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Abstract

As a new approach to efficiently describe correlation effects in the relativistic quan-
tum world we propose to consider reduced density matrix functional theory, where the
key quantity is the first-order reduced density matrix (1-RDM). In this work, we first
introduce the theoretical foundations to extend the applicability of this theory to the rel-
ativistic domain. Then, using the so-called no-pair (np) approximation, we arrive at an
approximate treatment of the relativistic effects by focusing on electronic wavefunctions
and neglecting explicit contributions from positrons. Within the np approximation the
theory becomes similar to the nonrelativistic case, with as unknown only the functional
that describes the electron-electron interactions in terms of the 1-RDM. This requires the
construction of functional approximations, and we therefore also present the relativistic
versions of some common RDMFT approximations that are used in the nonrelativistic
context and discuss their properties.
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1 Introduction

When relativistic effects play a role in the quantum world, the Schrödinger equation must
be replaced by the Dirac equation. This change of paradigm is required to describe the elec-
tronic structure of heavy elements in the periodic table [1–5] as electrons reach high velocities
due to their strongly attractive nuclear potentials. When such elements are present, often
(near) degeneracies in the electronic energies (e.g. due to spin-orbit coupling effects) oc-
cur and demand a good treatment of the so-called nondynamic (strong/static) correlation
effects [6–14]. While methods like complete active space including second-order perturbation
theory (CASPT2) [15–18], DMRG [19,20] and multi-reference coupled cluster theory [21–26]
can be employed they all exhibit a high computational scaling with system size that limits their
general applicability. An interesting efficient alternative is offered by reduced density matrix
functional theory (RDMFT) as it has an intrinsic low-order scaling with system size [27,28].

RDMFT is emerging as a strong competitor to the widely used density functional theory
(DFT) due to the possibility to use fractional occupation numbers, which facilitates the study of
electronic systems where the so-called nondynamic correlation effects are enhanced [29–35].
Indeed, the popular working horse of physicists and chemists (i.e. the use of Kohn–Sham DFT
approach with the usual density-functional approximations), in general, fails to account for
nondynamic correlation effects [36] (except for a few cases like the approximation based on
the fractional spin localized orbital scaling correction [37], some functional approximations
developed using strictly correlated electrons [38], Becke’s B13 functional [39,40], among oth-
ers.). Actually, the capability of RDMFT to render nondynamic correlation effects has lead to
a recent burst of this theory into new domains like the study of superconductivity [41] and of
Bose–Einstein condensates [42]. In an attempt to extend it to the relativistic context, we vali-
date its applicability by setting the theoretical foundations of relativistic RDMFT (ReRDMFT).

Already in 2002 Ohsaku et al. introduced a local (relativistic) quantum electro-dynamical
(QED) RDMFT [43] theory in which the nonlocality properties of the first-order reduced den-
sity matrix (1-RDM) were not exploited and the so-called noninteracting kinetic energy needed
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to be evaluated with an auxiliary noninteracting system. This complication may be avoided
by using the full 1-RDM as all one-body interactions can then be evaluated as explicitly known
functionals of the 1-RDM. In our work, we do therefore exploit also the nonlocality of the
1-RDM and introduce relativistic RDMFT (ReRDMFT). In this theory, we consider an external
nonlocal potential (as it was employed by Gilbert in the nonrelativistic context [44]) and de-
fine the energy as a functional of the 1-RDM. In this way, the functional expression for all the
one-body interactions is fully known in terms of this matrix and only the energy functional
for electron-electron (as well as the positron-positron and the electron-positron) interactions
remains unknown.

Recently, Toulouse proposed a relativistic density-functional theory based on a Fock-space
effective QED Hamiltonian using the Coulomb or Coulomb–Breit two-particle interaction [45].
This theory, based on the works of Chaix et al. (see Refs. 46, 47), includes vacuum polariza-
tion effects through the creation of electron-positron pairs. Following his work we propose a
similar approach called npvp-ReRDMFT that is capable to account for the effects of vacuum
polarization within the no-pair vacuum-polarization approximation. Finally, neglecting the
effect of vacuum polarization and assuming that a floating vacuum state is taken as reference
each time spinor rotations are applied, we arrive to our last formulation called np-ReRDMFT.
The np-ReRDMFT corresponds to the usual application of the no-pair approximation [48,49].

This work is organized as follows: 1) we introduce the most general ReRDMFT approach,
where creation and annihilation of electron-positron pairs is allowed. To that end, we first dis-
cuss the single-particle problem subject to a nonlocal external potential; then, we present its
many-particle generalization and introduce the Fock space. Next, we analyze some properties
of this Fock space and show how wavefunctions can be split according to the different charge
sectors. Then, we focus on the effect of changing the basis representation that leads to vacuum
polarization. Finally, we present the correlated wavefunction (that includes creation and an-
nihilation of electron-positron pairs processes) and use it in combination with the constrained
search formalism to introduce ReRDMFT. 2) As an approximation to the full ReRDMFT we
include the so-called no-pair approximation at two levels. An initial approach where vacuum
polarization effects are taken into account (leading to npvp-ReRDMFT) and a second approach
where these effects are neglected (np-ReRDMFT). It is within the np-ReRDMFT framework that
we evoke the Kramers’ symmetry [50] and use it to adapt the nonrelativistic RDMFT functional
approximations to the relativistic context. Finally, we discuss some of the properties of the
functional approximations. Before proceeding, let us present Table 1 where we have collected
the index conventions that will be employed in this work.

Table 1: Indices used throughout this work.

Indices labeling
I ,J ,K ,L positive energy spinors (PS)

R,S negative energy spinors (NS)
A,B all spinors (NS∪ PS)

i, j,k,l
half of the PS

(not related by Kramers’ symmetry)

ī, j̄,k̄,l̄
half of the PS

(Kramers partners of the unbarred spinors)
µ, ε, τ, η scalar orbitals (components of a 4-spinor)

p,q electron pairs
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2 ReRDMFT including electron-positron pair creation and annihi-
lation processes.

2.1 The free particle Dirac equation and quantization of the Dirac field

Let us start by defining the time-independent free particle Dirac equation

bTD(r)ψA(r) =
�

−ic(α ·∇r) +mc2β
�

ψA(r)

= EAψA(r), (1)

where bTD(r) is the usual first-quantized 4 × 4 Dirac kinetic + rest mass operator, i =
p
−1,

c = 137.036 a.u. is the speed of light, m= 1 a.u. is the electron mass,

α= (αx ,αy ,αz)

=

��

02 σx
σx 02

�

,

�

02 σy
σy 02

�

,

�

02 σz
σz 02

��

, (2)

02 is the 2×2 null matrix,

σx =

�

0 1
1 0

�

, σy =

�

0 −i
i 0

�

, σz =

�

1 0
0 −1

�

; (3)

β =

�

I2 02
02 −I2

�

, (4)

I2 is the 2×2 unit matrix. Solutions of the free Dirac equation (ψA) are 4-component-spinor
orbitals

ψA(r) =







φA,1(r)
φA,2(r)
φA,3(r)
φA,4(r)






, (5)

whose conjugate-transpose form reads

ψ†
A(r) =

�

φ∗A,1(r) φ∗A,2(r) φ∗A,3(r) φ∗A,4(r)
�

. (6)

Let us remark that the scalar functions (φ) represent spatial orbitals because the spin is ac-
counted by their arrangement in 4-component spinors. These solutions can be partitioned
into a set of positive-energy 4-component spinors (EA > 0) and a set of negative-energy ones
(EA < 0), i.e. {ψA} = {ψR} ∪ {ψI}. From now on, we will designate the “positive energy
spinors” (“negative energy spinors”) as PS (NS). Hence, the Dirac field is quantized as

Òψ(r) =
∑

A

baAψA(r) =
∑

I

bbIψI(r) +
∑

R

bd †
RψR(r), (7)

where the sum has been decomposed into contributions involving electron(positron) annihi-
lation(creation) operators. These operators obey the usual anticommutation relations

{baA, ba †
B }= δAB and {ba †

A , ba †
B }= {baA, baB}= 0. (8)
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2.2 The Hamiltonian operator including an external nonlocal potential, charge
sectors in Fock space, and Bogoliubov transformations

Next, let us introduce a Hermitian nonlocal external potential that can be expressed in 4-
component form as

vnl
ext(r, r′) =









vnl
ext,1,1(r, r′) vnl

ext,1,2(r, r′) vnl
ext,1,3(r, r′) vnl

ext,1,4(r, r′)
vnl

ext,2,1(r, r′) vnl
ext,2,2(r, r′) vnl

ext,2,3(r, r′) vnl
ext,2,4(r, r′)

vnl
ext,3,1(r, r′) vnl

ext,3,2(r, r′) vnl
ext,3,3(r, r′) vnl

ext,3,4(r, r′)
vnl

ext,4,1(r, r′) vnl
ext,4,2(r, r′) vnl

ext,4,3(r, r′) vnl
ext,4,4(r, r′)









, (9)

with the matrix elements obeying the constraint vnl
ext,µ,ε(r, r′) =

�

vnl
ext,ε,µ(r

′, r)
�∗

to ensure the
hermiticity of the operator.

The bound particle Dirac equation that describes the states of a single particle (electron or
positron) subject to a nonlocal external potential as in (9) reads

bTD(r)ψA(r) +

∫

dr′vnl
ext(r, r′)ψA(r

′) = EAψA(r). (10)

The statesψ depend on the choice of nonlocal external potential and form an orthonormal set
(
∫

drψ†
A(r)ψB(r) = δAB).

This single-particle equation can be readily generalized to noninteracting many-particle
systems. To that end, let us recast the Hamiltonian to operate in Fock space as

ÒH v
0 = bTD + bV

nl
ext

=

∫

drdr′δ(r− r′)Tr
�

bTD(r)bn1(r, r′)
�

+

∫

drdr′Tr
�

vnl
ext(r

′, r)bn1(r, r′)
�

(11)

=
∑

µ,τ

∫

drdr′
�

δ(r− r′)TD,µ,τ(r) + vnl
ext,µ,τ(r

′, r)
�

bn1,τ,µ(r, r′),

where we have introduced the one-particle density matrix operator whose elements read as

bn1,τ,µ(r, r′) =N
�

Òψ †
µ(r
′)Òψτ(r)

�

=
∑

I ,J

bb †
I
bbJφ

∗
I ,µ(r

′)φJ ,τ(r) +
∑

I

∑

S

bb †
I
bd †

S φ
∗
I ,µ(r

′)φS,τ(r) (12)

+
∑

R

∑

J

bdR
bbJφ

∗
R,µ(r

′)φJ ,τ(r)−
∑

R,S

bd †
S
bdRφ

∗
R,µ(r

′)φS,τ(r)

that is defined using creation and annihilation Dirac field operators with normal ordering [51,
52] (using Wick’s theorem) N [· · · ] of the elementary operators 1

bb †
I , bd †

R , bbI , and bdR w.r.t. the
effective vacuum state (|0v〉). The formal definition of the effective vacuum state requires a
detailed discussion that we briefly summarize in the following lines. First we note that any
Hamiltonian leads to a set of PS and NS. One could then define a bare vacuum state in which
all spinors are unoccupied. This definition of the vacuum is problematic, however. Since NS
are much lower in energy than PS, electrons occupying PS would be able to decay into empty
NS by emitting photons resulting in an endless cascade of emission processes. To overcome
this issue, Dirac proposed to fill all NS with electrons, introducing the so-called Dirac sea [53].
This is also problematic as the energy of such a vacuum state in which all NS are occupied is

1The spinor-components annihilation field operators are defined as Òψ
µ
(r) =

∑

I
bbIφI ,µ(r) +

∑

R
bd †

RφR,µ(r); the

creation field operators are written as Òψ †
µ
(r) =

∑

I
bb †

I φI ,µ(r) +
∑

R
bdRφR,µ(r).
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minus infinity. To avoid dealing with infinities, a reinterpretation was thus suggested in QED
where all filled (by electrons) NS are redefined as empty positronic spinors. Thus, the effective
vacuum state, which sets the zero of the energy scale, corresponds to the state where all PS
do not contain electrons and all NS do not contain positrons. In the particular case when
vnl

ext = 04×4 (ÒH v
0 = ÒH0

0 ≡ bTD), we refer to its effective vacuum state as |00〉 and to its spinor
basis as ψ0

A(r).
Let us assume that a given ÒH v

0 (with vnl
ext 6= 04×4) is built initially in the free particle

ψ0
A(r) basis, with the normal ordering taken w.r.t. free particle vacuum |00〉. In this basis

ÒH v
0 is not diagonal and it does not commute with the electron (positron) number operators
ÒNe =

∑

I
bb †

I
bbI(ÒNp =

∑

R
bd †

R
bdR). Moreover, ÒH v

0 does not commute with the total number of
particles operator ÒN = ÒNe+ÒNp. A useful operator that does commute with ÒH v

0 is, however, the
opposite charge operator [49,54] that is defined as

bQ = ÒNe −ÒNp =
∑

I

bb †
I
bbI −

∑

R

bd †
R
bdR (13)

(see Appendix A for more details). We then consider using the eigensolutions ψv
A that pro-

vide the diagonal representation ÓÝH v
0 with the tilde symbol indicating that the Hamiltonian is

transformed with respect to its original representation and has normal ordering w.r.t. its own
vacuum |0v〉. For consistency we will also indicate this vacuum as |e0v〉 with the tilde symbol
indicating that these quantities are transformed with respect to their original representations.
In the current case |e0v〉 = |0v〉, but this will change when two-particle interactions are con-
sidered below. In the eψA(r) = ψv

A(r) basis the Hamiltonian commutes with the number of
electrons (positrons) operators, the number of particles operator, and the opposite charge op-
erator. Due to the diagonal representation, the pair creation and annihilation processes vanish;
thence, the Hamiltonian conserves the particle number. Since both basis are orthonormal, they
are related by a unitary transformation V = eκ 2, where the antihermitian matrix κ (formed
by the parameters κAB ∈ C) can be chosen to contain all its diagonal entries equal to zero
to avoid redundant phase-shifts of the spinors. Therefore, the relationship between the two
bases reads as

eψA(r) =
∑

B

ψ0
B(r)VBA. (14)

The ÓÝH v
0 operator is written in terms of the transformed operators (beb †

I ,
b

ed †
R, beb I , and bed R) that

are given by

b

eaA = ebκbaAe−bκ =
∑

B

baBV ∗BA, (15)

where the spinor rotation operator (ebκ) is expressed as the exponential of an antihermitian
operator bκ with

bκ=
∑

A,B

κABba
†
A baB

=
∑

I ,J

κI J
bb †

I
bbJ +

∑

I

∑

S

κIS
bb †

I
bd †

S +
∑

R

∑

J

κRJ
bdR
bbJ +

∑

R,S

κRS
bdR
bd †

S . (16)

Actually, the spinor rotation operator ebκ corresponds to a Bogoliubov transformation mixing
electron annihilation and positron creation operators [55, 56], producing modified electron

2We exploit the fact that any unitary matrix can be written in terms of an auxiliary antihermitian matrix κ
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and positron creation and annihilation operators that are consistent with a transformed vac-
uum.

Recalling that the Hamiltonian commutes with the opposite charge operator in any basis,
it is convenient to classify its eigenstates within a Fock space that gathers together different
particle-number sectors

F =
(∞,∞)
⊕

(Ne ,Np)=(0,0)

H(Ne ,Np) , (17)

where
⊕

designates the direct sum. Alternatively, the Fock space can also be decomposed into
charge (Q = Ne − Np) sectors

F =
∞
⊕

Q=−∞
HQ. (18)

For a given Hamiltonian ÒH v
0 , the wavefunction of a system containing a fixed number of elec-

tron (Ne) and positrons (Np) can be written as a single determinant (SD) 3. The SD wavefunc-
tion reads as

|Φ〉= bb †
I1
· · ·bb †

INe

bd †
R1
· · · bd †

RNp
|00〉, (19)

and is is antisymmetric under the exchange of particles (as required for systems formed by
fermions). Furthermore, the wavefunction in the basis where the Hamiltonian is diagonal can
be written as a unitary rotation of the original wave function by operator bV as

|eΦ〉= bV |Φ〉= ebκ|Φ〉= ebκ bb †
I1
· · ·bb †

INe

bd †
R1
· · · bd †

RNp
|00〉

= ebκ bb †
I1

e−bκ · · ·ebκbb †
INe

e−bκebκbd †
R1

e−bκ · · ·ebκbd †
RNp

e−bκebκ|00〉

= beb†
I1
· · ·beb†

INe

b

ed†
R1
· · · bed†

RNp
|e0v〉, (20)

with |e0v〉= ebκ|00〉. Let us also rewrite the annihilation Dirac field operators in the eψA(r) basis
as

Òψ(r) =
∑

A

b

eaA
eψA(r) =

∑

I

b

eb I
eψI(r) +

∑

R

b

ed†
R
eψR(r), (21)

a similar expression can be written for the creation Dirac field operator (Òψ†(r)). In summary,
as in the nonrelativistic context, the spinor rotation operator allows us to change the basis rep-
resentation of the creation and annihilation operators, which may be used to obtain a diagonal
representation of a particular Hamiltonian. Since the only difference between Hamiltonians is
in the nonlocal external potential, this diagonal representation always depends on the given
nonlocal external potential. Finally, taking the Taylor expansion of ebκ, it is easy to recognize
that basis eψA(r) in which the Hamiltonian is diagonal is given by the set of {κAB} parameters
that lead to a stationary point [57] (i.e. a minimum, a maximum, or a saddle point) of the
energy w.r.t. variations of these parameters.

2.3 Vacuum polarization

From now on, we will assume that an initially given orthonormal basis ψA(r) is employed to
express the Hamiltonian operator, this could be theψ0

A(r) basis, but any orthonormal basis can
in principle be used as long as it is possible to distinguish between initial positive and negative
energy states, e.g. by diagonalizing an initial Hamiltonian. To stress this freedom of initial
reference, we drop the symbol 0 from this definition as the choice of a free particle vacuum is

3Also known as the single Slater determinant wavefunction.
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only one possibility. To avoid artefacts in the calculation of the kinetic energy due to basis set
incompleteness, it is only necessary to build this initial basis with adequate kinetic balance [58–
60] between the bases for the large and small components of the spinors. The initial effective
vacuum state is now defined as |0〉 with the initial normal ordering taken w.r.t. this vacuum.
The absence of tilde symbols on the basis functions and the vacuum hereby indicates that the
Hamiltonian is non-diagonal in this basis. In the previous section we introduced the rotation
operator (ebκ) and defined the transformed effective vacuum

|e0v〉= ebκ|0〉 (22)

that provides a new reference for normal ordering the transformed operators. As we previously

mentioned, the initially defined ÒH v
0 operator can be rewritten in another basis (ÓÝH v

0) employing

the operator ben1,τ,µ(r, r′) (i.e. expressing the one-body density matrix operator in terms of the

elementary operators beb †
I ,
b

ed †
R, beb I , and bed R). Recalling that the normal ordering is introduced

to guarantee that the energy of the effective vacuum is zero, i.e.,

〈0|ÒH v
0 |0〉= 〈e0v|

Ó

ÝH v
0 |e0v〉= 0, (23)

when a Hamiltonian is not evaluated with its reference effective vacuum state it leads to
nonzero contributions 〈e0v|ÒH v

0 |e0v〉 6= 0 6= 〈0|ÓÝH v
0 |0〉. Actually, the relationship between the

noninteracting Hamiltonian operators can simply be written as

ÒH v
0 =

Ó

ÝH v
0 + eE

0
0 , (24)

where

eE0
0 = 〈e0v|ÒH v

0 |e0v〉=
∫

drdr′Tr
��

δ(r− r′)bTD(r) + vnl
ext(r

′, r)
�

envp
1 (r, r′)

�

, (25)

is known as the vacuum polarization [46] (vp) energy (also present in the interacting particle
picture, see below). And with the vacuum polarization one-particle density matrix defined as

envp
1 (r, r′) =

∑

R

eψR(r) eψ
†
R(r
′)−

∑

R

ψR(r)ψ
†
R(r
′) (26)

whose components read as

envp
1,η,ε(r, r′) = 〈e0v|bn1,η,ε(r, r′)|e0v〉 (27)

=
∑

R

eφR,η(r) eφ
∗
R,ε(r

′)−
∑

R

φR,η(r)φ
∗
R,ε(r

′).

Before proceeding, let us remark that vp effects are present whenever spinor rotations mix-
ing the positive and negative spinors are involved and the reference effective vacuum changes.
When only one-body operators are present in the Hamiltonian, changes on it can be accounted
for by orbital relaxation. This is no longer possible when also two-body operators are consid-
ered as will be discussed in the next section.

2.4 The interacting particle Hamiltonian and the configuration-interaction vac-
uum

In the more complete description of relativistic electronic dynamics provided by QED also
the electromagnetic field is quantized such that the electron-electron (and electron-positron)
interaction is mediated by the exchange of photons. This allows for a proper account of re-
tardation effects due to the photons finite velocity. In the present work we take a simpler
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approach and treat the electromagnetic field semi-classically with the approximate interaction
provided by the Coulomb–Breit interaction. This operator corresponds to the single-photon
exchange electron-electron scattering amplitude in QED evaluated with the zero-frequency
limit of the photon propagator in the Coulomb electromagnetic gauge [54]. Unfortunately,
this approximation makes the present theory not Lorentz invariant, but it is the most widely
used interaction at present; it improves the description of the interaction w.r.t. nonrelativistic
Coulomb interaction (i.e. |r1−r2|−1). Thus, the approximate interacting Hamiltonian reads as

ÒH = ÒH v
0 +cW

= ÒH v
0 +

1
2

∫

dr1dr2Tr [W(r1, r2)bn2(r1, r2)]

= ÒH v
0 +

1
2

∑

µ,ε,τ,η

∫

dr1dr2Wµ,ε,τ,η(r1, r2)bn2,τ,η,µ,ε(r1, r2), (28)

where

Wµ,ε,τ,η(r1, r2) =
1

r12

�

δµ,τδε,η −
1
2

�

αµ,τ ·αε,η
�

−

�

αµ,τ · r12

� �

αε,η · r12

�

2r2
12

�

(29)

with r12 = r1−r2 and r12 = |r12|; and the pair-density matrix operator is defined using creation
and annihilation Dirac field operators

bn2,τ,η,µ,ε(r1, r2) =N
�

Òψ †
ε (r2)Òψ

†
µ(r1)Òψτ(r1)Òψη(r2)

�

, (30)

where the normal ordering is taken w.r.t. the effective vacuum state |0〉. Due to the interaction,
a SD wavefunction (Eqs. (19) and (20)) is no-longer an eigenstate of ÒH and representations
of ÒH are in general non-diagonal.

Let us start the search for the wavefunctions of ÒH by noticing that the Fock space can be
split into charge sectors, such that the ground state energy of ÒH can be written as 4

E = min
|Ψ〉∈HQ

〈Ψ|ÒH v
0 +cW |Ψ〉. (31)

Thence, the wavefunctions must also be eigenstates of bQ with eigenvalue Q (i.e. bQ|Ψ〉=Q|Ψ〉).
Consequently, |Ψ〉 can be constrained to have a given charge Q (i.e.

∫

dr〈Ψ|Tr [bn1(r, r)] |Ψ〉=Q).
Assuming that Ψ is normalized to 1, a state that belongs to HQ for a particular charge sector
Q ≥ 0 can be written (parameterized) as

|Ψ〉=

 

∑

I1,...,IQ

cI1...IQ
bb †

I1
· · ·bb †

IQ
+

∑

I1,...,IQ ,IQ+1

∑

R1

cI1...IQ IQ+1R1
bb †

I1
· · ·bb †

IQ
bb †

IQ+1
bd †

R1

+
∑

I1,...,IQ ,IQ+1,IQ+2

∑

R1,R2

cI1...IQ IQ+1 IQ+2R1R2
bb †

I1
· · ·bb †

IQ
bb †

IQ+1
bb †

IQ+2
bd †

R1
bd †

R2
+ · · ·

!

|0〉. (32)

Since we account for all contributions to all orders there is no need for spinor rotations, i.e.
spinor rotations become redundant, c.f. full configuration interaction (FCI) in the nonrelativis-
tic context.

The charge sectors Q < 0 present the same structure as the Q ≥ 0 ones. Thus, without
any loss of generality and for practical reasons (i.e. as we are usually interested in electronic

4Assuming that the opposite charge operator (bQ) and the interacting Hamiltonian operator (ÒH) commute, which
is only valid for an appropriate definition of the fermion-fermion interaction and with the adequate definition for
the normal ordering.

9

https://scipost.org
https://scipost.org/SciPostChem.1.2.004


SciPost Chem. 1, 004 (2022)

wavefunctions more than in positronic ones), from now on will assume that our wavefunctions
belong to the latter one.

The Q = 0 case is especially interesting as it could be used for a redefinition of the vacuum
state. Up to now, we have considered an effective vacuum (|0〉) that could be obtained for
some effective one-body potential v. This is not possible when we include an explicit two-
electron interaction. Nevertheless, from the partition of the Fock space into charge sectors, it
is possible to define instead a CI vacuum wavefunction (|0CI〉) as a linear combination of states
with arbitrary number of electron-positron pairs that belongs to the charge sector Q = 0. Thus,
the CI vacuum wavefunction reads as

|0CI〉=

 

c0 +
∑

I1

∑

R1

cI1R1
bb †

I1
bd †

R1
+
∑

I1,I2

∑

R1,R2

cI1 I2R1R2
bb †

I1
bb †

I2
bd †

R1
bd †

R2
+ · · ·

!

|0〉, (33)

where spinor rotations are redundant because this wavefunction accounts for all vacuum con-
tributions to all orders. Let us remark that although the two-electron operator does not change,
these CI coefficients vary with the nonlocal external potential (e.g. when the molecular struc-
ture is changed). Only if this nonlocal external potential as well as the charge (Q) is kept fixed,
then normal ordering [51, 52] can in principle be defined w.r.t. this |0CI〉 vacuum state. The
vp effects (i.e. 〈0CI|ÒH|0CI〉= 0) can then be omitted. In the usual situation, when the external
potential is allowed to change, vp effects cannot be neglected even when a CI vacuum is em-
ployed as the coefficients of CI vacuum depend on the external potential and this then affects
the normal ordering.

In the nonrelativistic limit, when only electrons are considered in the wavefunction, the
effective vacuum and the CI one coincide because in the reinterpretation of the NS the elec-
trons are decoupled from the positrons and the latter do not contribute to the wavefunction.
Moreover, in that limit the external potential does not affect the definition of the vacuum state;
thence, the effective vacuum can be used independently of the interactions considered for the
electrons and for any different external potential employed.

2.5 The 1-RDM and its natural orbital representation

Let us comment on some properties of the 1-RDM obtained from a wavefunction |Ψ〉 given
by Eq. (32). Using the one-particle density matrix operator Eq. (12) we define the matrix
elements of the 1-RDM in the spinor basis as

n1,ε,µ(r, r′) = 〈Ψ|bn1,ε,µ(r, r′)|Ψ〉

=
∑

I ,J

1DJ
I φ
∗
I ,µ(r

′)φJ ,ε(r) +
∑

I

∑

R

1DR
I φ
∗
I ,µ(r

′)φR,ε(r)

+
∑

R

∑

I

1DI
Rφ
∗
R,µ(r

′)φI ,ε(r) +
∑

R,S

1DR
Sφ
∗
R,µ(r

′)φS,ε(r), (34)

where we have introduced the 1-RDM coefficients 1DJ
I = 〈Ψ|bb

†
I
bbJ |Ψ〉,

1DR
I = 〈Ψ|bb

†
I
bd †

R |Ψ〉,
1DI

R = 〈Ψ|bdR
bbI |Ψ〉, and 1DR

S = −〈Ψ|bd
†

S
bdR|Ψ〉. In a nonrelativistic context, the coefficients

arising from the expectation values 〈Ψ|bb †
I
bd †

R |Ψ〉 and 〈Ψ|bdR
bbI |Ψ〉 do not contribute since the

wavefunction is formed by a fixed number of particles and due to the absence of positrons in
this limit, the last contribution 〈Ψ|bd †

S
bdR|Ψ〉 then trivially vanishes.

Collecting the matrix elements we form the corresponding 4×4 matrix, and after trivial
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algebra we obtain the full 1-RDM as

n1(r, r′) =
∑

I ,J

1DJ
I









φ∗I ,1(r
′)φJ ,1(r) φ∗I ,2(r

′)φJ ,1(r) φ∗I ,3(r
′)φJ ,1(r) φ∗I ,4(r

′)φJ ,1(r)
φ∗I ,1(r

′)φJ ,2(r) φ∗I ,2(r
′)φJ ,3(r) φ∗I ,3(r

′)φJ ,2(r) φ∗I ,4(r
′)φJ ,2(r)

φ∗I ,1(r
′)φJ ,3(r) φ∗I ,2(r

′)φJ ,3(r) φ∗I ,3(r
′)φJ ,3(r) φ∗I ,4(r

′)φJ ,3(r)
φ∗I ,1(r

′)φJ ,4(r) φ∗I ,2(r
′)φJ ,4(r) φ∗I ,3(r

′)φJ ,4(r) φ∗I ,4(r
′)φJ ,4(r)









+
∑

I

∑

R

1DR
I (· · ·)4×4 +

∑

R

∑

I

1DI
R (· · ·)4×4 +

∑

R,S

1DR
S (· · ·)4×4

=
∑

I ,J

1DJ
I ψJ (r)ψ

†
I (r
′) +

∑

I

∑

R

1DR
I ψR(r)ψ

†
I (r
′)

+
∑

R

∑

I

1DI
RψI(r)ψ

†
R(r
′) +

∑

R,S

1DR
SψS(r)ψ

†
R(r
′). (35)

The trace of the 1-RDM is equal to the charge Q, i.e.
∑

A
1DA

A = Q. Moreover, the coefficients
1DB

A form an Hermitian matrix that can be diagonalized, which leads to the natural orbital 5

(NO) representation of the 1-RDM

n1(r, r′) =
∑

A

nAχA(r)χ
†
A(r
′), (36)

where {nA} are known as the occupation numbers (ONs) that take values in the interval be-
tween [−1, 1] and the NOs are written as 4-component spinors χA(r) =

∑

BψB(r)UBA (the
columns of the U matrix contain the eigenvectors obtained from the diagonalization of the 1D
matrix).

In the particular case of a SD wavefunction (19) the (canonical) ψ spinors coincide with
the NOs with ONs that are then either 0 or ±1. Consequently, the 1-RDM for |Φ〉 reads as

nSD
1 (r, r′) =

Ne
∑

I

ψI(r)ψ
†
I (r
′)−

Np
∑

R

ψR(r)ψ
†
R(r
′). (37)

2.6 Introducing ReRDMFT through the constrained-search formalism

Considering the constrained-search formalism [61–63] we define the universal functional of
the 1-RDM W

�

n1

�

for N -representable 1-RDMs (n1 ∈DQ) that come from a state |Ψ〉 ∈HQ
6,

W [n1] = min
|Ψ〉∈HQ(n1)

〈Ψ|cW |Ψ〉

= 〈Ψ [n1] |cW |Ψ [n1]〉, (38)

where HQ(n1) is the set of states |Ψ〉 ∈HQ that yield a constrained 1-RDM (n1), and |Ψ [n1]〉
designates the state that minimizes this energy contribution 7. Thence, we may write the
ground state energy functional of the 1-RDM as

EQ = min
n1∈DQ

�

W [n1] +

∫

drdr′Tr
��

δ(r− r′)bTD(r) + vnl
ext(r

′, r)
�

n1(r, r′)
�

�

. (39)

5Could also be call as the natural spinor representation.
6We currently have no easy characterization of the set of N -representable 1-RDMs DQ. We at least know that

the trace of these 1-RDMs should be equal to the charge Q. Other necessary conditions will be investigated in
future work.

7Whether we have a true minimum, is an open question, but we suspect it to be the case like in the nonrelativistic
limit [62].
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At this point we would like to stress the similarity in structure of the expressions above with
relativistic DFT, which is based on local potentials and the opposite charge density

n(r) =

∫

dr′δ(r− r′)Tr
�

n1(r, r′)
�

. (40)

The disadvantage of relativistic DFT is, however, that the free Dirac operator must also be
included into the constrained search expression in this case, i.e.,

F [n] = min
|Ψ〉∈HQ(n)

〈Ψ|bTD +cW |Ψ〉

= 〈Ψ [n] |bTD +cW |Ψ [n]〉, (41)

where HQ(n) is the set of states |Ψ〉 ∈ HQ that yield a constrained opposite charge density
(n), and |Ψ [n]〉 designates the state that minimizes this energy contribution. Consequently,
the energy functional within the constrained search formalism for N -representable opposite
charge densities (n ∈Ddens

Q ) reads as

EQ = min
n∈Ddens

Q

�

F [n] +

∫

drvext(r)n(r)

�

. (42)

Returning to ReRDMFT, clearly, the advantage of the functional of the 1-RDM over the one
based on the opposite charge density is that all one-body interactions are an explicit functional
of n1. For instance, adding an energy contribution arising from an external vector field (Aext)
to the above expression is straight forward: only the term δ(r−r′)cα·Aext(r) needs to be added
and fits the general form of vnl

ext(r, r′) in (9). Thus, the functional of the 1-RDM contains more
information than the functional of the current (i.e. j(r) = cψ†(r)αψ(r) = Tr [cαn1(r, r)]),
which clearly shows the generality of the present theory and makes it interesting also for
the description of magnetism in molecular systems. The functional presented in (39) estab-
lishes relativistic reduced density matrix functional theory (ReRDMFT). In particular, when
the 1-RDM is given in the NO representation we will refer to it as relativistic natural orbital
functional theory (ReNOFT). For practical purposes and to resemble nonrelativistic applica-
tions of RDMFT, we will use ReNOFT in this work when building functional approximations.
An alternative approach to the constrained-search formalism is presented in the Appendix B,
where we discuss the extension of Gilbert’s theorem [44] to the relativistic domain.

3 The no-pair approximation and ReRDMFT

3.1 Vacuum polarization effects at fermion-fermion interacting case

The Hamiltonian given in Eq. (28) is written in normal-ordering w.r.t. to the initial effective
vacuum state |0〉8, which leads to 〈0|ÒH|0〉 = 0. The relationship between the interacting
Hamiltonian and its transformed counterpart (i.e. written in terms of transformed operators
and basis) is given by the equation

ÒH = ÒeH + beV vp + eE0, (43)

8Recall that this vacuum state is given using some orthonormal basis ψA(r) that is the initial guess. Also notice
that the operators bb †

I , bd †
R , bbI , and bdR are the initial ones.
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where

b

eV vp = beV vp
H +

b

eV vp
x

=
∑

µ,τ

∫

dr1

�

∑

ε,η

∫

dr2Wµ,ε,τ,η(r1, r2)en
vp
1,η,ε(r2, r2)

�

b

en1,τ,µ(r1, r1) (44)

−
∑

µ,ε,τ,η

∫ ∫

dr1dr2Wµ,ε,τ,η(r1, r2)en
vp
1,η,µ(r2, r1)ben1,τ,ε(r1, r2),

eE0 = 〈e0v|ÒH|e0v〉= eE0
0 +

1
2

∫

dr1dr2Tr
�

W(r1, r2)en
vp
2 (r1, r2)

�

, (45)

where we have introduced the vp pair-density matrix (written in terms of its components) as

envp
2,τ,η,µ,ε(r1, r2) = en

vp
1,η,ε(r2, r2)en

vp
1,τ,µ(r1, r1)− en

vp
1,τ,ε(r1, r2)en

vp
1,η,µ(r2, r1) (46)

and Ẽ0
0 was defined before in Eq. (25). Let us highlight that the definition of the vacuum as

an effective vacuum (|0〉 or |e0v〉, i.e. at the mean-field level), leads to only Hartree (beV vp
H ) and

exchange (beV vp
x ) like terms for the interaction between the fermions (electrons or positrons)

present in the |Ψ〉 and the polarization of the vacuum. Indeed, the envp
1 can be regarded as the

difference between the 1-RDM obtained from a SD wavefunction built from all positronic eψ
states, i.e.,

|eΦ〉=bed†
R1
· · ·bed†

RM
|e0v〉, (47)

and the same kind of function build with all positronic ψ states, i.e.,

|Φ〉= bd †
R1
· · · bd †

RM
|0〉, (48)

where M is the total number of positronic states (i.e. the positronic states are fully occupied).
Thus, the energy terms that account for the interaction between particles-vacuum and the
‘vacuum-vacuum’ effects, resemble the contribution arising from the frozen-core electrons in
a multi-configuration self-consistent field calculations in the nonrelativistic context (e.g. com-
plete active space self-consistent field). Consequently, only Hartree and exchange like terms
are present.

The effective vacuum state |e0v〉 that minimizes Eq. 45 can actually produce an energy
that diverges to −∞ due to infrared and ultraviolet divergences, which should be accounted
for in a practical implementation of the present theory. Nevertheless, these issues go beyond
the scope of the present work; therefore, we assume that a proper renormalization scheme
is applied in order to keep everything finite in the rest of this work. Further details about
infrared and ultraviolet divergences and how renormalization should be applied can be found
in Refs. [45,64–71].

Finally, let us recall that when the normal ordering is taken w.r.t. the CI vacuum state (for
a fixed nonlocal external potential), vp effects do not need to be considered anymore even
when spinor rotations are applied. In other words, only the CI vacuum leads to reference state
that is invariant under spinor rotations. Such a definition of vacuum can, however, not be
used in practice as the number of CI coefficients involved is formally infinite, which makes the
CI expansion unmanageable from the practical perspective. Furthermore, working with finite
basis sets still introduces a large number of CI coefficients (much larger than in non-relativistic
Full CI calculations); thus, the use of the CI vacuum becomes rapidly intractable also for fi-
nite bases. In the following, we introduce the so-called no-pair approximation, where spinor
rotations are required; therefore, they are always accompanied by vp energy contributions.
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3.2 The no-pair approximation including vacuum polarization ReRDFMT ap-
proach

The no-pair (np) approximation [48,72] is a widely used simplification when dealing with rel-
ativistic calculations. It relies on the fact that most physical and certainly chemical processes
correspond to much smaller energy exchanges (e.g. X-rays that interact with the electronic den-
sity contain ∼ 150keV) than required to create electron-positron pairs (> 1MeV) [73]. States
that contain one or more positron pairs do therefore hardly contribute to the wave functions
changes induced by such processes. Thus, in the description of common processes like chemi-
cal reactions or various kinds of spectroscopic phenomena, pure electronic wavefunctions are
generally employed (i.e. Ne = N and Np = 0). Within the np approximation only the PS are
populated while the NS remain empty. The np vp ground state energy reads as

Enpvp
N = min

|Ψ+〉∈ eH(N ,0)
〈Ψ+|ÒH|Ψ+〉, (49)

where the minimization is over normalized states in the set eH(N ,0) = ebκH(N ,0) that is the set
of states generated by all spinor rotations of N -electron states. A state |Ψ+〉 ∈ eH(N ,0) can be
written as

|Ψ+〉= ebκ
∑

I1,...,IN

cI1...IN
bb †

I1
· · ·bb †

IN
|0〉

=
∑

I1,...,IN

cI1...IN
b

eb†
I1
· · ·beb†

IN
|e0v〉. (50)

Since the state |Ψ+〉 can also be written as |Ψ+〉=
b

eP+|Ψ〉, where |Ψ〉 ∈HN is an arbitrary state

constrained to have N negative charges, and beP+ projects onto the N -electron Hilbert space con-
structed by the {beb†

I } operators. Thence, the energy minimization procedure given by Eq. (49)
can also be regarded as an optimization w.r.t. the projector, where the energy minimization
procedure implies finding an optimal vacuum state that depends on the Ne through Eqs. (44)
and (45). Lastly, using the constrained search formalism [61–63] and Eq. (49) we can readily
introduce npvp-ReRDMFT, where vp effects are accounted at the effective QED level 9.

For making npvp-ReRDMFT more explicit, let us denote the np 1-RDM as

n+1 (r, r′) =
∑

I ,J

1
eDJ

I
eψJ (r) eψ

†
I (r
′), (51)

where 1
eDJ

I = 〈Ψ+|
b

eb †
I
b

ebJ |Ψ+〉. Making use of n+1 and envp
1 all one-body interactions of Eq. (49)

(i.e. the electronic and the vp effects) can be readily evaluated as

〈Ψ+|bTD + bV
nl

ext|Ψ+〉=
∫

drdr′Tr
��

δ(r− r′)bTD(r) + vnl
ext(r

′, r)
� �

n+1 (r, r′) + envp
1 (r, r′)

��

. (52)

Also, the explicit vp contributions in terms of n+1 and envp
1 to 〈Ψ+|cW |Ψ+〉 is known through

Eqs. (44) and (45). Indeed, only the pure electronic contribution to 〈Ψ+|
c

fW |Ψ+〉 in terms of
n+1 is unknown and it needs to be approximated (see Appendix C for more details).

9Let us mention that NS are not populated within the np approximation, but they cannot be neglected when
optimizing the PS (i.e. NS play a similar role as the secondary space in nonrelativistic complete active space cal-
culations).
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3.3 The no-pair approximation ReRDFMT approach

The vp contribution to the total energy (i.e. eE0 and 〈Ψ+|
b

eV vp|Ψ+〉) is usually neglected in prac-
tical applications of the np approximation. Redefining the normal ordering w.r.t. an effective
vacuum state used whenever a spinor rotation is applied, the np energy reads

Enp
N = min

|Ψ+〉∈ eH(N ,0)
〈Ψ+|

Ò

eH|Ψ+〉, (53)

where the Hamiltonian is written in normal ordering w.r.t. the floating vacuum state |e0v〉. From
Eq. (53) we may write, within the constrained-search formalism, the functional expression for
N -representable np 1-RDMs (n+1 ∈D+N ) that come from a state |Ψ+〉 ∈ eH(N ,0)

W np
�

n+1
�

= min
|Ψ+〉∈ eH(N ,0)(n+1 )

〈Ψ+|
c

fW |Ψ+〉

= 〈Ψ+
�

n+1
�

|cfW |Ψ+
�

n+1
�

〉, (54)

where eH(N ,0)(n+1 ) is the set of states |Ψ+〉 ∈ eH(N ,0) that yield a constrained 1-RDM (n+1 ), and
|Ψ+

�

n+1
�

〉 designates the state that minimizes this energy contribution. Let us remark that we
have explicitly written the Hamiltonian operator as a functional of the np 1-RDM to highlight
that it changes during the minimization procedure. Actually, during the optimization proce-
dure the gap between the floating vacuum state and the N -electron ground state energy is
increased.

Consequently, the total energy functional that designates np-ReRDMFT can be defined as

Enp
N = min

n+1∈D
+
N

�

W np
�

n+1
�

+

∫

drdr′Tr
��

δ(r− r′)bTD(r) + vnl
ext(r

′, r)
�

n+1 (r, r′)
�

�

. (55)

The np approximation resembles the nonrelativistic result because the trace of the n+1 matrix
is equal to the number of electrons, i.e. Tr

�

1
eD
�

= Ne. The n+1 matrix can also be expressed in
the NO representation,

n+1 (r, r′) =
∑

I

nI eχI(r)eχ
†
I (r
′), (56)

with
∑

I nI = Ne which allows us to introduce np-ReNOFT.
To conclude this section, as it is mentioned in Ref. [45], the np approximation regains the

concept of an N -electron wavefunction,

Ψ+(r1, r2, . . . , rN ) =
∑

I1<...<IN

cI1...IN
eψI1
(r1)∧ · · · ∧ eψIN

(rN ), (57)

where ∧ denotes the normalized antisymmetrized tensor product.

3.4 The 〈Ψ+|
c

fW |Ψ+〉 term as an explicit functional of the second-order reduced
density matrix.

To conclude this section, let us comment on some properties of the expectation value of the
c

fW operator. In the np approximation this term reads as

〈Ψ+|
c

fW |Ψ+〉=
∑

I ,J ,K ,L

2DK L
IJ

∫

dr1dr2Tr
�

W(r1, r2)( eψL(r1)⊗ eψK(r2))( eψ
†
I (r2)⊗ eψ†

J (r1))
�

(58)
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where ⊗ denotes the tensor product, and 2DK L
IJ =

1
2〈Ψ+|

b

eb †
I
b

eb †
J
b

eb L
b

ebK |Ψ+〉 is the np second-

order reduced density matrix (2-RDM) element. Clearly, the 〈Ψ+|
c

fW |Ψ+〉 contribution is an
explicit functional of the 2-RDM. In the np approximation, the properties of the np 2-RDM are
the same as in the nonrelativistic case. In particular, the trace of this matrix reads

Tr
�

2D
�

=
∑

I ,J

2DI J
I J =

Ne(Ne − 1)
2

. (59)

Similarly, this matrix must fulfill the same N -representability conditions [74, 75] as in the
nonrelativistic case, which we exploit in the following section to adapt/re-build some func-
tional approximations for the relativistic problem. Finally, practical applications of relativistic

quantum chemistry/physics normally retain only part of the contributions to cfW . Indeed, the
Coulomb–Breit interaction (29) consists of two physically distinct contributions: one repre-
senting the magnetic interaction between the electrons, and another one representing the
retardation due to the finite velocity of the interaction [76]. The magnetic one was also dis-
covered by Gaunt [77] and can be combined with the Coulomb interaction to yield

Wµ,ε,τ,η(r1, r2) =
1

r12

�

δµ,τδε,η − (αµ,τ ·αε,η)
�

, (60)

which will be used in the rest of this work (i.e. inserting it in Eq. (58)).
Before proceeding, let us stress that both energy expressions Enpvp

N and Enp
N can be mini-

mized since the Hamiltonian is written using normal ordering. Hence, they are bounded from
below and the state |Ψ+〉 can actually be considered as a projected state from the |Ψ〉 ∈HN .

3.5 np-ReNOFT functional approximations by imposing Kramers’ symmetry

Since the np approximation is the most common initial starting point for relativistic calcula-
tions, we propose the construction of functional approximations in this framework.

The explicit dependence of the W
�

n+1
�

functional in terms of the n+1 is unknown (from now
on we will drop the + super-index when referring to the np 1-RDM). In nonrelativistic NOFT
the most accurate functionals [78–81] are built by imposing the so-called N -representability
conditions [74,75,82] and using only up to two different indices to define 2-RDM elements, be-
cause the Hartree and the exchange contributions can be fully accounted for by using only two
indices in the NO representation. These approximations usually employ a restricted approach,
whose equivalent in the relativistic context corresponds to using Kramers’ pairing symmetry
when external magnetic fields are not included [76], which leads to a restricted formulation
of spin magnetic moments. Then, a pair of NOs forms a Kramers’ pair (i, ī) if they transform
as ÒKeχi = eχī and ÒKeχī = −eχi , where we have defined the time-reversal operator as

ÒK = −i

�

σy 02
02 σy

�

ÒK0, (61)

and where ÒK0 is the complex conjugation operator. From now on we form two subsets of PS
by splitting all spinors into Kramers’ pairs 10. Actually, the proper definition of Kramers’ pairs
is not unique because the pair (i, ī) is degenerate; thus, any unitary transformation applied to
this pair leads to an equivalent pair of spinors that is still a Kramers’ pair. In the non-relativistic
limit, this corresponds exactly to the arbitrariness in the orientation of the spin quantization
axis of the restricted formalism. These subsets are labeled with lowercase barred and unbarred
indexes. Indeed, in practical calculations containing M PS, we have M/2 Kramers’ pairs and
thus, M/2 (un)barred PS 11.

10Let us comment that the formation of pairs of degenerated spinor is not unique, but we have adopted the one
given by Kramers’ pairs in this work.

11The same kind of partitioning of the spinor states can be applied to the NS.
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Imposing the Kramers’ symmetry we may rewrite the Ò

eH operator (including only the
Coulomb and the Gaunt interactions) in the NOs representation as [54]

Ò

eHKR =
∑

i

hii bX
+
ii +

1
2

∑

i, j,k,l

�

〈i j|kl〉bx++ik, jl − 〈i j|α�α|kl〉bx−−ik, jl + 〈ī j|kl〉bx++
īk, jl
− 〈ī j|α�α|kl〉bx−−

īk, jl

+ 〈i j|k̄l〉bx++
ik̄, jl
− 〈i j|α�α|k̄l〉bx−−

ik̄, jl

i

+
1
4

∑

i, j,k,l

h

〈ī j|kl̄〉bx++
īk, j l̄
− 〈ī j|α�α|kl̄〉bx−−

īk, j l̄

i

(62)

+
1
8

∑

i, j,k,l

h

〈ī j̄|kl〉bx++
īk, j̄ l
− 〈ī j̄|α�α|kl〉bx−−

īk, j̄ l
+ 〈i j|k̄l̄〉bx++

ik̄, j l̄
− 〈i j|α�α|k̄l̄〉bx−−

ik̄, j l̄

i

,

where α�α= αx ⊗αx +αy ⊗αy +αz ⊗αz and the integrals are defined as

hI I =

∫

drdr′ eχ†
I (r
′)
�

δ(r− r′)bTD(r) + vnl
ext(r, r′)

�

eχI(r), (63a)

〈I J |K L〉=
∫

drdr′
�

eχ†
I (r)⊗ eχ

†
J (r
′)
� �

eχK(r)⊗ eχL(r′)
�

|r′ − r|
, (63b)

〈I J |α�α|K L〉=
∫

drdr′
�

eχ†
I (r)⊗ eχ

†
J (r
′)
� �

α�α
� �

eχK(r)⊗ eχL(r′)
�

|r′ − r|
, (63c)

bX s
i j = (1+ sbTi j)beb

†
i
b

eb j , bx
s1s2
IK ,J L = (1+ s1bTik)(1+ s2bT jl)beb

†
i
b

eb†
J
b

eb L
b

ebK = bx
s2s1
J L,IK with bTi j

b

eb†
i
b

eb j =beb
†
j̄
b

eb ī

and bTi j
b

eb†
ī
b

eb j = −beb
†
j̄
b

eb i
12. Let us remark that the + and − signs placed in Eq. (62) do not refer

to positive or negative energy spinors; they only enter in the definition of bX s
I J and bx s1s2

I J ,K L . Using

the above Hamiltonian, the np energy reads as Enp
N = 〈Ψ+|

Ò

eHKR|Ψ+〉. For keeping the notation
as concise as possible, we will drop the KR superscript on the Hamiltonian from now on.

Within nonrelativistic NOFT, most of the approximations rely on the usage of only up to
two different indices in the electron-repulsion integrals to account for Hartree, exchange, and
(some) correlation effects. Actually, retaining up to two indices most of the (nonrelativis-
tic) NOFT approximations are able to retrieve the so-called nondynamic electron correlation
energy, but they fail to account for the dynamic one (that can be accounted using different
strategies [81,83,84]). Following the same strategy for np-ReNOFT and retaining only up to
two different indices in Eqs. (63b) and (63c) the np energy in the NO representation, Eq. (55),
reads as

Enp
N ≈

∑

i

hii

�

ni + nī

�

+
∑

i, j

�

2Di j
i j +

2D ī j
ī j
+ 2Di j̄

i j̄
+ 2D ī j̄

ī j̄

�

Ji j

−
∑

i, j

�

2Di j
i j −

2D ī j
ī j
− 2Di j̄

i j̄
+ 2D ī j̄

ī j̄

�

JG
i j +

∑

i, j

h�

2D ji
i j +

2D ī j̄
j̄ ī

�
�

Ki j − KG
i j

�
i

+
1
2

∑

i, j

h�

2D j ī
ī j
+ 2Di j̄

j̄ i
+ 2D ī j

j ī
+ 2D j̄ i

i j̄

�
�

Li j − LG
i j

�
i

+
∑

i 6= j

��

2D j j̄
i ī
+ 2D ī i

j̄ j

��

Ki j + KG
i j

��

−
1
2

∑

i 6= j

��

2Di ī
j̄ j
+ 2D j j̄

ī i
+ 2D ī i

j j̄
+ 2D j̄ j

i ī

��

Li j + LG
i j

��

, (64)

where Ji j = 〈i j|i j〉, JG
i j = 〈i j|α�α|i j〉, Ki j = 〈i j| ji〉, KG

i j = 〈i j|α�α| ji〉, Li j = 〈ī j| j ī〉 (notice

that Lii = 0 [76]), and LG
i j = 〈ī j|α � α| j ī〉. Interestingly, some NOFT approximations (i.e.

12The uppercase indices that enter in the definition of bx s1s2
IK ,J L are readily used in the creation and annihilation

operators, but they are used as (lowercase) unbarred indices in Ti j operator. Actually, the Ti j is only defined with
unbarred indices.
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GNOF/PNOFx approximations) employed in nonrelativistic calculations [79, 85] already use
L integrals to account for correlation effects among opposite-spin electrons.

The properties of the matrix elements of the np 2-RDM are the same as of the nonrelativistic
2-RDM ones (i.e. the matrix elements present the same symmetry and antisymmetry proper-
ties upon exchange of indices, they enter similarly in the evaluation of the N -representability
conditions, etc.); hence, we have adopted the same strategy that is used in the nonrelativis-
tic context to develop np(vp)-ReRDMFT functional approximations. Indeed, keeping only
up to two different indices and using the natural orbital basis permits us to account for all
Hartree and exchange interactions (now also including the exchange among ‘opposite spin’
terms in np(vp)-ReNOFT[np(vp)-ReRDMFT]). But, it also facilitates the search for analytic
constraints on the approximated 2-RDM matrix elements upon evaluation of the D-, Q-, and
G-N -representability conditions. Indeed, using the same strategy as in the nonrelativistic con-
text leads to relativistic functional approximations that correspond to a generalization of their
nonrelativistic counterparts (like the Dirac–Hartree–Fock method represents a generalization
of the nonrelativistic Hartree–Fock method). Consequently, with this strategy we can also
ensure that the correct nonrelativistic limit is retrieved with the functionals proposed in the
following sections.

3.5.1 The Dirac–Hartree–Fock approximation

The np Dirac–Hartree–Fock (DHF) approximations uses a SD wavefunction to approximate
|Ψ+〉 (occupying only PS). Actually, the DHF energy can be readily written from Eq. (64) for
‘spin-compensated’ systems where ni = nī and defining the matrix elements of the 2-RDM with
the SD approximation (2DSD)

(2DK L
IJ )

SD =
nI nJ

2
(δIKδJ L −δI LδJK). (65)

This approximation produces the correct symmetry and antisymmetry properties of the 2-
RDM [86]. Thence, the np DHF energy reads as

Enp,DHF = 2
∑

i

hiini +
∑

i, j

nin j

�

2Ji j −
�

Ki j − KG
i j

�

−
�

Li j − LG
i j

��

= 2
Ne/2
∑

i

hii +
Ne/2
∑

i, j

�

2Ji j −
�

Ki j − KG
i j

�

−
�

Li j − LG
i j

��

. (66)

In the last expression we have use ni = nī = 1 for the PS that form the SD wavefunction, and
0 otherwise. An efficient algorithm to optimize this functional has been recently proposed by
Sun et al. [87]. Moreover, this functional reduces to the one provided by Hafner for a purely

Coulomb electron-electron interaction (i.e. Wµ,ε,τ,η(r1, r2) =
δµ,τδε,η

r12
) from Ref. [88].

In the following, we introduce two paths to build ReNOFT approximations that are also
used in the nonrelativistic context. The functionals presented in this work are proposed for
‘spin-compensated’ systems, i.e. the NOs forming Kramers’ pairs always show the same ONs
(ni = nī). The first family of approximations is based on mimicking the exchange-correlation
hole, while the second one on imposing N -representability conditions. Nevertheless, both
paths approximate the 2-RDM elements as functions of the ONs, i.e.

2DK L
IJ =

2DK L
IJ (nI , nJ , nK , nL) (67)

and does not take into account the actual shape of the spinors.
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3.5.2 f (nI , nJ )-functional approximations

The family of nonrelativistic f (nI , nJ )-functional approximations is introduced as an attempt to
separate the electron-electron interactions into Hartree and exchange-correlation effects [86].
These approximations account for exchange-correlation effects by approximating the so-called
exchange-correlation hole. The exchange-correlation contribution is accounted replacing the
product nI nJ in the second term on the r.h.s. of the DHF energy by a f (nI , nJ ) function that at-
tenuates the exchange; thus, accounts not only for exchange but also for exchange-correlation
effects. In this context, the relativistic extension of the f (nI , nJ )-functional approximations
(i.e. the 2RDM elements) reads as

�

2DK L
IJ

�approx.
=

nI nJ

2
δIKδJ L −

f (nI , nJ )
2

δI LδJK . (68)

In Table 2 we have collected some f (nI , nJ ) functions that lead to some representative func-
tional approximations.

Table 2: Representative f (nI , nJ )-functional approximations.

Functional f (nI , nJ ) case Ref.

MBB
p

nI nJ all [89–91]
Power (nI nJ )

α all [92–94]

GU
p

nI nJ I 6= J
[95]

nI nJ otherwise

MLSIC

nI nJ
a0+a1nI nJ
1+b1nI nJ

I 6= J

[96]nI nJ otherwise
a0 = 1298.78,

a1 = 35114.4, and
b1 = 36412.2

The functionals given by Eq. (68) retrieve their nonrelativistic counterparts. Although, in
nonrelativistic NOFT approximations the f (nI , nJ ) functions only affect the ‘same-spin’ terms

(i.e. (2D ji
i j )

approx. and (2D j̄ ī
ī j̄
)approx.); therefore, the ‘opposite-spin’ ones (i.e. (2D j̄ i

i j̄
)approx. and

(2D j ī
ī j
)approx.) could be defined as − ni n j

2 (or using any other function), which may lead to an

extended definition of f (nI , nJ )-functional approximations in the relativistic scenario.
Let us briefly introduce the origin of the functionals presented in Table 2 that have their

origin in the nonrelativistic context. The Müller, Buijse and Baerends (MBB) functional was
introduced independently by Müller and by Buijse and Baerends [89–91], it produces an ap-
proximated functional which fulfills the sum rule, (i.e. Tr

�

2D
�

= Ne(Ne−1)
2 ). This functional was

derived from the requirement of minimal violation of the Pauli principle and from the analysis
of Fermi and Coulomb holes.

In the case of the Power functional, the α parameter was first proven to have to be
α ≥ 0.5565 to produce admissible densities (i.e. solutions that are: stable with respect to
the corresponding Euler equations, N -representable and whose electron-electron interaction
energy satisfies the Lieb–Oxford bound [97]). This functional is mostly used in solid state
physics and, according to Sharma et al. [93], the MBB functional overcorrelates the electrons
and the Power functional mediates with the overcorrelation of the electrons by using a param-
eter α > 1/2. In some applications, the bound α ≥ 0.5565 is not fixed and values like 0.53
are employed [98].
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The Goedecker and Umrigar (GU) and the Marques and Lathiotakis (MLSIC) functionals
are examples of approximations developed to remove the so-call self-interaction [95,96] terms
(i.e. they remove the nonphysical 2Dii

ii and 2D ī ī
ī ī

elements). The former corrects these terms
on the MBB functional, while the latter corrects a previous version of a similar functional also
based on a Padé approximant expression. The MLSIC parameters were optimized to reproduce
the G2 test.

The energy expression for the f (nI , nJ ) functionals reads as

Erel-x = 2
∑

i

hiini +
∑

i, j

2nin jJi j −
∑

i, j

f (ni , n j)
��

Ki j − KG
i j

�

+
�

Li j − LG
i j

��

, (69)

with x =MBB, Power, GU, and MLSIC.

3.5.3 Approximations built imposing N -representability conditions

A second family of functionals approximations is based on the reconstruction of the 2RDM
elements imposing the D, Q, G N -representability conditions [74,79,86,99].

From Eq. (64), we recognize the 2-RDM matrix elements that must be approximated. In-
deed, the 2-RDM matrix elements can be organized in blocks of the form

2D=





















�

2Di j
i j ,

2Di j
ji

�

0 0 0

0

�

2Dī i
j̄ j

, 2Dī j
ī j

�

�

�

�

i 6= j

� �

2Dī i
j j̄

, 2Dī j
j ī

�

�

�

�

i 6= j

�

0

0

�

2Di ī
j̄ j

, 2D j ī
ī j

�

�

�

�

i 6= j

� �

2Di ī
j j̄

, 2D j ī
j ī

�

�

�

�

i 6= j

�

0

0 0 0
�

2Dī j̄
ī j̄

, 2Dī j̄
j̄ ī

�





















. (70)

We may identify three decoupled blocks containing different spinor combinations. The
�

2Di j
i j ,

2Di j
ji

�

and
�

2Dī j̄
ī j̄

, 2Dī j̄
j̄ ī

�

blocks resemble the αα and ββ blocks of the nonrelativistic case,

while the large middle block corresponds to the αβαβ , αββα, etc. terms. In the nonrelativis-
tic limit, the off-diagonal terms of the middle block do not contribute to the energy as they
cancel upon integration over spin (e.g. the block 2Dī i

j j̄
= 0). Proposing functional approxima-

tions is facilitated by the introduction of the so-called cumulant matrix, which can be defined
as

Λ= 2D− 2DSD. (71)

Then, the auxiliary matrices ∆ and Π are defined to approximate the cumulant matrix (as
in the nonrelativistic context). These auxiliary matrices facilitate the evaluation of the N -
representability conditions. Upon evaluation of the D-, Q-, and G- N -representability condi-
tions (see the Appendix D for more details), and dividing the spinor space Ω into subspaces
mutually disjoint Ωp (see Fig. 1 for more details) we arrive to the relativistic version of the
GNOF/PNOFx (x = 5, 7) functional approximations [81,83,100] that can be written as

Erel-GNOF/PNOFx =
Ne/2
∑

p=1

Ep +
Ne/2
∑

q 6=p

Eqp. (72)

The first sum accounts for all intra-subspace contributions and reads as

Ep =
∑

i∈Ωp

ni(2hii + Jii + JG
ii + LG

ii ) +
∑

i, j∈Ωp
i 6= j

Πintra
i, j (Ki j + KG

i j + Li j + LG
i j), (73)
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where

Πintra
i, j =

¨

−pnin j , i or j ≤ Ne/2

+
p

nin j , i, j > Ne/2,
(74)

the second sum accounts for inter-subspace contributions (Eba) that can be defined as

Eqp =
∑

i∈Ωq

∑

j∈Ωp

nin j

�

2Ji j − (Ki j − KG
i j )− (Li j − LG

i j)
�

+
∑

i∈Ωq

∑

j∈Ωp

Πinter
i, j;p,q(Ki j + KG

i j + Li j + LG
i j),

(75)

whereΠinter
i, j;p,q = 0 in rel-PNOF5,Πinter

i, j;p,q = −
Æ

nihin jh j in rel-PNOF7 [101],Πinter
i, j;p,q = −4nihin jh j

in rel-PNOF7s 13 14, and

Πinter
i, j;p,q











nd
i nd

j −
Æ

nihin jh j −
Ç

nd
i nd

j , i > q, j = p or i = q, j > p

nd
i nd

j −
Æ

nihin jh j +
Ç

nd
i nd

j , i > q, j > p

0, i = q, j = p

(76)

with nd
i =

nih
d
p

hp
, hp = 1 − np, and hd

p = hp exp
�

−(hp/(0.02
p

2))2
�

in GNOF [102]. Each
electron pair is described by an even number of PS forming Kramers’ pairs. Moreover, the
rel-GNOF/PNOFx functionals presented in this work produce 2-RDM elements that are real,
but complex elements could be introduced by taking other functions to approximate the Πintra

and Πinter sub-matrices.

As we did for the f (nI , nJ )-functionals, we briefly introduce the origin of the nonrelativistic
PNOFx approximations whose relativistic adaptations are presented in this work for complete-
ness. PNOF5 was developed to produce the correct electron distribution upon bond cleav-
age processes [100]. This functional was initially introduced in the perfect-pairing approach,
where each sub-space Ωp contained only two NOs. Although, it was later extended beyond the
perfect-pairing approach to allow more orbitals in each sub-space. The lack of inter-subspace
interaction in PNOF5 lead to the later versions of PNOFx functionals (like PNOF7). The PNOF7
functional accounts for the interaction among pairs and has been proven account for the so-
called nondynamic correlation energy, but it misses the dynamic one [34, 35, 101]. In an
attempt to account for both types of electron correlation the GNOF functional was recently
proposed [102]; it has proven to be capable of accounting for an important part of the so-
called dynamic correlation energy. Though, it still misses important contributions that lead
to weak interactions (like ones present in van der Waals interactions and Hydrogen bonds).
Finally, let us mention that in the limit when the ONs tend to 0 and 1, all these functional ap-
proximations retrieve the HF energy expression. The same holds for their relativistic versions,
that lead to the np DHF expression for the total energy (66) in this limit.

13A variant proposed for PNOF7 functional that is used to define NOF-MP2 method [81].
14The relativistic version of PNOF6 functional is not included because one of us proved that beyond the perfect-

pairing approach this functional does not obey the sum rule [86]
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Figure 1: Partition of the spinor space Ω into subspaces mutually disjoint Ωp. While
arrows refer to α or β spin in the nonrelativistic context, in this work they correspond
to electrons occupying spinors that are Kramers’ pairs. Let us remark that some NOs
may remain uncoupled (a.k.a. virtual spinors) like the orange ones in this scheme.

3.6 Properties of rel-GNOF/PNOFx functionals.

For ‘spin-compensated’ two-electron systems (see Appendix E) the rel-GNOF/PNOFx function-
als introduced in this work reduce to

Erel-GNOF/PNOFx
2e− =

∑

i

ni(2hii + Jii + JG
ii + LG

ii )− 2
∑

i
i 6=1

p

n1ni(K1i + KG
1i + L1i + LG

1i)

+
∑

i, j
i 6= j,i 6=1, j 6=1

p

nin j(Ki j + KG
i j + Li j + LG

i j), (77)

where the label 2e− indicates that it is for a two-electron system (also used in the Appendix E)
and the PS are ordered in descending order w.r.t. their ON (and we have labeled as 1 the
one with the largest ON). This functional can be proven to be the relativistic extension of
the Fixed-Phases functional [103], which is based on the NO representation of the (singlet)
wavefunction for two-electron systems [78] (see the Appendix E for more details).

The nonrelativistic PNOF5 energy functional expression is known to be equivalent to a con-
strained version of the energy expression of an antisymmetrized product of strongly-orthogonal
geminals (APSG) wavefunction [51, 104]. In this section, we prove that the rel-PNOF5 func-
tional is also equivalent to a (relativistic) APSG wavefunction within the np approximation.
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To that end, let us introduce the N -electron wavefunction

ΨAPSG
+ (r1, r2, ..., rN ) = ÒA

Ne/2
∏

p=1

Ξp(r2p−1, r2p), (78)

where

Ξp(r, r′) =
1
p

2

∑

i∈Ωp

ci

�

eχi(r)⊗ eχī(r
′)− eχi(r

′)⊗ eχī(r)
�

(79)

is a geminal wavefunction written in the NO basis including phase factors (i.e. ci =
p

nie
iζi ,

see Appendix E for more details), and the ÒA operator produces the antisymmetrized product of
geminal wavefunctions. The geminal wavefunctions are normalized
∫

drdr′Ξ†
p(r, r′)Ξp(r, r′) = 1 for each electron pair, where

Ξ†
p(r, r′) =

1
p

2

∑

i∈Ωp

c∗i
�

eχ†
i (r)⊗ eχ

†
ī
(r′)− eχ†

i (r
′)⊗ eχ†

ī
(r)
�

. (80)

Imposing the strong-orthogonality condition

∀pq

∫

dr1dr2Ξ
†
p(r1, r2)Ξq(r1, r2) = δpq, (81)

we arrive to the following expression for the 1-RDM

n+,APSG
1 (r, r′) =

Ne/2
∑

p=1

∑

i∈Ωp

ni

�

eχi(r)eχ
†
i (r
′) + eχī(r)eχ

†
ī
(r′)

�

. (82)

Thus, the relativistic APSG wavefunction permits us to write the energy functional

EAPSG [{ζi}, {ni}, {eχi}] = 2
∑

i

nihii +
Ne/2
∑

p 6=q

∑

i, j
i∈Ωp , j∈Ωq

nin j

�

2Ji j − (Ki j − KG
i j )− (Li j − LG

i j)
�

(83)

+
Ne/2
∑

p=1





∑

i 6= j∈Ωp

ei(ζ j−ζi)pnin j(Ki j + KG
i j + Li j + LG

i j)





which can be optimized subject to the conditions: a) ∀i ni ∈ [0, 1], and b) Ne = 2
∑

i ni .
Clearly, the energy functional given by Eq. (83) is a lower bound w.r.t. the rel-PNOF5 func-
tional. Noticing that in rel-PNOF5 functional the phases eiζi = ±1 are fixed (see Eq. (74)) while
in EAPSG they are parameters, we can readily conclude that in EAPSG there is more flexibility
during the optimization procedure that can lead to a lower energy.

4 Closing remarks

In this work we have introduced ReRDMFT at three different levels of theory. At the first level
we have presented ReRDMFT including electron-positron pair creation/annihilation processes.
At this level, the trace of the 1-RDM (n1(r, r′)) is the charge Q; the minimum of the energy
(EQ) is attained for the CI ground state wavefunction (|ΨQ〉). This minimum is guaranteed due
to the normal ordering procedure applied and it permits us to introduce ReRDMFT through
the constrained search formalism. In principle, when the nonlocal external potential is fixed,
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the normal ordering is taken w.r.t. the CI vacuum, and the total energy of the the system of
interest is referenced w.r.t. this vacuum, its energy is invariant under spinor transformations
(rotations). The energy as functional of the 1-RDM for all one-body interactions is presented,
but functional approximations are required for the particle-particle interactions. The devel-
opment of approximations for the particle-particle interactions will remain an open task, but
a proper definition of these interactions would lead to a more precise description of the rela-
tivistic problem as it would also be valid for systems including positrons (e.g. electron-positron
pairs).

Secondly, we have discussed the effect of taking the normal ordering w.r.t. the effective
vacuum state |e0v〉 and how this leads to the so-called vp when a spinor rotation is applied.
These effects become unavoidable when the np approximation is adopted. Therefore, at the
second level we have introduced npvp-ReRDMFT. We have discussed the importance of the NS
spinors when spinor transformations are applied in the energy minimization procedure. At
this level, two 1-RDMs play a crucial role (i.e. n+1 (r, r′) and envp

1 (r, r′)). Within npvp-ReRDMFT,
QED effects are taken at the mean-field level and the advantage of using a formulation based
on the 1-RDMs becomes evident because all vp effects as well as electron-vacuum interactions
are explicit functionals of n+1 (r, r′) and envp

1 (r, r′). Only the functional of the electron-electron
interaction in terms of n+1 (r, r′) remains unknown. Fortunately, the functional approximations
presented in this work (as part of the next level) are also valid for npvp-ReRDMFT.

Thirdly, the np-ReRDMFT is the last level of theoretical background introduced in this
work. In np-ReRDMFT vp effects are neglected and a floating effective vacuum state is em-
ployed as reference. Within this framework the concept of an N -electron wavefunction is
recovered. When the Hamiltonian preserves time-reversal symmetry it is possible to exploit
Kramers’ pairing symmetry; with Kramers’ pairs we have written the energy expression using
only up to two different indices. This expression allowed us to recognize the 2-RDM elements
that need to be approximated as functions of the occupation numbers. In the end, the ap-
proximate 2-RDM elements proposed in this work were properly adapted from the two major
families of functional approximations used in the nonrelativistic context. Subsequently, some
properties of the functionals based on the inclusion of N -representability conditions were also
discussed. The performance of np-ReRDMFT approximations is an open question that will be
addressed in future works. Nevertheless, the computational cost of using np(vp)-ReRDFMT
will increase w.r.t. its nonrelativistic counterpart, simply because we are forced to always use
complex algebra and a spinor representation. The computational cost for the optimization
should be similar to the cost required by a multiconfigurational-self-consistent field approach
(specially for the optimization of the spinors). With the advantage that in np(vp)-ReRDMFT
the optimization of the CI vector is replaced by the (usually cheaper) optimization over occu-
pation numbers.

Finally, let us note that the analysis of the so-called generalized Pauli constraints [105–112]
(GPC) of the ONs obtained when using some nonrelativistic functional approximations has at-
tracted some attention [113] in the last few years. These conditions serve to approach to
the possibility of obtaining pure N -representable 1-RDMs. They are particularly important in
systems that are not ‘spin-compensated’ (i.e. that in our case do not preserve time-reversal
symmetry [114–116]); thus, they are not contemplated in this work but they might be ex-
plored in future studies for treating ‘spin-uncompensated’ systems. Furthermore, pure N -
representability conditions can also be imposed to the 2-RDM [116], and together with the
D-, Q-, and G-conditions could also lead to improve results especially in strongly-correlated
systems as Mazziotti suggested [116]; we may expect the same improvement for the relativistic
functionals presented in this work.
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A Commutation relation between the Hamiltonian and the oppo-
site charge operator

In order to prove the commutation relation between ÒH v
0 and the opposite charge operator bQ

let us first rewrite the Hamiltonian operator in the 4-component spinor basis as

ÒH v
0 =

∑

I ,J

bb †
I
bbJHI J +

∑

I

∑

R

bb †
I
bd †

R HIR =
∑

R,I

bdR
bbIHRI −

∑

R,S

bd †
S
bdRHRS (84)

where

HAB =

∫

drdr′ψ†
A(r
′)
�

δ(r− r′)bTD + vnl
ext(r

′, r)
�

ψB(r). (85)

The evaluation of the commutator between opposite charge operator and first term of Hamil-
tonian lead us to

∑

I ,J ,K

HI J

�

bb †
I
bbJ ,bb †

K
bbK

�

−
∑

I ,J

HI J

∑

R

�

bb †
I
bbJ , bd †

R
bdR

�

(86)

=
∑

I ,J ,K

HI J

�

bb †
I
bbJ
bb †

K
bbK −bb

†
K
bbK
bb †

I
bbJ

�

=
∑

I ,J ,K

HI J

�

bb †
I
bbJ
bb †

K
bbK −bb

†
I
bbJ
bb †

K
bbK +bb

†
I
bbKδJK −bb

†
K
bbJδIK

�

= 0

the commutator
�

bb †
I
bbJ , bd †

R
bdR

�

= 0 because positronic and electronic creation and annihilation
operators do commute. The proof that the fourth term of the Hamiltonian (i.e.−

∑

R,S
bd †

S
bdRHRS)

also commutes with the opposite charge operator follows closely the one presented for the first
term; we therefore omit its detailed description. Next, the commutation relation between the
second term of the Hamiltonian and the opposite charge operator reads as

∑

I ,J

∑

R

HIR

�

bb †
I
bd †

R ,bb †
J
bbJ

�

−
∑

I

∑

R,S

HIR

�

bb †
I
bd †

R , bd †
S
bdS

�

(87)

∑

I ,J

∑

R

HIR

�

bb †
I
bd †

R
bb †

J
bbJ −bb

†
J
bbJ
bb †

I
bd †

R

�

−
∑

I

∑

R,S

HIR

�

bb †
I
bd †

R
bd †

S
bdS − bd

†
S
bdS
bb †

I
bd †

R

�

∑

I ,J

∑

R

HIR

�

bb †
I
bd †

R
bb †

J
bbJ −bb

†
I
bd †

R
bb †

J
bbJ −bb

†
J
bd †

R δI J

�

−
∑

I

∑

R,S

HIR

�

bb †
I
bd †

R
bd †

S
bdS −bb

†
I
bd †

R
bd †

S
bdS −bb

†
I
bd †

S δSR

�

=
∑

I

∑

R

HIR

�

−bb †
I
bd †

R +bb
†
I
bd †

R

�

= 0,

which proves that the second term also commutes with the Hamiltonian. Finally, the commu-
tator between the third term of the Hamiltonian and the opposite charge operator leave us
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with
∑

I ,J

∑

R

HRI

�

bdR
bbI ,bb

†
J
bbJ

�

−
∑

I

∑

R,S

HRI

�

bdR
bbI , bd

†
S
bdS

�

(88)

∑

I ,J

∑

R

HRI

�

bdR
bbI
bb †

J
bbJ −bb

†
J
bbJ
bdR
bbI

�

−
∑

I

∑

R,S

HRI

�

bdR
bbI
bd †

S
bdS − bd

†
S
bdS
bdR
bbI

�

∑

I ,J

∑

R

HRI

�

bdR
bbI
bb †

J
bbJ − bdR

bbI
bb †

J
bbJ + bdR

bbJδI J

�

−
∑

I

∑

R,S

HRI

�

bdR
bbI
bd †

S
bdS − bdR

bbI
bd †

S
bdS + bdS

bbIδRS

�

=
∑

I

∑

R

HRI

�

bdR
bbI − bdR

bbI

�

= 0,

that completes the demonstration of the commutation relation between the Hamiltonian and
the opposite charge operator.

B Extending Gilbert’s theorem to the relativistic domain.

In 1975, Gilbert extended the Hohenberg and Kohn theorems [117–119] for external nonlocal
potentials. In this work we extend this theorem to the relativistic domain. Based on the
existence of a lower bound of the energy (ensured by writing the creation an annihilation
operators in normal ordering) we may define the ground state wavefunction |Ψ〉 ∈ HQ (see
Eq. (32)) as the one that minimizes the energy for a particular Hamiltonian (Eq. (28)) and
charge sector Q of the Fock space.

We generalize Gilbert’s theorem for relativistic nondegenerated ground states in the next
theorem.

Theorem 1 Given a relativistic Hamiltonian ÒH = bTD + bV nl
ext +cW, whose nondegenerated ground

state wavefunction reads as ΨQ (for a particular charge sector Q). There exists a one-to-one
correspondence between ΨQ and its 1-RDM (n1(r, r′)).

Proof. Assume that two-different nonlocal external potentials bV 1,nl
ext and bV 2,nl

ext that differ in more
than a constant lead to the nondegenerated ground states Ψ1

Q and Ψ2
Q (for a charge sector Q).

That is to say, ÒH1Ψ
1
Q = (bTD + bV

1,nl
ext +cW )Ψ

1
Q = E1Ψ

1
Q and ÒH2Ψ

2
Q = E2Ψ

2
Q. The 1-RDMs of Ψ1

Q and
Ψ2

Q are n1
1(r, r′) and n2

1(r, r′), respectively. If the two Hamiltonians only differ in the nonlocal

external potential (i.e. ÒH2 − ÒH1 = bV
2,nl

ext − bV
1,nl

ext ), by Rayleigh-Ritz variational principle we can
write

E1 = 〈Ψ1
Q|ÒH1|Ψ1

Q〉< 〈Ψ
2
Q|ÒH1|Ψ2

Q〉= E2
1 (89)

and
E2 = 〈Ψ2

Q|ÒH2|Ψ2
Q〉< 〈Ψ

1
Q|ÒH2|Ψ1

Q〉= E1
2 , (90)

so that
∆E = (E2

1 − E1) + (E
1
2 − E2)> 0 (91)

and

∆E = (E2
1 − E1) + (E

1
2 − E2)

= 〈Ψ1
Q|ÒH2 − ÒH1|Ψ1

Q〉+ 〈Ψ
2
Q|ÒH1 − ÒH2|Ψ2

Q〉

= −
∫

drdr′Tr
��

vnl
2,ext(r

′, r)− vnl
1,ext(r

′, r)
�

×
�

n2
1(r, r′)− n1

1(r, r′)
��

> 0 . (92)
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Since we imposed that bV 1,nl
ext and bV 2,nl

ext are different, the corresponding 1-RDMs (n1
1(r, r′) and

n2
1(r, r′)) must also be different. Therefore, there exists a one-to-one correspondence between

the 1-RDM and the wavefunction.

ΨQ↔ n1(r, r′). � (93)

Consequently, there exists a functional of the energy

EQ = E [n1] for n1(r, r′) ∈DQ. (94)

This functional retrieves its nonrelativistic counterpart for a fixed number of electrons (i.e.
Q = Ne, see below). Furthermore, this functional leads to the existence of ReRDMFT and it
complements the functional introduced through the constrained-search formalism.

The no-pair vacuum polarization framework

It is possible to establish a one-to-one correspondence between |Ψ+〉 and n+1 (r, r′) at the no-
pair vacuum polarization approximation level of theory. Using the same interacting Hamil-
tonian operator but restricting the wavefunctions to be given by Eq. (50) (or Eq. (57)), sim-
ilar arguments to the above presented lead to the desired one-to-one correspondence (i.e.
|Ψ+〉↔ n+1 (r, r′)). Finally, neglecting vacuum polarization effects, we may obtain the energy
functional

ENe
= E

�

n+1
�

for n1 ∈D+Ne
(95)

that allows us to introduce np-ReRDMFT and clearly retrieves the nonrelativistic limit.

C The npvp energy functional

The Enpvp functional of the np 1-RDM and the vp 1-RDM reads as

Enpvp
�

n+1 ,envp
1

�

=

∫

drdr′Tr
��

δ(r− r′)bTD(r) + vnl
ext(r

′, r)
� �

n+1 (r, r′) + envp
1 (r, r′)

��

(96)

+
∑

µ,τ

∫

dr1

�

∑

ε,η

∫

dr2Wµ,ε,τ,η(r1, r2)en
vp
1,η,ε(r2, r2)

�

en+1,τ,µ(r1, r1)

−
∑

µ,ε,τ,η

∫ ∫

dr1dr2Wµ,ε,τ,η(r1, r2)en
vp
1,η,µ(r2, r1)en

+
1,τ,ε(r1, r2)

+
1
2

∫

dr1dr2Tr
�

W(r1, r2)en
vp
2 (r1, r2)

�

+fW
�

n+1
�

,

where the explicit form of fW
�

n+1
�

= 〈Ψ+
�

n+1
�

|cfW |Ψ+
�

n+1
�

〉 is unknown and needs to be ap-
proximated. Finally, the usual np approximation corresponds to Enp

�

n+1
�

= Enpvp
�

n+1 ,0
�

.

D The N -representability conditions within the np approximation.

The so-called N -representability conditions of the 2-RDM aim to ensure that this matrix is
associated to a wavefunction (i.e. 2D↔|Ψ+〉). They also serve to propose a systematic way to
build approximations for the 2-RDM matrix elements in terms of the 1-RDM ones. Following
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the reconstruction procedure proposed in Ref. [79], let us define the matrix elements of the
cumulant matrix as 15

λi j,kl = −
∆i j

2
δikδ jl +

∆i j

2
δilδ jk, (97a)

and for the middle block

λī j,k̄l = −
∆ī j

2
δikδ jl +

Πī i,k̄k

2
δi jδkl , (97b)

λi j̄,kl̄ = −
∆i j̄

2
δikδ jl +

Πi ī,kk̄

2
δi jδkl , (97c)

λi j̄,k̄l =
∆i j̄

2
δilδ jk −

Πi ī,k̄k

2
δi jδkl , (97d)

and

λī j,kl̄ =
∆ī j

2
δilδ jk −

Πī i,kk̄

2
δi jδkl . (97e)

In the i 6= j case, the ∆ sub-matrices with a fixed i and j values must be Hermitian; thence,
∆∗

i j̄
=∆ j̄ i . From the antisymmetry properties of the 2-RDM, we obtain that ∆ j̄ i =∆i j̄ , which

makes these matrix elements be real. Thus, the ∆ sub-matrices must be symmetric. The
hermiticity of the 2-RDM makes us to impose Πī i,kk̄ = Π

∗
kk̄,ī i

. And, the antisymmetry of the
2-RDM imposes Πī i,kk̄ = Πī i,k̄k = Πi ī,k̄k = Πi ī,kk̄.

Using the above definitions for the SD contribution and the cumulant matrix elements, the
2-RDM elements can be approximated as

2Dkl
i j =

nin j −∆i j

2
δikδ jl −

nin j −∆i j

2
δilδ jk, (98a)

2Dk̄l̄
ī j̄
=

nīn j̄ −∆ī j̄

2
δikδ jl −

nīn j̄ −∆ī j̄

2
δilδ jk, (98b)

2Dkl̄
i j̄
=

nin j̄ −∆i j̄

2
δikδ jl +

Πi ī,kk̄

2
δi jδkl , (98c)

2D l̄ k
j̄i
=

nin j̄ −∆ j̄ i

2
δikδ jl +

Πī i,k̄k

2
δi jδkl , (98d)

2Dkl̄
j̄i
= −

nin j̄ −∆ j̄ i

2
δikδ jl −

Πī i,kk̄

2
δi jδkl , (98e)

and

2D l̄ k
i j̄
= −

nin j̄ −∆i j̄

2
δikδ jl −

Πi ī,k̄k

2
δi jδkl . (98f)

The antisymmetry properties of the 2-RDM elements implies that Eqs. (98a), (98b), and (98c)
provide enough information to build the rest of 2-RDM matrix elements. In contrast to the
nonrelativistic approach, the 2-RDM matrix elements given by Eqs. (98e) and (98f) contribute
to the energy; we must approximate them in terms of the ∆ and Π matrices.

The D-, Q-, and G- N -representability conditions

The so-called N -representability conditions evaluated at the np approximation level are the
same as in the nonrelativistic approach; they are associated with the positive semidefinite
character of the following Hermitian matrices (see Refs. [75,86] for more details)

DK L
IJ =

1
2
〈Ψ+|

b

eb†
I
b

eb†
I
b

eb L
b

ebK |Ψ+〉 , (99)

15Notice that the λī j̄,k̄l̄ terms are obtained by replacing the unbarred indices by barred ones.
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QK L
IJ =

1
2
〈Ψ+|

b

eb I
b

ebJ
b

eb†
L
b

eb†
K |Ψ+〉 , (100)

GK L
IJ =

1
2
〈Ψ+|

b

eb†
I
b

ebJ
b

eb†
L
b

ebK |Ψ+〉 . (101)

In the nonrelativistic approach, these matrices can be split in terms of different spin-blocks for
the evaluation of the positive semi-definite character.

• The D-Condition:

Eq. (99) tests the positive semidefinite character of the 2-RDM. From the block structure
of the 2-RDM (see Eq. (70)), let us first focus on the block (2Di j

i j ,
2Di j

ji), which using
Eq. (98a) gives us the condition that for i 6= j there is a set of [(M/2)× (M/2− 1)]/2
two-by-two sub-blocks of the form16

� (ni n j−∆i j)
2 − (ni n j−∆i j)

2

− (ni n j−∆i j)
2

(ni n j−∆i j)
2

�

, (102)

which upon diagonalization produce the eigenvalues 0 and 2(nin j −∆i j). Since the D
matrix must be positive semidefinite, we can conclude that

∆i j ≤ nin j . (103)

Similarly, the third block produces the same type of eigenvalues and conditions (i.e.
∆ī j̄ ≤ nīn j̄). Finally, for the middle block and i 6= j we have a set of [(M/2)× (M/2)]
two-by-two blocks of the form

� (ni n j̄−∆i j̄)
2 −

(ni n j̄−∆i j̄)
2

−
(ni n j̄−∆i j̄)

2
(ni n j̄−∆i j̄)

2

�

, (104)

whose eigenvalues are 0 and 2(nin j̄ −∆i j̄), and to fulfill the D-condition the following
constraint must hold

∆i j̄ ≤ nin j̄ . (105)

Also, for the middle block we have one large [(M/2)× (M/2)] block whose off-diagonal
elements are given by all the Π matrix off-diagonal elements. The diagonal part of this
block contains the i = j case, which includes the∆ contribution. This large block is basis
set dependent and does not lead to analytic expressions of any of the auxiliary matrices;
thence, we can not extract any information (constraints) from it.

• The Q-Condition:

Using the anticommutation rules for the creation and annihilation operators, we may
rewrite Eq. (100) as

QK L
IJ =

2DI J
K L +

1
2

�

δJ L(δIK − 1DI
K)−δI L(δJK − 1DJ

K) +δJK
1DI

L −δIK
1DJ

L

�

(106)

= 2DI J
K L +

1
2
[δJ LδIKhK −δI LδJKhK +δJKδLIhL −δIKδJ LhL] , (107)

where we have defined hI = 1− nI , and taken the 1-RDM in the NO representation in
the last expression. It is straightforward to recognize that the Q matrix shows the same

16For i = j, the elements are 0 by definition and they fulfill the condition.
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block structure as the D matrix. Hence, we have one large block that depends on the Π
and ∆ matrices (and on the basis set), and two-by-two blocks for i 6= j of the form

� (1−ni−n j+ni n j−∆i j)
2 − (1−ni−n j+ni n j−∆i j)

2

− (1−ni−n j+ni n j−∆i j)
2

(1−ni−n j+ni n j−∆i j)
2

�

, (108)

� (1−ni−n j̄+ni n j̄−∆i j̄)
2 −

(1−ni−n j̄+ni n j̄−∆i j̄)
2

−
(1−ni−n j̄+ni n j̄−∆i j̄)

2
(1−ni−n j̄+ni n j̄−∆i j̄)

2

�

, (109)

that upon diagonalization lead us to the following conditions

∆i j ≤ hih j and ∆i j̄ ≤ hih j̄ . (110)

• The G-Condition:

As we did for the Q-condition, we may rewrite Eq. (101), using the anticommutation
relations of the creation and annihilation operators, as

GK L
IJ = −

2DKJ
I L +

1
2
δJ L

1DK
I (111)

= −2DKJ
I L +

1
2
δJ LδIK nI , (112)

where in the last expression we have used the 1-RDM in the NO representation. For
i 6= j the first block

�

2Di j
i j ,

2Di j
ji

�

(and also for the third block) the G matrix is formed by
a large basis set dependent block that does not provide any extra analytical constraint.
But it also contains 1 × 1 blocks with elements of the form −2Di j

i j +
1
2 ni that lead to a

condition of the form
∆i j ≥ −hin j , (113)

which is easy to satisfy with ONs between 0 and 1 and ∆i j ≥ 0. Using the matrix
elements of the central block of the 2-RDM let us introduce the Gcentral matrix that reads
as

Gcentral =











�

Gī j
j̄ i
,Gī j

ī j

�

�

�

�

i 6= j

� �

Gī j̄
j i ,G

ī ī
j j

�

�

�

�

i 6= j

�

�

Gi j
j̄ ī
,G j j

ī ī

�

�

�

�

i 6= j

� �

Gi j̄
j ī
,G j ī

j ī

�

�

�

�

i 6= j

�











, (114)

whose elements can be built using Eq. (111). It is easy to recognize that this block can

be split into three disjoint sub-blocks (i.e.

�

Gī j
j̄ i
,Gī j

ī j

�

�

�

�

i 6= j

�

,

�

Gi j̄
j ī
,G j ī

j ī

�

�

�

�

i 6= j

�

, and the rest).

The latter sub-block is basis set dependent and does not lead to new information about
the auxiliary matrices. On the contrary, the former sub-block provides new information.
This block leads to M/2 eigenvalues of the form

−(ninī −∆i ī)−Πī i,ī i + nī

2
, (115)

which fulfill the N -representability condition if we let for exampleΠī i,ī i = nī and∆i ī = ninī .
Nevertheless, this sub-block also produces for i 6= j two-by-two sub-blocks of the form





G ī j
ī j

G ī j
j̄ i

G j̄ i
ī j

G j̄ i
j̄ i



=
1
2

�

∆ī j + nīh j −Π j̄ j,ī i
−Πī i, j̄ j ∆ j̄ i + n j̄hi

�

, (116)
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whose eigenvalues obtained upon diagonalization read as

1
4

�

nīh j +∆ī j +∆ j̄ i + n j̄hi

�

±
1
4

r

4Π2
ī i, j̄ j
+ (nīh j − n j̄hi)2; (117)

where we have used the symmetry properties of the Π matrix. The eigenvalue with
the positive square root is greater or equal to zero and it satisfies the requirement. On
the other hand, the eigenvalue with a negative square root leads to some bounds for
the elements of the Π matrix. These bounds depend on the ∆ matrix and they can be
written as

�

nīh j +∆ī j +∆ j̄ i + n j̄hi

�2 ≥ 4Π2
ī i, j̄ j
+ (nīh j − n j̄hi)

2, (118)

nīh j(2∆ī j + 2∆ j̄ i + 4n j̄hi) +∆
2
ī j
+∆2

j̄ i
+ 2∆ j̄ in j̄hi +∆ī j(2∆ j̄ i + 2n j̄hi)≥ 4Π2

ī i, j̄ j
, (119)

which in the particular case when ∆ī j =∆ j̄ i = 0 leads to

q

nīhin j̄h j ≥ |Πī i, j̄ j|. (120)

Table 3: Definition of the Π matrix elements, where nd
i = nih

d
p/hp with i ∈ Ωp,

hp = 1− np, and hd
p = hp exp

�

−(hp/(0.02
p

2))2
�

.

functional Πintra
i j ; i, j ∈ Ωp, i 6= j Πinter

i j ; i ∈ Ωp, j ∈ Ωq, p 6= q Ref.

PNOF5
−pni n j i = p or j = p

0 all [120]
p

ni n j otherwise

PNOF7
−pni n j i = p or j = p −

Æ

ni n jhih j all [83], [101]
p

ni n j otherwise

PNOF7s
−pni n j i = p or j = p −4ni n jhih j all [81]
p

ni n j otherwise

GNOF

i > p and j = q or

[102]−pni n j i = p or j = p nd
i nd

j −
Æ

ni n jhih j −
q

nd
i nd

j i = p and j > q
p

ni n j otherwise nd
i nd

j −
Æ

ni n jhih j +
q

nd
i nd

j i > p, j > q
0 otherwise

From this analysis, we conclude that at the np-ReNOFT level the ansatz proposed in
Eqs. (97a)-(97c) provides equivalent eigenvalues for the D-, Q-, and G-conditions as in the
nonrelativistic context. Indeed, only the definition of the auxiliary matrix Π has slightly
changed w.r.t. its nonrelativistic counterpart. In principle, in the relativistic approach four
indices are required to define this matrix (instead of the two indices used in nonrelativistic

NOFT) because now the elements of the form 2Di j̄
ī j

contribute to the energy. Nevertheless,

when the Π matrix is real and the ONs for barred and unbarred states are the same (i.e.
ni = nī), only two indices are needed; thus, the Eq. (120) can be rewritten as in the nonrela-
tivistic approach

q

nihin jh j ≥ |Πi, j|, (121)

with Πi, j = Πī i, j̄ j .
To ensure that the rel-GNOF/PNOFx functionals used in this work recover their nonrela-

tivistic counterparts in the nonrelativistic limit, we impose the following constraints:

1. Partition the PS space into subspaces {Ωp} (see Fig. 1 for more details).

2. Let ∆i j =∆i j̄ =∆ī j =∆ī j̄ .
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3. Define the diagonal terms Πi,i = ni and ∆ii = n2
i to also satisfy Eq. (115).

4. Set ∆i j = nin j if i, j ∈ Ωp and ∆i j = 0 otherwise (this selection satisfies the above
inequalities).

And we arrive to the rel-GNOF/PNOFx functionals presented in this work. The only missing
term is the definition of the Π matrix elements. In Table 3 we have collected different def-
initions, which are also employed in the nonrelativistic context; that (as we have seen) are
also valid in the relativistic np approximation scenario. Let us remark that the Π matrix is
separated into two contributions. One contribution formed by indices belonging to the same
Ωp subspace (named as Πintra) that accounts for intra-subspace interactions; the second con-
tribution where the indices belong to different Ω subspaces (denoted as Πinter). Using these
terms in the definitions of the 2-RDM elements (Eqs. 98a-98f), we arrive to the approximated
(reconstructed) 2-RDM matrix. Inserting this matrix elements in Eq. (64) we arrive to the
functionals presented in Eq. (72).

E The relativistic Fixed-Phases functional.

In 1956 Löwdin and Shull proved that the configuration interaction coefficients become simple
functions of the ONs (i.e. cI = ±

p
nI) when NOs are employed to express the two-electron

wavefunction [78]. Thence, in this work, we extend this result to the relativistic case. Let us
start our discussion introducing the most general relativistic two-electron wavefunction 17

Ψ2e−
+ (r1, r2) =

∑

I ,J

CI JψI(r1)⊗ψJ (r2), (122)

where the coefficients CI J ∈ C and form an antisymmetric matrix C (i.e. CI J = −CJ I and
CI I = 0). From the normalization of the wavefunction we have that

∑

I ,J |CI J |2 = 1. Ap-
plying the Carlson–Keller expansion [121] (a.k.a. the Schmidt decomposition [122]) to the
wavefunction (122) we arrive to

Ψ2e−
+ (r1, r2) =

1
p

2

∑

ĩ

c̃ĩ

�

ϑĩ(r1)⊗ϑ˜̃i
(r2)−ϑĩ(r2)⊗ϑ˜̃i

(r1)
�

, (123)

where the index ĩ runs only over half of the PS, and we have introduced the ϑ spinors that
form Schmidt pairs (ĩ, ˜̃i). Note that these Schmidt orbitals are only defined up to a unitary
transformation within the degenerate subspace.

The 1-RDM of the wavefunction given by 123 reads as

n+,2e−
1 (r, r′) =

∑

ĩ

|c̃i|2ĩ

h

ϑĩ(r)ϑ
†
ĩ
(r′) +ϑ˜̃i

(r)ϑ†
˜̃i
(r′)

i

, (124)

which is already given in its diagonal representation and from which we find |c̃i|2 = nĩ
When the Hamiltonian operator preserves time-reversal symmetry (i.e. it is time-independent

and does not contain external magnetic fields) it commutes with the Kramers’ operator 18. This
implies that we can choose all our eigenstates to satisfy [123]

Ψ2e−
+ (r1, r2) = ÒKΨ2e−

+ (r1, r2), (125)

17Recall that the ‘spin’ information is contained in the 4-component spinors.
18
ÒK in the many electron case leads to the complex conjugate of the CI coefficients and transforms all spinors in

the tensor product [54,123]
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which has the right symmetry for real CI coefficients. This means that the degenerate config-
urations in (123) transform into each other. Since the Schmidt orbitals are only defined up to
a unitary transformation with the degenerate subspace, we can use this freedom to transform
the Schmidt pairs to Kramers pairs. So the Schmidt pairs can be replaced with Kramers pairs

Ψ2e−
+ (r1, r2) =

1
p

2

∑

i

ci

�

eχi(r1)⊗ eχī(r2)− eχi(r2)⊗ eχī(r1)
�

, (126)

where
ci =

p

nie
−iζi . (127)

The phases ζi = kπ with k ∈ Z to preserve the Kramers’ symmetry.
The 1-RDM is given by

n+,2e−
1 (r, r′) =

∑

i

ni

�

eχi(r)eχ
†
i (r
′) + eχī(r)eχ

†
ī
(r′)

�

. (128)

Evaluating the electron-electron interaction using Eq. (126) we arrive to

〈Ψ2e−
+ |

c

fW |Ψ2e−
+ 〉=

∑

i, j

p

nin j

2
ei(ζ j−ζi)

∫

dr1dr2Tr
�

1
r12
(I16×16 −α�α)

×
�

(eχi(r1)⊗ eχī(r2)(eχ
†
j (r1)⊗ eχ

†
j̄
(r2))− (eχi(r1)⊗ eχī(r2))(eχ

†
j (r2)⊗ eχ

†
j̄
(r1))

− (eχi(r2)⊗ eχī(r1))(eχ
†
j (r1)⊗ eχ

†
j̄
(r2)) + (eχi(r2)⊗ eχī(r1))(eχ

†
j (r2)⊗ eχ

†
j̄
(r1))

�i

,

(129)

where I16×16 is the 16×16 identity matrix. In this form, we notice that the energy minimiza-
tion procedure also implies the optimization w.r.t. the phases ({ζi}). Consequently, fixing the
phases as in the nonrelativistic case and exploding Kramers’ symmetry on the integrals we ar-
rive to the energy expression given by Eq. (77). Therefore, the rel-GNOF/PNOFx functionals
are equivalent to the relativistic version of the Fixed-Phases functional for ‘spin-compensated’
two-electron systems.

Finally, let us show that the relativistic Fixed-Phases functional contains its nonrelativistic
counterpart. To that end, let us first focus on the NOs forming the Kramers’ pairs, which are
built as four component spinors, i.e.

eχi(r) =









eφi,1(r)
eφi,2(r)
eφi,3(r)
eφi,4(r)









(130)

and

ÒKeχi(r) =











− eφ∗i,2(r)
eφ∗i,1(r)
− eφ∗i,4(r)
eφ∗i,3(r)











= eχī(r). (131)

It is easy to prove that the tensor product of 4-component NOs contains singlet and
triplet contributions, but we can introduce some constraints to remove the
triplet contribution. To that end, let us assume that the so-called small component
terms of the NOs are negligible (i.e. eφi,3(r) and eφi,4(r) → 0) 19. Then, adding

19This is normally the case in the nonrelativistic limit [54]
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the following constraint eφi,2(r) = a eφi,1(r) with a ∈ C we may write the
components as eφi,1(r) = ℜ eφi,1(r) + iℑ eφi,1(r) and eφi,2(r) = aℜ eφi,1(r) + aiℑ eφi,1(r), where
ℜ eφi,1(r) = Real

�

eφi,1(r)
�

and ℑ eφi,1(r) = Imaginary
�

eφi,1(r)
�

. Thence, we arrive to the follow-
ing expression for the NOs

eχi(r) =

�

ℜ eφi,1(r) + iℑ eφi,1(r)
aℜ eφi,1(r) + aiℑ eφi,1(r)

�

(132)

and

eχī(r) =

�

−a∗ℜ eφi,1(r) + a∗iℑ eφi,1(r)
ℜ eφi,1(r)− iℑ eφi,1(r)

�

, (133)

where a∗ is the complex-conjugate of a and we have already omitted the small component
terms.

Assuming that the scalar spinors are real (i.e. ℑ eφi,1(r) = 0) and inserting the NOs in
Eq. (126) we arrive to 20

Ψ2e−
+ (r1, r2) =

1
p

2

∑

i

ci

�

ℜ eφi,1(r1)

�

1
a

�

ℜ eφi,1(r2)

�

−a∗

1

�

−ℜ eφi,1(r2)

�

1
a

�

ℜ eφi,1(r1)

�

−a∗

1

��

,

(134)

which in the a = 0 case allows us to introduce the usual nonrelativistic spin functions α=

�

1
0

�

and β =

�

0
1

�

21. Inserting the spin functions may rewrite the wavefunction in a simplified

notation as

Ψ2e−
+ (r1, r2) =

1
p

2

∑

i

ciℜ eφi,1(r1)ℜ eφi,1(r2)(αβ − βα) (135)

that corresponds to the singlet wavefunction in the nonrelativistic limit with the {ℜ eφi,1} be-
ing the scalar NOs. Indeed, from Eq. (135) the nonrelativistic Fixed-Phases functional can
be readily obtained; therefore, the relativistic Fixed-Phases functional presented in this work
contains its nonrelativistic counterpart.
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