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Why space could be quantised on a different scale to matter
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Abstract

The scale of quantum mechanical effects in matter is set by Planck’s constant, ħh. This
represents the quantisation scale for material objects. In this article, we present a simple
argument why the quantisation scale for space, and hence for gravity, may not be equal
to ħh. Indeed, assuming a single quantisation scale for both matter and geometry leads
to the ‘worst prediction in physics’, namely, the huge difference between the observed
and predicted vacuum energies. Conversely, assuming a different quantum of action for
geometry, β � ħh, allows us to recover the observed density of the Universe. Thus, by
measuring its present-day expansion, we may in principle determine, empirically, the
scale at which the geometric degrees of freedom should be quantised.
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1 Wave–particle duality and ħh

Classical mechanics is deterministic [1]. If its initial conditions are known, the probability of
finding a particle at a given point on its trajectory, at the appropriate time t, is 100%. The
corresponding state is described by a delta function, δ3(x−x′), with dimensions of (length)−3.
This is the probability density of the particle located at x= x′.
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In quantum mechanics (QM), probability amplitudes are fundamental. Position eigen-
states, |x〉, are the rigged basis vectors of an abstract Hilbert space, where 〈x|x′〉= δ3(x− x′).
These have dimensions of (length)−3/2 and more general states may be constructed by the
principle of quantum superposition [2]. The resulting wave function, ψ(x), represents the
probability amplitude for finding the particle at each point in space, and the corresponding
probability density is |ψ(x)|2 [3].

Sinceψ(x) can also be decomposed as a superposition of plane waves, eik.x, an immediate
consequence is the uncertainty principle ∆ψx i∆ψk j ≥ (1/2)δi

j , where i, j ∈ {1, 2,3} label
orthogonal Cartesian axes. This is a purely mathematical property of ψ that follows from ele-
mentary results of functional analysis [4]. In canonical QM, we relate the particle momentum
p to the wave number k via Planck’s constant, following the proposal of de Broglie, p= ħhk. It
follows that

∆ψx i∆ψp j ≥ (ħh/2)δi
j . (1)

This is the familiar Heisenberg uncertainty principle (HUP). We stress that the HUP is a con-
sequence of two distinct physical assumptions:

1. the principle of quantum superposition, and

2. the assumption that ħh determines the scale of wave–particle duality. 1

Let us also clarify the meaning of the word ‘particle’. We stress that canonical QM treats
all particles as point-like, so that eigenstates with zero position uncertainty may be realised, at
least formally. However, gravitational effects are expected to modify the HUP by introducing
a minimal length, ∆x > 0 [6, 7]. Next, we discuss how this relates to theoretical predictions
of the vacuum energy.

2 Minimal length and the vacuum energy

In canonical QM, the background space is fixed and classical. Individual points are sharply de-
fined and the distances between them can be determined with arbitrary precision [8]. By con-
trast, thought experiments in the quantum gravity regime suggest the existence of a minimum
resolvable length scale of the order of the Planck length,∆x ' lPl, where lPl =

p

ħhG/c3 ' 10−33

cm [6]. Below this, the classical concept of length loses meaning, so that perfectly sharp space-
time points cannot exist [7].

This motivates us to take lPl as the UV cut off for vacuum field modes, but doing so yields
the so-called ‘worst prediction in physics’ [9], namely, the prediction of a Planck-scale vacuum
density:

ρvac '
ħh
c

∫ kPl

kdS

√

√

k2 +
�mc
ħh

�2
d3k ' ρPl =

c5

ħhG2
' 1093 g . cm−3 . (2)

Unfortunately, the observed vacuum density is more than 120 orders of magnitude lower,

ρvac ' ρΛ =
Λc2

8πG
' 10−30 g . cm−3 . (3)

1Note that these assumptions are consistent with Poincaré invariance, and, hence, with Galilean invariance in
the non-relativisitc limit of canonical QM, if and only if p∝ k and E ∝ ω [5]. Ultimately, it is the constant of
proportionality in these relations that determines the length and momentum (energy) scales at which quantum
effects become important. The ‘quantisation scale’ of any system is, therefore, an action scale, which must be
determined empirically. For canonical quantum particles, this scale is ħh= 1.05× 10−34 J s.
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In Eq. (2), the mass scale m � mPl = ħh/(lPlc) ' 10−5 g is set by the Standard Model
of particle physics [10] and the limits of integration are kPl = 2π/lPl, kdS = 2π/ldS, where
ldS =

p

3/Λ is the de Sitter length. This is comparable to the present day radius of the Universe,
rU ' 1028 cm, which may be expressed in terms of the cosmological constant, Λ ' 10−56

cm−2 [11].
More detailed calculations alleviate this discrepancy [12], but our naive calculation high-

lights the problem of treating lPl and mPl as interchangeable cutoffs. We now discuss an al-
ternative way to obtain a minimum length of order lPl without generating unfeasibly high
energies.

3 Wave–point duality and β 6= ħh

Clearly, one way to implement a minimum length is to discretise the geometry, as in loop quan-
tum gravity and related approaches [13]. However, in general, quantisation is not discretisa-
tion [14]. The key feature of quantum gravity is that it must allow us to assign a quantum
state to the background, giving rise to geometric superpositions, and, therefore, superposed
gravitational field states [15]. The associated spectrum may be discrete or continuous, finite
or infinite.

But how to assign a quantum state to space itself? One possible, but simple, answer is
that we must begin by assigning a quantum state to each point in the classical background.
Individual points can then be mapped to superpositions of points, which results in the unique
classical geometry being mapped to a superposition of geometries, as required [16]. In effect,
we may apply the quantisation procedure point-wise, and, in the process, eliminate the concept
of a classical point from our description of physical reality.

This can be achieved by first associating a rigged basis vector, i.e., a ket |x〉 with each co-
ordinate ‘x’. We then note that 〈x|x′〉 = δ3(x − x′) is obtained as the zero-width limit of a
probability Gaussian distribution, |g(x− x′)|2, with standard deviation ∆g x . Taking ∆g x > 0
therefore ‘smears’ sharp spatial points over volumes of order ∼ (∆g x)3, giving rise to a mini-
mum observable length scale [16]. Motivated by thought experiments [6], we set ∆g x ' lPl.

Since g may also be expressed as a superposition of plane waves, an immediate conse-
quence is the wave-point uncertainty relation, ∆g x i∆g k j ≥ (1/2)δi

j . This is an uncertainty
relation for delocalised ‘points’, not point-particles in the classical background of canonical
QM [16]. A key question we must then address is, what is the momentum of a quantum ge-
ometry wave? For matter waves, p= ħhk, but we have no a priori reason to believe that space
must be quantised on the same scale as material bodies. In fact, setting ∆g x ' lPl and p= ħhk
yields ∆g p ' mPlc, giving a vacuum density of order ρvac ' (∆g p)/(∆g x)3c ' c5/(ħhG2).
This is essentially the same calculation as that given in Eq. (2), which results from the same
physical assumptions. Hence, we set

∆g x i∆g p j ≥ (β/2)δi
j , (4)

where β 6= ħh is the fundamental quantum of action for geometry. 2

2In the relativistic regime, the tensor nature of gravitational waves must also be accounted for, but this may be
neglected in the non-relativistic limit in which Eq. (4) remains valid [16]. In this model, a function is associated
to each spatial point by doubling the degrees of freedom in the classical phase space and the classical point labeled
by x is associated with the quantum probability amplitude g(x− x′). This is the mathematical representation of
a delocalized ‘point’ in the quantum nonlocal geometry. For each x, the additional variable x′ may take any value
in R3. Together, x and x′ cover R3 ×R3, which is interpreted as a superposition of 3D Euclidean spaces [16]. The
process of ‘smearing’ points is easiest to visualize in the case of a toy one-dimensional universe. In this case, the
original classical geometry is the x-axis and the (x , x ′) plane on which g(x − x ′) is defined represents the smeared
superposition of geometries. These issues are considered in detail in the refs. [16–19] (see, in particular, see Fig.
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Smearing each point in the background convolves the canonical probability density with a
Planck-width Gaussian. The resulting total uncertainties are

∆ΨX i =
q

(∆ψx i)2 + (∆g x i)2 , ∆ΨPj =
q

(∆ψp j)2 + (∆g p j)2 , (5)

for each i, j ∈ {1,2, 3}, where Ψ := ψg denotes the composite wave function of a particle in
smeared space [16–19]. 3 Finally, we note that the existence of a finite cosmological horizon
implies a corresponding limit on the particle momentum, which may be satisfied by setting
∆g p ' ħh

p

Λ/3. The resulting quantum of action for geometry is

β ' ħh
√

√ρΛ
ρPl
' ħh× 10−61 . (6)

The new constant β sets the Fourier transform scale for g(x − x′), whereas the matter
component ψ(x) transforms at ħh [16,19]. 4 However, this does not violate the existing no-go
theorems for the existence of multiple quantisation constants. These apply only to species of
material particles [25], and still hold in the smeared-space theory, undisturbed by the quanti-
sation of the background [19].

4 The vacuum energy, revisited

The introduction of a new quantisation scale for space radically alters our picture of the vac-
uum, including our naive estimate of the vacuum energy. This must be consistent with the
generalised uncertainty relations (5). Expanding ∆ΨX i with ∆g x i ' lPl gives the generalised
uncertainty principle (GUP) and expanding ∆ΨPj with ∆g p j ' ħh

p

Λ/3 yields the extended
uncertainty principle (EUP), previously considered in the quantum gravity literature [26,27].

Equations (5) may also be combined with the HUP, which holds independently for ψ [16,
19], to give two new uncertainty relations of the form ∆ΨX i∆ΨPj ≥ · · · ≥ (ħh + β)/2 .δi

j .
The central terms in each relation depend on either ∆ψx i or ∆ψp j , exclusively. Minimising
the product of the generalised uncertainties, ∆ΨX i∆ΨPj , we obtain the following length and
momentum scales:

(∆ψx)opt ' lΛ :=
Æ

lPlldS ' 0.1mm ,

(∆ψp)opt ' mΛc :=
p

mPlmdSc ' 10−3 eV/c , (7)

1 of ref. [16]), but are not discussed at length in the present article for want of space. Note also that classical
points are defined, where necessary, as in standard differential geometry. However, the model considered here is
not based on classical points or on the fixed manifolds that form the mathematical basis of classical spacetimes.
Instead, we associate each point in the classical background, labelled by x, with a vector in a quantum Hilbert
space, |gx〉. The associated wave function, 〈x′|gx〉 = g(x− x′), may be regarded as a Gaussian of width σg ' lPl.
This represents the quantum state of a delocalized ‘point’ in the quantum geometry, but this term is used here in
an imprecise sense, only for illustration. (Hence the inverted commas.)

3Note that, here, space is ‘smeared’, not in the sense implied by non-commutative geometry [20–23], but in
the way that a quantum reference frame is smeared with respect to its classical counterpart [24]. More specifi-
cally, the model presented in [16–19] represents a nontrivial two-parameter generalisation (including both ħh and
β) of the QRF formalism of canonical quantum mechanics. This corresponds to the modified de Broglie relation,
p′ = ħhk+β(k′−k) [16], where the noncanonical term may be interpreted, heuristically, as the additional momen-
tum ‘kick’ induced by quantum fluctuations of the nonlocal geometry. As stressed later in the main body of the
text, this kind of generalisation evades the well known no go theorems for multiple quantisation constants [25],
which apply only to species of material particles.

4The term ‘quantum geometry wave’, introduced above Eq. (4), therefore has a precise meaning. It refers to the
plane wave components of g̃β (p−p′), which is the β-scaled Fourier transform of g(x−x′). If σg ' lPl is the width
of g(x− x′), the corresponding width of a delocalised point in momentum space is σ̃g ' ħh

p
Λ. The predictions of

canonical quantum theory, in which quantum matter propagates on a sharp classical space(time) background, are
recovered by taking the limits σg → 0 and σ̃g → 0, simultaneously. Together, these yield β → 0 [16].
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where mdS = ħh/(ldSc)' 10−66 g is the de Sitter mass. This gives a vacuum energy of order

ρvac '
3

4π

(∆ψp)opt

(∆ψx)3optc
' ρΛ =

Λc2

8πG
' 10−30 g . cm−3 , (8)

as required. Taking kΛ = 2π/lΛ as the UV cut off in Eq. (2), with m = mΛ, also gives the
correct order of magnitude value, ρvac ' ρΛ [16].

In this model, vacuum modes seek to optimise the generalised uncertainty relations in-
duced by both ħh and β , yielding the observed vacuum energy. Any attempt to excite higher-
order modes leads to increased pair-production of neutral dark energy particles, of mass
mΛ ' 10−3 eV/c2, together with the concomitant expansion of space required to accommo-
date them, rather than an increase in energy density [19]. The vacuum energy remains ap-
proximately constant over large distances, but exhibits granularity on scales of order lΛ ' 0.1
mm [16, 28, 29]. It is therefore intriguing that tentative evidence for small oscillations in the
gravitational force, with approximately this wavelength, has already been observed [30,31].

5 Summary

The simple analysis above shows that, if space-time points are delocalised at the Planck length,
∆x ' lPl, the associated momentum uncertainty cannot be of the order of the Planck momen-
tum, ∆p 6= ħh/∆x ' mPlc. We are then prompted to ask: is it reasonable to assume that
quantised waves of space-time carry the same quanta of momentum as matter waves with the
same frequency? Though a common assumption, underlying virtually all attempts to quan-
tise gravity that utilise a single action scale, ħh, we note that it has, a priori, no theoretical
justification. We have shown that relaxing this stringent requirement by introducing a new
quantum of action for geometry, β 6= ħh, leads to interesting possibilities, with the potential to
open up brand new avenues in quantum gravity research [19,32]. These include the proposal
that the observed vacuum energy, and the present-day accelerated expansion of the universe
that it drives, are related to the quantum properties of space-time [17, 18]. In this model, a
measurement of the dark energy density constitutes a de facto measurement of the geometry
quantisation scale, β , fixing its value to β ' ħh× 10−61.

This essay was written as a non-technical introduction to the smeared-space model, whose
formalism was developed over a series of published works [16–19,32]. It is based on the ma-
terial presented at the 4th International Conference on Holography, Hanoi, Vietnam (August
2020), and designed to be accessible to a wide and diverse audience. Interested readers are
referred to the previous works [16,18], in which the formalism was derived from the physical
assumptions introduced above, and [19], which contains the most comprehensive summary of
existing results, for full mathematical details. However, since these papers are long and com-
plicated, a more technical, but still brief, introduction to the smeared-space theory is given in
the Appendix.
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A Details of the model

In [16], the smeared-space model quantum geometry was proposed, in which each point x in
the classical background is associated with a vector in a Hilbert space,

|gx〉=
∫

g(x′ − x) |x′〉d3x′ , (9)

where 〈gx|gx〉= 1. This describes a form of nonlocal geometry that is intrinsically quantum in
nature, so that the width of |g(x′−x)|2 is assumed to be of the order of the Planck length [16,
18,19], in accordance with our expectations from gedanken experiment arguments [33,34].

It has long been known that classical nonlocal geometries, such as those introduced in [35],
can be generated by first identifying each point in the classical manifold with a Dirac delta,
δ3(x− x′). Nonlocality is then introduced by smearing each delta into a finite-width proba-
bility distribution P(x− x′), for example, a normalised Gaussian [36]. In this case, no new
degrees of freedom are introduced, beyond those present in canonical quantum mechanics,
since x′ is simply a parameter that determines the position of P.

The smeared space model introduced in [16,18] is different in that it first associates each
point x′ with a rigged basis vector of a Hilbert space, |x′〉. The latter is then smeared to produce
the normalised state (9). In this case, 〈x′|gx〉 = g(x′ − x) is a genuine quantum mechanical
amplitude, not a probability distribution. It has dimensions of (length)−3/2 not (length)−3 and,
in principle, may contain nontrivial phase information. In this model, |gx〉 represents the state
of a Planck-scale localised ‘point’ in the quantum geometry. Each Planck-scale localised point
is then smeared into a superposition of all points in the background space by imposing the
map

S : |x〉 7→ |x〉 ⊗ |gx〉 . (10)

The smearing map (10) may be visualised as follows: for each point x ∈ R3 in the classical
geometry it generates one whole ‘copy’ of R3, thereby doubling the size of the classical phase
space. The resulting smeared geometry is represented by a 6D volume in which each point
(x,x′) is associated with a quantum probability amplitude, g(x′ − x). This is interpreted as
the amplitude for the coherent transition x↔ x′ and the 6D phase space is interpreted as a
superposition of 3D geometries [16,18,19].

In the nonrelativisitc limit, each geometry in the smeared superposition is Euclidean, but
differs from all others by the pair-wise exchange of two points [18]. It is assumed that the
interchange x↔ x′ exchanges the canonical amplitudes, ψ(x)↔ ψ(x′), which leads to ad-
ditional fluctuations in the observed position of the particle, over and above those present in
canonical quantum theory. We now review, briefly, how these fluctuations give rise to gener-
alised uncertainty relations (GURs), including the GUP and EUP previously considered in the
quantum gravity literature [26,27].

For simplicity, we may imagine |g(x′ − x)|2 as a normalised Gaussian centred on x′ = x,
but, here, x′ is no longer a parameter. By introducing the tensor product structure (10) we
have doubled the number of degrees of freedom of the theory, vis-à-vis canonical quantum
mechanics. Those in the left-hand subspace, labelled by x, represent the degrees of freedom
of a canonical quantum particle, whereas those in the right-hand subspace, labelled by x′,
determine the influence of the background geometry. The action of S on |x〉 (10) then induces
a map on the canonical quantum state, |ψ〉=

∫

ψ(x) |x〉d3x, such that

S : |ψ〉 7→ |Ψ〉 , (11)

where

|Ψ〉=
∫ ∫

ψ(x)g(x ′ − x) |x,x ′〉d3xd3x′ . (12)
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The square of the smeared-state wave function, |Ψ(x,x′)|2 = |ψ(x)|2|g(x′−x)|2, represents
the probability distribution associated with a quantum particle propagating in the quantum
geometry. Since |ψ(x)|2 represents the probability of finding the particle at the fixed classical
point x in canonical quantum mechanics, |ψ(x)|2|g(x′ − x)|2 represents the probability that it
will now be found, instead, at a new point x′. If g(x) is a Gaussian centred on the origin, x′ = x
remains the most likely value, but fluctuations within a volume of order ∼ σ3

g , where σg is
the standard deviation of |g(x)|2, remain relatively likely [16, 18, 19]. Furthermore, since an
observed position ‘x′’ cannot determine which point(s) underwent the transition x ↔ x′ in
the smeared superposition of geometries, we must sum over all possibilities by integrating the
joint probability distribution |Ψ(x,x′)|2 over d3x, yielding

dd P(x′|Ψ)
dx′3

=

∫

|Ψ(x,x′)|2d3x= (|ψ|2 ∗ |g|2)(x′) , (13)

where the star denotes a convolution. In this formalism, only primed degrees of freedom
represent measurable quantities, whereas unprimed degrees of freedom are physically inac-
cessible [16,18,19].

The variance of a convolution is equal to the sum of the variances of the individual func-
tions, so that the probability distribution (13) gives rise to the GUR

(∆ΨX i)2 = (∆ψx ′i)2 + (∆g x ′i)2 . (14)

This is the detailed derivation of the first of Eqs. (5), given in the main text. However, note
that the primes on the physically measurable variables were omitted in Eqs. (5), for the sake
of notational simplicity. It is straightforward to verify that (14) is obtained from the standard
braket construction (∆ΨX i)2 = 〈Ψ|(X̂ i)2|Ψ〉 − 〈Ψ|X̂ i|Ψ〉2, where

X̂ i =

∫

x ′i d3P̂x′ = Î⊗ x̂ ′i (15)

is the generalised position-measurement operator and d3P̂x′ = Î ⊗ |x′〉 〈x′|d3x′ is the gener-
alised projection.

Next, we note that the HUP, expressed here in terms of the physically accessible primed
variables,

∆ψx ′i∆ψp′j ≥
ħh
2
δi

j , (16)

holds independently of Eq. (14). Combining the two and identifying the standard deviation
of |g(x)|2 with the Planck length according to [16],

∆g x ′i = σi
g =
p

2lPl , (17)

then yields

∆ΨX i ≥
ħh

2∆ψp′j
δi

j

�

1+α(∆ψp′j)
2
�

, (18)

where α = 4(mPlc)−2, to first order in the expansion [16]. For ∆ψx ′i � σi
g ' lPl, we have

that ∆ΨX i ' ∆ψx ′i , and, in this limit, Eq. (18) reduces to the standard expression for the
GUP [26].

In the momentum space picture, the composite matter-plus-geometry state |Ψ〉 is expanded
as

|Ψ〉=
∫ ∫

ψħh(p)g̃β(p
′ − p) |pp′〉d3pd3p′ , (19)
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where

ψ̃ħh(p) =
�

1
p

2πħh

�3
∫

ψ(x)e−
i
ħh p.xd3x , (20)

as in canonical QM, and

g̃β(p
′ − p) =

�

1
p

2πβ

�3∫

g(x′ − x)e−
i
β (p

′−p).(x′−x)d3x′ ,

where β 6= ħh is the fundamental quantum of action for geometry [16,18,19]. Note that, in Eq.
(19), the basis |pp′〉 is entangled and cannot be separated into a simple tensor product state,
i.e., |pp′〉 6= |p〉 ⊗ |p′〉. We emphasise this by not writing a comma in between p and p′, by
contrast with the position space basis, |x,x′〉= |x〉⊗ |x′〉. Nonetheless, g̃β(p′−p) can be inter-
preted as the probability amplitude for the transition p↔ p′ in smeared momentum space, by
analogy with the position space representation [16]. A unitarily equivalent formalism, which
is akin to a quantum reference frame transformation [24] of the formalism sketched here,
but with ħh↔ β , and in which the position and momentum space bases are symmetrized, is
presented in [18,19].

The consistency of Eqs. (12) and (19) requires

〈x,x′|pp′〉=
�

1

2π
p

ħhβ

�3

e
i
ħh p.xe

i
β (p

′−p).(x′−x) , (21)

which is equivalent to the modified de Broglie relation

p ′ = ħhk+ β(k′ − k) . (22)

This holds for particles propagating in the smeared background and the non-canonical term
may be interpreted, heuristically, as an additional momentum ‘kick’ induced by quantum fluc-
tuations of the spacetime [16, 18, 19]. We now fix β from physical considerations and show
how it is related to the minimum length and momentum scales of the GUP and EUP.

The general properties of the Fourier transform [4] ensure that the ‘wave-point’ uncertainty
relation,

∆g x ′i∆g p′j ≥
β

2
δi

j , (23)

holds in addition to Eq. (14) and the HUP (16), and that the inequality is saturated for Gaus-
sian distributions. This is simply Eq. (4) from the main text, expressed more rigorously in
terms of the requisite primed variables.

Next, we identify the standard deviation of | g̃β(p)|2 with the de Sitter momentum, which
represents the minimum momentum of a particle whose de Broglie wave length is of the order
of the radius of the Universe, rU ' ldS =

p

3/Λ,

∆g p′j = σ̃g j =
1
2

mdSc . (24)

This yields the definition of β ,

β := (2/3)σi
gσ̃gi = (

p
2/3)lPlmdS . (25)

Written explicitly in terms of the observed dark energy density, Eq. (25) gives the value of β
obtained in Eq. (6) of the main text.
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By analogous reasoning to that presented above, the probability of obtaining the observed
value ‘p′’ from a smeared momentum measurement is

d3P(p ′|Ψ̃)
dp′3

=

∫

|Ψ̃(p,p′)|2d3p= (|ψ̃ħh|2 ∗ |g̃β |2)(p′) , (26)

which gives rise to the momentum space GUR

(∆ΨPj)
2 = (∆ψp′j)

2 + (∆g p′j)
2 . (27)

This is the second of Eqs. (5) from the main text, expressed in terms of primed variables,
and can be obtained from the standard braket construction (∆ΨPj)2 = 〈Ψ|(P̂i)2|Ψ〉−〈Ψ|P̂j|Ψ〉

2

using

P̂j =

∫

p′j d3P̂p ′ , (28)

where d3P̂p′ =
�∫

|pp′〉 〈pp′|d3p
�

d3p′.
Substituting the HUP (16) into Eq. (27) and Taylor expanding to first order then yields

∆ΨPj ≥
ħh

2∆ψx ′i
δi

j

�

1+η(∆ψx ′i)2
�

, (29)

where η= (1/2)l−2
dS [16]. For ∆ψp′j �∆g p′j ' mdSc, we have ∆ΨPj '∆ψp′j (27) and, in this

limit, Eq. (29) reduces to the standard expression for the EUP.
Having obtained both the GUP and EUP from the smeared space formalism, we now show

how they can be combined to give the so called extended generalised uncertainty principle
(EGUP). This incorporates the effects of both canonical gravitational attraction and the pres-
ence of a constant background dark energy density on the microscopic dynamics of quantum
particles [26,27]. Combining Eqs. (14), (16) and (27), directly, gives

(∆ΨX i)2(∆ΨPj)
2 ≥ (ħh/2)2(δi

j)
2 + (∆g x ′i)2(∆ΨPj)

2

+ (∆ΨX i)2(∆g p′j)
2

− (∆g x ′i)2(∆g p′j)
2 . (30)

Substituting for ∆g x ′i and ∆g p′j from Eqs. (17) and (24), taking the square root and expand-
ing to first order, then ignoring the subdominant term of order ∼ lPlmdSc, yields

∆ΨX i∆ΨPj ≥
ħh
2
δi

j

�

1+α(∆ΨPj)
2 +η(∆ΨX i)2

�

. (31)

This is equivalent to the heuristic EGUP obtained in [27] but with ∆x i and ∆p j replaced by
well defined standard deviations, ∆ΨX i and ∆ΨPj . These represent the width of the com-
posite matter-plus-geometry state |Ψ〉 in the position and momentum space representations,
respectively [16,18,19].

Furthermore, it is possible to show that the product of generalised uncertainties,∆ΨX i∆ΨPj ,
is minimised when ∆ψx ′i and ∆ψp′j take the values

(∆ψx ′i)opt =

√

√

√ħh
2

∆g x ′i

∆g p′i
, (∆ψp′j)opt =

√

√

√ħh
2

∆g p′j
∆g x ′ j

, (32)

yielding

∆ΨX i∆ΨPj ≥
(ħh+ β)

2
δi

j . (33)
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The same result is readily obtained from the Schrödinger–Robertson relation,
∆ΨO1∆ΨO2 ≥ (1/2) 〈Ψ|[Ô1, Ô2]|Ψ〉, by noting that the commutator of the generalised posi-
tion and momentum observables is

[X̂ i , P̂j] = i(ħh+ β)δi
j Î . (34)

The remaining commutators of the model are

[X̂ i , X̂ j] = 0 , [P̂i , P̂j] = 0 . (35)

Equations (34) and (35) show that GURs, including the GUP, EUP and EGUP, may be
obtained without non-canonical modifications of the Heisenberg algebra [16, 18, 19]. (See
also [37] for a similar result.) This allows the smeared space model to evade the problems
that plague existing modified commutator models, including violation of the equivalence prin-
ciple, the velocity-dependence of the minimum length, and the soccer ball problem [26,38].

Finally, we note that substituting ∆g x ′i = σi
g ' lPl and ∆g p′j = σ̃g j ' mdSc into Eqs. (32)

yields the length and momentum scales given in Eqs. (7) of the main text, and, hence, the
observed dark energy density over macroscopic distances. By contrast, using the standard HUP
for the geometric part of the composite quantum wave function Ψ =ψg, which is equivalent
to taking the limit mdS → mPl, β → ħh in the smeared-space model, yields the familiar ‘worst
prediction in theoretical physics’, i.e., a vacuum energy of the order of the Planck density,
ρvac ' ρPl.
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