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Abstract

We show how series expansions of functions of bosonic number operators are naturally
derived from finite-difference calculus. The scheme employs Newton series rather than
Taylor series known from differential calculus, and also works in cases where the Taylor
expansion fails. For a function of number operators, such an expansion is automatically
normal ordered. Applied to the Holstein-Primakoff representation of spins, the scheme
yields an exact series expansion with a finite number of terms and, in addition, allows
for a systematic expansion of the spin operators that respects the spin commutation
relations within a truncated part of the full Hilbert space. Furthermore, the Newton se-
ries expansion strongly facilitates the calculation of expectation values with respect to
coherent states. As a third example, we show that factorial moments and factorial cumu-
lants arising in the context of photon or electron counting are a natural consequence of
Newton series expansions. Finally, we elucidate the connection between normal order-
ing, Taylor and Newton series by determining a corresponding integral transformation,
which is related to the Mellin transform.
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1 Introduction

Functions of operators are ubiquitous in physics. In this paper, we focus on functions f that
depend on the occupation number operator n̂ = â†â, where â† and â are the creation and
annihilation operator of some bosonic mode in second quantization, with commutation rela-
tion [â, â†] = 1. For any (real or complex) function f (x), the operator-valued function f (n̂)
is defined through the eigenvalue equation

f (n̂)|n〉= f (n)|n〉 , (1.1)

where |n〉 is an eigenstate of n̂, with integer eigenvalue n ∈ N0. While for simple functions,
such as f (n̂) = n̂ or n̂2, this definition may be sufficient in order to perform practical calcula-
tions, for more complicated functions, such as f (n̂) =

p
n̂, a series expansion of f (n̂) in terms

of â† and â may be desirable because, then, an approximative treatment of the problem at
hand becomes possible by truncating the series at some low order.

One of the most prominent series expansion used in physics is the Taylor expansion (with-
out loss of generality around x = 0),

f (x) =
∞
∑

k=0

1
k!
∂ k

x f (0) xk , (1.2)

with ∂ k
x f (0) being the k-th derivative of f (x) at x = 0, which is valid if f (x) is analytic at the

expansion point x = 0. In that case, xk can be replaced by n̂k in (1.2) to obtain the formal
power series of the operator function f (n̂). And, indeed, such a procedure is commonly used,
e. g., to expand spin operators in terms of Holstein-Primakoff bosons, as we discuss in more
detail below.

It should be emphasized, however, that the choice of how to order the operators â and â†

in the series expansion is not unique. While the Taylor expansion (1.2) yields products of the
form (â†â)k, one may rearrange the operators in some other way. For example, rewriting with
the help of [â, â†] = 1 the second-order term in normal order, â†ââ†â = â†â†ââ+ â†â, modifies
the coefficient of the first-order term. As a consequence, the series expansion of f (n̂) is not
unique and depends on the operator order convention.

An intrinsic feature of the Taylor expansion is that it requires f (x) to be analytic at the
expansion point. Therefore, the above procedure does not work, e. g., for the operator square
root

p
n̂ since, due to the divergence of the differential quotient d f /dx , the square root

p
x is

not analytic at x = 0. On the other hand, since we only need to consider the function f (x) at
integer values of x , diverging differential quotients should be irrelevant for the possibility to
find a series expansion of f (n̂).

This motivates us to suggest that, from the very beginning, the Taylor series known from
differential calculus should be replaced by the Newton series, a central tool from
finite-difference calculus. For the Newton series to exist, the only requirement is that f (x)
is well defined at integer values of x . This includes non-analytic functions such as

p
x , i. e.,

a series expansion of
p

n̂ becomes possible. But also for analytic functions f (x), for which
the Taylor series exists, employing the Newton series to expand f (n̂) seems more natural and
better adapted to the discreteness of the domain of definition of f (n̂), as will be detailed in
the following.

2 Finite-difference calculus

Although the Newton series and the underlying finite-difference calculus was invented a long
time ago [1, 2], it is, among physicists today, less known and used than the Taylor expansion
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that has been invented later [3]. Therefore, we briefly review this expansion scheme before
applying it to operator-valued functions of the form (1.1).

2.1 Newton series

In finite-difference calculus [4,5], the differential quotient is replaced by the forward difference

∆n f (n) = f (n+ 1)− f (n) . (2.1)

Applying the difference operator ∆n iteratively k ≥ 0 times yields the k-th order forward
difference

∆k
n f (n) =

k
∑

l=0

(−1)k−l
�

k
l

�

f (n+ l) . (2.2)

The discrete analog1 of the Taylor series in differential calculus is the Newton series. It is, for
an expansion starting at n= 0, given by

f (n) =
∞
∑

k=0

1
k!
∆k

n f (0)n(k) , (2.3)

where

n(k) = n(n− 1)(n− 2) · · · (n− k+ 1) (2.4)

denotes the k-th (falling) factorial power2,3 of n. Comparing equations (1.2) and (2.3), we
point out that the factorial powers n(k) are the discrete analog of the usual powers nk.

It should be emphasized that, by construction, the r-th partial sum (i. e. up to order n(r))
of the Newton series exactly reproduces f (n) at the integer values n = 0,1, . . . , r. In fact, the
r-th partial sum is equal to the r-th order Lagrange interpolation polynomial through the r+1
points (0, f (0)), . . . , (r, f (r)). Therefore, the Newton series converges pointwise at all n ∈ N0,
with the only requirement that f (n) is well defined on N0. While the nonanalyticity of

p
x at

x = 0 prevents the expansion into a Taylor series, there is no problem of expanding
p

n into a
Newton series, with the first few terms given by

p
n= n−

2−
p

2
2!

n(2) +
3− 3

p
2+
p

3
3!

n(3) +O
�

n(4)
�

. (2.5)

2.2 Number operator functions

For the Newton expansion of the operator function f (n̂), one simply has to replace n with n̂
in (2.3). This yields

f (n̂) =
∞
∑

k=0

Fk

k!
n̂(k) , (2.6a)

1 Correspondences such as (1.2) vs. (2.3) are also investigated in the framework of the umbral calculus [6].
2 An analog discussion can be made based on backward differences ∇n f (n) = f (n)− f (n− 1) in combination

with the rising factorial power.
3 There are different definitions and notations for the factorial power in the literature. We use the same defini-

tion as Mathematica [7], which obeys the relations ∆nn(k) = kn(k−1) as well as
∑

n n(k) = n(k+1)/(k+1) analog
to differentiation and integration.
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where the coefficients

Fk =∆
k
n f (0) =

k
∑

l=0

(−1)k−l
�

k
l

�

f (l) (2.6b)

are also known as the binomial transform F of f [8].
An alternative and direct way to derive (2.6) uses the fact that, contrary to differentiation,

finite differences can also be defined with respect to the operator n̂ instead of the number n,
because neither a division nor a limit is necessary in the definition of the forward difference
operator

∆n̂ f (n̂) = f (n̂+ 1)− f (n̂) , (2.7)

and likewise for∆k
n̂ f (n̂). To formulate the operator Newton series, we need to take the matrix

element of ∆k
n̂ f (n̂) at the expansion point. For an expansion around the lower bound of the

spectrum of n̂, this leads to the coefficients Fk = 〈0|∆k
n̂ f (n̂)|0〉, which are identical to ∆k

n f (0)
by (1.1).

2.3 Factorial powers and normal ordering

The Newton series (2.6) of f (n̂) contains the factorial powers n̂(k) = n̂(n̂− 1) · · · (n̂− k + 1)
of the number operator n̂ = â†â. These are known to be identical [9] to the normal-ordered
(regular) powers of n̂, i. e.,

n̂(k) = : n̂k := â†k âk . (2.8)

The action of the normal-ordering operator : · : on any function f (n̂) is calculated by first
expressing f (n̂) through its formal power series, then replacing each n̂ by â†â, and finally
shifting all the creation operators â† to the left and all the annihilation operators â to the
right, while ignoring the non-commutativity of â and â†. The result is, of course, different
from using the commutator [â, â†] = 1 to rewrite f (n̂) in a normal-ordered form.

Relation (2.8) is easily proven by applying it to a number eigenstate |n〉. For k ≤ n, we get

: n̂k : |n〉= â†k âk|n〉=
p

n(k) â†k|n− k〉= n(k)|n〉= n̂(k)|n〉 , (2.9)

while for k > n the relation : n̂k : |n〉 = n̂(k)|n〉 is trivially fulfilled, as then both âk|n〉 = 0 and
n(k) = 0.

By combining the results (2.6) and (2.8) from above, we conclude that the Newton series
expansion of any function of number operators is always normal ordered,

f (n̂) =
∞
∑

k=0

∆k
n f (0)

k!
â†k âk . (2.10)

The normal ordering of the series expansion (2.10) implies that the k-th addend does not
contribute when applied to number eigenstates |n〉 with n< k. As an important consequence,
the Newton series of a function f (n̂) with a finite support {|n〉; n≤ r} terminates with the r-th
partial sum.

2.4 Finite differences and commutators

We remark that the difference operator ∆n̂ f (n̂) from (2.7) is connected to the commutator4

[â, f (n̂)] = â f (n̂)− f (n̂)â = f (n̂+ 1)â− f (n̂)â =∆n̂ f (n̂) â , (2.11)

4 The corresponding relation involving the creation operator is [ f (n̂), â†] = â†∆n̂ f (n̂).
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which resembles the commutator [p̂, f ( x̂)] = ħhi ∂x f ( x̂) between the momentum operator and
a continuous function of the position operator, involving the derivative of f . More generally,
the k-th order difference operator ∆k

n̂ f (n̂) is related to the k-fold commutator

[â, f (n̂)]k = [â, [. . . , [â, [â, f (n̂)]]]]
︸ ︷︷ ︸

k−fold

=∆k
n̂ f (n̂) âk , (2.12)

which is proven by iteratively applying the steps used in (2.11). These k-fold commutators
can be derived from the generating function

Ĝ(t) = et â f (n̂) e−t â (2.13)

via [â, f (n̂)]k = ∂ k
t Ĝ(0). As a consequence of (2.12), the series expansion of the generating

function in t is given by

Ĝ(t) =
∞
∑

k=0

tk

k!
∆k

n̂ f (n̂) âk , (2.14)

which is not yet normal ordered. To achieve a normal-ordered representation, we additionally
expand f (n̂) into a Newton series (2.10) to finally arrive at

Ĝ(t) =
∞
∑

k=0

tk

k!

∞
∑

l=0

∆k+l
n f (0)

l!
â†l âl+k . (2.15)

In the following, we present three examples of Newton series expansions of bosonic opera-
tor functions from different fields of physics. While the first example illustrates the advantages
of Newton series in the framework of the Holstein-Primakoff representation of quantum spins,
the second example deals with coherent states and the related displacement operators. Finally,
the third example considers many-particle quantum statistics and the relations to factorial mo-
ments.

3 Applications

3.1 Bosonic representation of spins

As a first example, we study the Holstein-Primakoff (HP) representation [10] of quantum spins
of length S. It is given by (we put ħh= 1)

Ŝ+ =
p

2S h(n̂) â , Ŝ− =
p

2S â†h(n̂) , Ŝz = S − n̂ , (3.1a)

with the bosonic operator function

h(n̂) =

√

√

1−
n̂

2S
, (3.1b)

and, thus, expresses the spin operators in terms of bosonic creation and annihilation operators
â† and â, respectively. The spin state |S, m〉spin with the largest magnetic quantum number
m = S is identified with the bosonic vacuum state |0〉. Creating one boson by applying â†

reduces m by one. The function h(n̂) specified in (3.1b) guarantees that the commutation
relations of the spin algebra,

[Ŝ+, Ŝ−] = 2Ŝz and [Ŝz , Ŝ±] = ±Ŝ± , (3.2)
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are satisfied. As a consequence, the Holstein-Primakoff representation yields the correct matrix
elements of the spin operators.

The Hilbert space of the HP bosons has infinite dimension and is, therefore, much larger
than the (2S+1)-dimensional Hilbert space of the quantum spin. However, the relation
Ŝ−|S,−S〉spin = 0, responsible for keeping the spin Hilbert space finite-dimensional, prop-
erly translates to Ŝ−|2S〉 = 0 in the bosonic language, because of h(2S) = 0. Therefore, the
unphysical part of the boson Hilbert space, with more than 2S bosons present, can never be
reached by applying the spin operators and therefore decouples from the physical part.

Series expansions of Holstein-Primakoff representation

Since the square root in (3.1b) is awkward to deal with, a common procedure often used
in the literature to analyze collective magnetic excitations (magnons) in ferromagnetic and
antiferromagnetic spin lattices is to expand h(n̂) from (3.1b) in a Taylor series up to r-th
order, h(n̂) = hT,r(n̂) +O(n̂r+1). To lowest order, this expansion yields hT,0 = 1. This defines
the so-called linear spin-wave approximation, which can be understood as the classical, or
S→∞, limit of the quantum spin, in which interactions between magnons are neglected.

To address magnon-magnon interactions, at least the next order of the Taylor expansion
needs to be included,

h(n̂) = 1−
n̂

4S
︸ ︷︷ ︸

hT,1(n̂)

+O(n̂2) . (3.3)

The truncation of the Taylor series at any finite order r > 0 is, however, problematic since
it makes the full bosonic Hilbert space accessible by successively applying Ŝ−, including all
the unphysical states with more than 2S bosons. Furthermore, the canonical commutation
relations for the spin operators are only satisfied approximately. This results in artificially
breaking rotational symmetries that may be present in the original Hamiltonian. Only when
the Taylor series is kept up to infinite order, both of these problems are cured.

Instead of using the Taylor expansion, we advocate to employ the Newton expansion (2.10)
up to order r and define h(n̂) = hr(n̂)+O(n̂(r+1)), which to lowest order yields the same result
h0 = 1. However, in next-to-leading order r = 1 they start to differ. The Newton expansion
yields

h(n̂) = 1− [1− h(1)] n̂
︸ ︷︷ ︸

h1(n̂)

+O(n̂(2)) , (3.4)

with a different prefactor for the linear term than in the Taylor expansion5. As a consequence,
the magnon-magnon interaction in spin lattices acquires a different strengths for the truncated
Taylor and Newton expansion, respectively.

In addition to such quantitative differences between the approximate spin representations
via truncated Taylor and Newton series, there is an important qualitative difference as far as the
validity of the spin commutation relations (3.2) is concerned. In order to respect, e. g., rota-
tional symmetries of the original Hamiltonian, we require for a proper approximation scheme
that these commutation relations are satisfied within the subspace with at most r < 2S HP
bosons. The lowest-order term of the expansion (r = 0), corresponding to Ŝ+ 7→ Ŝ+0 =

p
2S â

and Ŝ− 7→ Ŝ−0 =
p

2S â†, yields the commutator [Ŝ+0 , Ŝ−0 ] = 2S, which is only correct when
applied to a state with zero HP bosons.

5 For S = 1/2, the linear term in the Newton expansion h1(n̂) is twice as large as in hT,1(n̂).
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To guarantee the commutation relations in the larger Hilbert space of up to r HP bosons,
we truncate the Newton series of h(n̂) in the definition of Ŝ± after the term of order n̂(r),
h(n̂) 7→ hr(n̂). This gives for the resulting approximate spin operators Ŝ±r

[Ŝ+r , Ŝ−r ] = 2Ŝz +O(n̂(r+1)) and [Ŝz , Ŝ±r ] = ±Ŝ±r , (3.5)

which match the correct spin commutation relations up to order n̂(r), i. e., they are exact within
the Hilbert space of containing up to r bosons. With increasing r, the Hilbert space in which
the spin commutation relations are respected increases.

In contrast, when using the Taylor instead of the Newton expansion and truncating after
the term of order n̂r , we find that the commutation relation [Ŝ+T,r , Ŝ−T,r] = 2Ŝz +O(n̂) contains
an error of order n̂, irrespective of the order r of the expansion. Increasing the order r does,
in this case, not increase the Hilbert space in which the commutation relations are fulfilled.

We illustrate this for r = 1. Making use of the Newton expansion, we find

[Ŝ+1 , Ŝ−1 ] = 2Ŝz −
�

3− 12S
�

1− h(1)
��

n̂(2) , (3.6)

in which the deviation from the exact commutation relation only matters when applied to
states with at least two bosons. In contrast, using the Taylor expansion and then inserting
n̂2 = n̂(2) + n̂ leads to

[Ŝ+T,1, Ŝ−T,1] = 2Ŝz +
n̂

4S
+

3
8S

n̂(2) (3.7)

that, because of the term n̂/(4S), deviates from the exact commutation relation already when
applied to a state with one boson only.

The main virtue of the Newton expansion as compared to the Taylor expansion, however,
is that the full series (2.10) can be truncated at the order r = 2S,

h(n̂) = h2S(n̂) =
2S
∑

k=0

â†k âk

k!

k
∑

l=0

(−1)k−l
�

k
l

�

√

√

1−
l

2S
︸ ︷︷ ︸

Hk=∆k
nh(0)

, (3.8)

to exactly reproduce all spin matrix elements within the bosonic Hilbert space with at most
2S bosons. This includes the spin commutation relations as well as the relation h(n̂)|2S〉 = 0
ensuring that the unphysical part of the boson Hilbert space with more than 2S bosons is
unreachable by applying Ŝ−. In that sense, the finite sum (3.8) provides an exact spin repre-
sentation.

Discussion

The expansion (2.10) has already been proven by performing normal ordering by induction
[11]. This result has also already been applied to the Holstein-Primakoff root h(n̂) from (3.1b),
together with the claim that a truncation of the series would connect the physical part of the
Hilbert space to the unphysical part with more than 2S bosons [12]. This is, however, not true.
In contrast, the finite sum (3.8) leaves the physical and the unphysical parts of the Hilbert space
unconnected.

The observation that the truncation of the normal-ordered expansion of the Holstein-
Primakoff representation at the order 2S provides an exact spin representation was recently
published in [13]. Instead of performing a Taylor expansion, the authors made the ansatz to
write h(n̂) as a normal-ordered series in the form (2.10). Using techniques known from flow-
equation approaches, they derived and solved differential equations to find iterative equations
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for their6 Qk. The first few terms of the normal-ordered expansion has also been found by using
the method of matching matrix elements [14].

What, to the best of our knowledge, has not been realized yet is that, in order to easily
derive a compact formula for the coefficients Hk in (3.8), finite-difference calculus provides a
natural and elegant tool that is well adapted to the discreteness of the domain of definition
of f (n̂). Furthermore, it directly leads to closed and compact expressions instead of iterative
equations [13] for the coefficients of the expansion.

We remark that, in addition to the Holstein-Primakoff representation, there are also other
exact bosonic representations of quantum spins. The Dyson-Maleev representation uses dif-
ferent functions h±(n̂) for the operators Ŝ+ and Ŝ−. While the choice h+(n̂) = 1 − n̂/(2S)
and h− = 1 made in the original proposal [15–17] does still connect the physical and the un-
physical part of the Hilbert space, the conjugated Dyson-Maleev representation [18], h+ = 1
and h−(n̂) = 1 − n̂/(2S) corrects this flaw. Since no square root needs to be expanded, the
(conjugated) Dyson-Maleev representation shares with the Newton expansion that a finite
polynomial of the number operator is sufficient to represent the spin. This comes, however,
with the drawback that the matrix representations of the operators Ŝ+ and Ŝ− in the Fock base
{|n〉} are no longer Hermitian conjugates of each other. As a consequence, Ŝ x and Ŝ y are no
longer represented by Hermitian matrices.

Finally, we remark that the appearance of boson states that do not correspond to spin states
can be avoided by using a multi-valued transformation between the spin and the boson Hilbert
space [19–22]. Also for this transformation, normal-ordered expansions can be performed.

3.2 Coherent states

While the eigenstates |n〉 of the occupation number operator n̂ form a discrete base of the
Fock space, it is also possible to express the Fock states in terms of coherent states |α〉, defined
by being eigenstates of the annihilation operator, a|α〉 = α|α〉. Since the spectrum of a is
continuous, the coherent states form a continuous, overcomplete base of the Fock space. For
the textbook example of a harmonic oscillator, coherent states are known to mimic the classical
equations of motions while minimizing the uncertainty product. This is also the reason why
laser light in the classical limit is most properly described by coherent states [23].

The expectation value of an operator function f (n̂) with respect to a coherent state |α〉 is
most easily evaluated when f (n̂) is written in its normal-ordered form. While rearranging the
Taylor series of f (n̂) into a normal-ordered form involves cumbersome multiple applications
of the commutator [â, â†] = 1, leading to Stirling numbers of the second kind, the Newton
series of f (n̂) is already automatically normal ordered. Therefore, by making use of

〈α|n̂(k)|α〉= 〈α|â†k âk|α〉= (α∗α)k , (3.9)

we can immediately express the expectation value of f (n̂) with respect to the coherent state
|α〉 as the power series

〈α| f (n̂)|α〉=
∞
∑

k=0

∆k
n f (0)

k!
(α∗α)k . (3.10)

The corresponding expression of the expectation value in terms of the coefficients of the Taylor
series would acquire a much more complicated structure that is impractical for actual calcula-
tions.

The coherent state |α〉 can be constructed by applying the displacement operator

D̂(α) = eαâ†−α∗ â (3.11)

6 The coefficients Qk in [13] are related to our Hk via Qk = Hk/k!.
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onto the vacuum state |0〉. This can be shown by rewriting the displacement operator with the
help of the Baker-Campell-Hausdorff formula in a normal-ordered form to derive the relation

|α〉= D̂(α)|0〉= e−
1
2α
∗αeαâ†

e−α
∗ â|0〉= e−

1
2α
∗α
∞
∑

n=0

αn

p
n!
|n〉 , (3.12)

which immediately yields that |α〉 is an eigenstate of â with eigenvalue α.
Interpreting D̂(α) as a unitary transformation, the expectation value 〈α| f (n̂)|α〉 with re-

spect to the coherent state |α〉 can be reexpressed as the vacuum expectation value of the
displaced operator D̂†(α) f (n̂)D̂(α). Therefore, we are interested in analyzing how the normal-
ordered Newton series of f (n̂) behaves under the displacement transformation. By making use
of D̂†(α) â D̂(α) = â + α and D̂†(α) â† D̂(α) = â† + α∗, which are easily proven by taking the
derivatives ∂α and ∂α∗ , respectively, we end up with

D̂†(α) f (n̂)D̂(α) =
∞
∑

k=0

∆k
n f (0)

k!
(â† +α∗)k(â+α)k . (3.13)

As a result, displacing the operator f (n̂) is simply achieved by replacing â 7→ â + α and
â† 7→ â†+α∗ in the Newton series expansion of f (n̂), which does not spoil the normal-ordered
structure of the expression.

For a simple illustration, we mention the quantum analog of the phase space, namely
the Husimi distribution (see e. g. [9]), for a harmonic oscillator (we again set ħh = 1) with
Hamiltonian Ĥ = ω(n̂ + n0) in thermal equilibrium at inverse temperature β = 1/kBT . By
setting f (n̂) in (3.13) to the Boltzmann operator f (n̂) = 1

Z e−βĤ, we obtain the thermal density
operator

ρ̂th(α,β) =
1
Z

D̂†(α)e−βĤD̂(α) = −
∞
∑

k=0

(e−βω − 1)k+1

k!
(â† +α∗)k(â+α)k , (3.14)

with partition function Z = Tr e−βĤ. The Husimi distribution is, then, nothing but the vacuum
expectation value,

Q(α,β) =
1
π
〈0|ρ̂th(α,β)|0〉=

1
π
(1− e−βω)e(e

−βω−1)α∗α , (3.15)

where the real and imaginary part of α are the analogs of position and momentum in classical
phase space. As discussed in [9], the Husimi distribution in terms ofℜ(α) and ℑ(α) is Gaussian
as in the classical case, but with a larger width since quantum fluctuations add to the thermal
ones. The use of the Newton series expansion helped us to derive the Husimi distribution
in a simple and straightforward way without the cumbersome use of commutation relations
when writing the Hamiltonian in a normal-ordered form. While for the harmonic oscillator, a
compact expression for the Husimi function could be found, a series expansion of the Husimi
function for any system with a Hamiltonian diagonal in n̂ is easily obtained via its Newton
series.

3.3 Photon statistics

The third example we study is taken from quantum optics. In this field, analyzing the statistics
of the number of photons that result from probing a quantum-mechanical electromagnetic
field with photon detectors is a major subject [23].

The statistical properties of the number n of detected photons are contained in a probability
distribution function. It is well known from probability theory that distribution functions can
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be characterized in terms of moments Mk of order k, which can be represented, using the
moment generating function7

M(z) =
∞
∑

k=0

Mk
zk

k!
, (3.16)

as the k-th derivative with respect to the real or complex auxiliary variable z of M(z) at z = 0,
i. e., Mk = ∂ k

z M(0). To get the corresponding cumulant Ck of order k, one needs to take the
logarithm before performing the derivatives, Ck = ∂ k

z lnM(0). Remember that generating
functions are always expanded in a Taylor series in z.

In the context of photon counting, the moment generating function is written as the quantum-
mechanical expectation value

M(z) = 〈G(z; n̂)〉 (3.17)

of some operator generating function G(z; n̂), which opens the question of what is the most
natural form for G. While M(z) is a real (or complex) function generating the moments Mk,
the corresponding G(z; n̂) is a suitable operator function in Fock space that, expanded formally
in n̂, generates the powers zk in the series expansion (3.16).

The most obvious choice is the formal power series

Gr(z; n̂) =
∞
∑

k=0

zk n̂k

k!
= ezn̂ , (3.18)

which corresponds to a Taylor expansion in n̂ and yields the raw or ordinary moments

Mr,k = 〈n̂k〉 . (3.19)

However, as discussed in section 2, the proper expansion of a number operator function f (n̂)
in n̂ is the Newton expansion. Adopting the form of equation (2.6a) yields

Gf(z; n̂) =
∞
∑

k=0

zk n̂(k)

k!
= (1+ z)n̂ , (3.20)

as an alternative choice for the operator function G. To prove the second equality in (3.20),
we use (2.10) as well as the binomial theorem for [(1 + z) − 1]k, such that the expansion
coefficients of the Newton series of (1+ z)n̂ are given by

Gk =
k
∑

l=0

(−1)k−l
�

k
l

�

(1+ z)l = zk , (3.21)

as required. The resulting moments

Mf,k = 〈n̂(k)〉= 〈 : n̂k : 〉 , (3.22)

generated by this second choice, Mf(z) = 〈(1+ z)n̂〉, are called the factorial moments of order
k. They differ from the raw moments (3.19) by normal ordering of the photon creation and
annihilation operators. The normal ordering also reflects the fact that each photon is destroyed
upon detection [23].

The relation between the operator functions (3.18) and (3.20) can be summarized as the
operator identity

Gf(z; n̂) = (1+ z)n̂ = : ezn̂ := :Gr(z; n̂) : , (3.23)

7 To be more precise, M is an exponential generating function, which involves a factor 1/k!.
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i. e., Gf(z; n̂) is obtained from Gr(z; n̂) by applying the normal-ordering operator. In the frame-
work of coherent states, using (3.13) this identity translates to

〈α|Gf(z; n̂)|α〉=
∞
∑

k=0

zk

k!
(α∗α)k = ezα∗α = Gr(z;α∗α) . (3.24)

We remark that beyond the specific example discussed here in the context of photon statistics,
the relation between operator-valued functions by applying the normal-ordering operator can,
more generally, be derived with the help of an integral transformation between complex-valued
functions that we introduce and analyze in section 4 of this paper.

Discussion

The identityMf(z) = 〈(1+ z)n̂〉= 〈 : ezn̂ : 〉 has been proven in [23] by making use of the optical
equivalence theorem [24, 25], which expresses the formal equivalence between expectations
of normal-ordered operators in quantum optics and the corresponding c-number function in
classical optics. By performing a Newton expansion of the operator function Gf, we were able
to prove the stronger operator identity (3.23), without making any assumptions about the
occupied states of the electromagnetic field.

We have seen that the factorial moments Mf,k = 〈n̂(k)〉 (and the corresponding cumulants
Cf,k) naturally arise from the Newton expansion (3.20) of the operator function Gf(z; n̂) en-
tering the moment generating function Mf(z) = 〈Gf(z; n̂)〉. It is, of course, legitimate to also
characterize the discrete photon statistics in terms of raw moments Mr,k = 〈n̂k〉 rather than
the factorial ones. Since factorial moments can be expressed in terms of raw moments and
vice versa, both descriptions contain the same information. Nevertheless, the use of factorial
moments is more natural for discrete probability distributions. Above, we have seen that they
are a consequence of the Newton expansion. The factorial moments are not only more natural,
they are also superior over raw ones.

To illustrate this, we consider as a simple example an ensemble of N independent photon
sources, each emitting a photon with probability p. The resulting binomial distribution func-
tion of finding n photons reads P(n) =

�N
n

�

pn(1− p)N−n, and the factorial moment generating
function becomes

Mf(z) =
N
∑

n=0

Gf(z; n)P(n) = (1+ pz)N , (3.25a)

such that the factorial moments (3.22) are

Mf,k = N (k)pk , (3.25b)

which implies Mf,k = 0 for k > N , i. e., only a finite number of factorial moments are required
to fully describe the photon distribution. In contrast, raw moment generating function is
given by Mr(z) = [1+ p(ez − 1)]N for this example and leads to an infinite number of quite
complicated raw moments that grow exponentially, Mr,k ' N kpN , for k� N .

Beyond this specific example, it is quite straightforward to reconstruct any probability dis-
tribution P(n) from the probability generating function Mf(z − 1) via

P(n) =
1
n!
∂ n

z Mf(−1) =
1
n!

∞
∑

k=0

Mf,k
∂ n

z zk

k!

�

�

�

�

z=−1
=

1
n!

∞
∑

k=0

(−1)k

k!
Mf,n+k . (3.26)

The denominator k! guarantees a fast convergence for well-behaved factorial moments. In
contrast, the relation between P(n) and Mr,k is not only more complicated, but it also bears

11

https://scipost.org
https://scipost.org/SciPostPhys.10.1.007


SciPost Phys. 10, 007 (2021)

the problem of bad convergence since raw moments generically grow exponentially with the
order k. This shows that raw moments and cumulants may be suited to characterize continuous
probability distributions, but discrete probability distributions should rather be analyzed with
the help of factorial moments and cumulants.

Not only photons but also electrons can be counted. The fact that they are fermions rather
than bosons is irrelevant for the definition (not for the value) of the moments characterizing
the probability function. Similar ideas as those for addressing photon detection in electromag-
netic fields have been used to develop a theory of electron counting statistics for transport in
nanostructures [26]. Quite surprisingly, most of the theoretical and experimental works on
electron counting statistics have discussed the statistical properties in terms of raw moments
and cumulants. This is despite the fact that electrons carry quantized charges and that, similar
to the detected photons in quantum optics, once the transfer of an electron is measured it is
out of the game. From the above discussion, it is obvious that one should rather use factorial
moments and cumulants also for electron counting statistics. The virtue of factorial cumulants
has only been realized later [27–29]. Their supremacy over raw cumulants in identifying,
e. g., the nonequilibrium dynamics of spin relaxation in singly-charged quantum dots has been
experimentally demonstrated recently [30].

4 Normal-order transform

In section 3.3, we have seen that the discreteness of the spectrum of n̂ suggests to replace the
operator function Gr(z; n̂) = ezn̂, leading to raw moments, by the operator function
Gf(z; n̂) = (1 + z)n̂, leading to factorial moments. One way to get from ezn̂ to (1 + z)n̂ is to
expand the former into a formal power series and then apply the normal-ordering operator : · :,
see (3.23). To put this procedure on a more formal ground, we introduce the transformation

f (x) 7→ f̃ (n) =Nx[ f (x)](n) , (4.1)

between (continuous) functions f and f̃ that fulfills the operator identity

: f (n̂) :=N [ f ](n̂) . (4.2)

Since the transformation (4.1) is defined by a normal-ordering procedure, we call N [ f ] the
normal-order transform of f . In the above example, the normal-order transform of f (n̂) = ezn̂

is N [ f ](n̂) = (1+ z)n̂. Our aim in this section is to find a general expression for the normal-
order transform for an arbitrary function f (x).

The connection (2.8) between normal ordering and factorial powers, : n̂k : = n̂(k), im-
plies that the powers f (x) = xk with k ∈ N0 have to be mapped onto the factorial powers
N [ f ](n) = n(k). As consequence, the Newton series of f̃ (n) must have the same coefficients
as the Taylor series of f (x), such that

Fk =∆
k
n f̃ (0) = ∂ k

x f (0) . (4.3)

We can construct N by analytic continuation of the well-known integral representation of the
Euler gamma function, valid for n ∈ C, ℜ(n)< 0,

Γ (−n) = (−1)n+1

∫ 0

−∞
dx ex x−(n+1) , (4.4)

and find, for k ∈ Z, the integral representation of the factorial power

n(k) = (−1)k
Γ (k− n)
Γ (−n)

=
(−1)n+1

Γ (−n)

∫ 0

−∞
dx ex xk−(n+1) (4.5)
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as an integral transform of xk. This holds both for positive and negative exponents of the
factorial power, where the latter are defined via n(−k)(n + k)(k) = 1. In (4.5), we used the
symmetry property Γ (n)Γ (1−n) sin(πn) = π of the gamma function. The analytic continuation
to positive n can be done by utilizing a Hankel contour along the negative axis in (4.4), with
the result that the diverging contributions in the two integrals cancel for k ∈ Z.

Applying the transform (4.5) term-wise to the Taylor series of f (x) and interchanging sum
and integral, we find the explicit expression

f̃ (n) =N [ f ](n) = 1
Γ (−n)

∫ 0

−∞
dx f (x) ex (−x)−(n+1) , (4.6)

which can be used in, e. g., Mathematica to calculate the normal-order transform of many
functions, see Table 1.

Discussion

The normal-order transform of f (x) is directly related to the well-known Mellin transform
Mx of e−x f (−x) according to

Nx[ f (x)](n) =
1

Γ (−n)
M−x[e

x f (x)](−n) . (4.7)

Under certain conditions [31], the Mellin transform is invertible, such that the inverse normal-
order transform can also be given and reads

f (x) =N−1
n [ f̃ (n)](x) = e−xM−1

−n[Γ (−n) f̃ (n)](−x)

=
e−x

2πi

∫

C
dn f̃ (n) Γ (−n) (−x)n , (4.8)

where C is an appropriate contour in the complex plane. This inverse transform can be inter-
preted as a variation of the Nørlund–Rice integral, such that the normal-order transform to-
gether with its inverse resembles a summated version of the so-called Poisson-Mellin-Newton
cycle [32]. Both Mellin transform and its inverse are tabulated and can be calculated with,
e. g., Mathematica, see Table 1 for some examples.

Table 1: Normal-order transform f̃ (n̂) of selected functions f (n̂), together with the
common series coefficients Fk of the respective Newton and Taylor series. We have
the Bessel function of the first kind J0, the Laguerre polynomials Ln, the exponen-
tial integral function En, the Hermite polynomials Hn, the generalized Riemann zeta
function ζ, the Bernoulli polynomials Bk, and the Lerch transcendent Φ.

f (n̂) =N−1[ f̃ ](n̂) f̃ (n̂) =N [ f ](n̂) Fk/k! note

n̂r n̂(r) δk,r equation (4.5)

ezn̂ (1+ z)n̂ zk/k! equation (3.23)

J0(2
p

zn̂) Ln̂(z) (−z)k/k!2 see e. g. Ref. [33]
1

z−n̂ ez E−n̂(z) z−(k+1) geometric series

e−z2 n̂2
z n̂ Hn̂(

1
2z ) (−z)k/2/( k

2)! Fk = 0 for odd k

ezn̂/(e yn̂ − 1) −y n̂ζ
�

−n̂, z+1
y

�

ykBk+1

� z
y

�

/(k+1)! k ≥ −1, see (4.9)

ezn̂/(e yn̂w± 1) ±y n̂Φ
�

∓w,−n̂, z+1
y

�

complicated k ≥ −1, see Ref. [34]
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Up to here, we only considered functions f (x) that have a well-defined Taylor series around
x = 0. We now demonstrate, that the normal-order transform can also deal with functions
such as8 f (x) = 1/(ex−1), which has a simple pole at the origin, with residuum 1. Its normal-
order transform f̃ (n) = −ζ(−n) involves the famous Riemann zeta function ζ. While f (x) has
to be expanded into a Laurent series starting with power k = −1, the transform f̃ (n) has a
well-defined Newton expansion starting with factorial power k = 0. However, the expansion
coefficients of the two series do not match each other. This putative inconsistency with (4.3)
can be resolved by extending the notion of the Newton series to that of a generalized Newton
series, by simply starting the expansion with a suitable factorial power k < 0. Here, this yields

f (x) =
1

ex − 1
=

∞
∑

k=−1

Bk+1

(k+1)!
xk ↔ f̃ (n) = −ζ(−n) =

∞
∑

k=−1

Bk+1

(k+1)!
n(k) , (4.9)

with the Bernoulli numbers Bk, and the expansion coefficients of both series are equal for all
values of k as required.

For the calculation of normal-ordered operator expansions, however, we have to eliminate
the terms with k < 0 in f̃ (n̂). This is easily done by noting that, for r > 0,

n(−r) =
1

(n+ r)(r)
=

1
r!

∞
∑

k=0

(−1)k
�

1+ k
r

�

k!
n(k) (4.10)

can itself be expanded into a regular Newton series because, in contrast to n−r , the closest
simple pole of n(−r) is located at n= −1, well below the expansion point n= 0. The resulting
resummed normal-ordered Newton series therefore becomes

f̃ (n̂) = −ζ(−n̂) =
∞
∑

k=0

Bk+1 − (−1)k

(k+ 1)!
n̂(k) . (4.11)

Finally, we return to the context of coherent states, where the inverse normal-order trans-
form (4.8) can be used to calculate the coherent state expectation value (3.10) of arbitrary
number operator functions f̃ (n̂) in a closed form, as from (4.3)

〈α| f̃ (n̂)|α〉=
∞
∑

k=0

Fk

k!
(α∗α)k

= f (α∗α) =N−1[ f̃ ](α∗α) , (4.12)

see (3.15) and (3.24) for examples.

5 Conclusion

We have demonstrated that finite-difference calculus provides the natural basis for series ex-
pansions of functions f (n̂) of occupation number operators n̂. While the Taylor series, known
from differential calculus, corresponds to an expansion in powers n̂k of the number operator
n̂, the use of finite-difference calculus leads to Newton series. The Newton series of a number
operator function corresponds to either normal ordering of the powers of n̂ or, equivalently,
to an expansion in terms of factorial powers n̂(k) of n̂. Newton series and factorial powers are
superior to account for the discreteness of the spectrum of f (n̂).

8 See bottom of Table 1 for a straightforward generalization to Bose-Einstein and Fermi-Dirac integrals, see,
e. g., Ref. [34] and references therein.
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We illustrated the usefulness of the Newton expansion with three examples. In the first
one, the Newton expansion was applied to the Holstein-Primakoff representation of quantum
spins. In contrast to the analogous Taylor expansion with infinitely many terms, the exact spin
representation with the Newton expansion is already achieved for a finite sum of terms, with
closed and compact expressions for the coefficients. Furthermore, for an approximative but
systematic treatment of the spin operators, the Newton expansion is superior to the Taylor ex-
pansion: while the r-th partial sum of the Newton series for the spin representation renders the
correct spin commutation relations within the subspace of up to r Holstein-Primakoff bosons
intact, the corresponding r-th partial sum of the Taylor expansion breaks the spin commutation
relations when at least one Holstein-Primakoff boson is present.

In the second example, we demonstrated that the Newton series expansion is naturally
connected to coherent states. In particular, expectation values of an operator function with
respect to a coherent state are easily obtained from the function’s Newton series. This provides,
e. g., a convenient starting point for analyzing the Husimi distribution of a quantum-statistical
system.

In the third example, we addressed the counting statistics of photons and electrons. We
used the Newton expansion for a quick and easy derivation of the function that generates
the relevant quantities characterizing the probability distribution of the counted photons or
electrons. The discreteness of the counted objects suggests that one should use factorial mo-
ments (or cumulants) instead of raw ones. While this has been realized in the case of photon
counting in quantum optics early on, it starts to be acknowledged only recently in the field of
electron counting in transport through nanostructures.

Finally, we introduced the normal-order transform of an operator function, that is obtained
by applying the normal-ordering operator on the formal power series of the function. We were
able to represent both the normal-order transform as well as its inverse transform directly in
terms of an integral transformation, and reexpressed it in terms of the well-known Mellin
transform. This representation is related to the Poisson-Mellin-Newton cycle and avoids both
the explicit evaluation of commutators as well as Stirling numbers that appear when expressing
factorial powers through the usual ones.
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[18] S. T. Dembiński, On the Dyson method in the theory of magnetism, Physica 30, 1217
(1964), doi:10.1016/0031-8914(64)90110-7.

[19] J. Katriel, Explicit expressions for the coefficients in boson series expansions of arbitrary spin
operators, Phys. Stat. Sol. (b) 93, K177 (1979), doi:10.1002/pssb.2220930261.

[20] V. M. Agranovich and B. S. Toshich, Collective properties of Frenkel excitons, Sov. Phys.-
JETP 26, 104 (1968) [Zh. Eksp. Teor. Fiz. 53, 149 (1967)], http://www.jetp.ac.ru/
cgi-bin/e/index/e/26/1/p104?a=list.

[21] I. Goldhirsch, E. Levich and V. Yakhot, Exact boson representation of quantum spin
systems and investigation of their critical behavior, Phys. Rev. B 19, 4780 (1979),
doi:10.1103/PhysRevB.19.4780.

[22] I. Goldhirsch, Exact Bose expansion for general spin, J. Phys. A: Math. Gen. 13, 453 (1980),
doi:10.1088/0305-4470/13/2/014.

16

https://scipost.org
https://scipost.org/SciPostPhys.10.1.007
https://doi.org/10.1016/0001-8708(78)90087-7
https://mathworld.wolfram.com/BinomialTransform.html
https://mathworld.wolfram.com/BinomialTransform.html
https://doi.org/10.1119/1.2723799
https://doi.org/10.1103/PhysRev.58.1098
https://arxiv.org/abs/1611.03615
https://doi.org/10.1103/PhysRevResearch.2.043243
https://doi.org/10.1088/0022-3719/7/8/017
https://doi.org/10.1088/0022-3719/7/8/017
https://doi.org/10.1103/PhysRev.102.1217
https://doi.org/10.1103/PhysRev.102.1230
http://www.jetp.ac.ru/cgi-bin/e/index/e/6/4/p776?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/6/4/p776?a=list
https://doi.org/10.1016/0031-8914(64)90110-7
https://doi.org/10.1002/pssb.2220930261
http://www.jetp.ac.ru/cgi-bin/e/index/e/26/1/p104?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/26/1/p104?a=list
https://doi.org/10.1103/PhysRevB.19.4780
https://doi.org/10.1088/0305-4470/13/2/014


SciPost Phys. 10, 007 (2021)

[23] L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press,
1995.

[24] E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of
statistical light beams, Phys. Rev. Lett. 10, 277 (1963), doi:10.1103/PhysRevLett.10.277.

[25] J. R. Klauder, Improved version of optical equivalence theorem, Phys. Rev. Lett. 16, 534
(1966), doi:10.1103/PhysRevLett.16.534.

[26] L. S. Levitov, H. Lee and G. B. Lesovik, Electron counting statistics and coherent states of
electric current, J. Math. Phys. 37, 4845 (1996), doi:10.1063/1.531672.

[27] D. Kambly, C. Flindt and M. Büttiker, Factorial cumulants reveal interactions in counting
statistics, Phys. Rev. B 83, 075432 (2011), doi:10.1103/PhysRevB.83.075432.

[28] D. Kambly and C. Flindt, Time-dependent factorial cumulants in interacting nano-scale
systems, J. Comput. Electron. 12, 331 (2013), doi:10.1007/s10825-013-0464-9.

[29] P. Stegmann, B. Sothmann, A. Hucht and J. König, Detection of interactions via generalized
factorial cumulants in systems in and out of equilibrium, Phys. Rev. B 92, 155413 (2015),
doi:10.1103/PhysRevB.92.155413.

[30] A. Kurzmann, P. Stegmann, J. Kerski, R. Schott, A. Ludwig, A. D. Wieck, J. König, A. Lorke
and M. Geller, Optical detection of single-electron tunneling into a semiconductor quantum
dot, Phys. Rev. Lett. 122, 247403 (2019), doi:10.1103/PhysRevLett.122.247403.

[31] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: Harmonic sums,
Theor. Comput. Sci. 144, 3 (1995), doi:10.1016/0304-3975(95)00002-E.

[32] P. Flajolet and R. Sedgewick, Mellin transforms and asymptotics: Finite differ-
ences and Rice’s integrals, Theor. Comput. Sci. 144, 101 (1995), doi:10.1016/0304-
3975(94)00281-M.

[33] J. Gosner, B. Kubala and J. Ankerhold, Quantum properties of a strongly driven Josephson
junction, Phys. Rev. B 99, 144524 (2019), doi:10.1103/PhysRevB.99.144524.

[34] H. M. Srivastava, M. A. Chaudhry, A. Qadir and A. Tassaddiq, Some extensions of the Fermi-
Dirac and Bose-Einstein functions with applications to the family of the zeta and related
functions, Russ. J. Math. Phys. 18, 107 (2011), doi:10.1134/S1061920811010110.

17

https://scipost.org
https://scipost.org/SciPostPhys.10.1.007
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.16.534
https://doi.org/10.1063/1.531672
https://doi.org/10.1103/PhysRevB.83.075432
https://doi.org/10.1007/s10825-013-0464-9
https://doi.org/10.1103/PhysRevB.92.155413
https://doi.org/10.1103/PhysRevLett.122.247403
https://doi.org/10.1016/0304-3975(95)00002-E
https://doi.org/10.1016/0304-3975(94)00281-M
https://doi.org/10.1016/0304-3975(94)00281-M
https://doi.org/10.1103/PhysRevB.99.144524
https://doi.org/10.1134/S1061920811010110

	Introduction
	Finite-difference calculus
	Newton series
	Number operator functions
	Factorial powers and normal ordering
	Finite differences and commutators

	Applications
	Bosonic representation of spins
	Coherent states
	Photon statistics

	Normal-order transform
	Conclusion
	References

