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Abstract

Boundary conditions for Majorana fermions in d = 1+1 dimensions fall into one of two
SPT phases, associated to a mod 2 anomaly. Here we consider boundary conditions for
2N Majorana fermions that preserve a U(1)N symmetry. In general, the left-moving and
right-moving fermions carry different charges under this symmetry, and implementation
of the boundary condition requires new degrees of freedom, which manifest themselves
in a boundary central charge g . We follow the boundary RG flow induced by turning on
relevant boundary operators. We identify the infra-red boundary state. In many cases,
the boundary state flips SPT class, resulting in an emergent Majorana mode needed to
cancel the anomaly. We show that the ratio of UV and IR boundary central charges is
given by g 2

IR/g
2
UV = dimO, the dimension of the perturbing boundary operator. Any

relevant operator necessarily has dimO < 1, ensuring that the central charge decreases
in accord with the g -theorem.
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1 Introduction

Quantum field theories with boundaries are interesting for many reasons, from the role of
edge modes in condensed matter physics, to impurity problems, to D-branes in string theory.

In this paper we return to an old and well explored subject: boundary conditions for free,
massless fermions in d = 1 + 1 dimensions. As we review below, given such a collection of
fermions there are an infinite number of boundary conditions that one can impose. Typically,
these boundary conditions involve the introduction of new degrees of freedom at the boundary.
At low energies, below any interaction scale, the number of such degrees of freedom is captured
by a boundary central charge g, first introduced by Affleck and Ludwig [1].

The d = 0+ 1 dimensional boundary behaves, in many ways, like any other quantum field
theory. There are operators restricted to the boundary and these can be classified as relevant,
irrelevant or marginal. Operators that are exactly marginal move among a continuous family
of boundary conditions. Meanwhile, boundary operators that are relevant initiate an RG flow
within the space of boundary conditions without endangering the gapless nature of the bulk
modes. As in higher dimensional situations, the number of boundary degrees of freedom g
necessarily decreases under RG flow [2,3].

The purpose of this paper is to study such RG flows between different boundary conditions
for massless fermions. We will find a simple, and elegant story in which, with some reasonable
assumptions, one can follow boundary RG flows from one fixed point to another. There are
a number of different aspects to this story, not least the fact that boundary conditions for
fermions are classified by a Z2 anomaly, and so fall into one of two different classes. In this
extended introduction, we review this Z2 anomaly before summarising our main results.

1.1 The Mod 2 Anomaly

A single Majorana fermion in quantum mechanics provides what is arguably the simplest sys-
tem suffering an anomaly. To see this, we can start by taking two copies of a Majorana fermion,
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λ1 and λ2. Canonical quantisation gives rise to a 2d Clifford algebra {λi ,λ j}= δi j which acts
irreducibly on a Hilbert space of dimension 2. This means that a single Majorana fermion
would act on a Hilbert space of dimension

p
2, which is nonsensical.

Indeed, the dimension of the Hilbert space is counted by the path integral for a single Ma-
jorana mode, with anti-periodic boundary conditions in the temporal direction. This can be
computed and is given by

ZMajorana =
p

2 . (1)

This reflects the fact that there is no way to consistently quantise a single Majorana mode in
d = 0+ 1 dimensions. This simple fact is the essence of the mod 2 anomaly, and the telltale
factor of

p
2 will be a recurring motif throughout this paper.

As described in [4, 5], this same anomaly is lurking when we attempt to place fermions in
d = 1+1 dimensions on a manifold with boundary. (A beautifully clear explanation of this from
the continuum perspective can be found in the talk [6].) Consider a single, massive Majorana
fermion χ, now in d = 1+1 dimensions. There are two possible boundary conditions that one
can impose, reflecting the left-moving fermion χL into the right-moving fermion χR,

χL = ±χR . (2)

Solving the Dirac equation, one finds that for one choice of sign there is a single Majorana
zero mode localised on the boundary, while for the other there is not. The sign choice that
gives rise to the zero mode is therefore inconsistent unless something else comes to the rescue
to cancel the anomaly. (Which boundary condition suffers a zero mode depends on both the
sign of the fermion mass, and the orientation of the boundary.)

The anomaly manifests itself in a slightly different way when we consider a complex, Dirac
fermion ψ= χ1 + iχ2. There is no problem if we impose a boundary condition that preserves
the vector U(1)V symmetry,

V : ψL =ψR . (3)

This translates to the same sign (2) on both χ1 and χ2. This means that, if ψ is massive in the
bulk, then there are either two boundary zero modes or none. Either way, the system does not
suffer an anomaly.

In contrast, we could impose boundary conditions of the form

A : ψL =ψ
†
R . (4)

Such boundary conditions arise in wires attached to superconductors, where an incident elec-
tron rebounds as a hole, a process known as Andreev reflection. If the bulk fermion is massless,
then the Andreev boundary conditions preserve the U(1)A axial symmetry of the fermion. We
will consider such massless bulk fermions shortly, but for now it will be useful to keep the
fermion massive. In this case, the discussion above tells us that we have a problem: the two
Majorana fermions χ1 and χ2 have opposite signs for their boundary conditions, meaning that
one has a zero mode and the other does not. The axial boundary condition is anomalous.

There are various ways of dealing with this. One obvious approach is simply to add by hand
a quantum mechanical Majorana mode λ, which then pairs with the zero mode to render the
theory consistent.
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Alternatively, the anomaly can be cancelled through an inflow mechanism [7]. On a d = 1+1
Riemann surface without boundary, but endowed with a spin structure, there exists a partic-
ular SPT phase whose partition function is given by (−1)Arf, where the Arf invariant takes
values ±1 depending on whether the spin structure is even or odd. This SPT phase arises, for
example, as the infra-red limit of two Majorana fermions with masses of opposite sign and,
in the condensed matter literature, it is better known as the topological phase of the Kitaev
chain [5,8] . Recent applications of this topological field theory can found [9–20]. However,
on a Riemann surface with boundary, the Arf topological field theory is not well defined: it
suffers the same mod 2 anomaly that we saw above. This anomaly can be cancelled if we have
a single Dirac fermion ψ living on the Riemann surface and impose the boundary condition
(4).

The upshot of this is that, if we chose not to add further Majorana modes by hand, then a
trivial bulk theory requires that we impose the vector boundary condition (3), while the non-
trivial SPT phase requires that we impose the axial boundary condition (4). Note, in particular,
that on a finite cylinder it is inconsistent to impose vector boundary conditions on one end,
and axial boundary conditions on another.

The story above was told for massive bulk fermions. It is convenient to introduce such a
mass because it makes the Z2 anomaly manifest in the presence of normalisable Majorana
zero modes. However, anomalies are famously independent of the mass, and our Z2 anomaly
is no different. This means that the boundary conditions (3) or (4) are also dictated by the
bulk topological SPT phase for massless fermions.

An Application to D-Branes

A particularly elegant application of the discussion above can be found in the context of D-
branes in string theory [4, 6, 21, 22]. Although not directly relevant for our story, it is lovely
enough to warrant a quick advertisement.

First, various GSO projections, which characterise the different types of string theories, arise
from the inclusion of various Arf invariants on the string worldsheet. When the dust settles,
one finds familiar results, viewed through a new lens. The fact that BPS D-branes in Type
IIA string theory have odd worldvolume dimension, while those in Type IIB have even world-
volume dimension can be traced to the Arf invariants on the worldsheet, which put different
restrictions on the number of worldsheet fermions that obey the boundary conditions (3) and
(4)

Furthermore, both Type IIA and Type IIB string theories are known to have non-BPS D-
branes whose worldvolume dimensions are the complement of the BPS D-branes. To avoid
the Z2 anomaly, the end point of the string must necessarily come with an extra Majorana
mode. This provides a unified explanation for a number of previously observed properties of
non-BPS D-branes, including the fact that their tension is a factor of

p
2 larger than their BPS

counterparts [23,24]. This
p

2 can be traced directly to the partition function (1) of the excess
Majorana mode.

1.2 Chiral Boundary Conditions

Our interest in this paper lies in boundary conditions for multiple massless fermions. Here
there are many more possibilities, ones that do not involve simple repetitions of the boundary
conditions (2), (3) and (4).
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These novel boundary conditions can be distinguished by the symmetries that they preserve.
The two boundary conditions (3) and (4) preserve the U(1)V and U(1)A symmetry of a single,
massless Dirac fermion respectively. However, in general it is possible to impose boundary
conditions that preserve chiral symmetries, under which the left- and right-moving fermions
carry different charges. Indeed, there is a general expectation that one can impose boundary
conditions preserving any symmetry that does not suffer a ’t Hooft anomaly. (See, for example,
[25,26].)

For example, if we have N left-moving Weyl fermions in d = 1+ 1 with integer charges Q i
under a U(1) symmetry, and N right-moving fermions with integer charges Q̄ i , then one can
impose boundary conditions that preserve the U(1) symmetry provided that

N
∑

i=1

Q2
i =

N
∑

i=1

Q̄2
i ,

which is the requirement that this symmetry does not suffer a ’t Hooft anomaly.

There is no way to impose such boundary conditions directly on the fermion fields in the
Lagrangian. Instead, one should introduce new boundary degrees of freedom, which interact
with the fermions, typically in a strongly coupled fashion. However, in the far infra-red, any
boundary condition for massless, bulk fermions in d = 1+ 1 dimensions can be encoded in a
conformal boundary state [27]. The degrees of freedom necessary to impose chiral boundary
conditions now show up as a contribution to the boundary central charge g [1]. In this paper,
we work with such conformal boundary states, a technology that we review in Section 2. The
relationship between SPT phases and conformal boundary field theory was previously explored
in [28–31].

To our knowledge, the general class of boundary states for 2N massless Majorana fermions
is not known1. To make progress, we will restrict ourselves to boundary conditions which
preserve a manifest U(1)N symmetry2. It is then straightforward to construct the boundary
state preserving your favourite chiral, non-anomalous symmetry. Early examples of such states
were introduced in [33,34].

Given the discussion of the mod 2 anomaly in the previous section, the first question that
we should ask is: into what class does a given boundary state fall? Does it describe a boundary
condition that is allowed in the trivial bulk theory, or in the SPT phase? This was answered
in [35] where it was shown that all chiral boundary states do indeed fall into two, mutually
incompatible, classes that, following the notation of (3) and (4), we denote as vector and axial.

There is a slightly different perspective that one can take on this. As explained in [28], there
is a close connection between conformal boundary states and the gapped phases of a theory.
Specifically, one could consider turning on a gapping interaction only in one half of space.
Low energy excitations incident from the gapless phase will then be reflected, experiencing
the gapped half-space as a conformal boundary condition. Yet, as we have described above,

1In the special case N = 1, the complete classification is known [37, 38]. In addition to the vector and axial
states there is an interval’s worth of extra states [39] that interpolate between superpositions of states in different
classes, and so appear to be ruled out as pathological, at least from the perspective of SPT phases.

2We impose this requirement as a necessary crutch that allows us to construct the boundary states. The full
symmetry group may be larger than U(1)N ; the conditions under which such an enhancement occurs are detailed
in [32].
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there is a Z2 classification of such fermionic SPT phases: trivial and non-trivial, where non-
trivial means (−1)Arf. The vector and axial classification of boundary states tells us whether
these boundary states arise from trivial (vector) or non-trivial (axial) gapped phases.

RG Flows: A Summary of Our Results

The purpose of this paper is to describe the boundary RG flows between different chiral bound-
ary states when we perturb by a relevant operator. Any such relevant perturbation necessarily
breaks one or more of the U(1)N symmetries. However, we propose that, while the RG flow
breaks the symmetry, a new emergent U(1)N symmetry is restored at the end of the RG flow.
It is not obvious that this is the case: one might have anticipated that, by flowing away from
states preserving a full U(1)N symmetry, we would leave them for good. Instead we argue
that, like the famous hotel, you can check out from these states, but you can never leave.

Assuming that a full U(1)N emerges in the infra-red allows us to track the RG flow. There
are a number of interesting features that emerge from our analysis. First, one can ask: is it
possible to flow from one class of boundary states to the other? Say, from vector-like boundary
conditions to axial-like boundary conditions? Given the anomaly restrictions described above,
one might have thought that such flows are forbidden. Instead, we find that they are very
much allowed. However, whenever such a flow occurs, the resulting boundary state comes
equipped with an extra Majorana mode λ, needed to cancel the anomaly.

Secondly, we find the following surprising and simple formula: if we initiate an RG flow by
turning on a single, relevant boundary operator O with dimension dimO, then the UV and IR
central charges are related by

gIR = gUV

p

dimO . (5)

Since a relevant boundary operator necessarily has dimO < 1, this relation is consistent with
the g-theorem [1–3], which states that the boundary central charge g must decrease.

The result (5) is rather striking. In this paper, we show that it holds in free fermion systems.
An obvious and interesting question is whether some version of this result continues to hold in
other systems. One particular concern is that the RG flows studied in this paper are initiated
by relevant boundary operators for which dimO < 1. It is not obvious how (5) would extend
to, say, marginally irrelevant operators of the kind that initiate RG flow in the Kondo problem.
Nonetheless, it would clearly be interesting to understand whether some version of the simple
result (5) holds more generally.

1.3 The Plan of the Paper

We start in Section 2 by reviewing the construction of boundary states that preserve chiral sym-
metries. We also take this opportunity to introduce our notation. In Section 3 we compute the
partition function for free fermions on an interval, with the same boundary state imposed on
each end. This allows us to determine the spectrum of boundary operators and, in particular,
extract the possible relevant boundary operators for each symmetry.

The RG analysis is given in Section 4. We explain how, for each relevant boundary operator,
there is a unique candidate for the end-point of the flow, and elaborate on a number of sub-
tleties that arise including the emergence of Majorana bound states and what string theorists
refer to as Chan-Paton factors. The statements of the results are more straightforward than
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the proofs; these statements are placed front and centre, and we refrain as long as possible
from wallowing in the glorious technicalities. The wallowing finally occurs in Section 5.

A Slightly Different Application to D-Branes

As far as we are aware, the kinds of chiral boundary conditions that we discuss do not have
application to the fermions on the superstring worldsheet. However, there is a more indirect
connection. We could consider bosonizing our fermions so that the chiral boundary conditions
now describe the end-point of a string moving on a torus TN , with radius of order the string
length.

In this context, the chiral boundary conditions are nothing more than D-branes in bosonic
string theory, wrapping TN with fluxes. Even translated to this familiar context, our results
appear novel. Things are simplest for N = 2 fermions, corresponding to a D2-brane wrapping
T2. After a T-duality, the general chiral boundary state simply translates to a D-string wrapped
(p, q) times around the two cycles of T2. We describe this in Appendix D.

2 Chiral Boundary States

In this section we describe the general set-up, and the symmetries that we wish to preserve in
the presence of a boundary.

Our starting point is the theory of 2N , free Majorana fermions in d = 1 + 1 dimensions.
When this theory is placed on a spatial manifold without boundary, these fermions have a
O(2N)L×O(2N)R global symmetry, independently rotating the left- and right-moving Majorana-
Weyl fermions. However, in the presence of a boundary, this symmetry group is necessarily
reduced.

A particularly straightforward class of boundary conditions can be implemented by imposing
linear restrictions on the fermionic fields, such as (2), (3) or (4). However, these are not the
most general class of boundary conditions. Instead, the generic boundary condition does not
arise by restricting the value of the field on the boundary; instead it arises by imposing certain
conditions on currents.

We will ask that the boundary preserves a subgroup

U(1)N ⊂ U(1)NL × U(1)NR ⊂ SO(2N)L × SO(2N)R . (6)

The left-moving and right-moving fermions are assigned non-degenerate, integer charges Qαi
and Q̄αi respectively, where i = 1, . . . , N labels the species of complex fermion, while
α = 1, . . . , N labels the U(1) symmetry group. The simple linear boundary conditions de-
scribed above arise, for example, if Q = ±Q̄. Our interest in this paper lies in the more in-
teresting boundary conditions in which the left- and right-moving fermions carry different
charges. These are chiral boundary conditions.

It is not true that any choice of U(1)N symmetry can be preserved by the boundary. Only
those symmetries that do not suffer a ’t Hooft anomaly give suitable boundary conditions. (See,
for example, [25,26].) This means that the charge matrices necessarily obey the condition

QαiQβ i = Q̄αiQ̄β i . (7)
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We will need a few further objects constructed from these charges. First, we introduce

Ri j = (Q̄
−1)iαQα j ,

where the non-degenerate nature of the charges ensures that Q−1 exists. This rational, orthog-
onal matrix will be sufficient to encode the charges preserved by the boundary. The boundary
condition (3) in which each left-moving fermion is reflected into a right-mover corresponds to
R= 1. Imposing Andreev reflection (4) on each fermion corresponds to R= −1.

We also associate a charge lattice Λ[R] ⊆ ZN to our choice of boundary condition. This is
defined by

Λ[R] =
¦

λ ∈ ZN : Rλ ∈ ZN
©

. (8)

In words: the lattice Λ[R] consists of all integer-valued vectors λ ∈ ZN which remain in ZN

when rotated by the rational matrix R. As we will see, this lattice plays an important role in
our story.

For both standard and Andreev boundary conditions, this lattice is simply Λ[R= ±1] = ZN .
For chiral boundary conditions, the lattice is sparser and more interesting.

2.1 Constructing Boundary States

We wish to construct boundary conditions that preserve a chiral U(1)N symmetry. The key
idea is due to Cardy [27]: using modular invariance, the boundary conditions at the end of an
interval are mapped into a state in the Hilbert space of the theory defined on a spatial circle.
This state is called the boundary state.

To this end, we start by working with the theory on a spatial circle. There is a non-chiral
u(1)N current algebra, with both holomorphic currents Ji and anti-holomorphic currents J̄i ,
acting in the obvious way on the N left- and right-moving complex fermions. These are not
the currents that we wish to preserve. Instead, the chiral currents are defined by

Jα =QαiJi and J̄α = Q̄αi J̄i . (9)

The boundary state |R〉 is defined by the property that no current flows into the boundary. The
Sugawara construction then ensures that no energy flows into the boundary either. In terms
of the mode expansion of the currents (labelled by n ∈ Z), this condition reads

(Jα,n + J̄α,−n)|R〉= 0 ⇒ (Ri jJ j,n + J̄i,n)|R〉= 0 . (10)

It is not hard to show that solutions to this condition exist if and only if the anomaly constraint
(7) is satisfied.

The solutions are given in terms of Ishibashi states [36]. To define these, first recall the the
Hilbert space decomposes into charge sectors under the current algebra generated by Ji and
J̄i . In each sector, labelled by its charges (λi , λ̄i) ∈ Z, the ground state obeys

Ji,0|λ, λ̄〉= λi|λ, λ̄〉 and J̄i,0|λ, λ̄〉= λ̄i|λ, λ̄〉 . (11)

These ground states are unique and annihilated by the positive modes, so
Ji,n|λ, λ̄〉 = Ji,n|λ, λ̄〉 = 0 for n ≥ 1. Excitations above the ground state are then generated by
the negative modes, Ji,−n and J̄i,−n for n≥ 1.
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The condition (10) must be solved separately in each charge sector. Acting on the ground
states, we have

Ri jλ j + λ̄i = 0 . (12)

The charge sectors λi that obey this equation for some choice of λ̄i are precisely those that
live in the charge lattice Λ[R] defined in (8). Only these charge sectors arise in the boundary
state |R〉.

In charge sector λ ∈ Λ[R], we can construct the Ishibashi state as the usual coherent sum
over excitations [36]. We take λ̄= −Rλ, to obey (12) and write

‖λ, λ̄〉〉= exp

�

−
∞
∑

n=1

1
n
Ri j J̄i,−nJ j,−n

�

|λ, λ̄〉 .

The boundary state |R〉 that we’re looking for is then a suitable sum over the Ishibashi states
‖λ, λ̄〉〉 with λ ∈ Λ[R]. The coefficients of this sum are fixed by the Cardy-Lewellen sewing
conditions [41,42]. The final result for the boundary state is given by

|θ ;R〉= gR
∑

λ∈Λ[R]
eiγR(λ) eiθ ·λ‖λ, λ̄= −Rλ〉〉 . (13)

There are a number of new ingredients in this expression. The least important is the phase
eiγR(λ). An expression for this phase can be found in Appendix B of [35], but it will not play
a role in what follows.

More interesting is the phase factor eiθ ·λ. This arises because there is not a unique solution to
the sewing conditions. This means that, for each R, we have a manifold of possible boundary
states parameterised by N phases θi .

These phases arise even for the simplest boundary conditions, where the reflection of a
single left-moving fermion into a right-moving fermion can, in general, be implemented by
the boundary condition ψL = eiθψR. The N phases θi that appear in the boundary state (13)
are generalisation to multiple fermions with a chiral boundary condition R.

The Central Charge

The most important new element in (13) is the normalisation factor gR. This is determined by
insisting that the overlap between any two boundary states can be interpreted, using modular
invariance, as the partition function of a sensible theory on the interval. (There is an important
caveat in this statement regarding the possible existence of Majorana zero modes; this will be
discussed further in Section 4.1.) In [35], we showed that this normalisation factor is given
by

gR =
Æ

Vol(Λ[R]) . (14)

Here Vol(Λ[R]) is the volume of the primitive unit cell of the lattice Λ. This result was previ-
ously derived in a somewhat different context in [40].

The normalisation factor is important because it coincides with the Affleck-Ludwig central
charge, defined by

gR = 〈0,0 |θ ;R〉 .

Hence, gR should be thought of as a count of the number of boundary degrees of freedom.
This number must strictly decrease in any boundary RG flow.
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The trivial boundary conditions, corresponding to R = ±1 (or, indeed, to any diagonal R
with entries ±1.) has gR = 1. This is the smallest value of the central charge. Any chiral
boundary conditions necessarily has gR > 1. In other systems, it is quite possible to have
stable boundary states with g > 1. (The tri-critical Ising model provides a simple example.)
However, this is not the case for the free fermions studied in this paper. Any chiral boundary
condition has gR > 1 and necessarily comes with a number of relevant operators which induce
RG flows and destabilise the boundary condition. The rest of this paper is concerned with
understanding these operators and flows.

2.2 Some Examples

With N = 2 Dirac fermions, there is a rather simple classification of boundary states. A large
class of these arise from taking co-prime integers (p, q) with one odd, one even, and setting

Qαi =

�

p q
−q p

�

, Q̄αi =

�

p −q
q p

�

⇒ Ri j =
1
c

�

a b
−b a

�

. (15)

Here a, b and c form a Pythogorean triple a2 + b2 = c2 with the Euclid parameterisation

a = p2 − q2 , b = 2pq , c = p2 + q2 .

The boundary central charge of these states is simply gR =
p

c.

The state (15) always lies in the vector class of boundary conditions [35]. However, for any
choice of central charge, it is not hard to find states that lie in either class. For example, after
the trivial states, the simplest states have gR =

p
5. If we take p = 2 and q = 1, we get a

vector-like boundary state with

Ri j =
1
5

�

3 4
−4 3

�

.

However, flipping the sign of a single row, we get an axial-like boundary state with

Ri j =
1
5

�

3 4
4 −3

�

.

As we proceed, many of the key ideas will be illustrated by this gR =
p

5 state. For now, there
are a couple of points worth highlighting.

First, the fact that sign-flipping a row or column of R changes the topological class is a
property of all boundary states. Meanwhile, permuting rows or columns leaves the class
unchanged. In general, one can transform R → PRRPL where PL and PR are signed per-
mutation matrices. This transformation corresponds to acting with a Weyl group element
(WL , WR) ∈ O(2N)L × O(2N)R on the boundary state; the class then changes if
det(WL)det(WR) = −1, while gR always stays the same. This illustrates the fact that, for
any given choice of gR, there are boundary states that lie in both classes.

Secondly, a number of different charges Q and Q̄ share the same boundary state, charac-
terised by R. For example, we could also take

Qαi =

�

3 4
−4 3

�

, Q̄αi =

�

5 0
0 5

�

⇒ Ri j =
1
5

�

3 4
−4 3

�

.

In contrast to the charge matrices in (15), here the U(1)2 symmetry does not act faithfully on
the bulk fermions. The fermions are untouched by a discrete Z5 which acts on the left-movers
as ψi → eiβαQαiψi and on the right-movers as ψ̄i → eiβαQ̄αiψ̄i , with β = (2π

5 , 4π
5 ).
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In what follows, the key physics will depend only on R; for example, the collection of
relevant boundary operators and their dimensions depend only on R. Nonetheless, we will see
that the charges of these operators are inherited from Q and Q̄ and so require extra information
beyond a knowledge of R.

Another Example: the Maldacena-Ludwig state

Our second example involves N = 4 Dirac fermions. The boundary conditions are, perhaps,
most simply described by requiring an SU(4) × U(1) global symmetry under which the left-
movers transform in the 4+1 representation, while the right-movers transform as 4−1. There is
no linear boundary condition on the fermions that reflects one into another, a fact first noted
in the context of monopole physics [43,44]. Instead, the boundary condition is implemented
by the boundary state with

Qαi =







+ + + +
+ −
+ −
+ −






, Q̄αi =







− − − −
+ −
+ −
+ −






⇒ Ri j = δi j −

1
2

. (16)

This boundary state was previously introduced by Maldacena and Ludwig [34]. It manifestly
implements the symmetry of the Cartan subalgebra U(1)4 ⊂ SU(4)× U(1). Less manifestly, it
also preserves the full SU(4)×U(1). Remarkably, in this special four-fermion case, it preserves
yet a larger SO(8)/Z2 symmetry group, whose existence can be traced to triality. This state has
boundary central charge gR =

p
2. Once again, by acting with Weyl group transformations

we have such states of either Z2 SPT class.

The Maldacena-Ludwig state also has a somewhat different avatar: it is the state that im-
plements the Fidkowski-Kitaev gapped phase of 8 Majorana fermions, an interpretation that
was first made in [28].

3 The Partition Function

Our goal in this section is to determine the relevant boundary operators, and their charges,
for each choice of boundary condition R. To do this, we compute the partition function of the
theory on an interval, with boundary conditions R imposed on each end. This encodes the
information about the states in the Hilbert space on the interval. We then use the state-operator
map to determine the spectrum of boundary operators.

The partition function ZAB, for two distinct boundary conditions A and B at either end of the
interval is defined as the trace over the Hilbert space, HAB. After implementing a conformal
transformation to the half-annulus, as shown in Figure 1 along the bottom row, this partition
function is given by

ZAB(q) = TrHAB

�

qL0−c/24
�

.

In the presence of a boundary, only one copy of the Virasoro generators survives. These we
label as Ln, though they are distinct from the bulk holomorphic generators. The usual Cardy
trick is to relate this “open string” partition function to the “closed string” partition function of
free fermions on a cylinder which, after the conformal map shown along the top of Figure 1,
becomes the annulus

Zclosed(q) = 〈B|q
1
2 (L0+ L̄0−c/12)|A〉 ,
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Figure 1: The various conformal identifications used, including those which corre-
spond to an S transformation of the argument of the partition function.

which now includes contributions from both holomorphic L0 and anti-holomorphic L̄0 gener-
ators. The fermions are given periodic boundary conditions on the annulus (inherited, in the
usual way, from anti-periodic boundary conditions on the cylinder before the conformal map.)
The open and closed string partition functions are then related by a modular S-transformation
of q.

Consider two boundary states A = |θ ,R〉 and B = |θ ′,R〉 of the form (13). Note that
these states share the same R matrix, but differ in the theta angles. The general closed string
partition function was computed in [35]; it is

Zclosed(q) = g2
R

∑

λ∈Λ[R]
ei(θ−θ ′+π)·λ qλ

2/2

η(τ)N
. (17)

Here q = e2πiτ. The slightly unusual factor of eiπ·λ := eiπ(λ1+···+λN ) arises from an insertion of
holomorphic fermion parity (−1)F = (−1)λ1+···+λN , whose necessity was pointed out in [29].
The partition function for the theory on the interval is then found by applying a modular
S-transformation; it is

ZAB(q) =
∑

ρ∈Λ[R]?

q
1
2 (ρ+

θ−θ ′
2π +

1
2 )

2

η(τ)N
, (18)

with Λ[R]? the dual lattice, defined by ρ ·λ ∈ Z for all λ ∈ Λ[R] and ρ ∈ Λ[R]?.

3.1 Adding Fugacities

Here we wish to extend this computation to include fugacities for the U(1)N symmetry, provid-
ing information about the charges of the states. This means that we weight the contribution
of states in the open-string partition function according to their charges under

Qα =
1

2πi

∫

C
dz Jα(z)− dz̄ J̄α(z̄) ,
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(a) Contour C used to define Qα. (b) Corresponding defect operator.

Figure 2

where the contour C is the counter-clockwise semi-circle shown in Figure 2a. The partition
function now depends both on the modular parameter q and the chemical potentials µα,

ZAB(q;µ) = TrHAB

�

qL0−c/24eiµαQα
�

.

Again, this object is simplest to compute in the closed-string picture. The operator eiµαQα is
now a defect, oriented along the “temporal” or “thermal” direction, as shown in Figure 2b. Its
role is to shift each fermion by a phase as we move around the spatial circle. The left-moving
fermion ψi picks up a phase eiµαQαi , while the right-moving fermion ψ̄i picks up eiµαQ̄αi .

This, in turn, affects the quantisation of the charges λi and λ̄i defined in (11). Rather than
living in the integer lattice ZN , we instead have

λi ∈ Z+
µαQαi

2π
and λ̄i ∈ Z−

µαQ̄αi

2π
. (19)

Note that left- and right-moving charges are shifted in opposite directions. (This computation
leaves an ambiguity in the overall sign of the shifts, which is unimportant for what follows.)

The boundary condition (10) still requires that left- and right-moving charges are related
by (12)

Qαiλi + Q̄αiλ̄i = 0 ,

which is only possible for all choices of µ if

µβ(QαiQβ i − Q̄αiQ̄β i) = 0 .

Happily this follows from the condition for vanishing ’t Hooft anomalies (7).

The closed string partition function is now easily computed by implementing the shift (19)
in our previous result (17). The contribution from the ei(θ−θ ′+π)·λ term gives an overall phase
which we ignore. We’re then left with

Zclosed(q;µ) = g2
R

∑

λ∈Λ[R]
ei(θ−θ ′+π)·λ q

1
2 (λi+µαQαi/2π)2

η(τ)N
.

We can now invoke the usual modular transformation to compute the open-string partition
function of interest. We pull back the function Zclosed under a modular S-transformation of q,
to find

ZAB(q;µ) = Vol(Λ[R])
∫

dN x eiµαQαi x i
qx2/2

η(τ)N
∑

λ∈Λ[R]
ei(θ−θ ′+π+2πx)·λ .
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Upon doing the integral, we have

ZAB(q;µ) =
∑

ρ∈Λ[R;∆θ]?
eiµT Qρ qρ

2/2

η(τ)N
. (20)

The difference from our previous result (18) lies in both the explicit µ dependent factor
eiµαQαiρi , and in the sum which now runs over the shifted dual lattice

Λ[R;∆θ]? := Λ[R]? + θ
′ − θ +π

2π
.

The highest weight states are labelled by vectors ρ ∈ Λ[R;∆θ]?. From (20), we can read off
their charges

Qα =Qαiρi , (21)

and energy

L0 =
1
2
ρ2 =

1
2
QαM−1

αβ Qβ , (22)

where we have introduced the matrix Mαβ = QαiQβ i = Q̄αiQ̄β i . This latter equality, relating
the charges to the energy, is consistent with the Sugawara construction.

3.2 Boundary Operators

The state-operator map means that the partition function also contains information about
the spectrum of boundary operators. To extract this information, we set θ = θ ′ and drop
the contribution of π from the (−1)F factor. The boundary operators are then labelled by
ρ ∈ Λ[R]?. Like the states, the operators have charges Qα and dimension L0, again given by
(21) and (22).

Boundary operators also come in one of two classes: they are fermionic or bosonic. This
fermion parity will play a key role in Section 4 where we discuss RG flows initiated by such
operators. We pause here to discuss how to classify operators. As we now explain, it is possible
to assign a fermion parity to the lattice vectors ρ ∈ Λ[R]?.

First, recall that by definition, under a U(1)NL × U(1)NR transformation

(eiµαQαi , eiµαQ̄αi ) ,

belonging to the preserved U(1)N subgroup, the boundary operator labelled by ρ picks up a
phase eiµαQα = eiµαQαiρi . Importantly, the bulk fermion parity operator (−1)F+F̄ is of the above
form [32]. That is, there exists a choice of µα for which the above transformation is

(eiµαQαi , eiµαQ̄αi ) = (−1, . . . ,−1,−1, . . . ,−1) .

It will be more convenient to work not with µα, but with the vector fi = µαQαi/π. We shall
refer to this as the “fermion vector”. (One can show that the fermion vector is entirely deter-
mined by R; a proof of this can be found in [32].) The above condition can then be written

(eiπ f , eiπR f ) = (−1, . . . ,−1,−1, . . . ,−1) ,

which shows that f is characterised by the requirement that both f and R f are odd-integer
vectors. It therefore naturally lives in Λ[R]/2Λ[R]. With this notation in hand, the key point
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is then that since fermion parity lies within U(1)N , the charge ρ dictates the fermion parity
(−1)F of the boundary operator3, through

(−1)F = eiµαQαiρi = (−1) f ·ρ . (23)

We therefore classify vectors ρ ∈ Λ[R]? as bosonic or fermionic depending on whether ρ · f
is even or odd, respectively.

Relevant boundary operators are associated to lattice vectors ρ ∈ Λ[R]? with ρ2 < 2 and
can be either bosonic or fermionic. These will be our primary focus in Section 4 where we
discuss RG flows initiated by such operators. Here we describe the relevant operators in the
two examples introduced in Section 2.2.

The First Example: g =
p

5

As we’ve seen, the simplest, non-trivial two fermion boundary state has

Ri j =

�

3/5 4/5
−4/5 3/5

�

,

and gR =
p

5. One possible choice of the fermion vector in this case is f = (5, 5).

As we explained in Section 2.2, there are many choices of Qαi and Q̄αi that give rise to
this boundary state. The dimension of boundary operators depends only on Ri j while, as we
see from (21), the charges of these operators depend on the choice of Q. The operators are
further distinguished by fermion number (−1)F . The operators with L0 ≤ 1 are associated to
the following lattice sites ρ,

L0 (−1)F ρ ∈ Λ[R]?
0 + (0, 0)

1/10 − ±(2
5 , 1

5), ±(
1
5 ,−2

5)
1/5 + ±(1

5 , 3
5), ±(

3
5 ,−1

5)
2/5 + ±(4

5 , 2
5), ±(

2
5 ,−4

5)
1/2 − ±(3

5 , 4
5), ±(

4
5 ,−3

5), ±(1, 0), ±(0,1)
4/5 + ±(2

5 , 6
5), ±(

6
5 ,−2

5)
9/10 − ±(6

5 , 3
5), ±(

3
5 ,−6

5)
1 + ±(7

5 , 1
5), ±(

1
5 ,−7

5), ±(1, 1), ±(1,−1)

As we proceed, we’ll see the interpretation of a number of these operators.

The Other Example: The Maldacena-Ludwig State

The relevant boundary operators for the Maldacena-Ludwig state (16) are

L0 (−1)F ρ ∈ Λ[R]?
0 + (0,0)

1/2 + ±(1
2 , 1

2 , 1
2 , 1

2), (
1
2 , 1

2 ,−1
2 ,−1

2) (and all permutations)
1/2 − (±1, 0,0, 0), ±(1

2 , 1
2 , 1

2 ,−1
2) (and all permutations)

1 + (±1,±1, 0,0) (and all permutations)

3Just as for the Virasoro generators Ln, the notation (−1)F is ambiguous, and means something different de-
pending on whether one is working in the open or closed sector.
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As we briefly mentioned previously, the Maldacena-Ludwig state represents the gapped
Fidkowski-Kitaev state. This has the property that it preserves both left and right fermion
parity (−1)F and (−1)F̄ . Furthermore, it is the state with the smallest gR with this prop-
erty. This latter statement is reflected in the fact that the dimension L0 =

1
2 bosonic operators

are charged under both of the two fermionic parities. We will return to these aspects of the
boundary states in [32].

Marginal Operators

Marginal boundary operators have L0 = 1. If such operators are exactly marginal, they give
rise to continuous families of boundary states. As we now explain, marginal operators fall into
a number of different categories.

First, we can take the vacuum module, ρ = 0, and form a level-1 descendent under the
current algebra. From the perspective of the interval Hilbert space, these correspond to states
Jα,−1|0〉. Similarly, the existence of the boundary operators follows on symmetry grounds:
they are associated to the symmetries broken by the boundary in the reduction
U(1)NL × U(1)NR → U(1)N . Acting with these operators changes the θ -angles that, as we saw
in (13), are needed to characterise the boundary state.

The second class of marginal operators are highest weight states associated to lattice vectors
ρ ∈ Λ[R]? with ρ2 = 2. We have listed these operators in the table above for the simple
examples. Many of these operators also have an interpretation in terms of symmetries. But
not all.

To understand this, first recall that the symmetry breaking pattern, as shown in (6), is gener-
ically

so(2N)L × so(2N)R→ u(1)N .

The broken, off-diagonal elements of so(2N)L × so(2N)R will also give rise to marginal oper-
ators. Acting with them simply rotates the unbroken Cartan sub-algebra.

It is straightforward to identify these states. The off-diagonal elements of so(2N)L arise
from vectors with ρ2 = 2 that sit in ρ ∈ ZN . The off-diagonal elements of so(2N)R arise from
vectors with ρ2 = 2 that sit in ρ ∈R−1ZN .

This pattern can be clearly seen in the two fermion boundary state with gR =
p

5. The
final line of the table shows the 8 boundary operators that are associated to the off-diagonal
elements of SO(4)L × SO(4)R.

However, in other examples things may not be so straightforward. First, it may be that there
is an overlap between the operators associated to so(2N)L and those associated to so(2N)R.
This occurs if there are lattice sites with ρ2 = 2 that sit in ρ ∈ ZN∩R−1ZN . But the intersection
of the latter two lattices is simply

Λ[R] = ZN ∩R−1ZN .

This overlap has a very natural interpretation. As explained in [32], vectors ρ ∈ Λ[R] with
ρ2 = 2 correspond to enhanced symmetries of the boundary state. As expected, the presence
of such hidden symmetries reduces the number of marginal boundary operators. For example,
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in the table for the Maldacena-Ludwig boundary state shown above, there are 24 marginal
operators. This is lower than the number 48 of off-diagonal generators of SO(8)L × SO(8)R.
The difference can be accounted for by the enhanced SO(8)/Z2 symmetry, which eliminates
24 generators.

Finally, some boundary states have marginal operators that do not correspond to symme-
tries. These are lattice vectors with ρ2 = 2 that sit in ρ ∈ Λ[R]? but with ρ /∈ ZN ∪R−1ZN . In
such cases, one must work harder to determine whether the the boundary operator is exactly
marginal, or marginally relevant or irrelevant. We will not explore this issue further.

3.3 An Aside: The Unitarity “Paradox”

There is an interesting structure to the charges carried by states in the Hilbert space HAB. To
illustrate our point, it’s simplest if we ignore the shift of the lattice by the theta angles for now,
so ρ ∈ Λ[R]?. In this case, the states of the Hilbert space carry charges in the lattice (21)

Q ∈QΛ[R]? .

We can compare this to the charges of states that we get by acting with left- and right-moving
operators. Acting with the holomorphic fermionsψi produce states with charges in QZN , while
acting with anti-holomorphic fermions ψ̄i produce states with charges in Q̄ZN . It is not hard
to show that this accounts for the full charge lattice

QΛ[R]? =QZN + Q̄ZN .

However, there’s a twist. It’s not true that one can reach states of all charges by acting only
with, say, holomorphic operators. This is, at heart, what it means for our boundary states to
be chiral. Indeed, we have the following:

�

QΛ[R]? : QZN
�

=
�

QΛ[R]? : Q̄ZN
�

= Vol(Λ[R]) .

This means that, while one cannot access states of any charge by acting on the vacuum with
only holomorphic operators, we can do so by acting on an appropriate choice of
g2
R = Vol(Λ[R]) states (one of which is the ground state). These can be viewed as holo-

morphic superselection sectors.

Similarly, there are a different set of g2
R states in the Hilbert space, from which we can access

states of any charge by acting with anti-holomorphic operators.

In the context of scattering off a single boundary, this leads to a seeming “unitarity para-
dox”. It is not hard to set up situations in which a single left-moving fermion scatters off the
boundary, but cannot return as any combination of right-moving fermions. This is captured
by the vanishing correlation function in the presence of a boundary,

〈0|ψi(z)ψ̄ j1(z̄1) . . . ψ̄ jN (z̄N )|0〉= 0 for all N .

Such behaviour was seen, for example, in [33,34,43,44]. Our general discussion above shows
that the right-moving fermions are not excitations above the ground state, but instead above
one of the other Vol(Λ[R]) superselection sectors.

4 RG Flows: Statements

We now turn to the main results of this paper. We will follow the RG flow between different
boundary states.
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We start with a given UV boundary state, preserving the U(1)N symmetry characterised by
the charge matrix RUV . As we have seen, relevant boundary operators are labelled by a vector
ρ ∈ Λ[RUV ]? and carry charge

Qα =Qαiρi .

We turn on a single, relevant, bosonic boundary operator of definite charge to initiate an RG
flow. Along the flow, the symmetry is broken to

U(1)N → U(1)N−1 .

In what follows, we make the following, important assumption: At the end of the flow, an
emergent U(1)N symmetry is again restored. This means that, in the infra-red, the physics is
again described by a boundary state of the form (13), now with a different charge matrix RIR.

Although this is an assumption, we stress that no one has succeeded in constructing bound-
ary states that do not have a full U(1)N symmetry4 and it seems plausible that no such states
outside this class exist. Indeed, as this paper progresses we will see that this assumption passes
a stringent test: the infra-red central boundary charge g is always lower than the ultra-violet
central charge, in accord with the g-theorem [1–3]. This didn’t have to be the case and, more-
over, the system passes this test in a mathematically non-trivial manner, often just by the skin
of its teeth. This provides some evidence for the assumption that the full U(1)N symmetry is
restored at the end of the RG flow.

The importance of the restoration of the full U(1)N lies in the fact that it leaves a unique
choice for RIR for each relevant operator labelled by ρ. This follows because of the U(1)N−1

symmetry that exists along the RG flow. This symmetry must be preserved by the IR boundary
state, a condition which translates into the simple requirement that

RIR

�

�

�

ρ⊥
=RUV

�

�

�

ρ⊥
, (24)

or in other words, that the two matrices must agree on the orthogonal complement of ρ. But
for orthogonal matrices, this condition is highly constraining. In particular, there are only two
options for RIR. One is RUV itself, but this is quickly ruled out by the fact that gIR = gUV ,
in contravention of the g-theorem which states that the central charge must strictly decrease
under relevant perturbations. This only leaves the second option, which is that the matrices
differ by a reflection along the vector ρ:

(RIR)ik = (RUV )i j

�

δ jk −
2
ρ2
ρ jρk

�

. (25)

The second factor is the matrix implementing the reflection along ρ.

One might think that the infra-red central charge is, following (14),

gnaive =
Æ

Vol(Λ[RIR]) . (26)

And, for some of the RG flows, where no subtleties arise, this indeed the correct answer.
However, it is not true in general. There are two rather interesting effects that may occur,
both of which leave us with an infra-red central charge larger than (26). First, certain RG
flows necessarily result in a Majorana zero mode stuck on the boundary. This phenomenon,
which is explained in Section 4.1, increases the normalisation of the boundary state and its
central charge by a factor of

p
2. Secondly, some RG flows result in a superposition of primitive

boundary states, and larger central charge. This phenomenon is explained in 4.2.
4One seeming counterexample is the state constructed by Janik in [39]. This state appears to be pathological

as it interpolates continuously between two different SPT phases.

18

https://scipost.org
https://scipost.org/SciPostPhys.10.1.010


SciPost Phys. 10, 010 (2021)

4.1 Majorana Zero Modes

As we explained in the introduction, boundary conditions fall into two distinct topological
classes, characterised by a mod 2 anomaly. One might have thought that RG flows would
remain within a given class. However, as we now describe, our conjecture (25) does not have
this property. It is not difficult to find RG flows that go from one class to another, and we
present examples below. We will explain why this is not problematic.

First, we review the result of [35] that determines the topological class in which a given
boundary state, labelled by R, sits. Given a CFT on an interval, we can impose different
boundary conditions R and R′ on either end. In [35], we derived a simple formula for the
number of ground states G[R,R′] of this system:

G[R,R′] =
p

Vol(Λ[R])Vol(Λ[R′])
Vol(Λ[R,R′])

Æ

det′(1−RTR′) . (27)

Here the intersection lattice Λ[R,R′] is defined to be those integer vectors λ for which
Rλ=R′λ ∈ ZN . The notation det′ denotes the product over non-vanishing eigenvalues.

The ground state degeneracy has an interesting property. If the two boundary states R and
R′ lie in the same class (i.e. either both vector, or both axial) then the number of ground states
is integer as expected

G[R,R′] ∈ Z .

In contrast, if the two boundary states lie in different classes, then

G[R,R′] ∈
p

2Z .

The
p

2 factor reflects the existence of a bulk Majorana zero mode. This is telling us that it is
not consistent to put boundary conditions from different classes at the two ends of an interval.
A discussion of which class a general boundary condition R sits in can be found in [35].

What to make of the fact that RG flows take us from one class to another? Clearly, a con-
sistent quantum system, with compatible boundary conditions on each end, cannot flow to
an inconsistent quantum system. It must be that the bulk Majorana mode that appears in
the infra-red is accompanied by a second, boundary Majorana mode. This boundary Majo-
rana mode contributes a further factor of

p
2 to the partition function, as in (1), and hence to

the boundary central charge. This means that, if there’s no further subtlety, RG flows which
interpolate between different classes have

gIR =
Æ

2Vol(Λ[RIR]) . (28)

The condition for the appearance of a boundary Majorana mode is encoded in a simple
property of ρ. First, we recall that although ρ ∈ Λ[RUV ]?, it need not be primitive within
this lattice. Instead, it may be possible to write it as some multiple n ≥ 1 of an underlying
primitive vector, which we denote as ρ̂:

ρ = nρ̂ . (29)

Since we must perturb by a bosonic relevant operator, ρ is always required to be bosonic. But
there is no such condition on ρ̂. In particular, it is perfectly acceptable for ρ̂ to be fermionic
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provided that n is even. The property of ρ which determines the existence of a boundary
mode is then the fermionic/bosonic nature of ρ̂. This follows by computing the ground state
degeneracy (27) between RIR and RUV ; as we show in Section 5, is given by

G[RUV ,RIR] =

�

1 if ρ̂ is bosonicp
2 if ρ̂ is fermionic

. (30)

In other words, there is a bulk Majorana zero mode only if the relevant operator is associated
to a lattice vector ρ = nρ̂ built on a fermionic primitive vector ρ̂.

In Appendix C, we give more details illustrating the coupling between the boundary mode
and the bulk fermions using a simple model.

An Example

We can illustrate these ideas with the example that we met in Section 2.2: two fermions with

RUV =

�

3/5 4/5
−4/5 3/5

�

.

The boundary central charge is gUV =
p

5.

We listed the relevant and marginal operators for this boundary state in Section 3.2. Here
we are interested only in the relevant, bosonic operators. For each of these, we can determine
the infra-red charge matrix and whether or not there exists a boundary Majorana zero mode
at the end of the flow.

ρ L0 RIR Majorana?

(1
5 , 3

5)
1
5

�

0 −1
−1 0

�

No

(3
5 ,−1

5)
1
5

�

0 1
1 0

�

No

(4
5 , 2

5)
2
5

�

−1 0
0 1

�

Yes

(2
5 ,−4

5)
2
5

�

1 0
0 −1

�

Yes

(2
5 , 6

5)
4
5

�

0 −1
−1 0

�

No

(6
5 ,−2

5)
4
5

�

0 1
1 0

�

No

The middle two rows are built on the underlying fermionic vectors±(2
5 , 1

5) and±(1
5 ,−2

5), while
the remaining rows are built on bosonic vectors. Note that the ρ-vectors for the operators with
dimension 4

5 are proportional to those with dimension 1
5 . We’ll see the difference between these

two RG flows in the next section.

An analogous table, for a more complicated example, is given in Appendix B.

Flows with Fermionic Operators

RG flows are always initiated by bosonic, relevant operators. As we’ve seen, at the end of an
RG flow we may end up with a localised Majorana fermion. We could also ask: what happens
if we start from a boundary condition with such a Majorana mode?
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The boundary state including such a Majorana mode is simply given by5 p2 |θ ;RUV 〉, and
has central charge

gUV =
Æ

2Vol(Λ[RUV ]) .

Starting with such a state opens up a new possibility, because we could dress boundary fermionic
operators with the Majorana mode to give a bosonic boundary operator, and then use this to
initiate the RG flow.

Such fermionic boundary operators are characterised by ρ = nρ̂, as in (29), with ρ̂
fermionic, n odd. Because ρ̂ is fermionic, this means that such flows always flip the SPT
class, and the Majorana mode is absorbed along the flow. The absorption of the Majorana
mode means that the infra-red central charge is reduced by an extra factor of

p
2.

The Maldacena-Ludwig state serves as a good example of fermionic flows. Recall that this
state has boundary central charge g =

p
2. If we further add a Majorana mode, the central

charge is gUV = 2. We can now perturb this state by relevant fermionic operators.

These operators were listed in the table in Section 3.2: there are two kinds, with charge
given by permutations of

ρ = (1, 0,0, 0) and ρ = (1
2 , 1

2 , 1
2 ,−1

2) .

These are primitive vectors, and both have dimension L0 =
1
2 . Deforming by any of these

operators gives us back another Maldacena-Ludwig state, related to the original by a Weyl
group transformation of O(8)L×O(8)R. In other words, the sole effect of the flow is to eliminate
the Majorana mode from the boundary.

In fact, this kind of flow, in which the Majorana is killed is possible for all boundary states.
All such states have a boundary fermionic operator of dimension 1

2 , since this is simply the
bulk fermion brought to the boundary. Deforming by this operator initiates an RG flow fromp

2 |R〉 to |R′〉, where R′ differs from R only by the sign flip of a row or column.

A particularly simple example of such a flow occurs for a single Dirac fermion. In Appendix
C, we show explicitly how the absorption of a boundary Majorana mode exchanges the bound-
ary conditions (3) and (4).

4.2 Non-Primitive Boundary States

We now turn to the second subtlety in the RG flows. We have seen that turning on a single,
relevant operator in the UV breaks U(1)N → U(1)N−1. However, this is not the full story. There
is also a remnant discrete symmetry, so that

U(1)N → U(1)N−1 ×Zn .

Here, the integer n is the same one introduced in (29), which measures the failure of ρ to be
a primitive vector.

5This normalisation for the axial boundary state was recently advocated in [48] to ensure compatibility with
the vector-like boundary conditions, although the connection to the mod 2 anomaly was not made.
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(a) ρ̂ bosonic (b) ρ̂ fermionic, n even (c) ρ̂ fermionic, n odd

Figure 3: How (−1)F+F̄ sits in U(1)N−1 ×Zn ⊂ U(1)N .

This discrete symmetry Zn is preserved along the RG flow. However, one finds that the
naïve IR boundary state is not invariant under the full Zn symmetry. To rectify this, the infra-
red boundary state must be a linear sum of states of the form (13) such that the overall sum
is Zn invariant. The different states in this sum have the same RIR charge matrix, but differ in
their theta angles. This then shows up in the infra-red central charge, with each state in the
sum contributing a factor of

p

Vol(Λ[RIR]). We’ll discuss this further in Section 4.3.

To put some flesh on these ideas, we will need to understand how the Zn symmetry acts on
our candidate infra-red boundary state (13),

|θ ;RIR〉= gR
∑

λ∈Λ[RIR]

eiγ(λ) eiθ ·λ‖λ,−RIRλ 〉〉 . (31)

Under a transformation by k ∈ Zn, the sole effect on the infra-red boundary state is is to shift
the theta angles θi by

θ

2π
7→
θ

2π
+

2k
ρ2
ρ .

The unbroken subgroup of Zn will consist of those k for which this shift has no effect on
the boundary state. To determine when this is the case, we note that the theta angles in
(31) appear in the phase eiθ ·λ, which means that θ/2π is naturally defined mod Λ[RIR]?.
Therefore, the above shift is trivial whenever (2k/ρ2)ρ ∈ Λ[RIR]?. We introduce the integer
m≥ 1, defined as the least integer such that

2m
ρ2
ρ ∈ Λ[RIR]

? . (32)

Then m divides n, and in the infra-red, the Zn symmetry is spontaneously broken by the bound-
ary state (31) to

Zn→ Zn/m . (33)

Just like the criterion for whether a boundary Majorana mode appears, the integer m can
also be determined in terms of basic properties of ρ. It is given by

m=

�

n if ρ̂ is bosonic
n/gcd(n, 2) if ρ̂ is fermionic

. (34)

The upshot is that there are only two possibilities for the residual discrete symmetry:

Zn→ 1 or Z2 .
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As we now explain, the presence or absence of the unbroken Z2 has a simple physical expla-
nation: it remains unbroken when fermion parity (−1)F+F̄ forces it to. This is illustrated in
Figure 3. Here we have depicted the UV U(1)N symmetry group, the U(1)N−1 ×Zn subgroup
left unbroken by the perturbation, and the location of fermion parity in relation to both. From
Section 3.2, we know that (−1)F+F̄ always lies within U(1)N . But by definition, it only lies in
U(1)N−1 ×Zn if ρ is bosonic. This information alone is enough to fix the location of (−1)F+F̄

– it belongs to the coset k = 0 in case (a), to k = n/2 in case (b), and to none of them in case
(c).

The transformation (−1)F+F̄ is a sacrosanct symmetry. Being part of the conformal group,
it is automatically preserved by all the boundary states (13). This means that if ever a coset k
contains (−1)F+F̄ , that coset is automatically preserved. We see that this happens precisely in
case (b), which coincides with condition (34) for a Z2 to remain unbroken. In other words, the
discrete Zn is completely broken, except for the part fermion parity forces to stay unbroken.

Finally, we should ask: what is the infra-red boundary state? Clearly the boundary state
must be invariant under the Zn symmetry. The obvious choice is to take a non-fundamental
boundary state, consisting of a sum over the various theta angles

|IR〉=
m−1
∑

k=0

|θ + 2k
ρ2ρ;RIR〉 . (35)

This captures the symmetry breaking (33) in a minimal way, with the least possible number of
fundamental boundary states in the sum. The boundary central charge picks up a contribution
from each term in (35). Furthermore, it turns out that, in some examples, any attempt to add
further boundary states to this sum results in a violation of the g-theorem. This gives credence
to this minimalist conjecture. The result is that, if there is no emergent Majorana zero mode,
then the infra-red central charge is given by

gIR = m Vol(Λ[RIR]) . (36)

If, in addition, there is an emergent Majorana mode then we have an additional factor of
p

2,
as in (28).

An Example

The simplest example of a non-primitive boundary state can be found in the two fermion theory
with gR =

p
5.

A glance at the table in Section 4.1 shows that there are two operators with dimension
L0 =

1
5 , characterised by the primitive vectors

ρ̂1 =
�

1
5

,
3
5

�

and ρ̂2 =
�

3
5

,−
1
5

�

.

Deforming by either of these operators breaks U(1)2→ U(1).

There are also two operators with dimension L0 =
4
5 , which have ρa = 2ρ̂a, with a = 1,2.

Deforming by either of these operators breaks U(1)2→ U(1)×Z2.
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From the previous table, we see that deforming by either ρ̂a or ρa = 2ρ̂a results in the same
infra-red charge matrix RIR. This is a trivial, non-chiral state with Vol(RIR) = 1. However,
when we deform by the non-primitive vector, we must sum over two infra-red boundary states
to preserve the Z2. The net result is that the two deformations give different infra-red central
charges

ρ̂a ⇒ gIR = 1

ρa = 2ρ̂a ⇒ gIR = 2 .

4.3 The Boundary Central Charge

All the ingredients are now in place to determine the boundary state in the infra-red and its
central charge. We start from a UV boundary state |θ ;RUV 〉, with

gUV =
Æ

Vol(ΛUV ) ,

where ΛUV = Λ[RUV ]. We deform by a relevant, bosonic, boundary operator characterised by
ρ ∈ Λ?UV . The IR boundary state is then determined by several factors:

• The infra-red charge matrix RIR, given by (25). It contributes a factor of
p

Vol(ΛIR) to
the central charge, where ΛIR = Λ[RIR].

• If the boundary state changes SPT class, as determined by (30), there is an emergent
Majorana mode on the boundary. This increases the infra-red central charge by

p
2.

• If ρ = nρ̂ is not primitive, there is naïvely a discrete symmetry breaking pattern in which
Zn→ Zn/m with m determined by (34). To avoid spontaneous breaking of this symmetry,
we must sum over m boundary states. This increases the central charge by m.

To compute the IR central charge, we need the relation between the volumes of the IR and
UV charge lattices. This will be computed in Section 5: it turns out to be

Vol(ΛIR) = ρ̂
2 Vol(ΛUV )×

�

1
2 if ρ̂ is bosonic
1 if ρ̂ is fermionic

. (37)

We can now consider the following three types of flows.

• Bosonic flows that preserve the SPT class

Flows that leave the SPT class unchanged are initiated by operators with charge ρ = nρ̂
with ρ̂ bosonic, and n any integer. The discrete symmetry breaking pattern is Zn → 1,
and the boundary state takes the form

|θ ;RUV 〉 →
n−1
∑

k=0

|θ + 2k
ρ2ρ;RIR〉 .

In this case, the ratio of IR to UV central charges is given by

gIR

gUV
= n

√

√

√ Vol(ΛIR)
Vol(ΛUV )

=
Æ

ρ2/2 .
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• Bosonic flows that change the class

Flows that flip the SPT class are initiated by operators with charge ρ = nρ̂ with ρ̂
fermionic. If this operator is bosonic then n is even. This time the discrete symmetry
breaking is Zn→ Z2, and

|θ ;RUV 〉 →
p

2

n
2−1
∑

k=0

|θ + 2k
ρ2ρ;RIR〉 .

The ratio of IR to UV central charge is now

gIR

gUV
=
p

2×
n
2

√

√

√ Vol(ΛIR)
Vol(ΛUV )

=
Æ

ρ2/2 .

• Fermionic flows

Finally, if we start in the UV with an extra Majorana mode then we can perturb by
a fermionic operator with charge ρ = nρ̂ with ρ̂ fermionic and n odd. The discrete
symmetry breaking is Zn→ 1. We also know that the flow flips the SPT class, since ρ̂ is
fermionic. The flow of boundary states is now

p
2 |θ ;RUV 〉 →

n−1
∑

k=0

|θ + 2k
ρ2ρ;RIR〉 ,

and the ratio of IR to UV central charges is

gIR

gUV
=

1
p

2
× n

√

√

√ Vol(ΛIR)
Vol(ΛUV )

=
Æ

ρ2/2 .

The central charge relation

Importantly, we find the same ratio of central charges for each of the three types of RG flows
described above. Moreover, we recognise L0 = ρ2/2 as the dimension of the UV operator O
that initiates the RG flow. We learn that

gIR = gUV

p

dimO .

This is the formula (5) advertised in the introduction. Since the UV operator is necessarily
relevant, we have ρ2 < 2. This ensures that gIR < gUV , and the g-theorem is obeyed.

More General RG Flows

In our discussion above, we have restricted attention to RG flows initiated by operators with
a definite charge under U(1)N . This ensures that the original symmetry is broken to U(1)N−1,
which allowed us to identify the infra-red state (25).

More generally, we could deform by turning on superpositions of such operators with dif-
ferent ρ. The resulting RG flows can be understood by following first one deformation, then
the other. For certain UV boundary states, we can reach IR states this way which cannot be
reached by turning on one operator alone.
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An example is provided by the g = 9 four-fermion state

RUV =









0 −2
3

1
3

2
3

−2
3 0 −2

3
1
3

−1
3 −2

3 0 −2
3

2
3 −1

3 −2
3 0









.

Deformations by charge eigenstates will take us to IR states with g = 9,6, 3. However, they will
not take us the trivial state with g = 1. This can be reached by a more general perturbation,
such as by chaining together the flows 9→ 3→ 1.

5 RG Flows: Proofs

In Section 4 we stated a number of results without proof. Here we give the proofs.

5.1 The UV Symmetry

Given the charge matrix RUV , the U(1)N symmetry group preserved in the UV is

U(1)N =
�

(e2πi tαQαi , e2πi tαQ̄αi ) : t ∈ RN
	

,

where Qαi and Q̄αi are the UV charge assignments. Using the definition RUV = Q̄−1Q, this
group can be parametrised in the more useful form

U(1)N =
�

(e2πi x , e2πiRUV x) : x ∈ RN
	

.

The symmetry parameter x is naturally valued in RN/ΛUV .

Given the boundary operator charge ρ ∈ Λ?UV , we first wish to determine how much of
U(1)N remains unbroken by the perturbation. Under the U(1)N transformation with parameter
x , the boundary operator picks up a phase of e2πi x ·ρ. This means that perturbing operator is
invariant when

x ·ρ ∈ Z .

Let us write ρ = nρ̂ with n ≥ 1 and ρ̂ primitive in Λ?UV . Because ρ̂ is primitive, we can
introduce a special basis for ΛUV with

ΛUV = span {λ1, . . . ,λN}
λ1 · ρ̂ = 1

{λ2, . . . ,λN} · ρ̂ = 0 .

Writing x in components with respect to this basis, the above condition for invariance becomes

x1 ∈
1
nZ x2, . . . , xN ∈ R .

Since the variables x i are defined mod 1, we see that the first variable x1 parametrises a
discrete Zn, while the remaining variables x2, . . . xN parametrise a U(1)N−1. In other words,
the U(1)N is broken to U(1)N−1 ×Zn, with the coset corresponding to k ∈ Zn being all those
transformations with parameter x obeying

x ·ρ = k .
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This puts us in a position to justify the form of the IR charge matrix. The U(1)N−1 corre-
sponds to those transformations with

x ∈ ρ⊥ .

The statement that these are also preserved by the IR boundary state is that

RIR x =RUV x .

This immediately leads to (24).

5.2 The Infra-red Lattice

Given that the IR charge matrix takes the form

RIR =RUV Refρ ,

where Refρ denotes reflection along ρ, it follows immediately that both ΛIR and ΛUV share
the same intersection with ρ⊥, the hyperplane perpendicular to ρ:

ΛIR ∩ρ⊥ = ΛUV ∩ρ⊥ = span {λ2, . . . ,λN} .

It follows that there is a basis for ΛIR consisting of

ΛIR = span
�

λ̃1,λ2, . . . ,λN

	

.

Here λ̃1 is the single, remaining basis vector of ΛIR, which remains to be determined. In fact,
all we shall need to know about it is provided by the following claim:

Claim: The extra basis vector λ̃1 of ΛIR is of the form

λ̃1 =

�

1
2 if ρ̂ is bosonic
1 if ρ̂ is fermionic

�

ρ̂ mod ρ⊥ .

Proof: A general vector λ ∈ RN can be written in the form

λ= aρ̂ +η with a ∈ R and η ∈ ρ⊥ .

We wish to determine the constraints on a and η that arise from insisting λ ∈ ΛIR. In particular,
we are particularly interested in the quantisation condition on a. The first constraint is that λ
must be an integer vector, which we call x:

aρ̂ +η= x . (38)

The second constraint is that (RUV Refρ)λ must be an integer vector, which we call y . Using
the fact that Refρ flips ρ̂ while leaving η unaffected, we have

RUV (aρ̂ −η) = y ⇒ aρ̂ −η=R−1
UV y . (39)

To proceed, we take the sum and difference of (38) and (39). First, the sum tells us that

2aρ̂ = x +R−1
UV y with x , y ∈ ZN . (40)
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We take the inner product with the basis vector λ1 ∈ ΛUV , which obeys λ1 ·ρ̂ = 1. On the right-
hand side, we have λ1 · x ∈ Z since both λ1 and x are integral. Furthermore, λ1 ·R−1

UV y ∈ Z
since this is equal to RUVλ1 · y and RUVλ1 is integral by definition of ΛUV . We learn that

2a ∈ Z .

Next we invoke the fact that ρ̂ lies in Λ?UV = Z
N +R−1

UVZ
N . This means that ρ̂ can be written

in the form ρ = v +R−1
UV w for two further integer vectors v and w. The equation (40) then

becomes

2a(v +R−1
UV w) = x +R−1

UV y . (41)

It is obvious that one solution to this equation for (x , y) is x = 2av and y = 2aw. However,
this is not the unique solution since we still have the freedom to shift by any integer solution
to x +R−1

UV y = 0. These are precisely (x , y) = (ζ,−RUVζ) for ζ ∈ ΛUV . The general solution
to (41) is then

x = 2av + ζ and y = 2aw−RUVζ .

The above equations were derived by taking the sum of (38) and (39). Next we take the
difference. This gives

2η= x −R−1
UV y ⇒ η= a(v −R−1

UV w) + ζ .

The variables a ∈ 1
2Z and ζ ∈ ΛUV are further constrained by the requirement that η ∈ ρ⊥.

Taking the inner product with ρ̂ and setting this to zero gives

ζ · ρ̂ = −a
�

(v −R−1
UV ) · ρ̂

�

= −a(v2 −w2) .

The left-hand side is an integer. But a can be either integer of half-integer. Clearly the half-
integer values can only occur when v2 − w2 is even which, in turn, requires

∑N
i=1(vi + wi) to

be even. But this is precisely the fermionic parity of ρ̂.

To see this, note that Λ[R]? = ZN +R−1ZN has a simple physical interpretation: all bound-
ary operators can be made by taking suitably regularised products of holomorphic and anti-
holomorphic fermion fields as they approach the boundary. A product of ni copies of ψi(z)
and mi copies of ψ̄i(z) would give rise to a boundary operator with charge ρ = n+R−1m. It’s
clear that the fermion parity of this operator is

(−1)n1+···+nN+m1+···+mN . (42)

Using the properties of the fermion vector f , defined in (23), this can easily be shown to agree
with the earlier characterisation (−1) f ·ρ. Using the fact that ρ̂ = v +R−1

UV w, we then learn
that

a ∈
� 1

2Z if ρ̂ is bosonic
Z if ρ̂ is fermionic

.

The conditions derived above are necessary for λ= aρ̂+η to lie in ΛIR. The same derivation
can also be followed backwards to show they are sufficient. All of which means that we finally
have an expression for our last remaining basis vector of ΛIR;

λ̃1 =

�

1
2 if ρ̂ is bosonic
1 if ρ̂ is fermionic

�

ρ̂ +η (43)

for some η ∈ ρ⊥ whose value is unimportant. This completes the proof of the claim.
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We are now in a position to compute the volume of ΛIR. This is

Vol(ΛIR) = Vol(λ̃1,λ2, . . . ,λN ) = Vol((ρ̂ · λ̃1)λ1,λ2, . . . ,λN ) .

We therefore find

Vol(ΛIR) = ρ̂ · λ̃1 Vol(ΛUV ) =

�

1
2 if ρ̂ is bosonic
1 if ρ̂ is fermionic

�

ρ̂2 Vol(ΛUV ) . (44)

This provides the justification for (37).

The above result also allows us to determine the integer m which governs the amount of
discrete symmetry breaking. Under a general U(1)N transformation with parameter x , we
have

|θ ;RIR〉 7→ gR
∑

λ∈Λ[RIR]

eiγ(λ) eθ ·λe2πi x ·λe2πi(RUV x)·(−RIRλ)‖λ,−RIRλ 〉〉 .

We see that the effect of this is to shift the theta angles θi of the infra-red boundary state by

θ

2π
7→
θ

2π
+
�

1−R−1
UVRIR

�

x =
θ

2π
+

2(x ·ρ)
ρ2

ρ ,

where, in the second equality, we have used the expression (25) for RIR. We see explicitly
that the theta angles are invariant under the preserved U(1)N−1 symmetry defined by those x
with x ·ρ = 0. But what of the discrete Zn symmetry? A transformation by k ∈ Zn is enacted
by any x for which x ·ρ = k, and shifts the theta angles by

θ

2π
7→
θ

2π
+

2k
ρ2
ρ .

The theta angles in (31) appear in the phase eiθ ·λ, which means that they are naturally val-
ued mod 2πΛ?[RIR]. Therefore the transformation above leaves the theta angles invariant
whenever

2k
ρ2
ρ ∈ Λ?[RIR] .

The above condition will be satisfied if the LHS gives an integer when dotted with every basis
vector of ΛIR. Of these, the last N − 1 vectors λ2, . . . ,λN give zero. Thus a constraint only
arises by dotting with λ̃1. Recalling the definition (43) of λ̃1, this gives

�

1
2 if ρ̂ is bosonic
1 if ρ̂ is fermionic

�

·
1
n
· 2k ∈ Z .

It is now straightforward to read off the quantisation condition on k. It must be a multiple of
m, where m is defined by

m=

�

n if ρ̂ is bosonic
n/gcd(n, 2) if ρ̂ is fermionic

.

This is the statement of (34).
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5.3 The Emergent Majorana Mode

The final missing ingredient is to determine when a boundary Majorana mode arises. As
explained in section 4, this happens when the UV and IR charge matrices lie in different classes,
which is detected by the ground degeneracy of bulk states (27),

G[RUV ,RIR] =

p

Vol(ΛUV )Vol(ΛIR)
Vol(Λ[RUV ,RIR])

p
2 ,

where the factor of
p

2 comes from the truncated determinant in (27), using the expression
(25) for RIR. Clearly, we need to compute the volume of the intersection lattice

Λ[RUV ,RIR] =
�

λ ∈ ZN : RUVλ=RIRλ ∈ ZN
	

.

First, we can write

Λ[RUV ,RIR] =
�

λ ∈ ZN : λ ·ρ = 0 and RUVλ ∈ ZN
	

= ΛUV ∩ρ⊥ .

But using the basis of ΛUV , the intersection lattice takes the particularly simple form

Λ[RUV ,RIR] = span {λ2, . . . ,λN} .

To determine the volume of this intersection lattice, we need to take the above basis and add
a unit vector orthogonal to them all. This vector is ρ̂/

p

ρ̂2, so

Vol(Λ[RUV ,RIR]) = Vol
�

ρ̂/
Æ

ρ̂2,λ2, . . . ,λN

�

.

But we could equally well shift the first basis vector by any element in ρ⊥. Using the property
λ1 · ρ̂ = 1, we then have

Vol(Λ[RUV ,RIR]) = Vol
�
Æ

ρ̂2λ1,λ2, . . . ,λN

�

=
Æ

ρ̂2 Vol(ΛUV ) .

If we now put this together with our expression (44) for the volume of ΛIR, we have the simple
result

G[RUV ,RIR] =

�

1 if ρ̂ is bosonicp
2 if ρ̂ is fermionic

,

which establishes (30).

A The Path Integral for a Single Majorana Mode

A single, quantum mechanical Majorana mode is perhaps the simplest theory which is rendered
inconsistent by an anomaly. One way of seeing this is to compute the path integral, with
anti-periodic boundary conditions in the temporal direction. Usually, this would compute the
dimension of the Hilbert space of the theory,

Z = TrH(1) .

However, as advertised in the introduction, an explicit computation for a single Majorana mode
gives

ZMaj =
p

2 .
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We now derive this result. The action for a single Majorana mode is

S[χ(τ)] =
i
2

∫

dτχ(τ)∂τχ(τ) .

We place the systemon an anti-periodic circle of circumference β , and expand the field χ(τ)
into modes

χ(τ) =

√

√ 1
β

∑

n∈Z+1
2

an e2πinτ/β .

The Wick rotation to Euclidean signature means that χ, and hence an, no longer obey any
reality condition. The action is now

S[χ(τ)] = −
π

β

∑

n∈Z+1
2

na−nan ,

and the partition function becomes

ZMaj[β] = C

∫

Dχ(τ) e−S[χ(t)] = C
∏

n= 1
2 , 3

2 ,...

∫

da−n dan e−πna−nan/β = C
∏

n= 1
2 , 3

2 ,...

πn
β

,

where C is a (divergent) constant which, among other things, renders the partition function
dimensionless. In particular, since Z is dimensionless, it must be independent of β . (This is
appropriate since the Hamiltonian for a single Majorana mode vanishes.) We similarly take
this opportunity to remove the factor of π, leaving us with

ZMaj[β] =
∏

n= 1
2 , 3

2 ,...

n .

Clearly we must tame this infinite product. We do so using zeta function regularisation. We
start by writing

ln(ZMaj) =
∑

n= 1
2 , 3

2 ,...

ln(n) =
∑

n= 1
2 , 3

2 ,...

ln(n)
ns

�

�

�

s=0
= −

d
ds

∑

n= 1
2 , 3

2 ,...

1
ns

�

�

�

s=0
.

This sum is of the zeta function form. Specifically, we have

ln(ZMaj) = −
d
ds
((2s − 1)ζ(s))

�

�

�

s=0
= −

�

d
ds
(2s − 1)

�

s=0
ζ(0) = − [ln(2)]× (−1

2) .

We find the promised result

ZMaj =
p

2 .

B A Higher Pythagorean Triple

For N = 2 Dirac fermions, the chiral boundary conditions are in one-to-one correspondence
with Pythagorean triples [35]. With the Euclid parameterisation (15) with p = 4 and q = 1,
we have the Pythagorean triple 82 + 152 = 172. The charge matrix is

RUV =
1
17

�

8 15
−15 8

�

.

This boundary state has g2
UV = 17. Various RG flows initiated by bosonic operators are sum-

marised in the following table:
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ρ L0 RIR Majorana? g2
IR

( 5
17 , 3

17)
1
17

�

−1 0
0 1

�

No 1

( 3
17 ,− 5

17)
1
17

�

1 0
0 −1

�

No 1

( 8
17 ,− 2

17)
2
17

�

0 1
1 0

�

Yes 2

( 2
17 , 8

17)
2
17

�

0 −1
−1 0

�

Yes 2

(13
17 , 1

17)
5
17

1
5

�

−3 4
4 3

�

No 5

(11
17 ,− 7

17)
5
17

1
5

�

3 4
4 −3

�

No 5

( 7
17 , 11

17)
5
17

1
5

�

−3 −4
−4 3

�

No 5

( 1
17 ,−13

17)
5
17

1
5

�

3 −4
−4 −3

�

No 5

(18
17 , 4

17)
10
17

1
5

�

−4 3
3 4

�

Yes 10

(14
17 ,−12

17)
10
17

1
5

�

4 3
3 −4

�

Yes 10

(12
17 , 14

17)
10
17

1
5

�

−4 −3
−3 4

�

Yes 10

( 4
17 ,−18

17)
10
17

1
5

�

4 −3
−3 −4

�

Yes 10

(21
17 ,− 1

17)
13
17

1
13

�

−5 12
12 5

�

No 13

(19
17 ,− 9

17)
13
17

1
13

�

5 12
12 −5

�

No 13

(19
17 ,− 9

17)
13
17

1
13

�

−5 −12
−12 5

�

No 13

( 1
17 , 21

17)
13
17

1
13

�

5 −12
−12 −5

�

No 13

This table lists relevant, bosonic operators and their end points under RG. For simplicity, we
restrict to primitive ρ, so that there are no discrete symmetries and the infra-red central charge
gIR is determined solely by RIR and the existence of a boundary Majorana fermion.

Note that the dimensions of the relevant operators take the form

L0 =
m2 + n2

p2 + q2
p, q, m, n ∈ Z ,

where, for us, p = 4 and q = 1. Turning on an operator with this dimension takes us to a new
state with primitive charges m, n in (15). This same property holds for all boundary states
with N = 2 fermions. We do not know of such a simple pattern for N ≥ 4.

C The Boundary Majorana Mode

In this appendix, we explain how a boundary Majorana mode interacts with the bulk fermions.
Very similar calculations can be found in [3,18] and related analysis in [45,46].

A Fermion on a Half Line

We start with a single Majorana fermion ξ on a half-line, interacting with a quantum mechani-
cal Majorana fermion χ sitting on the boundary. It is simplest if we unfold the system, leaving
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us with a single right-moving Majorana-Weyl fermion on a line, interacting with a Majorana
impurity at the origin. The Hamiltonian is

H = i
2
χ∂tχ +

∫

d x
�

i
2
ξ∂+ξ+ i

p
2mδ(x)ξ(x)χ

�

.

The coupling between bulk and boundary is simply a quadratic term, set by a mass scale m.
As we will see, only modes with momentum k� m are significantly affected by the impurity.

To proceed, it is useful to temporarily smooth out the delta-function coupling. We replace
the Hamiltonian with

H = i
2
χ∂tχ +

∫

d x
�

i
2
ξ∂+ξ+ i

p
2mf (x)ξχ

�

,

where f (x) is some function localised around the origin, with support in x ∈ [−ε,+ε], and
with

∫

d x f (x) = 1. The equations of motion are:

∂tχ =
p

2m

∫

d x f ξ

∂+ξ= −
p

2mf χ .

Modes with energy k have time dependence e−ikt . (All fermions are subject to a reality con-
dition, but the equations of motion are linear so we can work with complex objects and take
the real part at the end.) The equations of motion become

−ikχ =
p

2m

∫

d x f ξ

−ikξ+ ∂xξ= −
p

2mf χ .

We are interested in modes with k� 1/ε, which ensures that they don’t probe the microscopic
details of the function f (x). Near the origin, |x | ≤ ε, the second equation can then be replaced
by ∂xξ= −

p
2mf χ. We integrate the second equation in the asymptotic regions, and join them

up to find

ξ(x) =







eikx x < −ε
1−
p

2mF(x)χ otherwise
(1−

p
2mχ)eikx x > ε

, (45)

where F(x) is a step function that goes smoothly from 0 to 1, with F ′(x) = f (x). Substituting
this into the equation for χ gives us a consistency condition,

−ikχ =
p

2m
�

1−
Æ

m/2χ
�

,

which has the solution

χ = −
p

2m
ik−m

.

Inserting this back into (45) gives the required expression for a chiral Weyl fermion passing
through a Majorana impurity. Taking the limit ε→ 0, we find that ψ jumps by a phase as it
passes through the origin

ξ(x) = eikx

�

1 x < 0
ik+m
ik−m x > 0

.

High energy modes, with k � m, are unaffected by the impurity. Low energy modes, with
k� m, suffer a sign flip.
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The Spectrum on a Circle

To further understand the role played by the Majorana impurity, let us now consider a right-
moving Majorana-Weyl fermion on a spatial circle, which we take to have length L.

We will impose periodic boundary conditions on this fermion, which means that it has a
single Majorana zero mode. Such a system is anomalous and to rectify the situation we must
add an odd number of extra Majorana modes. We do this by including 2n − 1 Majorana
impurities, at locations x i with couplings mi . Periodicity of ξ then imposes a quantisation
condition on the momentum k which is

2n−1
∏

i=1

2 tan−1
�mi

k

�

= kL mod 2π .

When mi � 1/L, the impurities pair up with the bulk zero mode to form n independent
complex zero modes. This results in a ground state degeneracy of 2n. Further modes are then
quantised as ∼ 2π/L.

Now consider increasing the interaction of a single impurity, say m1� 1/L. All bulk modes
with k < m1, including the bulk zero mode, undergo a sign flip, which means that their energy
increases byπ/L, corresponding to a spectral flow of+1/2. There are n−1 remaining complex
zero modes, and 2n−1 degenerate ground states.

Something a little different happens when we increase a second impurity coupling, say
m2� 1/L. Once again, there is a spectral flow of +1/2. But instead of an impurity zero mode
being lifted, it now mixes with a new bulk zero mode. Once again there are 2n−1 degenerate
ground states. Clearly this pattern now repeats as further impurity couplings are increased.

Absorbing Majorara Fermions into the Boundary State

The ideas described above help build intuition for how Majorana boundary modes can be
incorporated in a boundary state. To illustrate this, consider a single Dirac fermion ψ on an
interval of length L. We impose vector boundary conditions at one end

ψL =ψR at x = 0 , (46)

and axial boundary conditions at the other,

ψL =ψ
†
R at x = L . (47)

As explained in detail in [35], these two boundary conditions are mutually inconsistent in the
sense that they result in a single Majorana zero mode in the bulk. Indeed, if we write

ψ= ξ1 + iξ2 .

Then ξ1 has a zero mode, while ξ2 does not.

We now invoke the doubling trick, and view both fermions as chiral, living on a circle of
length 2L. The boundary conditions mean that ξ1 is periodic, while ξ2 is anti-periodic. To
make the theory consistent, we add a single Majorana impurity, χ, at x = 0. Now we have
two options:
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• We could couple χ to ξ1. As we’ve seen above, the resulting spectral flow renders ξ1
anti-periodic. The net effect is that the right-most boundary condition (46) is shifted
from axial, to vector, but with a theta angle θ = π, so that ψL = −ψR at x = L. In this
case, the ground state is non-degenerate. This shift of the theta angle due to a boundary
fermion was also found in [3].

• If, instead, we couple χ to ξ2, then the spectral flow renders ξ2 periodic, with vanishing
theta angle, so that ψL = ψR at x = L. Now both ξ1 and ξ2 admit a Majorana zero
mode, and there are two ground states.

D A D-Brane Perspective

The chiral boundary conditions have an analog in boundary states for D-branes. Details of
such states can be found, for example, in [49] or the textbook [50].

The geometric viewpoint is usually said to arise after bosonization. This relates the N Dirac
fermions to N periodic scalars, φi with the currents mapped as

∂+φi =ψ
†
iψi , ∂−φi = ψ̄

†
i ψ̄i ,

where ∂± =
1
2(∂t ± ∂x). This bosonization map is more subtle than usually advertised. (See,

for example, [8,12] for recent discussions.) Here we avoid these subtleties and instead simply
present the D-brane picture as a system in which similar phenomena arise. The chiral boundary
conditions require that there is no net flow of the left- and right-moving currents Jα and J̄α,
defined in (9), into the boundary. In the bosonic picture, these become simple, linear boundary
conditions on the periodic scalars

(Qαi + Q̄αi)∂xφi = (Qαi − Q̄αi)∂tφi . (48)

The trivial boundary condition R = 1 gives Neumann boundary conditions ∂xφi = 0 in each
direction, corresponding to a D-brane that wraps the full torus TN . Meanwhile, the other
trivial boundary condition R = −1 gives a D0-brane, with φi = constant. Clearly by taking
R= diag(+1, . . . ,−1, . . . ) we have any Dp-brane for p = 0, . . . , N .

A general boundary state can be interpreted as a D-brane with flux, whose boundary con-
ditions are written as

gµν∂xφ
ν = Bµν∂tφ

ν ,

with g the metric and B the NS-NS 2-form.

The D-brane interpretation is particularly straightforward when N = 2 and we can consider
the charge matrices (15) labelled by co-prime integers p and q. The boundary conditions (48)
are then

pφ′1 = qφ̇2 and pφ′2 = −qφ̇1 .

This is simpler to interpret if we perform a T-duality on φ2, introducing ∂µφ̃2 = εµν∂ νφ2. The
boundary conditions then become

pφ′1 = qφ̃′2 and qφ̇1 = −p ˙̃φ2 .

This describes a D-string wrapping (p, q) times around the two cycles of the torus T2. Aspects of
the boundary states for such a D-string, including the boundary central charge, were previously
discussed in [51].
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As described in Appendix B, the relevant boundary operators have dimension
L0 = (m2 + n2)/(p2 + q2) for pairs of integers m, n. The associated RG flow describes the
decay of a D-brane wrapping (p, q) times around the torus to one wrapping (m, n) times.
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