1)2m−2l

√

√((l + 1)2 −m2)((l + 2)2 −m2)
4l2 + 12l + 5

×
(−1)2l(2l − 1)(2l + 7)− 4(−1)2m(l(l + 3)− 7m2)

7(2l − 1)(2l + 3)(2l + 7)
δk−2,lδnm

− 4(−1)2m

√

√((l + 1)2 −m2)((l + 2)2 −m2)((l + 3)2 −m2)((l + 4)2 −m2)
(2l + 1)(2l + 3)2(2l + 5)2(2l + 7)2(2l + 9)

δk−4,lδnm

≡ IC0
lmδklδnm + IC2

lmδnmδk−2,l + IC4
lmδnmδk−4,l ≡ IC

lm, kn, (78c)

•
∫

dΩ cos 2θ cos2 θ (Y n
k )
∗Y m

l

=
(−1)2m(2(−8l(l + 1)m2 + l(l + 1)(2l(l + 1)− 7) + 6m4) + 30m2 + 3)

(2l − 3)(2l − 1)(2l + 3)(2l + 5)
δklδnm

+ (−1)2m−2l

√

√((l + 1)2 −m2)((l + 2)2 −m2)
4l2 + 12l + 5

×
8(−1)2m(l(l + 3)− 7m2) + 5(−1)2l(2l − 1)(2l + 7)

7(2l − 1)(2l + 3)(2l + 7)
δnmδk−2,l

+ 2(−1)2m

√

√((l + 1)2 −m2)((l + 2)2 −m2)((l + 3)2 −m2)((l + 4)2 −m2)
(2l + 1)(2l + 3)2(2l + 5)2(2l + 7)2(2l + 9)

δnmδk−4,l

≡ ID0
lm δklδnm + ID2

lm δnmδk−2,l + ID4
lm δnmδk−4,l ≡ ID

lm, kn. (78d)

5Necessary formulas for the calculations (78a)-(78d):

(Y m
l )
∗ = (−)mY −m

l ,

∫

dΩ (Y m1
l1
)∗Y m2

l2
= δl1 l2δm1m2

,

∫

dΩ sin 2θ (Y m1
l1
)∗Y m2

l2
= 0 and

∫

dΩ (Y m1
l1
)∗(Y m2

l2
)∗Y M

L =

√

√ (2l1 + 1)(2l2 + 1)
4π(2L + 1)

〈l1 0 l2 0|L 0〉〈l1 m1 l2 m2|L M〉,
(77)

where 〈l1m1 l2m2|LM〉mean Clebsch-Gordan coefficients [47]. We can obtain (78a)-(78d) using (77) by rewriting
these integrands into the form of the 3 products of spherical harmonics. To be concrete, express cos(2θ ), cos2 θ ,
sin2(2θ ) and cos2 θ cos(2θ ) by Y 0

0 , Y 0
2 and Y 0

4 (e.g. cos(2θ ) = 8
3

Æ

π
5 Y 0

2 −
2
p
π

3 Y 0
0 ).
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Next problem is it is not diagonalized with regard to k and l. This reflects the shape of the
horizon of our 4D black hole is not a sphere. Actually, it depends on (θ , φ) as in (52) (for
zeroth law of black hole thermodynamics, see Sec.B.2). In the next subsection, we diagonalize
these by redefining fields, which corresponds to rearrange appropriate bases.

B.5 2D effective near-horizon metrices

Using (78a)-(78d), we can write (76b) as

∑

kn

∑

lm

∫

d tdr (2m)2
¦

φ∗kn

�

−
2m

r − 2m
Λlm, kn −

15m2ε2

4π(r − 2m)2
IC

kn, lm

�

∂t∂tφlm

+φ∗kn∂r

� r − 2m
2m

Λlm, kn −
15m2ε2

16π
IC

kn, lm

�

∂rφlm

©

=
∑

kn

∑

lm

∫

d tdr (2m)2Λkn, lm((geff)
t t
kn, lm∂tφ

∗
kn∂tφlm + (geff)

r r
kn, lm∂rφ

∗
kn∂rφlm), (79)

where (geff)t t
kn, lm and (geff)r r

kn, lm are the 2D effective near-horizon metrices given as

Λkn, lm =
�

1+
3
2

√

√ 5
π

�

1+ 3IA0
lm

�

ε +
45
2π

�

−IB0
lm + 3ID0

lm

�

ε2
�

δklδmn

+
9
2

�

√

√ 5
π
IA2

lmε +
5
π

�

−IB2
lm + 3ID2

lm

�

ε2
�

δk−2,lδmn +
135
2π

ID4
lmε

2δk−4,lδmn

≡Λ(0)lmδklδmn +Λ
(2)
lmδk−2,lδmn +Λ

(4)
lmδk−4,lδmn, (80a)

(geff)
t t
kn,lm ≡ −

2m

r − 2m−
IC

kn, lm
Λkn, lm

15mε2

8πr

= −
2(meff)kn, lm

r − 2(meff)kn, lm
+O(ε3), (80b)

(geff)
r r
kn,lm ≡ ((geff)

t t
kn,lm)

−1, (80c)

(meff)kn, lm ≡m+
15m
8πr

IC
kn, lmε

2 +O(ε3)≡ m+
∆̄kn, lm

r
ε2, (80d)

where 1) ε2

Λkn, lm
= 1 + O(ε3) in (80d), 2) we defined Λ(0,2,4)

lm , ∆̄kn, lm and (meff)kn, lm, and 3)
(meff)kn, lm get depended on r, which may be concerned. However metrices before the near-
horizon limit in SecA.5 satisfy Einstein equation, and

(geff)
t t
kn,lm = −1+

r
2m
−

15IC
kn, lm

16 mπ
ε2 +

225 (IC
kn, lm)

2

128 mπ2r
ε4 +O

�

ε5
�

. (81)

Therefore, r-dependence is out of the analysis’s order. (Hawking temperature and flux are
obtained without any problems later.)

We perform the summation with regard to k and n. Then, the indices k and n in all the
(geff)t t

kn, lm, (meff)kn, lm and ∆̄kn, lm become l and m for the delta-functions in (80a). Therefore,
to shorten the expressions of equations, we in what follows denote these as

(geff)
t t
lm, lm→ (geff)

t t
lm, (meff)lm, lm→ (meff)lm, ∆̄lm, lm→ ∆̄lm. (82)

In what follows, t t- and r r-parts are basically same. We check r r-part only at the check-
point.
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In (79), we consider to change the front factor (2m)2 to (2(meff)lm)2. For this we evaluate
(2m)2

(2(meff)lm)2
Λkn, lm. With

(2m)2

(2(meff)lm)2
= 1−

2∆̄lm

m r
ε2 +O(ε3), (83)

and Λkn, lm given in (80a), we can calculate in ε2-order as

•
(2m)2

(2(meff)lm)2
Λ
(0)
lm = Λ

(0)
lm −

2∆̄lm

m r
ε2 +O(ε3)≡ Θ(0)lm , (84a)

•
(2m)2

(2(meff)lm)2
Λ
(2)
lm = Λ

(2)
lm +O(ε3), (84b)

•
(2m)2

(2(meff)lm)2
Λ
(4)
lm = Λ

(4)
lm +O(ε3). (84c)

Therefore, we can write the t t-part in (79) as

(79) =
lmax−4
∑

l=0

l
∑

m=−l

∫

d2 x (2(meff)lm)
2(L(0)lm +L(2)lm +L(4)lm ) (85a)

+
lmax−2
∑

l=lmax−3

l
∑

m=−l

∫

d2 x (2(meff)lm)
2(L(0)lm +L(2)lm ) (85b)

+
lmax
∑

l=lmax−1

l
∑

m=−l

∫

d2 x (2(meff)lm)
2L(0)lm , (85c)

where L(K)lm ≡ Λ
(K)
lm (geff)

t t
l+K m∂tφ

∗
l+K m∂tφlm for K = 0, 2,4, (85d)

lmax is finally taken to∞. The φlm with l larger than lmax are zero, since no such φlm exist
by definition. Calculation from (79) to (85) proceeds irrelevantly of either t t- or r r-part.

Focusing on (85a), we write its integrand as

ΩlmΘ
(0)
lm

�

∂tφ
∗
lm∂tφlm +

�(geff)t t
l+2m

(geff)t t
lm

Λ
(2)
lm

Θ
(0)
lm

∂tφ
∗
l+2m +

(geff)t t
l+4m

(geff)t t
lm

Λ
(4)
lm

Θ
(0)
lm

∂tφ
∗
l+4m

�

∂tφlm

�

,

Ωlm ≡ (2(meff)lm)
2(geff)

t t
lm.

(86)

Θ
(0)
lm are in (84a), and we defined Ωlm to shorten the expression. Rescaling as

φlm→
φlm

�

Θ
(0)
lm

�1/2
for all l, m, (87)

we can rewrite (86) as

(86) = Ωlm

�

∂tφ
∗
lm∂tφlm +

�(geff)t t
l+2 m

(geff)t t
lm

Λ
(2)
lm

�

Θ
(0)
lmΘ

(0)
l+2 m

�1/2
∂tφ

∗
l+2 m

+
(geff)t t

l+4 m

(geff)t t
lm

Λ
(4)
lm

�

Θ
(0)
lmΘ

(0)
l+4 m

�1/2
∂tφ

∗
l+4 m

�

∂tφlm

�

. (88)
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Rescaling above can be understood as follows. Writingφlm as (Θ(0)lm )
−1/2(Θ(0)lm )

1/2φlm, treat

as φ(new)
lm ≡ (Θ(0)lm )

1/2φlm. At this time, S[φ] = S[(Θ(0))−1/2φ(new)] but of course
Dφ 6=Dφ(new) = JDφ formally writing, therefore,

∫

Dφ exp(−iS[φ]) 6=
∫

Dφ(new) exp(−iS[(Θ(0))−1/2φ(new)]), (89)

and J involves r somehow as can be seen from (91). However, J would be finally just a
finite numerical value, although we could not evaluate its numerical value specifically. This is
because our analysis is the one with the ∆r (= r − rh,4D) assumed small, therefore the values
of r in our analysis are always some values slightly larger than rh,4D. Therefore, in (89), J
is just some finite number and its r.h.s. can be finally written as J Zφ (Zφ = l.h.s. of (89)),
and the effect by the rescaling of (87) is irrelevant in the following analysis6. Even if J is a
divergent quantity it is still a number, therefore the conclusion is not changed7. In any case,
following a general formula:

∫

Dφ exp(−i
∫

d x4
∫

d y4φ(x)M(x , y)φ(y))∝ DetM, there
is no difference finally in the results of the path-integral obtained with/without (87).

It is important to give attention to the consideration above that r-direction is finite as it
is related with the problem of boundary condition (this is the problem arising even in the
classical level) and a fundamental supposition in the quantum field theory that spacetime
spreads infinitely (breaking of translational symmetry at the boundary in r-direction may be
needed to be cared, if to be exact).

What is being done in this section is just to obtain the expression of the action, not obtaining
the solution, therefore these problems are irrelevant in this section. However, since we treat
the quantum effect in the next section, we give attention to these problems.

In the next section, we use the formulas of quantum anomaly. Although author has not
checked the derivation process of these one by one entirely, these are obtained by once ob-
taining these in a flat spacetime, then by replacing the derivatives in these with covariant

6To understand this, let us consider the following path-integral for a limited section, r0 ≤ r ≤ r1,

Zφ ∼
∫

Dφ exp(−i

∫ r1

r0

drφ(r) f (r)φ(r) r−2),

Dφ∝
∏

i=0 to 1

dφ(ri),

∫ r1

r0

drφ(r) f (r)φ(r) r−2 ∼
∑

i=0 to 1

φ(ri) f (ri)φ(ri) r
−2
i ∆r,

where f (r) is some function with derivatives ∂r . ri is the discretized coordinate, which represents some points on
r0 ≤ r ≤ r1, and ∆r corresponds to dr. “∼” in the first line means, roughly saying, an expression having been
reached performing path-integral for canonical momenta.

Now, consider to change the variable of the path-integral as φ→ φ(new) ≡ φ r−1. At this time, the expression of
Zφ is changed as

Zφ →
∏

i=0 to 1

ri ·
∫

Dφ(new) exp(−i

∫ r1

r0

drφ(new)(r) f (r)φ(new)(r)),

where
∏

i=0 to 1

dφ(ri)→
∏

i=0 to 1

ri d(φ(ri)ri
−1) =

∏

i=0 to 1

ri ·
∏

i=0 to 1

d(φ(new)(ri)).

∏

i=0 to 1 ri corresponds to J , which is some finite number. The rescaling of (87) is likewise.
7Let us just check the difference with the case of quantum anomalies. For any gauge transformation,

Zφ = Zφ′ . However, for some kinds of gauge transformation, the path-integral measure is not invariant, which
we formally represent as Dφ′ = JDφ. Action is also not invariant in some cases, which we represent as
S[φ′] = S[φ] +δS[φ]. Therefore, Zφ′ =

∫

JDφ exp(−i(S[φ] +δS[φ])) =
∫

Dφ exp(logJ − i(S[φ] +δS[φ])),
from which logJ − iδS[φ] = 0 is obtained. In evaluating logJ , some regularization is needed. As a result, logJ
is given as some function of field strengths (e.g. around Eq.(5.20) in [48]) and the quantum anomaly is given,
which is the different point from the case of (87).
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derivatives [49]. In these derivation process, the supposition that the spacetime spreads in-
finitely would be used.

Therefore, as what we do in fact, our study focuses on the vicinity of the horizon before
taking the quantum effect, and quantum effect is taken in after focusing on the vicinity of the
horizon, however, as the problem of how to consider, it would be possible to consider by the
following way: 1) performing the analysis for the quantum anomaly in an infinitely spreading
flat spacetime, 2) then replacing that flat spacetime with the one in this study with r-direction
not limited, 3) then just focusing on the vicinity of the horizon (not limiting r-direction), 4)
we have used the formulas of quantum anomaly at there. By considering like this, problems
mentioned above are considered not to arise in the analysis in this study.

We here would like to look at the calculation from (86) to (88) via (87) in the r r-part,
since Θ(0)lm depend on r as can be seen in (84a), and at (88) in the calculation of the r r-part,
the following equation appears, and which can be calculated as

(geff)r r
l+K m

(geff)r r
lm

Λ
(K)
lm

Θ
(0)
lm

∂r

� φl+K m
�

Θ
(0)
l+K m

�1/2

�

∂r

� φlm
�

Θ
(0)
lm

�1/2

�

=
(geff)r r

l+K m

(geff)r r
lm

Λ
(K)
lm

Θ
(0)
lm

�∂rΘ
(0)
l+K mφl+K m

2
�

Θ
(0)
l+K m

�3/2
−
∂rφl+K m
�

Θ
(0)
l+K m

�1/2

��∂rΘ
(0)
lmφlm

2
�

Θ
(0)
lm

�3/2
−
∂rφlm
�

Θ
(0)
lm

�1/2

�

=
(geff)r r

l+K m

(geff)r r
lm

Λ
(K)
lm

Θ
(0)
lm

∂rφl+K m
�

Θ
(0)
l+K m

�1/2

∂rφlm
�

Θ
(0)
lm

�1/2
+O(ε3) , (90)

where K = 2,4 and

(geff)r r
l+K m

(geff)r r
lm

∼ 1+ ε2, Λ
(K)
lm ∼ ε

K/2, Θ
(0)
lm ∼ 1+ ε +

�

1+ r−1
�

ε2,
Λ
(K)
lm

Θ
(0)
lm

∼ εK/2, (91)

from the definitions of (80b), (80a) and (84a). Therefore, the extra terms drop and the r r-
part at (88) can be obtained in the same way with (88) except ∂t and (geff)t t

lm.

Then, for the parts in (88), the following calculation can be held in ε2-order:

(geff)t t
l+K m

(geff)t t
lm

Λ
(K)
lm

�

Θ
(0)
lmΘ

(0)
l+K m

�1/2
=

Λ
(K)
lm

�

Θ
(0)
lmΘ

(0)
l+K m

�1/2
+O(ε3)≡ 2Λ

(K)
lm (92)

for all l, m, where K = 2,4.

The one above can be actually checked with the (geff)t t
lm, Λ(K)lm and Θ(0)lm given in (80b), (80a)

and (84a) respectively, and can hold in the case of r r, namely if (geff)t t
l+K m and (geff)t t

l m are
(geff)r r

l+K m and (geff)r r
l m. Using (92), we can write (88) as

(88) = Ωlm

�

∂tφ
∗
lm∂tφlm + 2

�

Λ
(2)
lm∂tφ

∗
l+2 m +Λ

(4)
lm∂tφ

∗
l+4 m

�

∂tφlm

�

. (93)

We here define

Γ
(2)
lm ≡ Λ

(2)
lm∂tφl+2 m, Γ

(4)
lm ≡ Λ

(2)
lm∂tφl+2 m +Λ

(4)
lm∂tφl+4 m, (94)

to shorten the expression of the equations (Γ (2)lm is not used immediately). Then,

(93) = Ωlm

��

�∂tφlm + Γ
(4)
lm

�

�

2 −
�

Λ
(2)
lm

�2
∂tφ

∗
l+2m∂tφl+2m

�

, (95)
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where Λ
(K)
lm ∼ ε

K/2 from (92) and Γ (4)lm
∗Γ
(4)
lm =

�

Λ
(2)
lm

�2
∂tφ

∗
l+2 m∂tφl+2 m +O(ε3).

Performing the calculation regarding (85b) likewise, we can write (85) as

(88) =
lmax−4
∑

l=0

l
∑

|m|=0

∫

d2 x Ωlm

��

�∂tφlm + Γ
(4)
lm

�

�

2 −
�

Λ
(2)
lm

�2
∂tφ

∗
l+2m∂tφl+2m

�

+
lmax−2
∑

l=lmax−3

l
∑

|m|=0

∫

d2 x Ωlm

��

�∂tφlm + Γ
(2)
lm

�

�

2 −
�

Λ
(2)
lm

�2
∂tφ

∗
l+2m∂tφl+2m

�

+
lmax
∑

l=lmax−1

l
∑

|m|=0

∫

d2 x Ωlm∂tφ
∗
lm∂tφlm +O(ε3). (96)

Calculation for the r r-part from (88) to (96) can be proceeded without problems, and the
r r-part at (96) is also obtained basically same with (96).

Now we consider to do uniformly slide each “Ωlm

�

Λ
(2)
lm

�2
∂tφ

∗
l+2m∂tφl+2m” appearing in the

line of l to the line of l + 2 in (96). For this, let us check Ωlm

�

Λ
(2)
lm

�2
:

Ωlm

�

Λ
(2)
lm

�2
=

405m3(IA2
lm)

2

2π(r − 2m)
ε2 +O(ε3), (97)

where IA2
lm are numbers in (78a). Thus we can write Ωlm

�

Λ
(2)
lm

�2
changing its l to l + 2 as

Ωlm

�

Λ
(2)
lm

�2
=
(IA2

lm)
2

(IA2
l+2 m)

2
Ωl+2 m

�

Λ
(2)
l+2 m

�2
+O(ε3)≡ Ωl+2 mΞl+2 m, (98)

where

(IA2
lm)

2

(IA2
l+2 m)

2
=
(2l + 9)(2l + 7)2

�

(l + 1)2 −m2
� �

(l + 2)2 −m2
�

(2l + 1)(2l + 3)2 ((l + 3)2 −m2) ((l + 4)2 −m2)
, (99a)

Ξl+2 m ≡
(IA2

lm)
2

(IA2
l+2 m)

2

�

Λ
(2)
l+2 m

�2
. (99b)

With (98), we can replace as

Ωlm

�

Λ
(2)
lm

�2
∂tφ

∗
l+2 m∂tφl+2 m→ Ωl+2 mΞl+2 m∂tφ

∗
l+2 m∂tφl+2 m for all l, m. (100)
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Therefore, uniformly sliding each “Ωlm

�

Λ
(2)
lm

�2
∂tφ

∗
l+2m∂tφl+2m” by 2 regarding l in (96),

(96) =
1
∑

l=0

l
∑

|m|=0

∫

d2 x Ωlm

�

�∂tφlm + Γ
(4)
lm

�

�

2

+
lmax−4
∑

l=2

l−2
∑

|m|=0

∫

d2 x Ωlm

��

�∂tφlm + Γ
(4)
lm

�

�

2 −Ξlm ∂tφ
∗
lm∂tφlm

�

+
lmax−4
∑

l=2

l
∑

|m|=l−1

∫

d2 x Ωlm

�

�∂tφlm + Γ
(4)
lm

�

�

2

+
lmax−2
∑

l=lmax−3

l−2
∑

|m|=0

∫

d2 x Ωlm

��

�∂tφlm + Γ
(2)
lm

�

�

2 −Ξlm ∂tφ
∗
lm∂tφlm

�

+
lmax−2
∑

l=lmax−3

l
∑

|m|=l−1

∫

d2 x Ωlm

�

�∂tφlm + Γ
(2)
lm

�

�

2

+
lmax
∑

l=lmax−1

l−2
∑

|m|=0

∫

d2 x Ωlm

�

∂tφ
∗
lm∂tφlm −Ξlm ∂tφ

∗
lm∂tφlm

�

+
lmax
∑

l=lmax−1

l
∑

|m|=l−1

∫

d2 x Ωlm∂tφ
∗
lm∂tφlm +O(ε3). (101)

We once again perform the rescaling of the fields as

φl m→
φl m

(1−Ξlm)1/2
for l = 2, 3, · · · , lmax (l = 0, 1 are not included)
and |m|= 0,1, · · · , l − 2 for each l. (102)

This rescaling is possible by the same reason written around (89). At this time, Λ
(K)
lm ∼ ε

K/2

(see under (95)) and Γ (K)lm and ∂tφ Γ
(K)∗
lm can stay same in ε2-order as

Γ
(K)
lm → Γ

(K)
lm +O(ε3), ∂tφ Γ

(K)∗
lm → ∂tφ Γ

(K)∗
lm +O(ε3) (103)

for all l and m, where K = 2, 4.

Therefore, we can exchange the lines in (101) with the squared form as
�

�∂tφlm + Γ
(K)
lm

�

�

2 −Ξlm ∂tφ
∗
lm∂tφlm→

�

�∂tφlm + Γ
(K)
lm

�

�

2
, (104)

where “→” means the rescaling (102). Therefore, we can write (101) as

(101) =
lmax−4
∑

l=0

l
∑

m=−l

∫

d2 x Ωlm

�

�∂tφlm + Γ
(4)
lm

�

�

2

+
lmax−2
∑

l=lmax−3

l
∑

m=−l

∫

d2 x Ωlm

�

�∂tφlm + Γ
(2)
lm

�

�

2

+
lmax
∑

l=lmax−1

l
∑

m=−l

∫

d2 x Ωlm∂tφ
∗
lm∂tφlm. (105)

We here would like to give attention to the r r-part. The point to be checked between (96)
and (105) is the manipulation (102): whether ∂r

� φl m
(1−Ξlm)1/2

�

= ∂rφl m
(1−Ξlm)1/2

+O
�

ε3
�

can be held
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or not at (102) in the calculation of the r r-part. For this, let us check the r-dependence of Ξlm:

Ξlm =
(IA2

lm )
2

(IA2
l+2 m)

2

�

Λ
(2)
lm

2
�

Θ
(0)
lmΘ

(0)
l+2 m

�1/2

�2
, where

(IA2
lm )

2

(IA2
l+2 m)

2
are numbers, Λ

(2)
lm ∼ ε and

Θ
(0)
lm ∼ 1+ ε + (1+ r−1)ε2. Therefore, Ξlm is independent of r in ε2-order. If so, the equation

above can be held, and the r r-part at (105) can be obtained as (105) as well as the t t-part
without the difference of ∂r and (geff)r r

lm.
Since it can be written as follows:

∂tφlm + Γ
(4)
lm = ∂t(φlm +Λ

(2)
lmφl+2 m +Λ

(4)
lmφl+4 m), (106a)

∂tφlm + Γ
(2)
lm = ∂t(φlm +Λ

(2)
lmφl+2 m), (106b)

let us perform the redefinition of the fields as

• ϕlm ≡ φlm +Λ
(2)
lmφl+2 m +Λ

(4)
lmφl+4 m for l = 0,1, · · · , lmax − 4, (107a)

• ϕlm ≡ φlm +Λ
(2)
lmφl+2 m for l = lmax − 3, lmax − 2, (107b)

• ϕlm ≡ φlm for l = lmax − 1, lmax , (107c)

where m above are 0,±1, · · · ,±(l − 2) for each l. The leadings of Λ
(K)
lm is εK/2.

(87) and (102) are rescalings which can be absorbed as configurations of the path-integral
for φlm for the reason written around (89), however (107) is recombinations. Therefore, the
Jacobian for φlm → ϕlm, should be checked. Forming a matrix according to (107) We can
check it gives unit.

Withϕlm above, we can finally obtain the decoupled 2D effective action which is equivalent
with (70) as a action in the range of ε2 as

(105) =
lmax
∑

l=0

l
∑

|m|=0

∫

d2 x Φlm((geff)
t t
lm ∂tϕ

∗
lm∂tϕlm + (geff)

r r
lm ∂rϕ

∗
lm∂rϕlm), (108)

where 1) Φlm =
�

2(meff)lm
�2

and the 2D effective metrices are given in (80). 2) Einstein
equation can be satisfied with these effective metrices. 3) Since the labels distinguishing the
effective metrices are irrelevant of the spins, the effective metrices would not be changed if
we considered fermions [50–52] and higher spin fields [53].

Lastly, the behavior (91) is critical in the feasibility of the analysis in this subsection.

C Hawking Temperature in the effective 2D

We have obtained the 2D effective metrices, which are labeled by spherical harmonics modes.
From these, we can naively expect 1) existence of various Hawking temperatures for each effec-
tive metric, 2) correspondingly, breaking of the zeroth law of the black hole thermodynamics.
(Furthermore, 3) (meff)kn, lm get depended on r as in (80d), though this is not problems in the
analysis’s order.) Hence, let us check the Hawking temperature.

We can obtain the position of the horizon in the 2D picture from (geff)t t, lm = 0 as

(rh,2D)lm = 2m+
15mIC0

lm

8π
ε2 +O(ε3). (109)

As this is labeled by spherical harmonics modes, we can expect the points above. However,
the Hawking temperature obtained from the 2D effective metrices with the one above is

TH = 1/8πm+O(ε3). (110)
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This is just that in the 4D Schwarzschild and free from the concerns above. The reason of this
is the same with those written in Sec.B.2, where it is considered replacing with (81).

The original 4D and effective 2D spacetimes are different each other. However the Hawking
temperature in the effective 2D spacetime is generally considered to coincide with the one in
the original 4D spacetime. Actually the one above coincides with (66).

D Hawking flux by anomaly cancellation

We call the anomaly cancellation method as “anomaly cancellation”. Since our U(1) gauge
field does not arise chiral anomalies, we ignore it as mentioned under (69b). Hence, we do
not consider the Hawking flux of the electric charged current.

D.1 Set up of the radial direction

The key point in the anomaly cancellation is the fact of no outgoing modes on the horizon
at the classical level. To treat this situation in the anomaly cancellation, some interval from
(rh,2D)lm in the radial direction are sharply divided as follows:8

(rh,2D)lm ≤ r ≤ (rh,2D)lm + εlm, (111a)

(rh,2D)lm + εlm < r ≤ (ro)lm. (111b)

• εlm represent the divided points, which are finally taken to zero,

• (ro)lm mean the positions put by hand reasonably supposing that it is the maximum of
the r to where the description by the 2D effective action (108) is possible.

• (111a) is the region where supposed only ingoing modes exist at the classical level,

• (111b) is the region where both ingoing and outgoing modes exist at classical level.

We refer to the two regions, (111a) and (111b), as the regions H and O, respectively. In
what follows we suppose the following corresponding in the 2D effective picture:

the outgoing modes→ the right-hand modes,

the ingoing modes→ the left-hand modes.

D.2 Hawking flux of the energy-momentum tensors

We consider the distribution function in the region (rh,2D)lm ≤ r ≤ (ro)lm as

Z
�

(geff)
µν

lm,Φlm

�

=

∫

Dϕlm exp iS2D((geff)
µν

lm,Φlm,ϕlm), (112)

where (geff)
µν

lm, Φlm and ϕlm are those in (108). Then, consider degrees of gauge freedom of
general coordinate transformation in that region as

xµ 7→ x ′µ = xµ −ηµ (xµ) . (113)

8Radial direction is sharply divided with ε in all the papers of the anomaly cancellation, which is unnatural.
This problem is commented in Chap.4 in [46] and treated in [54]. There is one more artificial point in the anomaly
cancellation, which is to use two anomalies, gravitational and consistent anomalies. [55] cares this point.
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Variation toward these can be written as

(δZ)lm =
�

δL(geff)
µν

lm
δ

δL(geff)
µν

lm

+δLAµ lm
δ

δLAµ, lm
+δLΦlm

δ

δLΦlm

�

Z (114)

with δL(geff)
µν

lm = − (∇
µ

lmη
ν +∇νlmη

µ

lm), (115a)

δLAµ, lm =∇µ, lmη
ν, Aν lm +η

ν∇ν, lmAµ, lm, (115b)

(δLAµlm = −∇
µ

lmη
ν, Aν lm +η

ν∇ν, lmAµlm)

δLΦlm = η
µ∂µΦlm, (115c)

where δL means Lie derivative. l and m are not summed. We keep Aµ, lm just in case.
Each (δZ)lm should vanishes, from which we can obtain the conservation laws for the

energy-momentum tensors at the classical level from (δZ)lm = 0. Aside from these, quantum
anomalies exist as [56]

∇µTµν, lm = ±
1

96π(−(geff)lm)1/2
εβδ∂δ∂αΓ

α
νβ , lm ≡A ±

ν, lm, (116a)

(+/− → left- / right-hand mode’s contributions)

∇µeTµν, lm = ∓
1

96π(−(geff)lm)1/2
εµν∂

µRlm ≡ fA ∓
ν, lm, (116b)

(−/+→ left- / right-hand mode’s contributions)

where εt r = 1 and εµν = (geff)µα, lm(geff)νβ , lmε
αβ . Top and bottom are the consistent and

covariant anomalies. eTµν, lm follow the boundary condition as

(eTH)µν, lm

�

�

r=(rh,2D)lm
= 0. (117)

The conservation laws in the anomaly cancellation are given combining these as

∇µTµν, lm = Fµν, lmJµlm + Aν, lm∇µJµlm −
∂νΦlm

(−(geff)lm)1/2
δS2D

δLΦlm
+ both/either A ±

ν, lm, (118a)

∇µeTµν, lm = Fµν, lmJµlm + Aν, lm∇µJµlm −
∂νΦlm

(−(geff)lm)1/2
δS2D

δLΦlm
+ both/either fA ∓

ν, lm, (118b)

where Jµlm ≡
1

(−(geff)lm)1/2
δS2D
δLAµ, lm

and Tµν, lm ≡
2

(−(geff)lm)1/2
δS2D

δL(geff)
µν

lm
. “both” or “either” is taken

according to both left- and right-hand modes exist or not. Anomalies vanish in “both” as the
left- and right-hand modes cancel each other.

We show (118) in our case by calculating these for the case ν= t and r respectively using
(80b), (80c) and (80b) etc as

∂r T r
t, lm = both/either A ±

t, lm(= ±∂r N r
t, lm), ∂r T r

r, lm = 0, (119a)

∂r eT
µ

t, lm = both/either fA ∓
t, lm(= ±∂r eN

r
t, lm), ∂r eT

r
r, lm = 0, (119b)

N r
t, lm = ( f

′2 + f f ′′)/192π, eN r
t, lm = ( f f ′′ − ( f ′)2/2)/96π,

where f means −(geff)t t, lm and ′ means ∂r . We have used the facts that our gauge fields are
ignoble (see under (69b)) and our dilaton is time-independent with our killing vector.

We give the expressions of the energy-momentum tensors we employ as

Tµν, lm =(To)
µ
ν, lmΘlm + (TH)

µ
ν, lmHlm, (120a)

eTµν, lm =(eTo)
µ
ν, lmΘlm + (eTH)

µ
ν, lmHlm, (120b)
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where Θlm mean the step function θ
�

r −
�

(rh,2D)lm + εlm

��

and Hlm is 1−Θlm. Therefore,

(TH)
µ
ν, lm include only the right-hand modes, (121a)

(To)
µ
ν, lm include both hand modes, which leads no anomalies. (121b)

(eTH)µν, lm and (eTo)µν, lm are likewise. Sharp expressions of (120) is rooted in setting (111).
From (119) and (120) with (121), we can obtain the identities we consider as

∂r(TH)
r

t, lm = A +
t, lm = ∂r N r

t, lm and ∂r(To)
r

t, lm = 0, (122a)

∂r(eTH)
r

t, lm = fA −
t, lm − ∂r eN

r
t, lm and ∂r(eTo)

r
t, lm = 0. (122b)

From these, we can get the expressions of (TH, o)r t, lm and (eTH, o)r t, lm as

(TH)
r

t, lm = (cH)
r

t, lm +

∫ r

(rh,2D)lm

dr ∂r N r
t, lm, (To)

r
t, lm = (co)

r
t, lm, (123a)

(eTH)
r

t, lm = (ecH)
r

t, lm +

∫ r

(rh,2D)lm

dr ∂r eN
r

t, lm, (eTo)
r

t, lm = (eco)
r

t, lm, (123b)

where ((cH)r t, lm, (ecH)r t, lm) and ((eco)r t, lm, (eco)r t, lm) are integral constants. The former two
are the values of those at horizon, the latter two are the values of those at r = (ro)lm. (eco)r t, lm
is identified with the total amount of the Hawking flux (e.g. [43,57]9).

We consider an equation obtained from (123) as10

(eTH)
r

t, lm − (TH)
r

t, lm = ( f f ′′ − 2( f ′)2)/192π. (124)

We can obtain the value of (cH)r t, lm from (124) with (117) as

(cH)
r

t, lm = −
1

192π
( f f ′′ − 2( f ′)2)

�

�

r=(rh,2D)lm
=
( f ′)2

96π

�

�

�

r=(rh,2D)lm
=
π

6
T2

H , (125)

where f ′|r=(rh,2D)lm = 4πTH , (TH is (110)). Variation for (113) can be written as

(δS2D)lm = −
∫

d2 x(−(geff)lm)
1/2ην∇µ, lmTµν, lm

= −
∫

d x2ηt( ((To)
r

t, lm − (TH)
r

t, lm + N r
t, lm)δ

�

r − ((rh,2D)lm + εlm)
�

+∂r(N
r

t, lmH)). (126)

9(eco)r t, lm can be identified with the value of the total amount of the black-body radiation through the identi-
fication of T r

t with that ((28) in [43]), where the fermion case is considered in [43, 57] to avoid the problem of
superradiance supposing that it would be the same with the bosonic case.

Once one has checked that the value of T r
t can agree to the black-body radiations in the 3 kinds of the fun-

damental 4D black holes (Schwarzschild, Kerr and charged), all the papers concerning the anomaly cancellation
compute the value of T r

t in various black holes, and consider that it always represents the total amount of the
black-body radiation. We in this study also follow this way.

10There is one point. We can see a quantity: (eTH)r t, lm −
�

(eco)r t, lm − (co)r t, lm

�

appears when obtaining (124)
from (123). We can see we should redefine it as a new (eTH)r t, lm so that new (eTH)r t, lm can vanish at the horizon
as in (117) by appropriately taking the integral constants, (eco)r t, lm and (co)r t, lm.

This is because (eTH)r t, lm should vanish at the horizon to get (124) (or (24) in [43] or (36) in [57]), however
it does not if it is as it is. We can see this as (eTH)r t, lm

�

�

r=(rh,2D)lm
= −eN r

t, lm

�

�

r=(rh,2D)lm
6= 0 with f ′

�

�

r=(rh,2D)lm
6= 0.

(This is not written in any papers such as [43, 57]. Further, [56] is referred at (36) in [57], so look it. Then its
(6.21) corresponds to (124). There should be some integral constants there when Pµν is obtained by performing
integration in (6.22), however no comment about this point there.)
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εlm are taken to zero as the near-horizon limit. The last term will vanish [42,43,58]11.
(δS2D)lm should vanish, from which (co)r t, lm, the total amount of the Hawking flux, are

determined as

(co)
r

t, lm = (cH)
r

t, lm − N r
t, lm

�

�

r=(rh,2D)lm
= πT2

H/12. (127)

This result is the same with just the Schwarzschild [42, 43, 57]. The reason of this is that
the Hawking flux is determined from the f , f ′ and f ′′ at r = (rh,2D)lm as in (124) and (125),
however these are not changed from just the Schwarzschild as can be seen from (81). This is
the same situation with the Hawking temperature in Sec.B.2 and C.

E Comment on result in terms of the information paradox

As mentioned under (110), the result (127) would be the one in the original 4D black hole,
and if the correction is to ε2-order andφ-independent, we could conclude by the logic in Sec.6
the black-body radiation of the supertranslated black holes would be always thermal.

Important problem for us is the information paradox. As an insight obtained from this
work, the Hawking temperature and flux could not be the solution as we have found there is
no breaking of the thermal flux in the range of the analysis in this paper.

Supertranslated black hole spacetimes would be normal in reality and how to be super-
translated is determined by the initial configuration [6]. Therefore, the information of the
initial configuration would be stored in the configuration of the asymptotic region of the space-
time, again which would be the key of the information paradox.
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