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Abstract

We present here an open-source Julia library for the topological identification of crys-
talline materials, with algorithmic and computational improvements over the previously
available software in the field, resulting in a speed increase of one order of magni-
tude. This new algorithm and implementation can therefore be used at large scale in
high-throughput screening methodologies. We have validated and benchmarked Crys-
talNets.jl against a diverse set of crystal databases, covering in particular metal-organic
frameworks, aluminophosphates, zeolites, and other inorganic compounds.
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1 Introduction

In order to describe the average structure of crystalline materials at the nano-scale, reticular
chemistry [1, 2] proposes to classify crystals, and in particular framework materials, in light
of their topology. This approach consists in abstractly regrouping the atoms of a crystal into
clusters, called vertices, bonded together by an abstract kind of linkers, called edges — the
choice of grouping being informed by chemical sense. In simple compounds, such as dense
oxides, the mapping can be trivial, with each atom as a separate vertex and each chemical
bond as an edge. For zeolites and aluminosilicates, the tetrahedral atoms T are considered
the vertices (T = Al, Si, B ...) and the T-O-T linkages are the edges. In the case of metal-
organic frameworks (MOFs), the vertices would be chosen among the secondary building units
(SBUs) [3] with more than 2 points of extension, and the edges would correspond to bonds
between those as well as ditopic SBUs, for example. Any crystal can then be simplified into a
topological structure, called a net, consisting of the sets of vertices and edges (see Figure 1).

Like the atomic structure it represents, the net is 3-dimensional and periodic. It contains
all the information on the connectivity of the vertices, i.e. which pairs of vertices, called neigh-
bours, are linked by an edge. Thus, it provides a convenient mathematical abstraction to
classify crystal structures. However, it is important to note that this representation is depen-
dent on the choice of vertices and therefore a crystal may be represented by different nets [8].
Moreover, reconstructing the full crystal from the net necessitates additional data, such as the
unit cell parameters and the nature and exact geometric placement of the vertices and the
edges [5]. A crystal may also be composed of multiple interpenetrating nets [9], which is
common in ultraporous framework materials.

Several existing projects, such as the RCSR [7] or EPINET [10,11], aim at collecting the
different nets underlying the structure of real or hypothetical crystals. This is key to allowing
researchers to create new materials with a target topology, which is useful to obtain specific
physical properties, given the strong link between materials topology and properties for a given
chemical composition [12]. However, in order to check the accuracy of the collected nets with
regard to existing crystals, one needs a way to determine the net from a given crystal structure.

There are two different approaches to solve this problem, which correspond to the two
main softwares used in the field: ToposPro [13,14] and Systre [15]. ToposPro is a crystallo-
graphic tool that allows to retrieve an extensive set of topological properties from crystals. It is
a proprietary software, but its topology detection tool can be accessed for free online [16]* for
crystallographic files in CIF format [17]. Its strategy to identify the topology of a net consists
in computing three specific properties for each vertex u:

* The coordination sequence up to distance 10. A vertex v is at distance k of u is there is

a chain of k + 1 vertices u = ug,uy,...,u; = v such that for all i in [1,k] (where [a, b]
designates the set of integers between a and b), u;_; and u; are neighbours, and there is
no smaller such chain. The k-th term of the coordination sequence of u is then defined
as the number of vertices at distance k of u.

* The point symbol.

* The vertex symbol.

The latter two account for the shortest cycles and rings starting at vertex u [18,19]. It is found
empirically that the combination of these three properties for all vertices forms an almost
unique identifier of the topology. However, this approach is not completely sound as there can
be different nets that do share these same three properties.

Systre is an open-source software?; its inputs are files representing the graph underlying
the crystal structure, rather than the crystallographic files directly. It implements an algorithm

!available online at https://topcryst.com/
2available online at http://gavrog.org/
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Figure 1: Decomposition of a crystalline framework into its underlying net:
(a) Crystalline structure of MOF-143 [4].

(b) Identification of the SBUs: Cu-based paddle-wheel [5] and benzene-tribenzoate
(BTB) [6].

(c) The underlying net, called pto in the RCSR [7].
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that yields a so-called topological genome [20] of the net, which is a finite series of numbers.
This genome is provably unique for each net, only depends on the net itself and not its repre-
sentation, and can be computed in polynomial time of the size of the net. To do so, Systre starts
by computing an equilibrium placement [21] of the vertices, which attributes to each vertex a
position which is the barycentre of that of its neighbours. The net is then minimised, which
amounts to finding a unit cell. Afterwards, Systre collects a number of candidates, which are
frames of reference that do not depend on the current representation of the net. For each can-
didate, the vertices of the net are ordered according to their position in the frame of reference,
and a key is determined which uniquely identifies the net with this ordering in this frame.
The genome is then chosen as the lexicographically smallest key. Since the candidates do not
depend on the initial representation of the graph, the keys do not either, hence the genome
is indeed uniquely determined and only depends on the net itself. In graph theory, the prob-
lem Systre solves is called graph canonization. It incidentally allows determining whether two
input graphs are actually two representations of the same graph (the graph isomorphism prob-
lem) by comparing their canonical forms (here, the genome), but it can also be used to give
a canonical name to graphs for example, by accessing a database of names with the canonical
form of the graphs.

Apart from ToposPro and Systre, a few alternative tools have been developed to simplify
structures into topological descriptors, but none are suitable for topology identification of
chemical structures at large. Indeed, they either only work on specific structures (usually
zeolites) like TOTOPOL [22], or rely on a non-unique representation of the structure (such
as a tiling [23]) like the T-ring representation [24], or because their output is not unique for
each input structure, like the Single Repeating Unit representation [25] for example. For finite
molecules, the two most common representations are the SMILES [26] file format, which is
proprietary and comes with several conflicting implementations, or the IUPAC’s International
Chemical Identifier (InChi) [27] key, which is open-source and more standardized, but less
human-readable. Both include additional chemical information as well.

In this context, we propose a new tool to efficiently determine the topology of crystal struc-
tures: the Julia package CrystalNets.jl°. Julia [28] is a modern general-purpose and scientific
programming language that offers both great performance and ease of programmability [29].
This, as well as carefully chosen optimisations, allows CrystalNets.jl to outperform Systre while
leveraging a very similar core algorithm to ensure soundness. Moreover, the package uses the
Julia port of chemfiles* which allows it to read common chemical file formats like CIE, making
it easy to use for the analysis of single cases as well as large databases of crystal structures.

Delgado-Friedrichs and O’Keeffe [15] explained the overall architecture of the Systre algo-
rithm which CrystalNets.jl largely reuses: we will follow its structure, only briefly summarising
the key concepts that are already explained elsewhere along the way, while focusing on the
implementation choices and some proofs of correctness that do not appear in other publica-
tions. We will then focus on a series of new optimisations of the algorithm that allow to greatly
improve its performance for most nets. Finally, we will demonstrate the applicability of the
method by analysing several existing crystalline databases using CrystalNets.jl.

3available online at https://github.com/coudertlab/CrystalNets.jl
“4available online at https://chemfiles.org/
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2 Algorithms and implementation

2.1 Periodic graph structure

Crystal nets are special instances of 3-periodic graphs. In general, a graph is a mathematical
construct that contains objects, called vertices, some of which are linked together by edges.
Two linked vertices are said to be neighbours. In a crystal, the pattern representing the atoms
and their chemical bonds periodically repeats itself across three dimensions: for this reason,
the graph representing a crystal is called 3-periodic.

More generally an N-periodic graph (with N € N*) can be represented using the vector
model [30]. This model conceptually follows the description of a crystal as a lattice and a
pattern. Any point in the lattice is denoted by an offset o € Z¥, whose i-th coordinate is the
offset along the i-th axis of the lattice compared to a fixed origin. An N-periodic graph is then
defined by a pair (V, E) where V is the set of vertex identifiers and E C V x V x ZV is the set
of edges. Any vertex in space is uniquely identified by a pair (v,0) € V x Z" where v € V
is its vertex identifier and o € ZV is the offset of the cell that contains the vertex. Let’s note
n = |V| the number of vertices per cell and identify V with the integer interval [1,n] so that
each vertex identifier can be considered to be a number in [1, n]. When working in a fixed cell,
the vertices will simply be referred to by their vertex identifier. Finally, for most of the rest of
this article N will be equal to 3 since nets are 3-dimensional, but the algorithms exposed in the
rest of this section actually work for any dimension and CrystalNets.jl can identify 2-periodic
and 1-periodic graphs as well.

Anedge e = (u, v, 0) can be broken down into a source u € V, and a destination (v, 0) € V xZ3.
The source can be seen as the vertex of identifier u and positioned in the cell at the origin of
the lattice, and the destination is the vertex to which it is linked. When the source and the
destination are in the same cell, the offset o is zero and noted 0,3 = (0,0,0). Edges of the
form (u,u,043), called loops, are absent in nets because they do not convey any structural
information.

For any edge e = (u, v,0) € E, the reverse edge (v,u,—o) is also in E: this property makes
the graph undirected. All graphs used to represent crystals are undirected because chemical
bonds are symmetric: if atom A is bonded to atom B, then atom B is bonded to atom A, and
likewise for clusters of atoms.

As opposed to periodic graphs, simple graphs do not have a concept of offset: an edge of
a simple graph is only a pair of vertices. Numerous computational representations of simple
graphs exist in the literature, but they cannot be directly transposed to periodic graphs. In
order to find a computational representation for crystals relevant to topological analyses, a
useful observation is that nets share two distinctive features that come from chemistry:

* The number of edges is at most proportional to the number of vertices, because of the
limited valence of atoms. Such graphs are generally called sparse. This remains true
when vertices represent clusters instead of single atoms, although in that case the num-
ber of neighbours can be higher than the maximum valence of an atom — for instance,
SBUs with up to 66 points of extension have been built. [3].

* The set of edges is small to medium-sized because the number of vertices per unit cell
is, in practice, between 1 and 10,000 in most real-world crystalline structures. This is
small compared to the trillion of edges of some graphs in social media modelling for
instance [31].

Finally, the most important operation on graphs that will subsequently be used is finding
the set of neighbours of a given vertex. Driven by this, we chose to computationally repre-
sent a periodic graph by a list of size n whose u-th element is the set of neighbours of u:
N, = {(v, 0)eV x7z3 | (u,v,0) € E}. N, is stored as a lexicographically sorted list.

5
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(c) Renumbering of vertices

1 1 0 1 1 1 1 0 1 2 0 O
1 2 -1 0 1 2 0 1
1 2 0 -1 1 2 1 0
1 2 0 O 0 1

(f) Non-unit cell

1 2 0 0

(d) Change of origin (e) Other unit cell } 3 -01 (1)
1 1 0 1 1 1 1 1 1 4 1 0
1 2 0 O 1 2 0o -1 1 4 0 o0
2 3 1 0

12 Lol . 0 0 2 3 0 0
1 2 1 O 1 2 1 O 3 4 0 -1

Figure 2: Six different representations of the same 2-periodic graph. The first two
columns are the source and destination vertices, the last two are the edge offset.

Because of the previously mentioned undirectedness of the graph, if (v,0) € N,, then
(u,—0) € N,.. However, it is often convenient to be able to enumerate the edges of the graph
without double counting an edge and its reverse. For this reason, the representation comprises
another list of size n whose u-th element is the first index i in N,, such that N,[i] = (v, 0) with
either v > u or [ v =u and o > Oy ] Such an edge (u,v,0) will be called a direct edge.
Since loops are forbidden, all edges are either a direct edge, or the reverse of a direct edge.
Thus, since each list of neighbours is lexicographically ordered, reading the list of neighbours
starting at the given indices i is guaranteed to yield all direct edges of the graph, hence each
edge exactly once without its reverse. The lexicographically ordered sequence of direct edges
is a unique identifier of a representation (V, E) of a periodic graph in the vector model: such a
sequence will be called the key associated with the representation.

We implemented the graph structure detailed above in a companion Julia package, Peri-
odicGraphs.jl, which can be used independently of CrystalNets.jl.

Figure 2 shows several representations of the same 2-periodic graph. The graph is made
of two kinds of vertices (represented by open and closed circles), but the choice of the vertex
identifiers and of the cell influences the representation. Each choice of cell is characterised
by its origin and its axes x and y; some repeated cells are represented as well, along with
their offset in the bottom-left corner. For each representation, the key is written below, each
line referring to a direct edge. Recall that the Systre algorithm works by choosing the lex-
icographically smallest key from a set of representations, extracted from candidates that do
not depend on the representation of the graph. Hence, if the set of representations was those
shown in the figure, the topological genome of the graph would be the smallest key, i.e. that

6
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under representation (a).
Having a working representation for nets, let’s now discuss our reimplementation of the
Systre algorithm [15] to compute a unique identifier for each net topology.

2.2 Equilibrium placement
2.2.1 Definition

Given a periodic graph, the first step is to compute, for each vertex (u,0’) € V x Z3, a position
p(u,0’) € R3 such that

1
VueVv,o ez’ p(u,O’)=m Z p(v,0’ +0). €))
Ul (v,0)enN,

The set of positions p, called an equilibrium placement, is such that each vertex is at the barycen-
tre of all its neighbours. p must also satisfy the additional constraint that

VueV, oe€Z? p(u,0)=p(u,0z)+o0 (2)

to enforce the periodicity of the equilibrium placement.

The equilibrium placement has been proven to be unique modulo isometries, because it is
the solution of a full-rank linear problem [21]. Equation 1 can be rewritten with Equation 2
in matrix form, Ax P = O, where A€ M, ,(Z), O € M, 3(Z) and unknown P € M, 3(R) such
that, noting n(u, v) the number of neighbors of u whose identifier is v:

¢ V(U,V)GVZ’ Au,v = { |Nu|—n(u,u) 1fll=v

—n(u,v) otherwise
e YueV,0,= > o
(v,0)eN,
and from which we determine for allu € V, p (u,0,3) = P,.

Since the coefficient of Aand O are integers, the computed solution P is always in M,, 5(Q)
with the additional constraint that one of the vertices u be placed at the origin. The exact
solution with coefficients in Q is actually necessary for the subsequent computations and not
an approximation, so the resolution of the system must be exact. This turns out to be a very
costly operation: it requires storing integers of arbitrary size, which are computationally far
more expensive than fixed-width machine integers.

2.2.2 Computational aspects

The GNU Multiple Precision Arithmetic Library (GMP) [32] provides access to heavily opti-
mised structures that allow to efficiently perform exact integer and rational computations. Ju-
lia has native support for the arbitrarily-sized integer structure from GMB through the BigInt
type, but does not provide a full interface for GMP’s rational numbers (although it is internally
used for Julia’s native Rational{BigInt} type). As part of this work, we provided this
special support in a separate package, BigRationals.jl, which exports the BigRational type
wrapping GMP’s rational type.

In addition to the data structure used, a choice has to be made about the algorithm for
solving this linear system. The most straightforward idea would be a general linear algebra
technique such as LU decomposition followed by forward and backward substitution. Yet,
matrix A is structured since it is both symmetric and sparse, calling for the use of more efficient
algorithms.

Several algorithms have been discussed in the literature for the exact resolution of sparse
and integer linear systems [33-36]. Following the analysis by Eberly et al. [33], we decided to
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implement Dixon’s algorithm [35] which relies on a modulo-prime inversion of the matrix. In
accordance with their conclusion, this algorithm largely outperforms a sparse LU decomposi-
tion algorithm (which we implemented as a reference and for benchmarking), both algorithms
leveraging GMP instructions specific to the BigRational type for improved performance. Yet,
Dixon’s algorithm can fail if matrix A happens not to be invertible modulo the chosen prime:
hence, we chose to successively invert it modulo three hard-coded large primes and stop at the
first succeeding one, and finally resort to LU decomposition if all three fail. This implementa-
tion is up to orders of magnitude faster than that used in the original Systre program written
in Java. This extra performance is crucial for the use of the topology detection algorithm as
part of large-scale screening methodologies.

The equilibrium placement naturally embeds the graph in a Euclidean space, namely Q3.
The first vertex of the graph is placed in position (0,0,0) = Ogs, which is allowed because
any translation of the equilibrium placement still results in an equilibrium placement. More-
over, because of Equation 2, for any vertex identifier u € V there is an offset o such that
p(u,0) € [0,1 [3, where [a,b] designates the set of reals between a (included) and b (ex-
cluded). In order to simplify the representation, this offset is set to 0,3 by adjusting the offsets
of the edges of the graph accordingly. In this new representation, equations 1 and 2 still hold,
as well as the new property:

YueV, p(u) (Q N[O0,1[ )3 where p(u) = p(u,043).

In order to accelerate the subsequent algorithms, the vertices of the graph are lexicograph-
ically sorted according to their new position. The first vertex, being at Ogs, remains first.

Nets where at least two vertices have the same position are called unstable and, similarly
to Systre, are generally not handled by our implementation. This is usually not problematic
since their probability of occurrence is low [37]. Our implementation can however handle un-
stable nets where each collision site comprises at most four vertices if there is no edge between
two different collision sites and no collision site is bonded to two representatives of the same
vertex. This accounts for roughly half of the encountered unstable nets in the databases we
explored. We will not detail the case of these unstable nets here but focus on stable ones. We
can thus assume that no two vertices have the same position.

Figure 3 represents the equilibrium placement for the net of diamond (called dia in the
RCSR). Note that the natural embedding in Q® imposes a cubic unit cell for all nets, which is
not representative of the actual unit cell of diamond; however, the geometry of the unit cell
is irrelevant here because only the topology of the net matters. As a consequence, the bond
lengths are not representative of that of diamond either, which explains why not all have the
same lengths in this representation. Nonetheless, each vertex is indeed at the barycentre of
the positions of its neighbours.

</1’\

Figure 3: Natural Euclidean embedding of the equilibrium placement for the dia net.
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2.3 Minimisation of the graph

Once the equilibrium placement is found, the next step of the algorithm is to find a unit cell.
In general, a cell is a parallelepiped whose three axes (d, b,2) are linearly independent transla-
tions that constitute symmetries of the graph. Such translations will be called valid translations.
Another representation for this cell is the matrix A whose columns are respectively d, band 2.
Its volume is |det(A)| = |(Ei A B) . E'|. It is a unit cell if it contains the smallest possible number
of vertices, which is equivalent to having a minimal volume.

At this point, it is important to recall that the Euclidean space in which the graph is em-
bedded through the equilibrium placement depends on its initial representation, so there is
no simple way of finding a unique unit cell independently of the original representation. In
particular, common cell reduction techniques such as Delaunay [38] or Niggli [39,40], which
yield a uniquely defined cell, do not solve this problem. Unfortunately, existing libraries imple-
menting these techniques (like spglib [41] or cctbx [42]) cannot be used either for the simpler
problem of finding any unit cell because they do not handle arbitrary precision.

First, note that, by construction of the equilibrium placement, the initial cell is the canon-
ical basis of Q°, so its matrix is the identity I. Let'’s now assume that I is not a unit cell and
there is a unit cell A € Q>*3 of volume |det(A)| € ]0,1[.

Let’s define f : Q - QN [0,1[, g — I% where p%gq is the remainder of the euclidean
division of p by q (hence p%q € [0,q —1]). Let B = (f(AiJ))lsi,jsg € Q**3. By definition of
f, the columns of B are axes within the initial cell; moreover, since Yx € Q, x — f(x) € Z,
each axis of B can be seen as the corresponding axis of A plus an offset o € Z2. But since I is
a repeating unit, such an offset is a valid translation, so each axis of B is a valid translation.
Finally, since det(A) ¢ Z, not all coefficients of A can be integers, so A has at least one coefficient
x such that f(x) # 0, so at least one axis of B is not Ogs.

To summarise, the previous observations show that if the initial cell was not a unit cell,

then there exists a non-zero valid translation t € (Q N[O, 1[)3 \ {0gs}-

Let’s use this fact to find a unit cell by enumerating all such translations. Symmetries
map vertices to vertices, so the first vertex (lexicographically sorted by position) is mapped to
another. But since the first vertex was put in position Ogs, the translation is directly given by
the position of the other vertex. Hence, only n—1 translations need to be checked, and if none
is valid then the initial cell is a unit cell.

Checking whether a translation is valid can be done with O(nlogn) time complexity. Ver-
tices are already sorted by position, which allows to efficiently check that all the vertices are
mapped to vertices. Doing so first allows to collect the map from initial vertices to their new
counterparts and return early if the translation is invalid. Afterwards, it remains to be checked
that all edges are also mapped to edges, which can also be done efficiently since the lists of
neighbours N, where u € V are also lexicographically sorted.

If I is not a unit cell, then a valid translation t = (t, t,, t3) € (Q N[0,1[ )3 \ {Ogs} must
have been found. Let k € [1, 3] be such that ¢, is the smallest non-zero coefficient of t. Then
a new smaller cell is given by matrix A®) where

A ={ 1 ifj#kandi=]
0 otherwise

The volume of A® is det(A®)) = t, € 10, 1[ and by constructions its axes are all valid transla-
tions, so A is indeed a new smaller cell. This process can then be iterated in the new Euclidean
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space created by mapping each point x € Q° to (A)) ! x, until no valid translation is left.

There are several ways to improve the computational complexity of this procedure. The
first one consists in observing that if t € Q® is a valid translation, then so is k x t + o0 where
k € Z and o € Z°. This allows to minimise the volume of the new cell A®”) thanks to algebraic
considerations. Let’s illustrate this point in two dimensions for simplicity, although it can be
generalised to any number of dimensions.

Lett = (lﬂ ‘2) be a valid translation. Let’s assume that p; # 0 and q; > g, (the opposite

q1’ 92
reasonning can be done in the other case). Let k € Z and k’ € Z be Bézout coefficients for p;
and qq, i.e. such that kp; + k’q; =1, and let 0 = (k/,0) € Z?. Thenk x t +0 = (%, kq—pzz).

Hence, matrix AXt*%) can replace A®) to reduce the cell to a volume % instead of %.

Another potential improvement consists in using all the valid translations instead of stop-
ping at the first one encountered. This way, the translation that minimises the volume of the
new cell can be chosen instead of any valid translation. However the cost of collecting all valid
translations can be up to n times higher than finding the first valid translation.

Furthermore, A® is just a special case of the set of possible new cells. In general, any in-
vertible matrix whose columns are valid translations (including columns of the identity matrix)
is the matrix of a valid cell. The best new cell is the one with the smallest volume, but com-
binatorial exploration of all possible such matrices that lead to smaller cells has a worst-case
complexity of O(n®). In practice, many candidate matrices can be eliminated before computing
their determinant so using this method is actually quite efficient.

2.4 Search space exploration

At this stage in the workflow, the graph has a unit cell and a corresponding equilibrium place-
ment. Let’s now look for the topological genome. The strategy follows that implemented in
Systre, which consists in taking the lexicographically smallest key among those computed for
a number of candidates. Both the computation of the key from a given candidate and the
selection of the candidates should not depend on the current representation of the graph.

A candidate is defined as a triplet of linearly independent edges, and represented by a pair
{vertex, basis of Q3} where the vertex is the source of the first edge and the columns of the ba-
sis are the translations induced by the edges. The process of selecting candidates is explained
in section 3. This subsection focuses on the computation of a key from a given candidate.

This precise algorithm is explained in [15] and analysed as Algorithm 5 in [21]. It is
detailed in Figure 4. The main point is that the algorithm creates a new representation of
the graph which is independent of the previous one by redefining both the unit cell and the
numbering of vertices thanks to a unique euclidean space derived from the candidate. The
first element of the candidate, the vertex, is the origin of the new space and the columns of
the basis are its three axes.

Step (b) is a simple affine transformation of the positions and steps (c) to (h) are straight-
forward to implement, they only require keeping track of the positions of the numbered ver-
tices. Step (j) is also straightforward, it consists in multiplying each translation by the inverse
of the matrix of the new unit cell to obtain an integer offset. This allows to retrieve the set of
edges E of the graph, and since V = [1, n], this directly yields the representation of a periodic
graph in the vector model.

Step (i) deserves special consideration. It consists in building a new unit cell from the set
of positive translations t of the edges, positive in the sense of being lexicographically greater
than Ogs. Negative translations are negated to only keep positive ones. By construction, this
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Figure 4: Illustration of the algorithm used to extract a key from a candidate on a
2-dimensional graph
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(a)

(b)

(c)

(d)

(e)

(f)
(g)
(h)

()
1))

Start from a candidate (in green), whose origin is A and axes are x and y. Initialise an
empty queue of vertices.

Represent the graph in the basis given by the candidate (the former unit cell and two of
its neighbours are represented in ). Note that axes x and y are now orthogonal.
Assign number 1 to the origin A and push it to the queue.

Take the first vertex u of the queue and sort its neighbours according to the lexicograph-
ical order of their position. Here, u = 1 and the sorted neighbours are a, b and c.

For each neighbour v/, in order, if it is not the representative of an already encountered
vertex, assign it the first available number between 1 and n and push it to the queue. In
this case, neighbour a is assigned number 2.

Otherwise, store the translation between the newly encountered representative v’ and
that which has been recorded v (the blue arrow). Here, v’ is neighbour b and v is vertex
2: both are representatives of the same vertex.

Continue until all the neighbours have been processed. In this case, only neighbour ¢
remains and it is assigned number 3.

Repeat the steps from (c) until the queue is empty. Here, the neighbours of 2 are being
processed.

When the queue is empty, all numbers between 1 and n have been assigned and a set of
translations has been recorded.

Triangulate the set of positive translations to obtain a new unit cell (see section 2.4).

Convert the translations to integer offsets using the unit cell to find a new representation
of the graph, and extract the key.

Figure 4: Continued: Illustration of the algorithm used to extract a key from a can-
didate on a 2-dimensional graph
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set does not depend on the previous representation of the graph, it only depends on the can-
didate. As a consequence, any deterministic algorithm that transforms a set of translations
into a unit cell can be used for this purpose. Delgado-Friedrichs and O’Keeffe [15] mention
this point and suggest triangulating the translations, without detailing their algorithm. Before
presenting the one used here, let’s sketch the general idea and prove a lemma.

Given their origin, translations of the set should correspond to integer offsets between
vertices and their representatives in the new unit cell to be found. Thus, the matrix B € Q>3
representing the unit cell must be such that each positive translation t € Q3 of the set verifies:

B lt=0e7Z3. 3)

Not all such basis B will do, since it should also represent a unit cell, hence the columns of B
must be valid translations. Since all positive translations of the set map some vertex to one of
its representatives, they are all valid translations, so it is tempting to look among the integer
combinations of these translations to find the columns of B. However, it remains to be proven
that such combinations indeed span the entire group of valid translations.

To show this, let’s take the Euclidean space of step (b) and consider a path between the
origin and any of its representatives. This path consists in a series of edges (u, v, t) € VxV x Q3
where ¢ is the translation between vertex v and the vertex v’ which is the actual neighbour of
u. After any number of steps, let’s note (u,7) € V x Q> the pair where u is identifier of the
vertex on which the path has just landed and 7 is the sum of the translations ¢t encountered
so far. The initial pair thus is (1,0qs), since 1 is the number of the origin. An induction on
the number of steps shows that the position of the exact vertex on which the path lands when
reaching pair (u, 7) is that of vertex u translated by 7. As a consequence, when reaching the
final vertex of the path, the pair is (tepg, Tend) = (1, Tenq)- Thus, by construction T4 is the
sum of translations t stored in the edges during the algorithm, so it is an integer combination
of the positive translations of the set. But since this reasoning was valid for the translation
between the origin and any of its representatives, this proves that any valid translation can be
written as an integer combination of positive translations of the set.

Let’s now proceed to the algorithm that converts the set of positive translations into a
matrix B satisfying Equation 3.

First, note that most positive offsets present in the usual representations of periodic graphs
are one of either (1,0,0), (0,1,0) or (0,0,1). As a consequence, in the most common cases,
there are only three elements in the set of positive translations, which can simply be mapped
to the three canonical offsets. This fact serves as a heuristic optimisation for the more general
algorithm, by representing all the positive translations in the basis A € Q3”3 whose columns
are the three first linearly independent positive translations. The reverse transformation will
be applied at the end of the algorithm. Overall, this operation is not crucial for the algorithm
to work and the input remains a set of translations, but it tends to reduce the denominators
of the coefficients of the translations, which is computationally helpful.

Given a set of translations, the goal now is to find three combinations such that they form
the columns of a matrix B satisfying Equation 3. In other words, these combinations must span
the group of valid translations. This problem on rationals is lifted to integers by storing the
least common multiple of the denominators of the coefficients of the translations columnwise,
and pointwise multiplying the translations by this triplet of integers in order to obtain a set of
integer translations.

From that point, several algorithms exist in order to solve the problem on this integer
form [33-36]. The standard procedure is to build the rectangular matrix whose lines are the
triplets representing integer translations and put it in Hermite normal form [43], which is
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precisely such that it is built from an integer combination of the initial triplets and still spans
the same group as that of the triplets.

Determining the exact Hermite normal form is useless in this case however, since there is no
need for the complexity brought by its other properties, and the existing solvers are specialised
to have their best performance on big square matrices, not thin rectangular matrices one of its
dimensions being only 3. Thus, we implemented a custom solver for this particular problem
which performs the following steps, for each column j in a fixed order:

* Find Bézout coefficients of the j-th element of the integer translations, as well as their
greatest common divisor d € N*. To do so, we implemented an efficient algorithm from
Havas et al. [43].

* Set the j-th column of B as the sum of the integer translations weighted by their Bézout
coefficient.

e For each integer translation t € Z3, update it to zero its j-th element by subtracting the
new column of B times the quotient of the j-th element of t by d. By construction, after
this step all translations have at most (j — 1) non-zero elements.

Finally, columnwise divide B by the triplet of least common multiples that was found before
to get back to rationals, and left-multiply it by A to go back to the Euclidean space specified
by the candidate.

The resulting matrix B has all the required properties for being a unit cell. Thus, each
translation t € Q® of an edge now corresponds to an offset o = B~'t € Z3 with respect to the
unit cell, so the lexicographically ordered set of edges (u,v,0) € V x V x Z3 is a representation
of the initial graph that does not depend on its initial representation, but only on the candidate.

Let’s note that this method transforms a set of translations into a unit cell, and this is pre-
cisely the problem encountered when minimising the cell from the set of all valid translations
in subsection 2.3. However, in the current case, the procedure cannot rely on a starting cell to
minimise, which is why it is more complex.

To conclude, let’s observe that this representation might be impossible to embed, in the
sense it may be impossible to put all the vertices of the graph, as they were determined by
the algorithm, within the same unit cell given the constraints on their edges. This can be
circumvented by taking appropriate representatives for each vertex given a fixed unit cell, but
even that is unnecessary since the goal is only to extract a key, and it does not matter whether
the key itself can be embedded.

3 Reduction of the search space

The only aspect of the algorithm that remains to be explored is the selection of the candidates,
which is a crucial point for the overall complexity of the algorithm. After explaining how the
implementation of Systre does this, we will present a series of novel reductions of the search
space, i.e. of the number of candidates, that yield a notable performance gain.

3.1 The initial search space

Let’s recall that a candidate is defined as a triplet of edges, which is used to create a new
representation for the graph as explained in Figure 4. The topological genome is chosen as
the lexicographically smallest key extracted from the candidates, so the set of candidates must
be chosen in a fashion that is independent of the initial representation of the graph, lest the
selection biases the search space. As a consequence, Delgado-Friedrichs and O’Keeffe [15]
proposed the following selection pattern:
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* If there exists at least one vertex such that its outgoing edges are not all coplanar, then
the set of candidates is the set of triplets of linearly independent edges that all start at
the same vertex.

* Otherwise, the candidates are all triplets of linearly independent edges such that the two
first start from a common vertex and the third starts from another vertex.

In both cases, the set of valid candidates is not empty (otherwise it would mean that the
graph is either not connected or not 3-periodic) and independent of the initial representation
of the graph. It can be further reduced by removing duplicate candidates that yield the same
key, using symmetry considerations as will be shown in subsection 3.3.

For many graphs, this search space remains rather large compared to the set of all possible
triplets of edges. Our goal in this project was for our software to be able to tackle very big
structures very efficiently, for two different types of applications: high-throughput screening of
hypothetical materials, where the topological detection is performed on hundreds of thousands
(and sometimes several millions) of structures [44], and application to very large periodic
structures, such as models of amorphous framework materials [45]. Therefore, reducing this
search space is crucial for performance since it directly tackles one of the bottlenecks in the
original implementation of Systre.

3.2 Categorisation of vertices

Since the search space must remain independent of the representation of the graph, it can
only depend on some properties that are common to all its representations. Such a property
is called a topological invariant. The only invariant used so far is whether there exists a vertex
whose outgoing edges are not all coplanar, but many other invariants exist, such as the three
used by ToposPro [13]. These properties can be used to considerably reduce the search space
by separating vertices according to them.

The core idea of vertex categorisation consists in trying to separate vertices into as many
categories as possible, each of these categories being identifiable independently of the repre-
sentation of the graph. For instance, in this work, vertices are separated according to their
coordination sequence (the number of vertices at distance k from the vertex of interest with
k=1,2,..., see Introduction), so that two vertices are in the same category if and only if they
share the same coordination sequence up to distance 10.

Vertex categories are then sorted by the total number of outgoing edges from vertices in
that category and, in case of equality, by the invariant they were defined from. For example, in
our case, ties are broken by lexicographically sorting according to the coordination sequences.

With these sorted categories in mind, let’s look for candidates and try to minimise their
number. The following strategy is used in our improved algorithm:

* Let ¢ be the first vertex category such that there is a triplet of non-coplanar edges starting
from the same vertex in ¢ (if no such category exists, skip to the alternative below). Then,
for all such triplets, let ¢y, ¢, and c3 be the sorted categories of the vertices to which
the initial vertex is bonded with these edges. There are four subsets of such triplets,
characterised by whether they satisfy:

1. ¢i =cy=cj3.
2. ¢1 <cg=cj3.
3. ¢ =¢y <c3.
4. ¢ <cy<cs3.

Then the candidates are all the triplets of edges whose categories are in the last non-
empty such subset with (cy, ¢q, c3) lexicographically minimal.
This strategy illustrated for the 2D case in Figure 5.
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Coordination sequence

® W 4,7, 13,15, 18, 26, 26, ...
O A 48,11, 16,20, 22,28, ...

Retained candidates

Vo
£

f

B B O

1. The coordination sequence of all vertices is computed. In this particular case, there
are two vertex categories, one represented with filled symbols (circle and star) and the
other with empty symbols (square and triangle). Edges are colored in when they
connect two filled symbols, in magenta for two empty symbols and black otherwise.

2. Both categories have the same number of outgoing edges, so they are sorted in lexico-
graphical order of the coordination sequences: the “filled” category comes first.

3. There exists a filled vertex with two linearly independent outgoing edges (here, all ver-
tices actually match the criterion because no two neighboring edges are aligned). Hence,
c is the “filled” category.

4. Consider all ordered pairs of linearly independent edges starting from a filled symbol u.
There are 24 such pre-candidates, represented as the two first lines of Figure 6. Among
those, only 6 bond u to vertices of category c; and c, respectively, such that ¢; < ¢y.
Keep those as candidates.

If there was no such pre-candidate, the candidates would have been all the pre-
candidates where ¢; = ¢, with ¢c; minimal, i.e. “filled” if possible, “empty” otherwise.

el XA KL HL
i A,
L A K L i
L o K e,

Figure 6: The 6 candidates of the cqge net selected by CrystalNets.jl, among the 48
possible candidates.
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* Alternatively, if all vertices have only coplanar outgoing edges, let ¢ be the first category
such that there exists another category ¢’ such that there is a non-coplanar triplet of
edges, the two first of which start from a vertex of ¢ and the last from c¢’. ¢’ is chosen as
the first such category. Let c¢;, and ¢, be the sorted categories of the destinations of the
two first vertices, and c5 be the destination of the third. Then the candidates are all the
triplets of edges, the two first of which start in ¢ and the last from ¢’ such that (¢;, ¢5, ¢3)
is lexicographically minimal.

The main difference with the strategy of Systre is that the categorisation of vertices bounds
the number of candidates with respect to the maximal size of a category, hence the goal of hav-
ing as many small categories as possible. However, the two strategies are exactly the same in
the worst-case scenario where there is only one category. Note that, although rather complex,
the constraints on the retained candidates described above can actually be implemented in an
efficient way, which is necessary to prevent the search space reduction from taking more time
than the actual search space exploration.

3.3 Reduction through symmetry

In addition to the individual properties of vertices which are used to separate them into cate-
gories, symmetry considerations on the equilibrium placement can be useful in reducing the
search space. Indeed, if two candidates are symmetry-related, then the representations ex-
tracted from both will be exactly identical. This optimisation is already used in Systre, and in
the current work, it is useful to perform a symmetry analysis on the equilibrium placement of
the unit cell before even categorising vertices.

Unfortunately, we do not know of any library that can find symmetries for an input given
in arbitrary precision; all existing libraries take approximate positions, and thus return only
approximate symmetries. We use the spglib library [41] to this purpose. spglib is a C library,
which makes it easy to interface with Julia without sacrificing speed. Since all its inputs and
outputs are approximate, the returned symmetries need to be checked against the exact equi-
librium placement of the graph to rule out false positives. Because of the imprecision of the
input, there might also be some false negatives — that is, some symmetries may be missing
— but they do not matter because symmetries can only help to eliminate candidates that are
symmetric images of other ones already encountered. Hence, the use of symmetries is purely
an optimisation, but it has no influence on the result of the algorithm.

Symmetries are useful to avoid needlessly recomputing coordination sequences when di-
viding the vertices into categories. Indeed, the search space is reduced by singling out one
vertex per symmetry orbit, and using the convention that only these can serve as the source
of the first edge of a candidate. No such constraint can be placed on the destinations of the
edges unfortunately, as that would be unsound.

On the particular example of the cqe net shown in Figure 5, there is only one symmetry
and it maps each symbol of a category on the other of the same category. As a consequence,
only one of the two first lines and one of the two last lines of candidates shown in Figure 6
need to be kept. Systre thus examines 24 candidates, and only 3 for CrystalNets.jl.

3.4 Ordering of keys

Finally, the algorithm can be made faster by changing the mode of comparison of the can-
didates. In Systre, the topological genome was defined as the smallest key extracted from a
candidate. However, we observe that, arrived at step (h) of the algorithm in Figure 4, both
the embedding of the graph as well as the ordering of its vertices only depend on the candi-
date. Hence, we can define at that point a pseudo-key consisting in the sorted list of triplets
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(5.

Figure 7: Difference between previous and new ordering of neighbours at step (c)
on an example. Representatives of the same vertex have the same symbol.

(s,d, t) € VxV xQ? if there is an edge between the vertex defined by its number s and the rep-
resentative of vertex number d which is translated from the latter by t. This pseudo-key only
depends on the intermediate representation of the graph obtained in step (h), which means it
is exclusively determined by the candidate, so we can define the genome as the key extracted
from the candidate with the smallest pseudo-key.

Instead of comparing the keys extracted after a costly lifting of the positive translations to a
proper representation of the graph, it is thus sufficient to compare the pseudo-keys. Moreover,
this pseudo-key can be computed incrementally during the main loop of the algorithm. To do
so, at step (c), the neighbours of vertex u should be sorted in a different manner (represented
on Figure 7): all representatives of the same vertex should be contiguous and lexicograph-
ically sorted according to their position within each category; the categories corresponding
to vertices which have a number (assigned in step (d)) are placed first and sorted according
to this number, while the others are placed afterwards and sorted according to the position
of the first vertex in the category. This makes it so that each edge of the graph is added to
the pseudo-key in the order in which it is studied (in steps (d) — (f)), while preserving the
invariant that the pseudo-key is lexicographically sorted.

Since the pseudo-key is constructed on-the-fly, it can thus be compared at each step with
the previous smallest pseudo-key. If a triplet of the current pseudo-key is lexicographically
greater than the triplet at the same position in the previous best pseudo-key, the computation
for the candidate is aborted; if it is lower then this comparison can be skipped for the rest of
the computation and the pseudo-key will be the new smallest. Finally, once all the candidates
have been checked, the minimal pseudo-key is converted to an actual key through steps (i)
and (j), yielding the topological genome of the graph.

4 Application to materials databases

CrystalNets.jl is a Julia package which can be intuitively used from an interactive Julia shell
or as an executable to determine the structure of single crystallographic files in the variety of
file formats recognised by chemfiles®. Since chemical bonds are not systematically present in
such files, it uses a custom bond detection algorithm inspired from that of chemfiles, and can
export both the input with the detected bonds as well as the extracted underlying net to allow
visually checking the correspondence with the input. The bonding algorithm reuses available
information on the structure to accurately account for the larger bonds surrounding metals in

Sfull list available at https://chemfiles.org/chemfiles/latest/formats.html#list-of-supported-formats

18


https://scipost.org
https://scipost.org/SciPostChem.1.2.005
https://chemfiles.org/chemfiles/latest/formats.html#list-of-supported-formats

Scil SciPost Chem. 1, 005 (2022)

100 x x
@ 5 Julia compilation — > x ad )
) - B
- 2 *
2
S 10 *
o 5
S .
.a 2 *
ke, ’ -
[e) *
3 5
d
Q2 2
d
Q 0.1 x
et
a 5
-
o 2
9]
8 0.01 N
GJ 5
£ , % Systre (JS)
— “

2 X * Systre (Java)
0.001 * CrystalNets.jl
5 10 2 5 100 2 5 1000 2

Number of vertices + number of edges of the net

Figure 8: Comparison of processing times for 2,053 nets with Systre and CrystalNets.jl.

MOFs for instance, but the user can also override the cutoff distance for bonding if necessary.

By combining the bond detection heuristic with topology determination, CrystalNets.jl can
also be used to survey large databases of crystalline structures, without the need for user input
or relying on other chemical information (such as choice of SBUs) on the structures themselves.
In this section, we demonstrate the code by exploring a series of available materials databases.

4.1 RCSR, EPINET and IZA-SC database

The Reticular Chemistry Structure Resource (RCSR) [7] ¢ is a repository of 3,132 structures
with 2 or 3-periodicity (excluding weaving and 0- and 1-periodic structures), each given a
canonical name. It offers a Systre archive containing 2,928 nets that we reprocessed to obtain
the 2,928 topological keys corresponding to each structure. These keys are not the same as
those of the archive because of our algorithmic differences explained before.

We evaluated the performance of CrystalNets.jl by comparing its time to compute the topo-
logical keys of 2,053 structures of the RCSR chosen at random, compared to both Java and
JavaScript (JS) implementations of Systre’. All three programs were executed 6 times with
one input and 6 times with another, each input being a textual file containing a different rep-
resentation of the same 2,053 nets. All ran on a single thread with Intel Xeon Silver 4210R
CPUs (2.4 GHz). The average timing over the 12 executions is represented on Figure 8. On

bavailable online at http://rcsr.anu.edu.au/nets (3D) and http://rcsr.anu.edu.au/layers (2D)
7available online at https://github.com/odf/gavrog and https://github.com/odf/systreKey respectively
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average, CrystalNets.jl is 56 times faster than the Java version of Systre, and 117 times faster
than the its stripped-down JavaScript implementation. Two outliers are marked with a black
arrow: these correspond to nets sas and dhe, the two first nets in the input file of dimension
respectively 3 and 2. Since Julia is compiled Just-In-Time [29], it must compile the entire
algorithm the first time the program computes the topological genome of a net, hence a sig-
nificant overhead. Rerunning the computation on the same two nets after compilation yields
an average timing of 3.9 ms for sas and 5.9 ms for dhe, compared to 63 s and 18 s respectively
when including compilation, as represented on the figure.

This performance is consistent across the nets. On the tep net, which is the largest of
the RCSR (920 vertices and 1840 edges per unit cell), CrystalNets.jl computes a topological
genome in 8.6, compared to 229 s for the Java implementation of Systre, and 193 s for the
JavaScript version. For the smallest net pcu, CrystalNets.jl takes 6.5 ms, which is twice as fast
as the JavaScript implementation of Systre, and 16 times faster than the Java version. The
maximum observed speedup is for the tsl net where CrystalNets.jl takes 7.1 ms on average
compared to 5.2 s for the Java version of Systre and 16 for the JavaScript version.

The RCSR partially overlaps with the larger EPINET database [10] ® which contains, among
other data, 14,532 stable 3D nets, which we processed similarly. Finally, both databases
partially overlap that of Structure Commission of the International Zeolite Association (IZA-
SC) [46], which provides names for 255 zeolitic framework structures and corresponding CIF
files.” These structures have unambiguous vertices, defined by the tetrahedral atoms, and
edges between two such atoms bonded by an oxygen, thus a uniquely-defined underlying net.

The results for all three databases are stored within CrystalNets.jl, so that they may be
used to recognise the topology of structures processed by the code. In the following, we call
unknown nets those that are not part of any of these databases — although it should be noted
that other complementary databases of nets do exist (in particular the proprietary databases
used by ToposPro).

Finally, we note that this processing of the databases exposed a few mismatches between
the names of the structures given in the three databases, which were all reported. Namely, the
RCSR nets ucn, rad, jst, fuv and fvb have as IZA-SC names SBN, ATS, JST, NPT and PTT, which
did not appear on the RCSR. Additionally, we noticed that 137 structures from EPINET were
missing their RCSR name, while 6 RCSR structures mentioned an incorrect EPINET counter-
part. This highlights the need for systematic and automated checks of material and topology
databases for consistency.

4.2 MOF structures

In order to test CrystalNets.jl on a realistic workload, we surveyed the CoRE MOF 2019 [47]
database of metal-organic frameworks (version 1.1.3). To do so, we implemented a custom
clustering algorithm to regroup atoms into SBUs. Since the definition of MOF SBUs is not
universal [3] and IUPAC recommends providing complementary topological descriptions when
necessary [48], we implemented several clustering options to account for different strategies
used in the literature.

We provide five main clustering options: “all nodes”, “single nodes”, “standard”, “PE” and
“PEM”. Except for the “standard” representation which is uniquely defined by its implemen-
tation in ToposPro [49, 50], the other clustering options are only described but not uniquely
determined by an explicit algorithm [8,48,49,51-53]. We also chose not to follow the original

8available online at http://epinet.anu.edu.au
%available online at http://www.iza-structure.org/databases/
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implementation of the “standard” representation [50], primarily because of the required com-
putational cost of determining the minimal ring around each bond. Instead we use a custom
algorithm whose main steps are as follows:

* First, organic cycles are replaced by a new virtual carbon atom. Afterwards, all metallic
atoms are assigned to the “inorganic” class and all carbon atoms to the “organic” class.
Then, in a loop, each remaining atom that is bonded to an atom in the “inorganic” class
is itself classified as “inorganic”, until no such atom remains. All remaining unassigned
atoms are then classified as “organic”. P and S atoms are treated differently and consid-
ered organic if directly bonded to a carbon, inorganic if directly bonded to a metal, and
part of a third class otherwise.

» Afterwards, SBUs are formed by regrouping together all adjacent atoms belonging to the
same class. Paddle-wheel patterns are identified separately and regrouped into a single
inorganic SBU even when the two opposite metal centres are not bonded together. The
points of extension, which are organic atoms bonded to an inorganic atom, form their
own SBU each. The algorithm stops here if there is no periodic SBU, i.e. if there is no
infinite set of adjacent atoms belonging to the same class.

Otherwise, if there are such periodic SBUs, they are split by virtually removing the atoms
with the highest connectivity and regrouping the other atoms of the periodic SBU into
the remaining connected components. A few other heuristics are used to ensure that all
final SBUs are finite, and to tackle the various possible configurations encountered in
framework structures.

This algorithm yields our “all nodes” representation [48]. It can be converted to “PE”
(standing for “points of extension”) [54,55] by removing all metallic atoms and bonding their
corresponding points of extension to describe the coordination polyhedra around the removed
metals. The “all nodes” representation is also convertible to “single nodes” [48] simply by
merging the organic points of extension with their neighbouring organic SBU. It can also be
transformed to yield the “PEM” (for “points of extension and metals”) representation [53,54]
by splitting inorganic clusters to keep only one metal atom per SBU. Combining the algorithm
for “PEM” and “single nodes” yields our “standard” representation [49]. For simple cases, we
also provide an “each vertex” clustering option which bypasses the entire clustering step and
keeps each atom as its own SBU, as well as an “input” option which determines clusters directly
from the Residues of the chemfiles-parsed input file, so that the user may provide their own
SBUs.

Once the SBUs are determined, they are converted to vertices and bonded together ac-
cording to the atomic bonds. Finally, as with all nets in CrystalNets.jl, if a vertex has one or
zero neighbour, it is removed, and if it has exactly two neighbours it is converted into an edge
between its neighbours, and this iteratively until convergence. Once vertices and edges are
defined, interpenetrating nets are separated, each of them accounting for a single structure.

To simplify the presentation, we will only discuss the results when using the “single nodes”
approach, as well as the “MOF” structure option which widens metallic bond radii. Crystal-
Nets.jl recognises 61% of all 21,692 resulting structures of CoRE MOF 2019 as one of the nets
in either the RCSR, the IZA-SC or the EPINET databases (only 33% structures are recognised
with “PEM” and between 45% and 55% with the other clustering options). Among the un-
recognised structures, less than 2% correspond to unstable nets which CrystalNets.jl does not
handle. These proportions are similar for each of the four subcategories of the database, di-
vided whether only free solvent was removed (FSR) or all solvent molecules (ASR), and within
each, whether the structure is disordered or not. The closeness of these numbers is expected
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Figure 9: Number of structures per known net in the ordered structures of ASR [47].

since most structures from FSR also belong to ASR with only molecules of solvent as difference,
which should not affect the topology. This highlights the robustness of the algorithm.

Next, we focus on the 11,190 ordered structures of the ASR subset to avoid duplicates. By
studying the distribution of the number of structures per corresponding net, we observe that
this distribution drops faster for unknown nets than for known ones. This is not surprising
since we expect known nets to correspond to the most common occurring in nature, whereas
unknown nets should only correspond to at most a few corresponding structures. Indeed,
among the latter, 1,488 unknown nets only correspond to one MOF structure each, and 302
to two structures. Yet, 5 of them still correspond to thirty MOF structures or more each:
we manually checked through the TopCryst interface [16] that these 5 nets were part of the
ToposPro database, but we could not do so for all the unknown nets since these databases
are not open. In comparison, for known nets, 110 of them only correspond to a single MOF
structure, 54 to two and 38 to thirty or more each. These most represented nets are detailed in
Figure 9: pcu (primitive cubic lattice), dia (diamond) are by far the most common, together
accounting for 27% of know nets, followed by ths, srs and pts. For zeolitic nets, ABW, SOD

(sodalite) and BCT are the most commonly encountered.

The high number of nets with known topologies is a good indicator of the quality of our
clustering algorithm. Yet, since it partly relies on heuristics, it should not be considered fail-
proof. To assess its validity, CrystalNets.jl exports both the input and the detected net in VTF
format, which can be superposed in a molecular visualisation software to check the correspon-
dence between the vertices of the nets and the expected clusters. We manually checked this
correspondence for hundreds of structures with both known and unknown nets, to assert the
validity of our implementation. Comparison with TopCryst on many instances comforts our
belief that the vast majority of unknown nets encountered in CoRE MOF are not the result of
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o CrystalNets.jl ToposPro
Name (CSD identifier) -
Single/AllNodes Standard PE Single/All Nodes Standard (MOF)
HKUST-1 (LUDLED) tbo tbo O tbo 5,6T2
JXUST-1 (SAXVEW) pcu O O pcu 3,5,5,5T11
MIL-53 (MINVUA02) bpq/rna bpq sra, ABW * bpq
MIL-100 (BUSPIP) moo O O Error: timeout
MIL-101 (0CUNAC) mtn-e O mtn-e-a Error: timeout
MOF-5 (FIQCEN) tbo tbo O tbo 5,6T2
MOF-14 (QOWRAV) pto pto sqcl11259 pto 5,6T46
MOF-177 (BABRID O O O 3,3,5,6T36  4,4,4,4,4,6,8,8T1
MOEF-801 (BOHKAM) fcu xbi ubt fcu 3,4,8T15
PCN-700 (RUBLAD) bcu O pcb, ACO bcu 3,3,4,6,8T9
UiO-66 (SURHEU) fcu xbi ubt fcu 3,4,8T15
ZIF-8 (FAWCEN) sod, SOD sod, SOD sod-e sod, SOD sod, SOD
ZIF-67 (GITTOT02) sod, SOD sod, SOD sod-e sod, SOD sod, SOD

Figure 10: Comparison of CrystalNets.jl and ToposPro [13] (through TopCryst [16])
for the identification of topologies on a selection of MOFs.

Topologies in bold come from the RCSR [7], in capitals from IZA-SC [46], sqc11259
comes from EPINET [11] and the rest are part of ToposPro databases. O indicates
unknown nets.

x: ToposPro does not provide Single/All Nodes results for MIL-53 but returns rna
as “Standard representation of covalent and ionic compounds” in addition to bpq as
“Standard representation of coordination compounds and valence-bonded MOFs”.

a wrong clustering by CrystalNets.jl, but simply missing from the databases we use, probably
because they occur on only a handful of actual structures. On the other hand, the proprietary
databases of ToposPro appear to include many such nets.

We compared CrystalNets.jl and ToposPro, accessed through its online TopCryst interface,
on a selection of MOFs common in the literature. The result, presented on Figure 10, shows
that both usually return the same topology if it is in the RCSR when using the “single nodes”
or the “all nodes” clustering options. On the other hand, the “standard” clustering leads to
different results in several cases. This comes from the difference in clustering heuristics: our
implementation regroups each paddle-wheel into a single SBU and removes SBUs made of a
lone oxygen (while bonding their neighbors together) while ToposPro does not systematically
do so. These two heuristics can be individually toggled off in CrystalNets.jl by the user if neces-
sary. In practise, we observe that keeping these heuristics usually leads to less clusters without
loss of chemical meaning, which can in turn help identify relevant underlying topologies, like
the xbi net for MOF-801 and UiO-66 which contains the information on connectivity between
individual metal atoms and with organic linkers. Having access to other clustering options,
like “PE” also allows considering alternative descriptions of the topology.

ToposPro may fail for big nets because of the 3-minutes timeout of TopCryst: this happens
for MIL-100 and MIL-101 among the tested structures. By comparison, CrystalNets.jl takes
less than 10s to handle them, but these timings are not comparable because we do not know
the performance of the server on which the TopCryst webservice depends.

Since our analysis relies solely on CrystalNets.jl, which is independent from the tools used
to build and clean the CoRE MOF database, it allowed us to identify 28 improper structures in
the database, which were reported.
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SWY - B 2; 1.3%
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others -

Figure 11: Number of structures per known net in the ALPO database [56].

4.3 Database of aluminophosphates

Additionally, we surveyed the topologies of Zheng, Li and Yu’s database of aluminophosphates
[56]. These 385 experimental structures are given as CIF files with little to no cleaning from the
publications they stem from. In particular, solvent is included and the structures can contain
multiple overlapping atoms with partial occupancy, while atoms of the main structure are often
partially substituted. CrystalNets.jl automatically removes 0-dimensional residues like solvent
and keeps for each site only the atom with the highest occupancy. Using the “Zeolite” structure
option of CrystalNets.jl, we recognise 64% of the 205 3D nets in the database. This number
rises to 73% by adding a heuristic to remove P-O-P and Al-O-Al linkages, which are usually
not accounted for when computing the topologies of AlPOs.

The 31 known nets represented on more than one structure in the database are represented
on Figure 11. With the exception of fel (originating from feldspars) and cag (occuring in
variscite), they are all referenced in the database of zeolite frameworks of IZA-SC. This is
expected since AIPOs are structurally close to zeolites, with the replacement of Si atoms by Al
and P Conversely, it shows that fel and cag may be nets underlying the structure of unreported
zeolites, especially since both only have 4-coordinates vertices, corresponding to the T-atoms,
and can be embedded to exhibit pores.

Most known structures have a net represented only once (45 nets i.e. 30%) or twice (19
nets i.e. 25%). In comparison, among the unknown nets, 1 occurs on three structures, 5 on
two and the 32 others appear only once each. Both distribution tails and comparison of known
and unknown nets follow a pattern similar to the CoRE MOF database.

For the structures for which the underlying net has been recognised as one of the IZA-
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SC, there is little doubt on the validity of the detected net. For the others however, there is
no systematic way of determining whether the detected net is indeed that representing the
structure or not except from visually checking the adequate superposition of the detected net
and the initial framework for each file. This limitation comes from the lack of cleaning of
the input CIF files, which can lead CrystalNets.jl to interpret solvent residues as part of the
framework for instance, or duplicate atoms as two different atoms instead of one. This issue
can be circumvented by either cleaning the CIF inputs, as in the CoORE MOF database, or by
manually checking the correspondence if working on individual files. Obviously, this limitation
is inherent to the quality of the input files and affects all topology determination codes.

4.4 Hypothetical zeolites

The study of framework topology has historically been extensively applied to zeolites [57].
One reason is that the structure of zeolites, made only from tetrahedral (T = Si, Al, ...) atoms
bridged by T-O-T linkages, is simple enough to show an almost one-to-one correspondence be-
tween each framework and its underlying net. Using this fact, large databases of hypothetical
zeolites have been devised: the core idea consists in embedding 4-connected nets in real space,
either by enumeration of the nets [58] or by Monte-Carlo sampling of vertex positions [59].
The vertices correspond to Si atoms while O atoms are placed along the edges. Each obtained
structure is subsequently refined by minimizing its energy through molecular dynamics and
with simulated annealing.

Since these structures are built from their underlying net, we tried to perform the opposite
operation on the Predicted Crystallography Open Database (PCOD) [59] to assess our imple-
mentation. This database contains 331,172 CIF files representing zeolites with energies within
30kJ/mol (per SiO, unit) of a-quartz, which were analyzed by CrystalNets.jl in 45 minutes
using 20 cores (Intel Xeon Silver 4210R CPUs, 2.4 GHz). Bond guessing forced O atoms to
have at most 2 neighbours, which is the default heuristic for O atoms not bound to metals:
this incidentally ensures that all vertices of the net correspond to Si atoms.

As the SiO, tetrahedra are somewhat distorted during the refinement steps, the bonds
guessed from the resulting structure do not always correspond to those from which it was
built. As a result, we found 11 frameworks whose T-atoms were not all 4-connected, and 75
other frameworks whose coordination sequences did not match that recorded in the database.
Two structures were found to have the same underlying net: 8013876 and 8035701, the latter
having different detected coordination sequences than indicated. Barring these 86 mismatched
structures, 18 nets only have a 2D periodicity and 31 are unstable nets not handled by Crys-
talNets.jl. All those “problematic” nets represent less than 0.04% of all nets in the database.
For the rest, no two structures had the same underlying net.

Indeed, by construction of the database, structures whose topology is already part of the
database are removed. The invariants used to identify the topology are the coordination se-
quences and the ring sizes: this strategy does ensure that no two structures with the same net
are present, but it is too restrictive since two distinct nets could share these invariants. In the
future, the use of a unique topological identifier through CrystalNets.jl could thus potentially
lead to the generation of more structures.

5 Conclusion and perspectives
We have presented CrystalNets.jl, a Julia library implementing topology identification on crys-

talline materials. The core algorithm for topology detection is strongly inspired from that used
in Systre [15] which computes a topological genome, that is a sequence of numbers uniquely
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identifying the net underlying the given structure. The algorithmic and implementation im-
provements of CrystalNets.jl still preserve the soundness and polynomial time complexity of
the initial algorithm, while offering a much better performance across all kinds of nets: it
is on average 56 times faster than Systre and up to thousands of times faster in some cases.
Moreover, our software directly takes crystallographic files as input and can automatically de-
tect bonds if they are absent; it also includes a general clustering algorithm with different
target options for framework materials, and heuristics adapted to metal-organic frameworks
specifically.

Overall, CrystalNets.jl was successfully tested against a large diversity of crystalline struc-
tures: MOFs, aluminophosphates, zeolites and many other crystals. Even on large databases,
our implementation shows great performance and can reliably recognise any structure in the
Systre archive of the RCSR, in the IZA-SC database of zeolite structures and in EPINET. It
successfully attributes known topologies to 61% of the structures in CoRE MOF after automat-
ically clustering the vertices according to the “single nodes” policy. It was also able to recognise
73% aluminophosphate structures from Zheng et al.’s database [56], automatically removing
solvent residues and colliding atoms when possible.

We believe CrystalNets.jl can be used as a faster and more convenient alternative to Systre
and ToposPro for the identification of nets underlying crystalline structures. Its programmatic
interface can be integrated to any computational pipeline written in Julia, as well as some
other languages through bindings. Looking forward, we plan on providing a website interface
similar to TopCryst [16], which could be useful to compare any structure to one of those
surveyed in the previously exposed databases. We also plan on including results from the
topological survey of the COD [60] and CSD [61] databases. The latter could then serve as
comparison for our bonding and clustering algorithms against those of ToposPro [50].
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