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1 Introduction

This report consists a summary of our recent progress on the relationship between area law and
OPE blocks. Area law has been a continuous topic in physics. The prototype of area law dates
back to black hole physics in general relativity. The unusual property that the thermal entropy
of a black hole is proportional to the event horizon of the black hole [1, 2] has stimulated
various modern idea of theoretical physics, including the famous holographic principle.

OPE block [3,4], on the other hand, is a relatively unexplored topic in conformal field theory,
though it has been defined and discussed at the early stages of conformal field theory [5, 6].
The operator product expansion of two primary operators is equivalent to a summation of OPE
blocks with corresponding three point function coefficients. It is a smeared operator which is
generated from the so-called (quasi-)primary operator, and extends the study of local operators
in CFT to non-local operators.

Modular Hamiltonian, the logarithm of the reduced density matrix [7], plays a central role
in the context of geometric entanglement entropy [8–11]. Entanglement entropy is a von
Neumann entropy generated from the reduced density matrix of a subregion of spacetime. It
suffers divergent problem in general. One can introduce a UV cutoff to secure this problem.
An intriguing fact of the entanglement entropy is that it obeys area law in the leading order
of the divergences. Its connection to gravity has been established by the work of Ryu and
Takayanagi [12], in which they proposed that the entanglement entropy of a CFT is equal to
the area of a minimal surface in the bulk AdS spacetime.

On the CFT side, the OPE block provides a novel look at the modular Hamiltonian. Modular
Hamiltonian is a special OPE block generated by the stress energy-momentum tensor for a
ball region. As we will show, modular Hamiltonian is related to “area laws” in the context of
entanglement entropy 1. This leads to the conjecture that similar to the modular Hamiltonian,
general OPE blocks may exhibit area law. Indeed, in a series of papers [13, 14, 16, 17], we
have shown that the quantity which satisfies area law is the type-(m) connected correlation
function (CCF). More explicitly, the leading term of the type-(m) CCF is proportional to the
area of the boundary of the ball. In the subleading terms, we find a logarithmic divergence
with degree q. In all examples we studied, we found q = 0,1, 2, but in general we don’t rule
out the possibility of other values. The coefficient pq for the logarithmic term with degree q
is cutoff independent. We establish a relationship between pq and the type-(m− 1, 1) CCF of
OPE blocks for two balls which are far away from each other. The coefficient pq obeys a cyclic
identity which is independent of the order of the operators.

This paper is organised as follows. In section 2, we will introduce some basic concepts and
conventions used in this paper. Section 3 is devoted to the study of the new area law which is
related to the OPE blocks. Various generalizations have been given in section 4. We conclude
in section 5 with a number of general open problems that deserve, in our opinion, more work.

2 Setup

In this section, we introduce some basic concepts and conventions used in this paper.

1The “ area law” discussed in this paper includes subleading corrections. We use the slogan “ area law” following
the convention of geometric entanglement entropy.
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2.1 Area law

In any continues quantum field theory(QFT), physical degrees exist at each point
(t, x i), i = 1, · · · , d − 1 of spacetime M . At each time slice t = t0, the data on the Cauchy
surface Σ determines the evolution of the fields. One can divide the surface Σ into a spacelike
subregion A and its complement Ā, Σ = A∪ Ā. The boundary ∂ A is a codimension 2 surface
whose area is A. The causal development of A is denoted by D(A). The physical data on A
can only determine the evolution of the fields in D(A). The causal development D(A) is an
independent subsystem of the original spacetime M . Operators in this subsystem are collected
to form an algebra a(A). Assume the QFT in the spacetime M is described by a density matrix
ρ, then by integrating out the degrees of freedom in the complement of Ā, one achieves a
reduced density matrix ρA

ρA = trĀρ. (2.1)

The reduced density matrix ρA is a special operator in a(A) since it describes the subsystem
D(A) effectively. A general quantity Q(A) in a(A) is said to obey area law if its leading term is
proportional to the area of the boundary ∂ A,

Q(A)∝A+ · · · . (2.2)

The area law defined in (2.2) can be extended to general field theory. One typical example is
the black hole entropy in Einstein gravity. The black hole entropy is proportional to the area
of its event horizion,

Sbh =
A
4G

, (2.3)

where G is the Newton constant. At the loop level, black hole entropy requires logarithmic cor-
rections [18–23]. Usually, the logarithmic correction is in the form C logA where the constant
C may encode useful information of the black hole.

Sometimes the area law is divergent, one typical example is the geometric entanglement en-
tropy

SA = −trAρA logρA. (2.4)

In this case, one should insert a UV cutoff ε > 0,

SA = γ
A
εd−2

+ · · · . (2.5)

In the subleading terms, there may be a logarithmic term whose coefficient is independent of
the cutoff,

SA = γ
Rd−2

εd−2
+ · · ·+ p log

R
ε
+ · · · , (2.6)

where the parameter R is the characteristic length of the region A.

In this report, we will present a quantity Q(A) which has a slightly different logarithmic be-
haviour

Q(A) = γRd−2

εd−2
+ · · ·+ pq logq R

ε
+ · · · . (2.7)

The maximum power q of the logarithmic terms is a nonnegative integer. We will call it the
degree of the quantity Q(A). The coefficient pq is cutoff independent and encodes useful
information of the theory. There could be logarithmic pieces with smaller power, however, their
coefficients are not universal under a rescaling ε→ λε. In the special case that the subregion
A is a ball, R could be chosen to be its radius. The subregion A and its causal development
D(A) are in one-to-one correspondence, we will not distinguish them in the following.

Finally, let’s further comment on the area law and logarithmic behaviour studied in this paper.
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• In two dimensions, there is no polynomial term of R
ε , the modified “area law” is

Q(A) = pq logq R
ε
+ · · · . (2.8)

• In higher dimensions (d > 2), the leading term is always proportional to the area. One
should notice that this term is non-universal and the interesting part is the subleading
logarithmic term.

2.2 OPE block

In any d dimensional CFT, operators are classified into (quasi-)primary operators O and their
descendants ∂µ∂ν · · ·O. A general primary operator is characterized by two quantum numbers,
conformal weight ∆ and so(d −1) spin J . Under a global conformal transformation x → x ′, a
primary spin 0 operator transforms as

O(x)→ |∂ x ′

∂ x
|−∆/dO(x) , (2.9)

where |∂ x ′/∂ x | is the Jacobian of the conformal transformation of the coordinates, ∆ is the
conformal weight of the primary operator. Operator product expansion(OPE) of two separated
primary scalar operators Oi(x1)O j(x2) is to expand their product in a local orthogonal and
complete basis around a suitable point

Oi(x1)O j(x2) =
∑

k

Ci jk|x12|∆k−∆i−∆ j (Ok(x2) + · · · ) , (2.10)

where · · · are descendants of the primary operator Ok. Its form is fixed by global conformal
symmetry, therefore it just contains kinematic information of the CFT. The summation is over
all possible primary operators of the CFT. Here we expand the product around the point x2.
The distance of any two points x i , x j is written as |x i j|. The constant Ci jk is called the OPE
coefficient which is related to the three point function of primary operators

〈Oi(x1)O j(x2)Ok(x3)〉=
Ci jk

|x12|∆12,3 |x23|∆23,1 |x13|∆13,2
, ∆i j,k =∆i +∆ j −∆k. (2.11)

They are the only dynamical parameters in the CFT. The constants ∆i ,∆ j ,∆k are conformal
weights of the corresponding primary operators. By collecting all kinematic terms in the sum-
mation, we can rewrite the OPE (2.10) as

Oi(x1)O j(x2) = |x12|−∆i−∆ j

∑

k

Ci jkQi j
k (x1, x2). (2.12)

The objects Qi j
k (x1, x2) are called OPE blocks [3,5,6]. They are non-local operators in the CFT

and depend on the position x1 and x2 of the external operators. The upper index i and j show
that it also depends on the quantum numbers of the external operators Oi and O j . It is easy
to see that OPE block has dimension zero. Under a global conformal transformation x → x ′,
an OPE block Qi j

k (x1, x2) will transform as

Qi j
k (x1, x2)→ f (x ′1, x ′2)Q

i j
k (x

′
1, x ′2). (2.13)

The explicit form of f (x ′1, x ′2) is not important in this work. When the two external operators
have the same quantum numbers, we have f (x ′1, x ′2) = 1 and OPE block will be invariant under
the global conformal transformation. One can also show that the OPE block is independent
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of the external operator in this special case. Due to this reason, we relabel such kind of OPE
block as

QA[Ok] =Qii
k (x1, x2). (2.14)

The subscript A denotes the region determined by the two points x1 and x2 where the two
external operators are inserted. The operator in the square bracket reflects the fact that OPE
block is generated by a primary operator Ok. We omit the information of i since the OPE block
is insensitive to the external operators in this case. We will classify the primary operators
Ok into conserved currents J and non-conserved operators O. A general symmetric traceless
primary operator obeys the following unitary bound [24]

�

∆≥ J + d − 2, J ≥ 1,
∆≥ d−2

2 , J = 0.

A conserved current J with spin J(J ≥ 1) will satisfy ∆ = J + d − 2. All other primary
operators are non-conserved operators. Correspondingly, the OPE block (2.14) generated by
a conserved current J will be called a type-J OPE block. On the other hand, the OPE block
(2.14) generated by a non-conserved operator O will be called a type-O OPE block.

When two operators are time-like separated, the region A is a causal diamond. The two oper-
ators are at the sharp corner of the diamond A. We can use the conformal transformation to
fix

x1 = (1, ~x0), x2 = (−1, ~x0), (2.15)

then the causal diamond A intersects the t = 0 slice at a unit ball (R = 1) which we will also
denote it as A

A= {(0, ~x)|(~x − ~x0)
2 ≤ 1}. (2.16)

The center of the ball is ~x0. The boundary of the ball A is a unit sphere ∂ A. In the context of
geometric entanglement entropy, the surface ∂ A is an entanglement surface which separates
the ball A and its complement. The leading term of entanglement entropy is proportional to
the area of the surface ∂ A in general higher dimensions (d > 2). In two dimensions, the
entanglement entropy is logarithmically divergent with the logarithmic degree q = 1. There
is a conformal Killing vector K which preserves the diamond A,

Kµ =
1
2
(1− (~x − ~xA)

2 − t2,−2t ~x). (2.17)

The conformal Killing vector K is null on the boundary of the diamond A. It generates a
modular flow of the diamond A. A type-O OPE block corresponding to the point pair (2.15) or
the unit ball A (2.16) is [4]

QA[Oµ1···µJ
] = cOµ1 ···µJ

∫

D(A)
dd xKµ1 · · ·KµJ |K |∆−d−JOµ1···µJ

, (2.18)

where the primary operator Oµ1···µJ
is non-conserved

∂ µ1Oµ1···µJ
6= 0. (2.19)

It has dimension ∆ and spin J . When the operator is a conserved current

∂ µ1Jµ1···µJ
= 0, (2.20)

the corresponding type-J OPE block is

QA[Jµ1···µJ
] = cJµ1 ···µJ

∫

A
dd−1~x(K0)J−1J0···0. (2.21)
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It can be obtained from (2.18) by using the conservation law (2.20) and reducing it to a lower
d−1 dimensional integral. The coefficient cJµ1 ···µJ

is also redefined at the same time. In (2.18)
and (2.21), the coefficients cOµ1 ···µJ

and cJµ1 ···µJ
are free parameters which are fixed by the

normalization of the corresponding operators, we set them to be 1.

2.3 Modular Hamiltonian and area law

A very special type-J OPE block is the modular Hamiltonian [7,25] of the ball A,

HA = 2π

∫

A
dd−1~xK0T00 = 2π

∫

A
dd−1~x

1− (~x − ~x0)2

2
T00(0, ~x). (2.22)

Modular Hamiltonian is the logarithm of the reduced density matrix ρA

HA = − logρA. (2.23)

It plays a central role in the context of entanglement entropy,

SA = −trAρA logρA = trAe−HAHA. (2.24)

More generally, the Rényi entanglement entropy

S(n)A =
1

1− n
log trAρ

n
A (2.25)

has been shown to satisfy an area law generally

S(n)A = γ(n)
A
εd−2

+ · · · , (2.26)

where A is the area of the entanglement surface ∂ A and ε is a UV cutoff. The constant γ(n) is
cutoff dependent. The subleading terms · · · contain a logarithmic term with degree q = 1 in
even dimensions

S(n)A = γ(n)
A
εd−2

+ · · ·+ p1(n) log
R
ε
+ · · · , (2.27)

where we have restored the radius R that was previously set to 1. The area A is related to the
radius R through the power law

A∼ Rd−2. (2.28)

The coefficient p1(n) encodes useful information of the CFT. The relation between modular
Hamiltonian and area law motivates the conjecture that OPE block maybe related to area
law in a suitable way. We will give the framework to discuss this problem in the following
subsection.

2.4 Deformed reduced density matrix and connected correlation function

Given a primary operator O in a ball A, one can always define a corresponding OPE block
QA[O]. We construct an exponential operator formally [14]

ρA = e−µQA , (2.29)

which is still in the subregion A. The constant µ is free. Operators of the form (2.29) is called
deformed reduced density matrix. Note we use the same symbol ρA to label deformed reduced
density matrix. Recall that the modular Hamiltonian is a special OPE block, if one replaces the
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OPE block by the modular Hamiltonian (2.29) and set µ = 1, the deformed reduced density
matrix becomes the reduced density matrix exactly. We can relax the definition, namely, QA in
(2.29) could be a linear superposition of several OPE blocks. Note our definition of deformed
reduced density matrix is a direction extension of the generalized reduced density matrix in
the context of the so-called charged Rényi entropy [15]. In that work, QA is a charge which
is generated by a U(1) current. The corresponding charged Rényi entropy is holographically
dual to the thermal entropy of a charged black hole with hyperbolic horizon. However, in our
definition, QA is just a general OPE block or their linear superposition. As a naive generalization
of Rényi entanglement entropy, we construct the logarithm of the vacuum expectation value
of the deformed reduced density matrix,

TA(µ) = log〈ρA〉= log〈e−µQA〉. (2.30)

When QA is modular Hamiltonian, the above quantity is related to the Rényi entropy for the
vacuum state.

However, a direct computation of TA(µ) is hard in general. A much more severe problem is
that OPE block has no lower bound in general, therefore the definition is not valid for general
OPE blocks. To solve this problem, we observe that TA(µ) could be expanded for small µ,

TA(µ) =
∞
∑

m=1

(−µ)m

m!
〈Qm

A 〉c . (2.31)

The Taylor expansion coefficient

〈Qm
A 〉c = (−1)m

∂ m

∂ µm
TA(µ)|µ→0 (2.32)

is called Type-(m) connected correlation function (CCF) of the OPE block QA. For each definite
m, one can always calculate the corresponding CCF without knowing TA(µ). The first few CCFs
are

〈Q2
A〉c = 〈Q2

A〉 − 〈QA〉2,

〈Q3
A〉c = 〈Q3

A〉 − 3〈Q2
A〉〈QA〉+ 2〈QA〉3. (2.33)

Using CCF, there is no issue of lower bound of the OPE block. The convergence of the sum-
mation (2.31) could be a hard problem for general OPE blocks. However, for modular Hamil-
tonian in two dimensional CFT, one can use the summation to define Rényi entropy. As an
application of the concept of CCF, we choose the OPE block as the modular Hamiltonian, then
it is easy to show that CCF of modular Hamiltonian HA satisfies area law with logarithmic
degree q = 1 in even dimensions,

〈Hm
A 〉c = γ̃

A
εd−2

+ · · ·+ p̃(m)1 log
R
ε
+ · · · , m≥ 1. (2.34)

The coefficient p̃(m)1 is determined from p1(n) by

p̃(m)1 = (−1)m∂ m
n (1− n)p1(n)|n→1. (2.35)

There could be multiple spacelike-separated balls A1, A2, · · · , each region has associate OPE
block QAi

. We insert mi OPE blocks into region Ai , then we can define the corresponding
type-Y CCF

〈Qm1
A1

Qm2
A2
· · · 〉c , (2.36)
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where the Young diagram Y is

Y = (m1, m2, · · · ), m1 ≥ m2 ≥ · · · ≥ 1. (2.37)

The generator of all type-Y CCFs is

T∪iAi
(µ1,µ2, · · · ) = log

〈e−
∑

i µiQAi 〉
∏

i〈e
−µiQAi 〉

. (2.38)

When there are only two balls A and B, the generator is

TA∪B(µ1,µ2) = log
〈e−µ1QA−µ2QB〉
〈e−µ1QA〉〈e−µ2QB〉

=
∑

m1≥1,m2≥1

(−1)m1+m2µ
m1
1 µ

m2
2

m1!m2!
〈Qm1

A Qm2
B 〉c . (2.39)

We parameterize A and B as

A= {(0, ~x)|(~x − ~x0)
2 ≤ 1}, B = {(0, ~x)|~x ≤ R′2}. (2.40)

There is only one cross ratio

ξ=
4R′

x2
0 − (1− R′)2

. (2.41)

When the two regions A and B are spacelike-separated, |x0|> 1+R′, the cross ratio is between
0 and 1,

0< ξ < 1. (2.42)

In some cases, it is more convenient to use an equivalent cross ratio

η=
ξ

1− ξ
=

4R′

x2
0 − (1+ R′)2

. (2.43)

For spacelike-separated regions A and B, the range of the cross ratio η is

0< η <∞. (2.44)

Since the OPE block QA[O] is invariant under conformal transformation, any type-(m1, m2)
CCF should be a function of cross ratio ξ or η. Actually the OPE block is an eigenvector of the
conformal Casimir

[L2,QA[O]] = C∆,JQA[O] , (2.45)

where L2 is the Casimir operator of the global conformal group. The eigenvalue C∆,J is

C∆,J = −∆(∆− d)− J(J + d − 2). (2.46)

Therefore, any type-(m− 1,1) CCF should be a conformal block up to a constant 2

〈QA[O1] · · ·QA[Om−1]QB[Om]〉c = D(d)[O1, · · · ,Om]G
(d)
∆m,Jm

(η). (2.47)

The subscript ∆m, Jm are the conformal weight and spin of the primary operator Om. The
index (d) is used to label the dimension of spacetime. The conformal block G(d)∆m,Jm

(η) can be
constructed explicitly in even dimensions [26,27]. In this paper, we use the convention that

G(d)∆m,Jm
(η)→ η∆m , η→ 0. (2.48)

2See Appendix A of [16] for a detailed discussion. For each spherical space, there is a pair of timelike separated
points that live on the tips of its causal diamond [3]. Therefore, for two balls, one can use the two pairs of timelike
separated points to define the corresponding cross ratio η.
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Therefore the overall constant D(d)[O1, · · · ,Om] is fixed uniquely. When A and B are far away
from each other, the type-(m− 1,1) CCF is dominated by

〈QA[O1] · · ·QA[Om−1]QB[Om]〉c ≈ D(d)[O1, · · · ,Om]η
∆m . (2.49)

For m ≥ 2, the coefficients D(d)[O1, · · · ,Om] are related to the normalization of the primary
operators. For any m ≥ 3, it also contains dynamical information of the theory. The explicit
form of the conformal block can be found in [28]. Any type-(m1, m2) CCF with m1 ≥ m2 ≥ 2
is not a conformal block .

3 Area law

We conjecture that the type-(m) CCF of OPE blocks obeys the following area law

〈QA[O1] · · ·QA[Om]〉c = γ
Rd−2

εd−2
+ · · ·+ pq logq R

ε
+ · · · . (3.1)

The leading term is proportional to the area of the boundary ∂ A. We have restored the radius
R in the formula to balance the dimension. The small positive constant ε is the UV cutoff which
is roughly the distance from the cutoff to the boundary ∂ A. The constant γ depends on the
choice of the cutoff and the method of regularization, we will not be interested in its explicit
value. The · · · terms are subleading and cutoff dependent. Therefore we omit their forms.
The degree q characterizes the maximal power of the logarithmic terms. The coefficient pq is
invariant under the rescaling of the cutoff, therefore it encodes detail universal information of
the theory 3. When all the OPE blocks are equal to the modular Hamiltonian, the degree q = 1
for even dimensions according to (2.34). However, as we will see, q is not necessarily equal
to 1 in general. To distinguish different type-(m) CCFs in different dimensions, we write the
area law (3.1) more explicitly as

〈QA[O1] · · ·QA[Om]〉c = γ[O1, · · · ,Om]
Rd−2

εd−2
+ · · ·+ p(d)q [O1, · · · ,Om] logq R

ε
+ · · · . (3.2)

3.1 Continuation

The two formulas (2.47) and (3.2) are actually related to each other through an analytic
continuation. We use the example of the two dimensional modular Hamiltonian to illustrate
this relation. For any CFT2, the modular Hamiltonian can be decomposed into the holomorphic
and anti-holomorphic part, we focus on the holomorphic part

HA = −
∫ 1

−1

dz
1− z2

2
T (z + x0) + c. (3.3)

The constant c can be fixed by the normalization condition

trAρA = trAe−HA = 1. (3.4)

Its value doesn’t affect the type-Y CCF with any
∑

i mi ≥ 2. We also used the convention
T (z) = −2πTzz where the subscript z is the holomorphic coordinate z = t + x . The radius of
the interval A is 1, we have shifted the variable z such that the dependence of the center x0 is

3Note the constant pq also depends on the operator normalization.
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in the stress tensor. The modular Hamiltonian of region B can be obtained by setting x0 = 0
and restoring the radius R′. The type-(m− 1,1) CCF of the modular Hamiltonian is

〈Hm−1
A HB〉c = D(2)[Tµ1ν1

, · · · , Tµmνm
]G(2)2 (η). (3.5)

The two dimensional conformal block for a chiral operator can be labeled by the conformal
weight h of the operator

G(2)h (η) = (−η)
h

2F1(h, h, 2h,−η). (3.6)

We can move the interval A to B such that they coincide. In this limit, any type-(m−1, 1) CCF
should approach a type-(m) CCF . This is equivalent to setting η → −1. We can set x0 → 0
and then take the limit R′→ 1,

xA→ 0, R′ = 1− ε, ε→ 0. (3.7)

The cross ratio ξ→−∞ or η→−1 by

ξ= −
4(1− ε)
ε2

≈ −
4
ε2

, η= −
4(1− ε)
(2− ε)2

≈ −1+
ε2

4
. (3.8)

On the right hand side of (3.5), we find a logarithmically divergent term in this limit

G(2)2 (η) = 12 log
2
ε
+ · · ·= 12 log

R
ε
+ · · · (3.9)

The left hand side of (3.5) approaches type-(m) CCF, therefore

〈Hm
A 〉c = 12D(2)[Tµ1ν1

, · · · , Tµmνm
] log

R
ε
+ · · · . (3.10)

We read out the cutoff independent coefficient

p(2)1 [Tµ1ν1
, · · · , Tµmνm

] = 12D(2)[Tµ1ν1
, · · · , Tµmνm

]. (3.11)

The relation (3.11) is a typical UV/IR relation for the modular Hamiltonian. The left hand side
is the universal coefficient for B and A coinciding (UV). On the right hand side, the D coefficient
characterizes the leading order behaviour of CCF when B and A are far away from each other
(IR). They provide equivalent information of the CFT since the constant 12 is completely fixed
by conformal symmetry. The continuation of the conformal block can be generalized to higher
dimensions. For example, in four dimensions, the conformal block associated with stress tensor
becomes divergent as A approaches B,

G(4)4,2 ≈ γ̃
R2

ε2
+ · · · − 120 log

R
ε
+ · · · . (3.12)

The leading term is exactly proportional to the area of the boundary and the logarithmic di-
vergent term also appears in the subleading terms. We can read out the type-(m) CCF of the
modular Hamiltonian in four dimensions

〈Hm
A 〉c = γ

R2

ε2
+ · · ·+ p(4)1 [Tµ1ν1

, · · · , Tµmνm
] log

R
ε
+ · · · , (3.13)

with
p(4)1 [Tµ1ν1

, · · · , Tµmνm
] = −120D(4)[Tµ1ν1

, · · · , Tµmνm
]. (3.14)

Note we obtain the area law and the logarithmic behaviour of the type-(m) CCF of the modular
Hamiltonian without using any knowledge of Rényi entanglement entropy. The method of
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analytic continuation can be applied to general dimensions and OPE blocks. A conformal
block G(d)∆,J (ξ) obeys area law in the limit ξ→ −∞ in even dimensions. It has degree q = 1
only for ∆= J + d − 2,

G(d)∆,J (ξ) = γ̃
Rd−2

εd−2
+ · · ·+ E(d)[∆, J] log

R
ε
+ · · · , ξ→−∞. (3.15)

This means that type-(m) CCF of type-J OPE blocks may always obey area law with degree
q = 1, the cutoff independent coefficient is

p(d)q [O1, · · · ,Om] = E(d)[Om]× D(d)[O1, · · · ,Om]. (3.16)

We have replaced the quantum numbers in E function by the corresponding primary opera-
tor. For non-conserved operators, the conformal block G(d)∆,J also obeys area law in the limit
ξ→−∞ in even dimension, though it has degree q = 2

G(d)∆,J (ξ) = γ̃
Rd−2

εd−2
+ · · ·+ E(d)[∆, J] log2 R

ε
+ · · · , ξ→−∞. (3.17)

Therefore, type-(m) CCF of type-O OPE blocks obeys area law with degree q = 2. We can
obtain similar UV/IR relations as (3.16). In odd dimensions, the story is the same. The degree
q is 0 for type-(m) CCF of type-J OPE blocks and 1 for type-O OPE blocks.

3.2 Kinematic information

The function E(d)[O] is completely fixed by conformal symmetry. It can be obtained by reading
out the coefficient of the logarithmic term with degree q. For each fixed quantum number ∆
and J , there is a unique number E(d)[O]. For any type-J OPE block in two dimensions, the
primary operator O has dimension ∆= J = h. The conformal block (3.6) has degree q = 1 in
the limit η→−1. The function E(2)[O] is

E(2)[O] = 2Γ (2h)
Γ (h)2

, ∆= J = h. (3.18)

For type-O OPE block, the primary operator O has dimension ∆ = h+ h̄ and spin J = h− h̄.
The conformal block has degree q = 2 in the limit η→−1. The function E(2)[O] is

E(2)[O] =























24hΓ (h+ 1
2 )

2

πΓ (h)2 J = 0, h> 0

−42h−1Γ(h− 1
2)Γ(h+ 1

2)
πΓ (h−1)Γ (h) J = 1, h> 1

42h−3(h−2)(h−1)(2h−3)(2h−1)Γ(h− 3
2)

2

πΓ (h)2 J = 2, h> 2
· · ·

(3.19)

In four dimensions, we also find

E(4)[O] =











12 ∆= 3, J = 1
−120 ∆= 4, J = 2
840 ∆= 5, J = 3
· · ·

(3.20)

for conserved currents and

E(4)[O] =



































−22∆−1Γ (∆−1
2 )Γ (

∆+1
2 )

πΓ (∆−2
2 )2

∆> 1, J = 0,
22∆−1Γ (∆2 )Γ (

∆+2
2 )

πΓ (∆−3
2 )Γ (

∆+1
2 )

∆> 3, J = 1,

−4∆−1(∆−2)Γ (∆−3
2 )Γ (

∆+3
2 )

πΓ (∆−4
2 )Γ (

∆+2
2 )

∆> 4, J = 2,

· · ·

(3.21)
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for non-conserved operators. In three dimensions, we find

E(3)[O] =































−22∆−1(∆−1)Γ (∆− 1
2 )p

πΓ (∆−1) ∆> 1
2 , J = 0.

2∆+1∆Γ (∆− 1
2 )

Γ (∆−2
2 )Γ (

∆+1
2 )

∆> 2, J = 1,

−22∆−1(∆2−1)Γ (∆− 1
2 )p

π(∆−2)2∆Γ (∆−3) ∆> 3, J = 2,

· · ·

(3.22)

for non-conserved operators. Note for conserved currents in odd dimensions, the function
E(3)[O]may depend on explicit choice of the cutoff. For example, a transformation ε→ ε(1+aε)
may shift its value. This is because the degree is 0, there is no logarithmic divergence at all.

3.3 UV/IR relation

The UV/IR relation (3.16) relates type-(m) CCF to type-(m − 1,1) CCF. This relation may
simplify computation in many cases. To see this point, let’s compute the following type-(2)
CCF in two dimensions

〈QA[O]2〉c =

∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

(z1 − z2)2h

=
(−1)−hpπΓ (h)
Γ (h+ 1

2)

∫ 1

−1

dz1
1

1− z2
1

=
(−1)−hpπΓ (h)
Γ (h+ 1

2)
log

2
ε

. (3.23)

This is a double integral with poles at z1 = z2. We regularize the integral by ignoring these
poles at the second step. At the last step, we insert a UV cutoff to regularize the integral.
However, using UV/IR relation, one just need to fix the coefficient D which is related to the
large distance behaviour of the type-(1,1) CCF,

〈QA[O]QB[O]〉c =
∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

(z1 − z2 + x0)2h
. (3.24)

In the large distance limit, x0→∞, the integral becomes simpler

〈QA[O]QB[O]〉c ≈
∫ 1

−1

dz1

∫ 1

−1

dz2
(1− z2

1)
h−1(1− z2

2)
h−1

x2h
0

= 4−h(
p
πΓ (h)

Γ
�

h+ 1
2

�)2ηh. (3.25)

We have used the relation η≈ 4
x2

0
in the large distance limit. Then we can read out

D(2)[O,O] = (−1)−h4−h(
p
πΓ (h)

Γ
�

h+ 1
2

�)2. (3.26)

Combining UV/IR relation and (3.18), we find

p(2)1 [O,O] = E(2)[O]× D(2)[O,O] = (−1)−hpπΓ (h)
Γ (h+ 1

2)
. (3.27)
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The result is exactly the same as (3.23). We use the UV/IR relation to obtain type-(3) CCF for
type-J OPE blocks in two dimensions, the cutoff independent coefficient is

p(2)1 [O1,O2,O3] =
C123π

3/2(−1)
h1+h2+h3

2 Γ (h1)Γ (h2)Γ (h3)κ

Γ (1+h1+h2−h3
2 )Γ (1+h1+h3−h2

2 )Γ (1+h2+h3−h1
2 )Γ (h1+h2+h3

2 )
, (3.28)

where the constant κ = 1
2[1 + (−1)h1+h2+h3]. We notice that the result is totally symmetric

under the exchange of any two conformal weights. This is a cyclic identity for m= 3

p(d)q [O1,O2,O3] = p(d)q [O2,O3,O1] = p(d)q [O3,O1,O2]. (3.29)

Note that the cyclic identity cannot be assumed to be a priori since we are dealing with the
limits of rather different quantities. However, interestingly, the UV/IR relation and the cyclic
identity could be checked for all the examples in the following. For four dimensional type-(m)
CCF (m=2,3), we list the cutoff independent coefficients below [17].

• Type-(2). The normalization constants are set to 1.

– Spin 1-1 conserved currents.

p(4)1 [Jµ,Jν] = −
π2

3
. (3.30)

– Spin 2-2 conserved currents.

p(4)1 [Tµν, Tρσ] = −
π2

40
. (3.31)

– Spin 0-0 non-conserved operators.

p(4)2 [O,O] = −
4π2(∆− 1)Γ (∆− 2)2Γ (∆2 )

4

Γ (∆)2Γ (∆− 1)2
. (3.32)

– Spin 1-1 non-conserved operators.

p(4)2 [Oµ,Oν] = −
41−∆π3∆Γ (∆−3

2 )Γ (
∆+1

2 )

Γ (∆2 + 1)2
, ∆> 3. (3.33)

– Spin 2-2 non-conserved operators.

p(4)2 [Oµν,Oρσ] = −
3π2(∆− 2)∆2Γ (∆2 − 2)2Γ (∆2 − 1)2

64Γ (∆− 4)Γ (∆+ 2)
, ∆> 4. (3.34)

• Type-(3).

– Spin 1-1-2 conserved currents. The three point function of zero components are
fixed by conformal symmetry

〈T00(x1)J0(x2)J0(x3)〉c =
CTJJ

x4
12 x2

13 x2
23

. (3.35)

Then the coefficient

p(4)1 [Jµ,Jν, Tρσ] = −
π3

2
CTJJ . (3.36)
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– Spin 2-2-2 conserved currents. The three point function of zero components are
fixed by conformal symmetry

〈T00(x1)T00(x2)T00(x3)〉c =
CT T T

x4
12 x4

13 x4
23

. (3.37)

Then the coefficient

p(4)1 [Tµν, Tρσ, Tαβ] =
π3

12
CT T T . (3.38)

– Spin 0-0-0 non-conserved currents.

p(4)2 [O1,O2,O3]

= −24−∆1−∆2−∆3π3C123

∫

D2

dζdζ̄(ζ+ ζ̄)2
∫

D2

dζ′dζ̄′(ζ′ + ζ̄′)2

×(1− ζ2)
∆1−4

2 (1− ζ̄2)
∆1−4

2 (1− ζ′2)
∆2−4

2 (1− ζ̄′2)
∆2−4

2

×
∫ π

0

dθ
sinθ

(a+ b cosθ )
∆12,3

2

. (3.39)

Though the expression (3.39) is not symmetric superficially under the exchange of any two
conformal weights, we checked explicitly that it satisfies the cyclic identity for integer con-
formal weights. There could be singularities when ζ, ζ̄,ζ′, ζ̄′ are close to the boundary −1
and 1, we can deal with these singularities for integer conformal weights explicitly. We don’t
find a straightforward way to regularize the integral for non-integer conformal weights. It is
interesting to find an unambiguous way to define pq for general operators.

For m = 4, the cyclic identities are much more harder to check. We considered type-(4)
CCF for massless free scalar theory [13, 14]. In this theory, one can construct an infinite
tower of conserved currents with even spin [29]. The four point functions can be calculated
explicitly. Therefore we can find type-(3,1) and type-(4) CCFs and read out the corresponding
coefficients. For example, for spin-2-2-2-4 conserved currents [14],

D[2,2, 2,4] =
3

70
D[2, 2,4, 2]. (3.40)

Both of them lead to the cutoff independent coefficients

p(2)1 [2, 2,2, 4] =
2Γ (8)
Γ (4)2

D[2, 2,2, 4] =
2Γ (4)
Γ (2)2

D[2, 2,4,2] = p(2)1 [2,2, 4,2]. (3.41)

The cyclic identity is obeyed.

3.4 Discussion

The UV/IR relation should be slightly modified when the CCF contains both type-J and type-O
OPE blocks. One simple example is the following type-(3) CCF

〈QA[J ]QA[O]QA[Õ]〉c , (3.42)

where QA[J ] is a type-J OPE block while QA[O] and QA[Õ] are type-O OPE blocks. This CCF
is related to the following two type-(2,1) CCFs

〈QA[Õ]QA[J ]QB[O]〉c = D(d)[Õ,J ,O]G(d)∆,J (ξ), (3.43)

〈QA[O]QA[Õ]QB[J ]〉c = D(d)[O, Õ,J ]G(d)
∆′,J ′(ξ). (3.44)
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We choose d = 4. Taking the limit A→ B from (3.43), we find a type-(3) CCF with degree
q = 2, the UV/IR relation reads

p(4)2 [Õ,J ,O] = E(4)[O]× D(4)[Õ,J ,O] . (3.45)

We can also take the limit A→ B from (3.44), then we will find a type-(3) CCF with degree
q = 1, the UV/IR relation reads

p(4)1 [O, Õ,J ] = E(4)[J ]× D(4)[O, Õ,J ]. (3.46)

The equations (3.45) and (3.46) are not identical superficially since the subscript q are not
equal to each other. However, an explicit calculation for spin 2-0-0 and spin 2-2-0 in four
dimensions [17] shows that the coefficient D(4)[O, Õ,J ] is actually divergent logarithmically,

D(4)[O, Õ,J ] = D(4)log[O, Õ,J ] log
R
ε
+ · · · . (3.47)

The terms in · · · are finite and depends on cutoff scale. Due to the logarithmic divergence
behaviour of the coefficient D(4)[O, Õ,J ], the degree of type-(3) CCF from (3.44) increases
by 1, the modified UV/IR relation becomes

p(4)2 [O, Õ,J ] = E(4)[J ]× D(4)log[O, Õ,J ]. (3.48)

We checked explicitly that the two constants (3.45) and (3.48) are equal to each other. The
cyclic identity is still satisfied after counting the logarithmic divergence of the D function.

4 Generalizations

The area law and logarithmic behaviour in the subleading terms can be extended in different
directions. In this section, we mention several extensions.

• UV/IR relation. In general, one can uplift any type-(m) CCF to a type-(p, m− p) CCF

〈QA[O1] · · ·QA[Om]〉c
upli f t
−→ 〈QA[O1] · · ·QA[Op]QB[Op+1] · · ·QB[Om]〉c , 1≤ p ≤ m−1.

(4.1)
When p is not 1 or m − 1, the type-(p, m − p) CCF is not a conformal block. It is still
a function of cross ratio ξ, therefore it should reproduce the type-(m) CCF after taking
the limit A→ B,

〈QA[O1] · · ·QA[Om]〉c = lim
ξ→−∞

〈QA[O1] · · ·QA[Op]QB[Op+1] · · ·QB[Om]〉c . (4.2)

Obviously, this also defines a UV/IR relation between p(d)q and several coefficients in
the type-(p, m− p) CCF. Since the right hand side is not proportional to any conformal
block, it is not easy to write out an explicit formula. Nevertheless, one may still check
the relation (4.2) case by case. One example is to consider the type-(2,2) CCF of the
modular Hamiltonian in CFT2. By making use of the universal feature of the CCF of the
stress tensor, one can fix the generator of type-(m1, m2) CCFs [14]

TA∪B(µ1,µ2) = −
c
2

tr log[1−
�

A C
D B

�

], (4.3)
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where the matrices A,B,C and D are

Ax x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)i(x−x ′)F(x , x ′, y),

(4.4)

Bx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)−i(x−x ′)F(x ′, x , y),

(4.5)

Cx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)i(x+x ′)F(x ,−x ′, y),

(4.6)

Dx x ′=
η2

4

∫ ∞

0

d y

p
x x ′ y sinhπµ1 x sinhπµ2 y

sinhπx ′ sinhπy sinhπ(1+µ1)x sinhπ(1+µ2)y
(

x13

x23
)−i(x+x ′)F(−x , x ′, y),

(4.7)

with

F(x , x ′, y) = 2F1(1+ i x , 1− i y, 2,−η) 2F1(1− i x ′, 1+ i y, 2,−η)
+2F1(1+ i x , 1+ i y, 2,−η) 2F1(1− i x ′, 1− i y, 2,−η). (4.8)

F and its complex conjugate obey

F∗(x , x ′, y) = F(x ′, x , y), F∗(−x ,−x ′, y) = F(x , x ′, y) , (4.9)

so
A= B∗, C =D∗. (4.10)

We read out the first few CCFs

〈Hm
A 〉c =

cm!
12

log
2
ε

,

〈Hm−1
A HB〉c =

cm!
144

G(2)2 (η),

〈H2
AH2

B〉c = c{
1+η
η2
[4Li3(1+η)− 2 log(1+η)Li2(1+η) +

2 log(1+η)
3

Li2(−η)− 4ζ(3)

+
1+η

3
log2(1+η)−

π2

3
log(1+η)] +

2+η
3η
[2Li2(−η) + 3 log(1+η)]−

4
3
} ,

(4.11)

where the polylogrithm Lin(z) is

Lin(z) =
∞
∑

k=1

zk

kn
. (4.12)

The relation (4.2) can be checked for p = 2, m= 4. The right hand side is

lim
η→−1

〈H2
AH2

B〉c = 2c log
2
ε
+ · · · . (4.13)

The cutoff independent coefficient 2c matches with the one in 〈H4
A〉c .
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• New power law. In the previous discussion, we focus on the case that B and A coincide
with each other. However, there are other cases that the CCFs are still divergent. One
can consider the limit that A just attaches the edge of B,

R′ = 1, x0 = 2+ ε, ε→ 0. (4.14)

The cross ratio ξ does not approach −∞ but 1

ξ=
4

(2+ ε)2
= 1− ε+ · · · . (4.15)

We can define a new CCF which is also divergent from type-(m− 1, 1) CCF

〈QA[O1] · · ·QA[Om−1]�QB[Om]〉c = lim
ξ→1
〈QA[O1] · · ·QA[Om−1]QB[Om]〉c . (4.16)

The continuation of conformal block tells us that the new CCF obeys a new power law

〈QA[O1] · · ·QA[Om−1]�QB[Om]〉c = γ̄(
R
ε
)

d−2
2 + · · ·+ p̄(d)q logq R

ε
+ · · · . (4.17)

The leading term is proportional to

L= R
d−2

2 =
p
A , (4.18)

which is the characteristic length of the region A in four dimensions. In two dimensions,
the leading term is a logarithmic term with power q. In this case, there is a new UV/IR
relation between p̄q and D coefficient , we write it schematically

p̄q = Ē × D. (4.19)

The function Ē(d)[O] is proportional to E(d)[O]. The proportional constant is shown
below.

– d is even.

For conserved current O with conformal weight ∆= J + d − 2,

Ē(d)[O] = (−1)J

2
E(d)[O]. (4.20)

For non-conserved current O with conformal weight ∆ and spin J ,

Ē(d)[O] = (−1)J

4
E(d)[O]. (4.21)

We checked the relation for d = 2, 4 and spin J ≤ 2.

– d is odd.

For non-conserved current O with conformal weight ∆ and spin J ,

Ē(d)[O] = (−1)J

2
E(d)[O]. (4.22)

For conserved current O, there is no logarithmic divergent term in the CCF.

We checked the relation for d = 3 and spin J ≤ 2.

Since D function is the same, we find a relation between two cutoff independent coeffi-
cients p and p̄,

p
E
=

p̄
Ē

. (4.23)
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5 Summary and outlook

In this report, we have introduced the area law (3.1) of type-(m) CCFs of OPE blocks. It is a
generalization of the area law of entanglement entropy. We will list several open problems for
future work.

• Higher m ≥ 4. In most of the work, we consider type-(2) and type-(3) CCFs. This
is because the structure of m-point correlation function of primary operators in CFT is
fixed up to m = 3. For m = 4, we can also extract cutoff independent information for
two dimensional massless free scalar theory [16].

• UV/IR relation. The UV/IR relation

p = E × D (5.1)

has been checked for several examples. A rigorous proof is still lacking.

• Cyclic identity. The cyclic identity of p reflects the fact that p is independent of the way
to regularize the type-(m) CCF. However, we feel that a direct computation is impossible
to check this identity.

• New power law. We generalize the type-(m1, m2) CCF to the case that A and B just attach
to each other. The corresponding CCF is divergent with a new power law (4.17). The
corresponding new UV/IR relation

p̄ = Ē × D (5.2)

also needs understanding.

• Deformed reduced density matrix. This exponential operator is similar to the “Wilson
loop” in gauge theories [30,31] despite the fact that the OPE block has no lower bound
in general. When the OPE block has a lower bound, the logarithm of the vacuum expec-
tation value of the deformed reduced density matrix

log〈e−µQA〉 (5.3)

should also obey area law with logarithmic divergence. There may be a gravitational
dual for this quantity as [32, 33]. The similarity of the area law between this program
and black hole entropy implies that the classical part contributes to the area term while
quantum effects lead to logarithmic corrections.

• Multiple integrals. According to the method of continuation of conformal block, area
law of type-(m) CCF is protected by conformal invariance. However, the method of
continuation itself cannot guarantee that it always leads to the correct result. One has
to develop other methods to deal with the multiple integrals. In two dimensions, one
should generalize Selberg integrals [34,35] to include more parameters [16].
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