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Abstract

We develop a systematic effective field theory of hydrodynamics for many-body systems
on the lattice with global continuous non-Abelian symmetries. Models with continuous
non-Abelian symmetries are ubiquitous in physics, arising in diverse settings ranging
from hot nuclear matter to cold atomic gases and quantum spin chains. In every di-
mension and for every flavor symmetry group, the low energy theory is a set of coupled
noisy diffusion equations. Independence of the physics on the choice of canonical or
microcanonical ensemble is manifest in our hydrodynamic expansion, even though the
ensemble choice causes an apparent shift in quasinormal mode spectra. We use our
formalism to explain why flavor symmetry is qualitatively different from hydrodynam-
ics with other non-Abelian conservation laws, including angular momentum and charge
multipoles.
As a significant application of our framework, we study spin and energy diffusion in clas-
sical one-dimensional SU(2)-invariant spin chains, including the Heisenberg model along
with multiple generalizations. We argue based on both numerical simulations and our
effective field theory framework that non-integrable spin chains on a lattice exhibit con-
ventional spin diffusion, in contrast to some recent predictions that diffusion constants
grow logarithmically at late times. We show that the apparent enhancement of diffusion
is due to slow equilibration caused by (non-Abelian) hydrodynamic fluctuations.
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1 Introduction

Hydrodynamics is a universal language for describing thermalization and slow dynamics in
chaotic many-body systems, whether they are classical or quantum [1].1 The universality of
hydrodynamics arises from its insensitivity to nearly all microscopic details, except for space-
time symmetries and conservation laws.

This paper is about the hydrodynamics of systems with continuous non-Abelian symme-
tries. Physical realizations include flavor charge in quark-gluon plasma [4] (or color charge at
high temperatures), spin-orbit coupled solid-state systems [5, 6], and SU(2)-symmetric cold
atomic gases [7, 8]. The “non-Abelian hydrodynamics" of these systems has been studied by
many authors, for many decades [9–15]. However, in our view, the literature can be unclear

1Note that there is also the subject of generalized hydrodynamics [2, 3], relevant to integrable systems; this is
not the subject of the present paper.

2

https://scipost.org
https://scipost.org/SciPostPhys.10.1.015


SciPost Phys. 10, 015 (2021)

and can even appear contradictory about elementary questions, including the number of hy-
drodynamic degrees of freedom!

In light of recent developments in effective field theory which allow, at long last, for a sys-
tematic derivation of the effective action of hydrodynamics from a Schwinger-Keldysh (quan-
tum) field theory, we present here a systematic derivation of hydrodynamics in models with
non-Abelian flavor symmetry. We specifically focused on lattice models where momentum is
not conserved, which allows us to focus on the new effects arising from the non-Abelian flavor
symmetry. Our derivation emphasizes a number of points, which have appeared in previous
literature, but are here derived systematically and from a clear set of postulates. (1) A fla-
vor symmetry group with r generators contributes r independent hydrodynamic modes, at all
orders in the hydrodynamic derivative expansion (Section 2.2). (2) Hydrodynamics in mi-
crocanonical and canonical ensembles describe the same physics, even though the canonical
ensemble appears to modify the location of measurable poles in Green’s functions (Section
2.3). (3) The hydrodynamic modes of any lattice model whose conserved charges are energy
and non-Abelian flavor charges are of the form ω= ±Ak2− iDk2+ · · · , with D > 0 and A non-
zero only at finite flavor charge density (Section 3). This conclusion is robust in nonlinear
fluctuating hydrodynamics, in all spatial dimensions d, including d = 1. (4) The non-Abelian
nature of flavor symmetry has qualitatively different implications than other non-Abelian sym-
metries in hydrodynamics, such as rotational invariance or multipole symmetries (Section 4).
Some of these confusions arose because of unclear treatments of global vs. gauge symmetries,
and because turning on background gauge fields A is more drastic with non-Abelian degrees
of freedom (equations of motion depend on A, not just its derivatives).

Our main motivation for revisiting the derivation above is recent literature on classical and
quantum spin chains with SU(2) symmetry in d = 1 [16–35] (Section 6). In fact, we were
inspired to carry out this effective field theory computation in part by papers arguing that
the infinite temperature classical Heisenberg model does not have conventional spin diffusion
[16,24,32], as predicted and obtained by many other authors [18,21,30]. In particular, [32]
argues that the spin diffusion constant scales as

D(t)∼ log4/3 t. (1)

Remarkably, we have found certain models of nonlinear fluctuating hydrodynamics, with suf-
ficiently many conserved charges, which reproduce logarithmically-enhanced diffusion con-
stants (Section 5). However, the mechanism is not related to non-Abelian flavor symmetry
groups. We have also performed extensive numerical simulations which suggest that the only
effective theory compatible with the chaotic Heisenberg model is vanilla diffusion with a fi-
nite diffusion constant at late times. On the other hand, our numerics does show an apparent
enhancement of diffusion compatible with (1): we show in Sec. 6.4 that the effect is due to
hydrodynamic fluctuations captured by the effective field theory of Sec. 3. We expect that our
method of analysis will prove useful in analyzing dissipative physics in other one dimensional
spin models.

This paper is, for the most part, written in a modular way. In particular, our numerical tests
on hydrodynamics in spin chains of Section 6 can qualitatively be understood independently
of the other Sections.

2 Preliminaries

2.1 Non-Abelian continuous symmetry

In this paper, we are interested in the many-body dynamics of chaotic lattice models with
a non-Abelian flavor symmetry. We will define these terms precisely for a quantum system;
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analogous definitions exist for classical systems.
Let H be the Hilbert space of a many-body system, which we assume can be built up out

of the individual quantum degrees of freedom on every site of a lattice Λ:

H =
⊗

x∈Λ
Hx . (2)

Quantum dynamics corresponds to a one parameter unitary transformation U(t) on H: for
example, U(t) = e−iHt if there exists a time-independent Hamiltonian H. We do not assume
in this paper that such a Hamiltonian exists.

Let G be a (compact) Lie group. We study quantum dynamical systems U(t)with symmetry
G subject to: (1) there exists a representation of G – a set of unitary matrices V (g) for each
group element g ∈ G – acting on H, such that

[U(t), V (g)] = 0 for all g ∈ G and t ∈ R, (3)

and (2) the unitary V (g) may further be expanded as

V (g) =
⊗

x∈Λ
Vx(g) , (4)

where Vx(g) are unitary matrices acting on the individual Hilbert spaces.
It is conventional to focus on group elements g infinitesimally close to the identity. Schemat-

ically writing g = 1+ εATA, where A= 1, . . . , dim(G), we may define the charge per site qA
x by

Vx(1+ ε
ATA) = 1+ iεAqA

x , (5)

along with total charge
QA =

∑

x∈Λ
qA

x . (6)

Combining the above equations implies that

[U(t),QA] = 0. (7)

Therefore, if we have a quantum system in initial mixed state ρ(0), which time evolves to
ρ(t) = U(t)ρ(0)U†(t), then

d
dt

tr
�

ρ(t)QA
�

=
d
dt




QA(t)
�

= 0. (8)

All charges are conserved.
What is non-trivial about non-Abelian groups is that there exist a set of fully antisymmetric

structure constants f ABC (at least one of which is non-vanishing), such that

[QA,QB] = i f ABCQC . (9)

We emphasize that there is no contradiction between (8) and (9). Yet, in some sense, there is
an intuitive tension about how (8) and (9) might both arise in hydrodynamics, where we aim
to describe the slow dynamics of the densities of conserved quantities. How can we keep track
of all the densities of conserved charges, if no quantum state actually has a definite charge
(eigenvalue) under all QA?

We will be studying systems with parity (P) and time-reversal (T) symmetry. Because
these are respectively unitary and antiunitary, they are embedded in the algebra (9) as (note
that f ABC ∈ R)

P−1QAP=QA , T−1QAT= −QA , (10)

i.e. the charges are parity even and time-reversal odd. For some specific groups, there are
other ways to embed these discrete symmetries in the algebra: for example if G = GL × GR,
then the left and right charges can map into each other, e.g. P−1QA

LP = QA
R. However (10) is

the only possibility for simple Lie groups which we will be focusing on.
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2.2 Hydrodynamic decomposition of Hilbert space

Before developing a classical effective theory – hydrodynamics – for a thermalizing system with
a non-Abelian flavor symmetry, we must carefully resolve the question of how many hydro-
dynamic degrees of freedom there are. We will see that all charges QA represent independent
hydrodynamic degrees of freedom, and that, in a domain of length L, this conclusion will be
robust to all orders in the perturbative hydrodynamic expansion in L−1. This conclusion can
be found in [12,13], but appears to conflict with other literature [5].

We note that an asymptotic hydrodynamic expansion to arbitrary derivative orders does
not mean that there is not a very long (but finite) time scale before which hydrodynamics
does not make sense. This is the regime in which “quasihydrodynamic" models are more
appropriate (following the terminology of [36]); it has been observed in, e.g., [37], that such
quasihydrodynamic regimes can exist on intermediate time scales in spin chains. There is a
more subtle question of long-time tails, whereby hydrodynamic fluctuations themselves can
break the gradient expansion; we will see that this indeed happens in the models studied in this
paper. Still, the presence of long time tails does not invalidate the hydrodynamic framewor.

For pedagogy, we focus the discussion on lattice models with SU(2) symmetry. We assume
that each lattice site has a two-level, spin-1

2 , degree of freedom. In a box of L lattice sites, there
are 2L states in Hilbert space. Within this box, we assume the three conserved non-Abelian
charges QA, and their corresponding densities nA, are simply the total spin:

QA = LnA =
L
∑

i=1

σA
i , (11)

where [σA
i ,σB

j ] = δi j iε
ABCσC

j are one-site Pauli matrices. Now, observe that

[nA, nB] =
i
L
εABC nC . (12)

In the hydrodynamic limit L→∞, all densities approximately commute.
This Hilbert space of L spins can then be approximately decomposed (when nAnA < 1)

into subsectors corresponding to each density nA. Denoting P(nA) as a projector onto the
Hilbert space of spin density nA (within this subsector, we can approximate the operators nA

as constant) we find that

tr(P(nA
1)P(n

A
2))

q

tr(P(nA
1))tr(P(n

A
2))
∼ exp

�

−
9
8

L
�

�nA
1 − nA

2

�

�

2
�

, (13)

when |nA
1|, |n

A
2| � 1. The technical construction is provided in Appendix A. On long time scales,

so long as we are only interested in correlation functions of the density operators nA, we may
approximate the many-body density matrix within one box by

ρ(t)≈
∫

dnA p(nA, t)
P(nA

1)

tr(P(nA
1))

, (14)

where p(nA, t) can be interpreted as the classical probability density of the charge density nA.
As we can do this process in every box x of size L, the many-body Schrödinger equation will
then become a Fokker-Planck equation for a stochastic nA(x , t). Following the logic of [38],
we take the resulting stochastic equations as the definition of nonlinear fluctuating hydro-
dynamics. While there is not a universal proof that such equations are equivalent to those
more commmonly derived by effective field theory methods (as below), we do not know of a
counter-example in a thermalizing and chaotic system!
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Our technical detour teaches us that in the hydrodynamic limit, we should indeed treat
every non-commuting charge density as a separate hydrodynamic degree of freedom. p(nA, t)
is well-defined up to fluctuations in nA of order L−1/2. In a conventional hydrodynamic theory
with commuting conserved charges, fluctuations of this order are also present [38], and arise
from finite-size statistical fluctuations in the conserved quantities. We thus do not foresee the
gradient expansion being any worse behaved for the theory with non-commuting charges than
in a conventional hydrodynamic theory.

2.3 Microcanonical vs. canonical ensembles

Having confirmed our hydrodynamic degrees of freedom correspond to densities nA associated
with each conserved charge QA from flavor symmetry G, we now turn to one more subtle tech-
nical issue. In ordinary thermodynamics and hydrodynamics, in chaotic many-body systems,
physics does not depend on whether we study a microcanonical or (grand) canonical ensemble.
Let us consider the grand canonical ensemble generated by sourcing the non-Abelian charges
QA with chemical potentials µA. In a many-body language, this corresponds to deforming a
static Hamiltonian by

H → H −µA
extQ

A; (15)

in the effective theory language, this corresponds to turning on a background, non-dynamical
gauge field

AA = µA
extdt. (16)

In each case, we have used the ‘ext’ subscript to emphasize that this is not a “local chemical
potential" as seen by the fluid – it is the coefficient of an external source coupling to the theory.
Using manipulations analogous to Appendix A, it is straightforward to show that µA indeed
drives the system to an average density nA. The precise nonlinear relation between µ and n
forms the thermodynamic equation of state.

When the symmetry is non-Abelian, the seemingly benign switch to a canonical ensemble
(rather than restricting to an initial density matrix of fixed average density nA) causes an
unwanted effect: it explicitly violates conservation laws! Now we find that

d
dt
〈QA〉= 〈i[H(t)−µB

extQ
B,QA]〉= −µB

ext f ABC〈QC〉. (17)

In the local hydrodynamic language, which we will detail in Section 3, the local density obeys

∂t n
A+ ∂iJ

iA = −µB
ext f ABC nC , (18)

where J iA denotes the spatial components of the flavor charge current.
However, this global violation of conservation laws can be undone. Consider the following

change of variables: defining the matrix

UAC = f ABCµB
ext (19)

we define ñA by
ñA = exp [U t]AC nC . (20)

Plugging this in to (18), we see that

∂t ñ
A+ ∂iJ

iA = 0. (21)

Hence, so long as J iA(ñB) = J iA(nB), the hydrodynamic equations are not changed by this
time-dependent field redefinition. Indeed, we will see in Section 3 that the consistency of
hydrodynamics ensures such invariance, confirming the equivalence between canonical and
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microcanonical ensembles. In atomic physics, (20) is referred to as transforming into the
“rotating frame".

We emphasize that a necessary feature of hydrodynamics, in any theory with non-Abelian
conserved charges, is that the hydrodynamic modes in the canonical ensemble are exactly
untouched, up to a global “rotation" set by the external chemical potential. As an example, we
can consider a theory with SU(2) symmetry, with a finite charge density in the z-direction. We
will see in Section 3 that the x , y components of charge have dispersion relation

ωmicrocanonical(k) = ±Ak2 − iD⊥k2 + · · · . (22)

In the canonical ensemble, to all orders in hydrodynamics, we must find

ωcanonical = ±(µext + Ak2)− iD⊥k2 + · · · . (23)

While normally, the presence of a k-independent term would imply that this mode is simply
non-hydrodynamic, a key feature of flavor hydrodynamics is that ωcanonical is a hydrodynamic
mode, precisely because the transformation (20) allows us to set µext = 0. Assuming that
ωmicrocanonical is evaluated at the same average density as ωcanonical will be no further µext
corrections within (23). Our systematic field theory will indeed produce the necessary result
(23).

3 Effective field theory of hydrodynamics

3.1 Overview of the method

Hydrodynamics is generally presented as a set of equations describing the long time dynamics
of conserved charges. In this Section we present a systematic effective field theory of hydro-
dynamics, where the latter is introduced in terms of an action principle uniquely specified in
terms of basic symmetry principles. This approach has several advantages. First, the tradi-
tional formulation of hydrodynamics is subject to various constraints that are imposed at phe-
nomenological level, such as the second law of thermodynamics and Onsager relations [39]. In
the effective field theory adopted below, these constraints arise naturally as a consequence of
a particular symmetry of the effective action, along with basic properties which are a remnant
of the conservation of probability (i.e., unitarity).2 The second advantage is that this effective
field theory systematically captures any term contributing to the low-energy dynamics, includ-
ing non-Gaussianities of the noise. In more traditional approaches to stochastic hydrodynamics
such as the Martin-Siggia-Rose (MSR) formalism [41], the noise is introduced by demanding
consistency with the fluctuation-dissipation theorem. Such procedure works well when the
equations are linear in the noise. In our approach, nonlinear dynamics, including that of the
noise, is manifestly compatible with all symmetries, including Kubo-Martin-Schwinger invari-
ance. While many of our main results in Section 6 turn out to agree with the predictions of the
MSR approach, given the various debates in previous literature that we aim to address here,
we have opted for the most careful derivation of nonlinear fluctuating hydrodynamics that
we know.3 We will use the systematic nature of this effective field theory in later Sections to
rule out any anomalous hydrodynamic transport behavior of spin diffusion for non-integrable
SU(2)-invariant spin chains. Below we shall give an overview of the formalism developed
in [43,44] (see also [45,46], and [47] for a review) using the simplest example of an ordinary
conserved U(1) current. We will extend it to the non-Abelian case in the next Section.

2See [40] for a thorough comparison between the constraints coming from the second law and those coming
from the effective action approach.

3An example of terms that cannot be captured in the MSR formalism was recently studied in [42].
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Consider a system with dynamics described by a Hamiltonian H which is invariant under
a global U(1) symmetry. We denote the associated conserved current by Jµ = (J t , J i). We
take the initial state to be in the local Gibbs ensemble ρ0 = e−β(H−µ0Q)/ tr(e−β(H−µ0Q)), where
Q =

∫

x J t is the total charge and µ0 = µ0(~x) is the initial chemical potential, taken to be a
slowly-varying function of ~x . The Schwinger-Keldysh generating functional for the current
correlation functions is

eiW [A1µ,A2µ] = tr
�

T
�

e−i
∫ t f

ti
(H−

∫

x A1µJµ)
�

ρ0T̄
�

ei
∫ t f

ti
(H−

∫

x A2µJµ)
��

=

∫

ρ0

Dψ1Dψ2 eiS0[ψ1,A1µ]−iS0[ψ2,A2µ] , (24)

where T , T̄ denote time- and anti-time ordering, and we coupled the Hamiltonian in the for-
ward and backward evolutions to background gauge fields A1µ and A2µ, respectively. Varying
with respect to A1µ (A2µ) brings down time-ordered (anti-time ordered) insertions of the cur-
rent Jµ. Current conservation implies the Ward identity

W [A1µ + ∂µλ1, A2µ + ∂µλ2] =W [A1µ, A2µ] , (25)

where λ1(t, ~x) and λ2(t, ~x) are two independent functions. In the last expression in (24) we
wrote the forward and backward evolutions in terms of a path integral over a doubled copy of
the degrees of freedom collectively denoted by ψ1 and ψ2, where S0 denotes the microscopic
action of the system. The boundary conditions forψ1,ψ2 at the initial time t i →−∞ account
for the presence of the initial state. The boundary conditions at the final time t f →∞ consist
in identifying the doubled fieldsψ1(t f ) =ψ2(t f ) and are due to the fact that we are taking the
trace. These boundary conditions are the sole coupling between the two copies of the fields.

Due to the presence of long-living modes associated to the conservation of Jµ, the gener-
ating functional W [A1µ, A2µ] will be nonlocal. The proposal of [43] is to “integrate in” such
modes responsible for this nonlocality. Let us denote these long-living modes by the fields
ϕ1(t, ~x) and ϕ2(t, ~x), whose nature will become clear momentarily. The nonlocal generating
functional W can then be written as the path-integral of a local effective action:4

eiW [A1µ,A2µ] =

∫

Dϕ1Dϕ2 eiSeff[A1µ,ϕ1,A2µ,ϕ2] . (26)

The statement that ϕ1,ϕ2 are associated to the conservation of Jµ1 , Jµ2 translates into the
fact that, upon integrating out such degrees of freedom, the resulting W should satisfy the
Ward identity (25). Equivalently, each of the two currents, obtained by varying Seff with respect
to the corresponding sources,5

Jµ1 ≡
δSeff

δA1µ
, Jµ2 ≡ −

δSeff

δA2µ
, (27)

should be conserved upon solving the equations of motion of ϕ1,ϕ2 when performing the path
integral (26) in the saddle-point limit. This implies that the effective action Seff should depend
on various fields through the following combinations:6

B1µ = ∂µϕ1 + A1µ, B2µ = ∂µϕ2 + A2µ , (28)

4In some cases, additional long-living modes might be present, e.g. slowly moving order parameter. These
should be included in the effective action as independent degrees of freedom. For simplicity, we shall not consider
such situation here.

5The relative minus sign comes from (24).
6In the presence of anomalies, the dependence of the action on Aµ and ∂µϕ is slightly modified [48].
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i.e. Seff = Seff[B1µ, B2µ]. The combinations (28) lead to naturally interpret ϕ1,ϕ2 as the
parameters of the gauge transformations in (25). However, at the level of Seff, ϕ1,ϕ2 are
dynamical fields as current conservation does not hold before extremization of the effective
action. Unlike in (24), the action in (26) does not have a factorized structure: the two copies of
slow variables now interact locally as a consequence of having integrated out the fast degrees
of freedom [49]. These cross-couplings characterize dissipation and fluctuations. As a con-
sequence of unitarity of the underlying system, the effective action must satisfy the following
properties:

Seff[ϕ,ϕ; Aµ, Aµ] = 0, Seff[ϕ2,ϕ1; A2µ, A1µ] = −S∗eff[ϕ1,ϕ2; A1µ, A2µ],

Im S[ϕ1,ϕ2; A1µ, A2µ]≥ 0 , (29)

which can be proven by comparing (26) with (24), and using unitarity of the evolution op-

erator T (e−i
∫ t f

ti
(H−

∫

x AµJµ)) [50]. Furthermore, assuming that the Hamiltonian H is invariant
under the composition of parity and time reversal PT, and since the system is in local thermal
equilibrium, the effective action satisfies dynamical KMS invariance, i.e.:

Seff[ϕ1,ϕ2; A1µ, A2µ] = Seff[ϕ̃1, ϕ̃2; Ã1µ, Ã2µ] , (30)

with

ϕ̃1(t, ~x) = (−1)ηϕ1(−t,P~x), ϕ̃2(t, ~x) = (−1)ηϕ2(−t − iβ ,P~x) (31a)

Ã1µ(t, ~x) = (−1)ηµA1µ(−t,P~x), Ã2µ(t, ~x) = (−1)ηµA2µ(−t − iβ ,P~x) , (31b)

where (−1)η = ±1 and (−1)ηµ = ±1 are the PT eigenvalues of ϕ and Aµ, respectively, and
where P acts on an odd number of spatial coordinates, e.g. P~x = (−x1, x2, . . . , xd). Here we
chose PT for concreteness; Eqs. (30),(31a),(31b) can be generalized to when the Hamiltonian
H is invariant under T, or any other discrete transformation that contains T. This symmetry
encodes the periodicity of n-point functions along the Euclidean time direction. A derivation
of (30) is outlined in Appendix C. Using (28), eqs. (31a),(31b) can be repackaged in terms of
Bµ:

Seff[B1µ, B2µ] = Seff[B̃1µ, B̃2µ] (32)

B̃1µ(t, ~x) = (−1)ηµB1µ(−t,P~x), B̃2µ(t, ~x) = (−1)ηµB2µ(−t − iβ ,P~x) . (33)

At this point, the effective action can depend on any combination of B1µ and B2µ that satisfies
(29) and (32). Interestingly, this type of action describes a superfluid, essentially because it
depends on both ∂tϕ and ∂iϕ. We are however interested in a phase where the U(1) global
symmetry is not spontaneously broken. To ensure this, we require the effective action to be
invariant under an additional symmetry, which acts diagonally on the two “phase fields”:

ϕ1→ ϕ1 +λ(~x), ϕ2→ ϕ2 +λ(~x) , (34)

where λ(~x) is an arbitrary function of space, and where the background fields A1µ, A2µ do not
transform. This symmetry is the statement that the value of the diagonal part of the phase
at a given time is not physical, and thus spontaneous symmetry breaking cannot occur. Eqs.
(29), (32) and (34) constitute the full list of conditions that the effective action Seff should
possess in order to describe the fluctuating hydrodynamics of the conservation of Jµ. We will
see concrete expressions of Seff in the next Section.

Finally, as we are interested in the classical regime of fluctuating hydrodynamics, we can
neglect the contribution of quantum effects in the effective action which will in turn simplify
part of the calculations. To take the classical limit we restore factors of ħh and write

ϕ1 = ϕr +
ħh
2
ϕa, ϕ2 = ϕr −

ħh
2
ϕa,
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A1µ = Arµ +
ħh
2

Aaµ = Arµ −
ħh
2

Aaµ, B1µ = Brµ +
ħh
2

Baµ = Brµ −
ħh
2

Baµ . (35)

The r- and a-fields are often referred to as “classical” and “noise” variables, respectively. This
comes from that the a-fields do not contribute to the dynamics at mean-field level: they are
responsible for the noise. In particular, using (27) we write

Jµr ≡
1
2
(Jµ1 + Jµ2 ) =

δSeff

δAaµ
= Jµ(mean-field) + · · · , (36)

where the dots stand for terms that contain at least one power of Baµ, and Jµ(mean-field) depends
only on Brµ. At mean-field level, the hydrodynamic equation for current conservation is simply
∂µJµ(mean-field)=0. In writing effective actions below we will always use the combinations Brµ

and Baµ (instead of B1µ and B2µ) as they are very convenient in the classical limit. Finally,
substituing β → ħhβ in (32), taking ħh→ 0 we obtain a local transformation

B̃rµ(t, ~x) = (−1)ηµBrµ(−t,−~x), B̃aµ(t, ~x) = (−1)ηµ(Baµ(−t,P~x) + iβ∂t Brµ(−t,P~x) .
(37)

For a detailed study of the hydrodynamics of U(1) currents using this framework, with
and without energy conservation, we remind the reader to [51,52], where it was shown that
generically one finds ordinary diffusive scaling. In the presence of quantum anomalies, the
system displays KPZ or coupled-KPZ scaling in one spatial dimension.

3.2 The action of non-Abelian hydrodynamics

In this Section we shall construct the action of hydrodynamics for a conserved current associ-
ated to a generic non-Abelian (continuous) flavor symmetry G. Let us consider coupling the
system to an external background gauge field Aµ taking values in the algebra. Under a gauge
transformation,

Aµ→ VAµV−1 + iV∂µV−1 , (38)

where V (t, ~x) is an element of G. For a theory of a conserved G-current the combination (28)
generalizes to

Bµ ≡ UAµU−1 + iU∂µU−1 , (39)

where U(t, ~x) is an element of G transforming as

U → UV−1 . (40)

Note that Bµ is invariant under transformation (38) accompanied with (40). To describe the
hydrodynamics of such systems, we consider the Schwinger-Keldysh action where fields are
doubled, B1µ, B2µ, with

B1µ ≡ U1A1µU−1
1 + iU1∂µU−1

1 , B2µ ≡ U2A2µU−1
2 + iU2∂µU−1

2 , (41)

which are separately invariant under transformations V1, V2 defined in (38),(40). Moreover,
we impose the diagonal shift symmetry

U1→ ΛU1, U2→ ΛU2 , (42)

where Λ(~x) is an element of G that depends arbitrarily on space and is time-independent.
Under this transformation, B10 and B20 are invariant, while

B1i → ΛB1iΛ
−1 + iΛ∂iΛ

−1, B2i → ΛB2iΛ
−1 + iΛ∂iΛ

−1 . (43)
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It is now convenient to introduce the variables

Brµ =
1
2
(B1µ + B2µ), Baµ = B1µ − B2µ , (44)

in terms of which the symmetry principle (43) reads

Br t → ΛBr tΛ
−1 Baµ→ ΛBaµΛ

−1 Bri → ΛBriΛ
−1 + iΛ∂iΛ

−1 , (45)

i.e. Br t and Baµ transform in the adjoint, while Bri transforms as a connection and can there-
fore be used to construct a covariant derivative ∇i = ∂i − i[Bri , ·]. For example

∇iBr t ≡ ∂iBr t − i[Bri , Br t] , (46)

transforms covariantly as ∇iBr t → Λ∇iBr tΛ
−1. This will be a convenient building block to

write effective actions.
We shall neglect quantum effects of the underlying microscopic system. To this aim, we

re-instate powers of ħh and take ħh→ 0 as we did around eq. (35). Expanding to first order in
ħh (we drop the subscript r from now on),

A1µ = Aµ +
ħh
2Aaµ, A2µ = Aµ −

ħh
2Aaµ, U1 = U

�

1+ iħh2ϕa

�

, U2 = U
�

1− iħh2ϕa

�

,
(47)

whereϕa(t, ~x) takes values in the algebra of G. Then, writing B1µ = Bµ+
ħh
2 Baµ, B2µ = Bµ−

ħh
2 Baµ,

we find
Bµ = UAµU−1 + iU∂µU−1, Baµ = U(Dµϕa + Aaµ)U

−1, (48)

where we defined the covariant derivative with respect to the background Aµ,
Dµψ≡ ∂µψ− i[Aµ,ψ], with ψ is in the adjoint representation of G.

Let us now look at the dynamical KMS symmetry. As in the previous Section we shall
assume that the underlying microscopic system is invariant under PT. Let us take the initial
state to be locally a Gibbs ensemble of the form e−β(H−µ

A
0QA)/ tr(e−β(H−µ

A
0QA)), where µA

0 = µ
A
0(~x)

is the initial chemical potential, taken to be a slowly-varying function of ~x , and QA are the
generators of the algebra of G. As shown in Appendix C, this leads to the symmetry

B̃1µ(t, ~x) = (−1)ηµB1µ(−t,P~x), B̃2µ(t, ~x) = (−1)ηµB2µ(−t − iħhβ ,P~x) , (49)

where we made explicit the dependence on ħh. The PT eigenvalue (−1)ηµ of Bµ is deter-
mined by the PT eigenvalue of the charge density n. For example, for the SU(2) spin density
n= nAσA, n flips sign under the composition PT due to (10). The classical limit ħh→ 0 of (49)
is:

B̃µ(t, ~x) = (−1)ηµBµ(−t,P~x), B̃aµ(t, ~x) = (−1)ηµ(Baµ(−t,P~x) + iβ∂t Bµ(−t,P~x)) . (50)

We will impose invariance of the action under this transformation in order to encode the pres-
ence of local equilibrium.

We now proceed to write down the hydrodynamic action. The combinations Bµ and Baµ
as given in (48) will be our building blocks. We will write various terms compatible with
symmetries (45) and (50), and with the unitarity conditions (29). As in the usual spirit of
hydrodynamics, we will follow an expansion in derivatives, and in addition we will perform
an expansion in the amplitude of Baµ, as this corresponds to noise corrections. Because of
the first condition in (29), each term should be at least liner in Bat or Bai . At zeroth order in
derivatives, there is only one term proportional to Bat :

7

Seff =

∫

dd xdt tr (Bat n(Bt)) , (51)

7We choose to take the trace in the adjoint representation; other representations simply lead to different nor-
malizations of the trace which can be re-absorbed in the couplings.
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where n(Bt) is an arbitrary function of Bt with values in the Lie algebra of G. Although
our current discussion applies to a generic non-abelian group G, in what follows we shall
specialize for concreteness to G =SU(2). In this case, n is an arbitrary odd function of Bt
(as tr((Bt)2nBat) = 0). To impose dynamical KMS invariance of the action (51), we require
tr (Bat n(Bt)) → tr ((−1)ηt (Bat + iβ∂t Bt)n((−1)ηt Bt)) = tr ((−1)ηt Bat n((−1)ηt Bt))
+ iβ∂t tr (F((−1)ηt Bt)), where F is a suitable function F , so that the second term only con-
tributes through a total derivative. Depending on the value of ηt , n(Bt) may be constrained
to be odd independently of G.

At first order in derivatives and linear order in Baµ there can be several terms, depending
on the polynomial invariants of the Lie algebra of G. For SU(2), there are six terms:

−σ tr(Bai∂t Bi) − i tr(λBai[Bt ,∂t Bi]) −λ′ tr(BaiBt) tr(Bt∂t Bi)

λ1 tr(BaiBt) tr(Bt∇iBt) λ2 tr(Bai∇iBt) iλ3 tr(Bai[Bt ,∇iBt]) , (52)

where σ,λ,λ′,λ1,2,3 are arbitrary functions of tr(B2
t ). In principle we could also include terms

proportional to the time component Bat which contain derivatives or two or more powers of
Baµ, but these can be removed by a suitable redefinition of the hydrodynamic fields [44] There
are two terms that contains no derivatives and two powers of Bai:

iσ̃ tr(B2
ai) iλ̃(tr(BaiBt))

2 , (53)

where σ̃, λ̃ are functions of tr(B2
t ), and the factor of i is required by unitarity, see the second

eq. in (29). The third eq. in (29) demands σ̃, λ̃ ≥ 0. Imposing dynamical KMS invariance
gives σ̃ = σ/β ≥ 0, λ̃ = λ′/β ≥ 0, λ1,2,3 = 0, and no condition on λ. In summary, the most
general action up to the first subleading orders in derivatives and Baµ for SU(2) hydrodynamics
is Seff =

∫

dd xdt L, where

L= tr
�

Bat n−σBai∂t Bi − iλBai[Bt ,∂t Bi]−λ′ tr(BaiBt) tr(Bt∂t Bi) + i
σ

β
B2

ai + i
λ′

β
(tr(BaiBt))

2
�

.

(54)

From (36), the mean-field hydrodynamic current is Jµ = δS
δAaµ

�

�

�

Baµ=0
. This gives the charge

density J t = U−1n(Bt)U = n(µ), where we defined the SU(2) chemical potential

µ≡ U−1Bt U = At − iU−1∂t U . (55)

The spatial component of the current is

J i = U−1(−σ∂t Bi − iλ[Bt ,∂t Bi]−λ′Bt tr(Bt∂t Bi))U

= σ(Ei − Diµ) + iλ[µ, (Ei − Diµ)] +λ
′µ tr(µ(Ei − Diµ)) ,

(56)

where Diµ ≡ ∂iµ− i[Aµ,µ] is the SU(2) covariant derivative, and Ei = Fi t is the SU(2) back-
ground electric field, where Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν]. To obtain (56) we used

U−1∂t BiU = U−1(∂t Bi − ∂iB0 − i[B0, Bi] + ∂iB0 − i[Bi , B0])U = −Ei + Diµ , (57)

and

∂µBν − ∂νBµ − i[Bµ, Bν] = U FµνU−1, ∂ν(UµU−1)− i[Bν, UµU−1] = U DνµU−1 . (58)

Setting the SU(2) electric field to zero, and writing in components µ= µAσA, with A= 1, 2,3,
the current reads

J i
A = −σ∂iµ

A+ 2λεABCµB∂iµ
C −λ′µAµB∂iµ

B , (59)
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which agrees with previous literature [8]. The first term in (59) corresponds to Fick’s law
for SU(2), and encodes the diffusive behavior of the spin two-point function at long time.
The second term is non-dissipative, indeed it has no positivity constraints as discussed below
(53); its effect is to rotate the current away from the direction of the SU(2) density, and will
play a crucial role in the discussion of Sec. 6.4. We notice that if this term were the only
nonvanishing one, i.e. σ,λ′ = 0, the resulting dynamics would be integrable in one spatial
dimension [53, 54]. The third term can be viewed as an enhancement of diffusion in the
direction of the SU(2) density. The advantage of the approach discussed here is two-fold: on
one hand, (54) is obtained solely through symmetry principles and, on the other, it provides a
systematic approach to evaluate the effect of hydrodynamic fluctuations.

The absence of dynamical KMS symmetry (e.g. for the Floquet-type spin chains studied in
Sec. 6 where energy is not conserved) will only lead to minor modifications of our discussion.
The terms in (52)-(53) are all allowed in the action (54) as they are consistent with constraints
from unitarity (29), and their coefficients can have unrelated values. This will not lead to
qualitative changes in the predictions discussed below.

Next, we would like to explicitly show that the frame rotation discussed in Sec. 2.3 leaves
the effective action invariant, and to confirm the assumption that J i transforms covariantly
under this frame rotation. The latter transformation can be viewed as a particular gauge
transformation acting on U and Aµ of the form (38) and (40):

U → UeiŨ t , Aµ→ e−iŨ tAµeiŨ t + ie−iŨ t∂µeiŨ t , (60)

where Ũ is an element of the algebra of SU(2). Since this is a gauge transformation, it will
leave Bµ and Baµ invariant. Using µ = At − iU−1∂t U we see that µ → e−iŨ tµeiŨ t , and n
undergoes the same transformation, hence recovering (20) upon identifying Ũ = 1

2µ
A
extσ

A.
The shift of the background gauge field At precisely accounts for the shift in the background
chemical potential in going from microcanonical to (grand) canonical ensemble. Finally, from

J i = δS
δA1i

�

�

�

Aaµ,ϕa=0
we immediately imply that J i → e−iŨ t J ieiŨ t , as stated in Sec. 2.3.

Finally, we emphasize that for larger symmetry groups than SU(2), the actions above can
be a bit more complicated, since for example the term tr(Bai{Bt ,∂t Bi}) is no longer vanishing.
However, besides adding more nonlinear corrections to the hydrodynamic equations, such ef-
fects will change none of the key phenomenology described below. We also note that whenever
σ > 0, all these nonlinear terms (including the λ and λ′ terms in (59)) become irrelevant in
the renormalization group sense. If one considers a finely tuned point where σ = 0, then it
may be possible to discover exotic new kinds of hydrodynamics – however such theories will
clearly be unstable fixed points.

3.3 Adding energy conservation

In the action formulation of hydrodynamics, energy conservation is described in terms of the
time reparametrization mode t → σ(t, ~x). Here, t denotes the “physical” time, i.e. physical
quantities as well as background sources such as Aµ, are given as functions of t (and ~x). A
nontrivial σ(t, ~x) induces local dilations of the time scale d t → Λd t, with Λ= ∂tσ(t, ~x). This
in turn corresponds to a local rescaling of the inverse temperature β(t, ~x)→ ∂tσβ(t, ~x), which
motivates to identify the local inverse temperature as β = β0(∂tσ)−1, where β0 is an overall
scale, e.g. the asymptotic value of temperature.8

8For a relativistic system, a more formal way to see this is to couple the system to a metric gµν. For a system in
local thermal equilibrium, the inverse temperature at a given point is given by the “time-time” component of the
metric, β = β0

p

−gt t . Under time reparametrizations, the metric transforms as gt t → gt t(∂σ t)2. Thus, setting to
zero the background, gt t = −1 the inverse temperature is β = β0(∂tσ)−1.
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We are interested in Schwinger-Keldysh effective actions, and thus σ will be accompanied
by the “a-variable” σa(t, ~x), responsible for the noise in the energy current. The action will
have three symmetries. The first one is space-dependent time shifts:

σ(t, ~x)→ σ(t, ~x) + f (~x) , (61)

where f (~x) is an arbitrary function of ~x . This symmetry is motivated by that only the time
derivative ∂tσ is a physical quantity, which indeed corresponds to temperature. The second
symmetry is constant shifts of σa:

σa(t, ~x)→ σa(t, ~x) + c , (62)

and is a consequence of time-translation invariance. Equivalently, this symmetry is necessary
in order to guarantee energy conservation. Finally, we have dynamical KMS invariance [47]

σ(t, ~x)→−σ(−t,P~x), σa→−σa(−t,P~x)− iβ(−t,P~x) , (63)

where we assumed that the microscopic system is invariant under PT, as in eq. (50). Having
now a local inverse temperature that depends on space and time β(t, ~x), dynamical KMS
invariance for the fields in (50) is modified to

B̃µ(t, ~x) = (−1)ηBµ(−t,P~x), B̃aµ(t, ~x) = (−1)η(Baµ(−t,P~x) + iβ V̂µ(−t,P~x)) , (64)

where V̂µ ≡ β−1LβBµ = ∂t Bµ + β−1Bt∂µβ is, up to a factor of β−1, the Lie derivative with
respect to the space-time vector βδµt [44].

To include energy conservation in the hydrodynamic action (54) we use expansion in
derivative and in the amplitudes of Baµ and σa, leading to

S =

∫

dtdd x
§

− ε∂tσa − (κ∂iβ +α tr(Bt V̂i))∂iσa + iκ(∂iσa)
2+

tr
�

Bat n−σBai V̂i − iλBai[Bt ,∂t Bi]−λ′BaiBt tr(Bt V̂i)−αβ−1BaiBt∂iβ

+ i
σ

β
B2

ai + i
λ′

β
(tr(BaiBt))

2 + 2i
α

β
Bt Bai∂iσa

�ª

,

(65)

where n,σ,λ,λ′,ε,κ,α are arbitrary functions of tr(B2
t ) and of β . Various terms are propor-

tional to the combination V̂i instead of just ∂t Bi as a consequence of dynamical KMS invariance,
as one can verify. The latter invariance also implies that ε and n satisfy the thermodynamic
relations

∂ (βp)
∂ β

= −ε,
∂ (βp)
∂ (βBt)

= n , (66)

where p is an arbitrary function of tr(B2
t ) and β . Conjugating the second equation by U and

using U−1Bt U = µ we recover the thermodynamic relation d(βp) = −εdβ + nd(βµ), which
rearranges into the Gibbs-Duhem equation with a non-Abelian chemical potential

dp = sd(β−1) + tr(ndµ) , (67)

where the entropy density is s = β(p+ ε − tr(µn)). In (65) we omitted terms proportional to
B2

at , (∂tσa)2, Bat∂tσa because we can fix them to zero up to a redefinition of µ,β [44].
Since energy conservation is obtained by varying the Lagrangian with respect to σa, the

energy current can be read off directly by looking at terms proportional to ∂tσa and ∂iσa,
giving

J t
ε = ε, J i

ε = κ∂iβ +α tr(µVi) , (68)
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where Vi ≡ U−1V̂iU = −Ei+Diµ+β−1µ∂iβ = −Ei+β−1Diµ̂, where we used (57), and µ̂≡ βµ.
The SU(2) current is

J t = n, J i = −σVi − iλ[µ, Vi]−λ′µ tr(µVi)−αµβ−1∂iβ . (69)

Let us now expand around a background temperature and chemical potential: β = β0+δβ
and µ̂= µ̂0+δµ̂ and set the SU(2) background Aµ to zero, where β0, µ̂0 denote the background
values. Choosing µ̂0 = µ̂A

0σ
A with µ̂A

0 = µ̄0δ
A3, with δAB denoting the components of the

identity in flavor space, and decomposing δµ̂= (δµ̂I ,δµ̂3), with I = 1, 2, gives

J i
ε = κ∂iδβ +αβ

−2
0 µ̄0∂iδµ̂

3, J i
3 = −σβ

−1
0 ∂iδµ̂

3 −λ′β−3
0 µ̄

2
0∂iδµ̂

3 −αβ−2
0 µ̄0∂iδβ

J i
I = −σβ

−1
0 ∂iδµ̂

I − 2λβ−2
0 µ̂0ε

I J∂iδµ̂
J .

(70)

We also have ε = ε0 +δε and n= n0 +δn, with

δε = ∂βεδβ + ∂µ̂3εδµ̂3, δn3 = −∂µ̂3εδβ +χ3δµ̂
3, δnI = χ0δµ̂

I , (71)

where χ3 = ∂µ̂3 n3 and χ0 =
1
2∂µ̂I nI are SU(2) susceptibilities. In (71) we used that, from (66),

− ∂ ε
∂ µ̂A =

∂ nA

∂ β , and n1 is defined through ∂µ̂I nJ = n1δ
J
I . The conservation equations then split

into a scalar and a vector sector with respect to the U(1) transformations preserved by µ̂0:

∂t

�

δε

δn3

�

=

�

κ αβ−2
0 µ̄0

αβ−2
0 µ̄0 σβ−1

0 +λ′β−3
0 µ̄

2
0

��

−∂βε −∂µ̂3ε

−∂µ̂3ε χ3

�−1

∂ 2
i

�

δε

δn3

�

, (72)

∂tδnI = χ−1
0 β

−1
0 (σδ

I J + 2λβ−1
0 µ̄0ε

I J )∂ 2
i δnJ . (73)

The scalar sector contains two diffusive modes carried by linear combinations of δε and δn3,
as in the standard hydrodynamics of U(1) charge and energy conservation. The vector sector
is carried by δnI and has two modes with diffusive and magnon contributions:

ω= −iDk2 ± Ak2 , (74)

with D = σ/(β0χ0) and A= 2µ̄0λ/(β2
0χ0) [8,55]. See also the recent discussion in [56].

We shall now perform a scale analysis. The dispersion relations just found imply the scal-
ing ω ∼ k2. Requiring that the first and the fourth terms in (65) be dimensionless gives
σa,ε ∼ kd/2. Similarly, one infers that ϕa, n ∼ kd/2. This is in fact the standard scaling of
diffusive conserved densities and their associated noise variables. It is then easy to see that
the nonlinear couplings in (65) have positive momentum dimension: the terms proportional
to σ1,σ3 scale like kd/2, while the terms proportional to σ2 scale like kd . This means that all
the nonlinearities are irrelevant in the renormalization group sense, and thus the dispersion
relation (74) is not affected by hydrodynamic fluctuations at O(k2). As a consequence, the
diffusion constant D in (74) remains finite at late time, in disagreement with the logarithmic
enhancement of eq. (1). We then see that, as far as (fluctuating) hydrodynamics is concerned,
only the presence of additional charges can potentially lead to a logarithmic enhancement of
diffusion at very late times. We will discuss this scenario in Section 5.

The nonlinearities in (65) still lead to high-temperature non-analyticities in transport. In
particular, the term proportional to λ in Eq. (59) can be shown to give a non-analytic contri-
bution to the conductivity of the form

σ(ω)∼ σ(0) +λ2|ω|d/2 + · · · , (75)

as can be obtained from a one-loop calculation of the fluctuating hydrodynamic path inte-
gral of the action (65) (or (54)). This same singularity was found in Ref. [57], where high-
temperature non-analyticities in transport of many-body chains were first discovered. In that
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case energy conservation was crucial in order to have this effect. Here, the nonlinearity asso-
ciated to λ is present even in systems which break energy conservation; the crucial ingredient
is the presence of multiple densities (as was clear also from [57]), even without energy con-
servation. In Section 6.4 we will show that the above nonlinearities are still crucial to explain
the puzzle related to eq. (1).

4 Fluids with other non-Abelian symmetries

The purpose of this Section is to explain why non-Abelian flavor symmetries have a very differ-
ent impact on hydrodynamics than other non-Abelian symmetries in hydrodynamics. A classic
example of such a symmetry is rotational invariance: the generators of rotation do not com-
mute with momentum, so the symmetry algebra of an ordinary liquid is non-Abelian. A more
exotic example is a fluid with multipole constraints. In each case, the non-Abelian symmetry
group is intimately tied to a mixture of spacetime symmetry with an Abelian flavor symmetry.
We will show how that qualitatively changes the effective theory.

4.1 Fractons

We first describe fluids with a conserved U(1) charge and dipole moment, whose hydrody-
namics was recently formulated in [58]; see also [59–62]. An instructive cartoon is to start
by supposing that there is a local conserved density ρ corresponding to charge, and si corre-
sponding to local dipole density orthogonal to x iρ: namely, the total conserved dipole moment
can be written as

Pi :=

∫

dd x (x iρ + si) . (76)

x i represents the space-only coordinates in standard Einstein index notation. To understand
this prescription, it can be helpful to imagine the explicit coarse-graining prescription of hy-
drodynamics. We divide up space into boxes of length L. For simplicity, let us take d = 1.
Charge and dipole densities are

n(x) =
1
L

x+L/2
∫

x−L/2

dy ρ(y), d(x) =
1
L

x+L/2
∫

x−L/2

dy yρ(y) s(x) = d(x)− xn(x) . (77)

Assuming the system thermalizes, after a sufficiently long time the two-point function of ρ,
G(x , t) = 〈ρ(t, x)ρ(0, 0)〉, will be a slow function of x compared to the scale L. The two-point
function of the coarse-grained density n(x) in this regime can then be approximated by G, i.e.

〈nx(t)n0〉=
1
L2

x+L/2
∫

x−L/2

dy

L/2
∫

−L/2

dz G(y − z, t)→ G(x , t) . (78)

Similarly, the two-point function of the coarse-grained dipole density dx becomes:

〈dx(t)d0〉=
1
L2

x+L/2
∫

x−L/2

dy

L/2
∫

−L/2

dz yzG(y − z, t)→−
L2

12
x∂x G(x , t) , (79)

where we used that, taking x � L,
∫ L/2
−L/2

dz
a zG(y−z, t)≈ − L3

12∂y G(y, t) via a Taylor expansion
in z.
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Figure 1: Allowed dynamics in a one-dimensional dipole-conserving lattice model.
Gray shaded regions denote different coarse grained blocks as in (77). This move
shows that

∫

dxs(x) is not conserved in general. Only charge density represents a
generic hydrodynamic degree of freedom.

We see that the two-point function of d(x) is entirely determined by that of n(x). In the
long time limit, charge density tends to vary over long scales, and thus the dipole charge is
effectively carried by the coarse-grained charge density.

One might ask whether the argument above is too fast – perhaps on a discrete lattice (with
sites labeled by integers), for example, the function G(x , t) oscillates rapidly every other x ,
thus encoding additional structure that is not captured by the hydrodynamic mode ρ in the
continuum effective theory. Can it be possible that this extra structure can encode a new
conservation law for s(x), the microscopic dipole density? As shown in Fig. 1, this possibility
can be generically ruled out. The reason is that even in a local region of the lattice, the local
dipole density defined through the coarse graining procedure (77) can decay through the
motion of a local charge surplus in space: (76) permits s to decay via this channel as only the
total dipole moment is conserved. At the level of the equations of motion, one will generically
find a non-hydrodynamic equation of motion for this microscopic dipole density:

∂ts = −
s− ∂x n
τ

+ D2∂
2
x s+ · · · . (80)

The key difference then, between this dipole-conserving theory and the non-Abelian fla-
vor hydrodynamics of Section 3 is that the motion of flavor charges through space does not
allow other flavor charges to decay away. The mixing of spacetime symmetries with charge
conservation does not lead to new degrees of freedom, but rather adds additional constraints.
For example, in the dynamical process shown in Fig. 1, the decay of s(x) is sensitive to the
precise location of the coarse-graining. So we conclude that in the hydrodynamic equations
for both ∂ts and ∂t n, the right hand sides can depend only on the combination s − ∂x n, or
higher derivative corrections ∂x s, ∂ 2

x n, etc. Combining (80) with

∂t n= D1∂x (∂x n− s)− D3∂
4
x n− D4∂

3
x s+ · · · (81)

we obtain a fourth-order subdiffusive equation for n:

∂t n= −
�

D4 + D3 + D1D2τ
�

∂ 4
x n+ · · · (82)

in agreement with the general framework of [58]; see also similar arguments to the above
paragraph in [63] in the context of an experiment in a cold atomic gas in a tilted optical
lattice.

Indeed, when the commutator of total momentum Px with a charge (such as dipole density
Px) gives another charge (such as Q), i.e.9

[Px , Px] = iQ, (83)

then only Q is a hydrodynamic mode. This captures both the multipole symmetry case dis-
cussed above and the rotation symmetry case that we will discuss next. In the EFT formalism

9The non-commutativity of multipole algebras in the presence of momentum was first appreciated in [64].

17

https://scipost.org
https://scipost.org/SciPostPhys.10.1.015


SciPost Phys. 10, 015 (2021)

we have introduced above, the essential idea is as follows. Let ϕx and ϕ be local phase de-
grees of freedom, as in Section 3, for the dipole and charge respectively. Then (neglecting
background gauge fields) the invariant quantities are ∂tϕa, ∂tϕxa, ∂tϕ, ∂tϕx , ∂xϕxa, and
∂xϕa−ϕxa. The latter invariant mixes together the two symmetries in an important way. The
most general effective action at linear order in a-fields then takes the form

S =

∫

dtdx (ρ∂tϕa +ρx∂tϕxa + Jx(∂xϕa −ϕxa) + Jx x∂xϕxa) , (84)

where ρ, ρx can depend on ∂tϕ and ∂tϕx , then we can see that in the hydrodynamic limit,
the second term is negligible as it is higher derivative than the third term. The ϕxa equation
of motion gives

Jx = ∂x Jx x , (85)

precisely as claimed in [58] – the dipole current Jx x is the fundamental hydrodynamic operator,
whose derivative gives the ordinary charge current.

4.2 Rotational invariance

Essentially identical arguments to the above allow us to argue that a rotationally invariant
fluid with both momentum and angular momentum conservation will not have a new degree
of freedom corresponding to angular momentum, but instead will obey extra constraints in
the hydrodynamic regime [65]; see also [66]. Let pi(~x) denote the momentum density in d
dimensions, and let Li j(~x) denote a local angular momentum density, where only the total
angular momentum

Ji j =

∫

dd x
�

x i p j − x j pi + Li j

�

(86)

is conserved. Repeating the argument of the previous subsection implies that the equation of
motion for Li j takes the schematic form

∂t Li j = −
Li j − (∂i p j − ∂ j pi)

τ
+ · · · (87)

and that the equation of motion for momentum takes the form

∂t pi = −∂ jτi j , τi j = τi j[Lmn − (∂mpn − ∂npm),∂mpn + ∂npm,∂m Lnp,∂m∂npp, . . .] . (88)

In an ordinary fluid, there would also be charge/mass and energy conservation included in
. . . as well. The antisymmetric contribution to the stress tensor τi j is, at leading order in
the hydrodynamic limit, proportional to Li j − ∂i p j + ∂ j pi , which vanishes according to (87).
Therefore, at leading order in hydrodynamics, the stress tensor must be symmetric, even when
we include an explicit degree of freedom representing internal rotational dynamics.

4.3 No non-Abelian fracton hydrodynamics

Interestingly, we also observed that there is no non-trivial hydrodynamics with propagating
degrees of freedom that can be found by considering possible non-Abelian flavor extension
of “fracton hydrodynamics." We begin by a consideration of systems in one dimension, where
there are no non-trivial possibilities whatsoever, before discussing higher dimensions, where
the only non-trivial possibility is diffusion along subdimensional manifolds.

Let us start by assuming that we have a one dimensional lattice model where all flavor
charges QA are conserved, as is the dipole moment of just one flavor charge P1 =

∑

x xQ1
x i.e.

[U(t),QA] = 0 for all A, and also [U(t), P1] = 0. We also assume the group G is simple, and
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will return to this point later. Now from the Jacobi identify for commutators, it follows that
[QA, P1] is also conserved, for any A. However i[QA, P1] = − f A1C PC , and thus PC must also
be conserved, for any C . Thus, if all flavor charges are conserved and so is the dipole moment
of one charge, then the dipole moment of every charge must be conserved i.e. [U(t), PA] = 0
for all PA. Now by another application of the Jacobi identity for commutators, it follows that
[U(t), [PA, PB]] = 0 as well. Therefore, the following quantity is also conserved:

i[PA, PB] = − f ABC
∑

x∈Λ
x2QC

x . (89)

We conclude that all quadrupole moments are also conserved! Obviously, arbitrarily higher
moments of conserved flavor charge can also be generated, and so there is no hydrodynamics at
any perturbative order in derivatives. To recover subdiffusion, the only flavors with dipole (or
higher) moments conserved must correspond to mutually commuting charges. Yet this would,
of course, microscopically break the flavor symmetry group. An exception to the statements
above arise if the group G is not simple. For example, if G = U(1)×U(1)× · · · × Gnon−Ab, it is
possible to have multipole conservation laws for the U(1) charges, as they commute with all
other charges.

We now show that not only does a ‘fractonic’ extension of a theory with non-Abelian
charges not have a hydrodynamic description, it necessarily has totally trivial dynamics, start-
ing with the case of one spatial dimension. Consider a lattice system and work in the basis of
product states in the QA charge basis. Any two distinct product states will differ in at least one
of their QA multipole moments, and since all the multipole moments are conserved, each such
state will be in a separate symmetry sector. The time evolution operator will thus be purely
diagonal in this basis. This argument would have worked just as well for any A, and thus the
time evolution operator must be diagonal in any local product state basis. The only option is a
time evolution operator that acts as the identity on every site - corresponding to totally trivial
dynamics.

These arguments manifestly extend to higher spatial dimensions, with all components of
dipole conserved. They similarly also rule out non-Abelian theories in higher dimensions with
subsystem symmetry along all directions. The easiest way to see this is to note that subsystem
symmetry automatically implies dipole conservation (if charge is conserved in every hyper-
plane orthogonal to z then the z component of dipole is also conserved), and by the above
argument conservation of all components of dipole is sufficient to trivialize the dynamics.

Finally, let us consider a higher dimensional system with dipole (and hence multipole) con-
servation along only one direction, x̂ . This implies subsystem symmetry in hyperplanes orthog-
onal to x̂ only. This is not sufficient to totally trivialize the dynamics. Following [58], we expect
that the conserved densities will be governed by equations of the form ∂tρ = a∇2

⊥ρ+b∇2
⊥∂

2
x ρ,

where ∇2
⊥ denotes the Laplacian in the hyperplane orthogonal to x , and a and b are numer-

ical constants. At leading order in derivatives, this just corresponds to ordinary diffusion in
hyperplanes orthogonal to x̂ .

5 A theory with logarithmically-enhanced diffusion

In thermalizing systems, logarithmically diverging transport parameters at low frequencies are
a hallmark of marginally irrelevant hydrodynamic fluctuations [67]. These arise schematically
as a hydrodynamic loop contribution to the Kubo formula

δD ∼
1

Dn/2
log

1
ω

, (90)
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with n ∈ N (a detailed example will be given below). Higher-loop contributions are similarly
divergent. The leading logarithmic divergences can be resummed by solving the β-function
equation

βD =
δD

δ log 1
ω

∼
1

Dn/2
. (91)

The solution leads to anomalous diffusion constants that grow logarithmically with time

D(t)∼ logα t , (92)

with α = 2/(n + 2). Marginally irrelevant hydrodynamic fluctuations are common in d = 2
spatial dimensions, where the leading divergence (90) arises at one-loop; examples include
regular fluid dynamics [67] (where α = 1/2), surface chiral metals [52] (where α = 2/3) as
well as driven-dissipative systems (see e.g. [68, 69]). Logarithmically-enhanced diffusion is
also possible in d = 1 spatial dimensions, if the leading effect of hydrodynamic fluctuations
arises at two-loops – a possibility realized for example in surface growth with reflection sym-
metry [70]. In this Section we find a hydrodynamic theory involving non-abelian densities
in d = 1 that has similarly anomalous diffusion. As we show below, this requires emergent
symmetries leading to additional slow densities. As we detail in Section 6.3, emergent sym-
metries are essentially ruled out by our numerical results for a class of Heisenberg chains,
and therefore the mechanism presented here is not a viable explanation of the proposed [32]
logarithmic anomalies in these systems. However we hope that this mechanism, although un-
realistic in this context, can serve as an illustration of logarthmically-enhanced diffusion in
d = 1.

Hydrodynamic interactions arise from nonlinearities in the constitutive relation for the spin
current JA ≡ JA

x :
JA = −D∇nA+ · · · . (93)

Since hydrodynamic densities scale as n∼ kd/2 = k1/2 (see Sec. 3.3), a nonlinear term in (93)
is marginal (i.e. scales like the diffusive term) if it contains three hydrodynamic densities and
no gradient. Parity symmetry requires one (or three) of these to be odd under parity. We will
assume for simplicity that spin density nA is the only hydrodynamic variable that is charged
under the flavor symmetry10, and denote the parity-odd density by π̃. A relevant nonlinearity
JA ∼ π̃nA would lead to KPZ scaling [67,71]; it is forbidden if π̃ is even under time-reversal. If
the theory also contains an emergent parity-even, time-reversal-odd density ε̃, then the leading
nonlinearity in the constitutive relation will be marginal

JA = −D∇nA+λnAπ̃ε̃ + · · · , (94)

with λ ∈ R. Now the pair of densities π̃, ε̃ associated with emergent symmetries will typically
form a sound mode, which would suppress loop contributions to the spin diffusivity. We will
assume that this does not happen and that π̃ and ε̃ diffuse with constants Dε, Dπ – in this sense
this situation is fine-tuned. The new term in (94) will lead to a two-loop correction to the spin
retarded Green’s function (see Appendix B for conventions on correlation functions)

GR
nAnB(ω, k) =

δABχDk2

−iω+ Dk2 +Σ(ω, k)
(95)

of the form

Σ(t, x)∼ 〈(∇nAπ̃ε̃)(∇nAπ̃ε̃)〉(x , t)∼∇2 e−
x2

2|t|

�

1
D+

1
Dε
+ 1

Dπ

�

p

DDεDπ|t|3
. (96)

10Lifting this assumption allows for certain exotic possibilities, e.g: the emergence of a spin-3 parity-odd density
could lead to a marginal interaction JA ∼ qABC nBnC (one advantage of this scenario is that a sound mode does not
have to be fine tuned away, see main text). The numerics in Sec. 6 however also rules out this possibility in a broad
range of frequently studied models.
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Fourier transforming leads to a logarithmic correction to the diffusion constant

δD ∼ lim
k→0

Σ(ω, k)
k2

∼
∫

dxdt eiωt e−
x2

2|t|

�

1
D+

1
Dε
+ 1

Dπ

�

p

DDεDπ|t|3
∼

log 1
ω

p

DDε + DεDπ + DπD
. (97)

The diffusion constants associated with the emergent symmetries Dε, Dπ will receive similar
corrections. These logarithmic contributions can be resummed by solving the (coupled) β-
function equations, as described above. One finds that all diffusion constants behave, asω→ 0
(and thus t →∞), as

D ∼ log1/2 1
ω

, or D ∼ log1/2 t . (98)

At intermediate times, it is possible that Dε and Dπ have not yet reached their asymptotic
behavior (98) and are approximately constant. If this case, one finds from (97) that the spin
diffusivity behaves as D ∼ log2/3 t if D�min(Dε, Dπ) and D ∼ log t if D�min(Dε, Dπ).

6 Spin chains with SU(2) symmetry

In this Section we apply the formalism mentioned above to spin chains with SU(2) symme-
try. There appears to be some controversy in the literature as to whether such spin chains,
in the generic non-integrable case, should exhibit conventional diffusion [18, 21, 28–30] or
superdiffusion [16,24,32]. We aim to resolve this controversy.

6.1 The classical Heisenberg spin chain

A canonical example of a lattice model with SU(2) flavor symmetry is the classical Heisenberg
model with Hamiltonian on an L-site lattice in one dimension:

H = J
L−1
∑

i=1

~Si · ~Si+1, (99)

where |~Si|= 1 is a classically constrained vector. Using the classical Poisson brackets

{SA
i , SB

j }PB = ε
ABCSC

i δi j (100)

the equation of motion
d
dt
~Si = {H, ~Si}PB (101)

is widely believed to generate chaotic and non-integrable classical dynamics [21]. (In contrast,
the quantum spin-1

2 model is integrable [72,73]).
There is an old debate in the literature about the nature of hydrodynamics and spin dif-

fusion in the classical Heisenberg model [16, 18, 21, 24]. This debate has been revived in the
recent literature by recent work [32] arguing for a logarithmically enhanced diffusion con-
stant: D(t)∼ log4/3 t as in (1), with other authors arguing for conventional spin diffusion due
to the lack of integrability [29,30].

Let us briefly review the motivation [32] for the logarithmically enhanced spin diffusion
constant (1). In the continuum limit, (99) is integrable with an emergent conserved quantity
associated to invariance under continuous translations (i.e. momentum):

τ=
~S · (∂x ~S × ∂ 2

x
~S)

∂x ~S · ∂x ~S
. (102)

21

https://scipost.org
https://scipost.org/SciPostPhys.10.1.015


SciPost Phys. 10, 015 (2021)

τ approximately obeys the classical Burgers equation, which in one dimension leads to Kardar-
Parisi-Zhang (KPZ) scaling [74] in the presence of noise, which we denote schematically with
ξ. Indeed, KPZ scaling can be observed for a brief transient period at early times in the dy-
namics [32]. However, the authors of [32] argued that at sufficiently late times, the noise
spectrum of the Burgers equation weakens algebraically:

ξ(t)ξ(s)∼ t−1/2δ(t − s), (103)

and this leads [75] to a modification of KPZ scaling compatible with (1), even at infinite
temperature.

Two specific possible flaws in this argument are that: (1) it appears to rely on a breakdown
of ergodicity, due to the time dependence in (103), yet we are most interested in looking at
diffusion in equilibrium correlators; (2) it has been emphasized in Ref. [37] that the continuum
limit of the Heisenberg model does not apply at infinite temperature, as umklapp processes
cannot be ignored.

From the perspective of our effective theory, we make two general comments: (1) SU(2)
symmetry is not sufficient to render τ a hydrodynamic mode, and even if the effects of the
lattice were small, they are expected to be “dangerously irrelevant", breaking conservation
laws and qualitatively changing the character of hydrodynamics. (2) We can easily test for
whether τ is hydrodynamic on the lattice in numerical simulations. As detailed below, we
find no evidence that τ is long-lived. Moreover, after an exhaustive search, we did not find
any evidence for non-trivial structure to the hydrodynamics of the classical Heisenberg chain
beyond ordinary spin and energy diffusion. As predicted by our general effective theory, each
component of spin obeys, at leading order, a separate diffusion equation.

6.2 Numerical results

In this Section, we numerically study the dynamics of several classical models with SU(2)
symmetry and compare with the result obtained from effective field theory. The algorithm we
are using is the first method described in Appendix D. We first consider the Heisenberg model
(99), which is a chaotic system with both energy and spin conserved. These two conservation
laws can be reflected in the long time diffusive behavior in the autocorrelation function

CO(t) = 〈Oi(t)Oi(0)〉 − 〈Oi〉2 , (104)

where O is chosen as Sz
i or the local energy εi = ~Si · ~Si+1. We numerically check these two

quantities in the Heisenberg model with periodic boundary conditions and setting J = 1. The
average 〈· · · 〉 is taken in both initial states and spatial direction. As shown in Fig. 2(a), we
notice that Cε(t)∼ 1/

p
t at late time, while for Cz(t) a small deviation from 1/

p
t appears to

arise. We further plot the numerically extracted diffusion constant

D(t) =
1

tC(t)2
(105)

as a function of t in Fig. 2(b) and we find that while Dε(t) approaches a constant as time
evolves, Dz(t) increases continuously with time, albeit quite slowly. Similar behavior has also
been found in Ref. [32], where they propose that Dz(t)∼ [log(t)]4/3. In Fig. 2(c), we carefully
plot [Dz(t)]3/4 as a function of log(t) and we find that it is a straight line when 2 < log t < 4
and the curve starts to bend down when log t > 4. It is quite possible that in this Heisenberg
model, when the time is long enough, Dz(t) will eventually approach a constant.11 Further
calculation at finite β (see Fig. 2(c)) indicates that Dz(t) also grows with the time but the
saturation appears much faster. Notice that this logarithmic correction does not appear in
Cε(t): See Fig. 2(a) and Fig. 2(d).

11Numerically it is hard to extract D(t) when log t > 7 since C(t) becomes very small and noisy.
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(a) (b)

(c) (d)

Figure 2: Sz correlator Cz(t) = 〈Sz(t)Sz(0)〉 and energy density correlator
Cε(t) = 〈ε(t)ε(0)〉 in the Heisenberg model with L = 1000. (a) Cz(t) and Cε(t)
vs t on the log-log scale. (b) Diffusion constant D(t) vs log t. (c) (Rescaled) spin
diffusion constant [Dz(t)]3/4 vs log(t) at various temperatures 1/β . (d) Energy cor-
relator vs t at various β on the log-log scale.

Let us further explore Dz(t) in a few variants of the Heisenberg model at the same system
size. (1) We consider the XXZ model

H =
∑

i

S x
i S x

i+1 + S y
i S y

i+1 +∆Sz
i Sz

i+1 , (106)

with ∆ 6= 1. In this case, only the z-component of ~S is conserved and, as shown in Fig. 3(a),
Dz(t) saturates to a constant after an early time growth. Dz(t) approaches a constant faster
as we move away from ∆= 1, in agreement with the numerics of [32]. We also present Dε(t)
in Fig. 3(b) for comparison. (2) Let us now add a third nearest neighbor interaction term to
(99):

H = J
∑

i

~Si · ~Si+1 + J3

∑

i

~Si · ~Si+3. (107)

Fig. 3(c) shows that the apparent logarithmic growth of Dz(t) disappears when J3 6= 0. (3)
In the above models, the Hamiltonian is time independent and therefore the energy is al-
ways conserved under time evolution. We thus consider a random discrete dynamics with the
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Hamiltonian [16]

H(t) =
∑

i

Ji(t)~Si · ~Si+1 , (108)

where Ji(t) is constant during the time interval (nT, (n+1)T ), and randomly choosen at time
t = nT and at every site i. This random dynamics still has SU(2) symmetry. We take Ji to be
uniformly distributed in [W1, W2]. Interestingly, in Fig. 3(d) we observe the same logarithmic
growth at intermediate times as in the clean system.

(a) (b)

(c) (d)

Figure 3: (a) [Dz(t)]3/4 vs log t in XXZ model with various values of ∆ at β = 0.
(b) [Dε(t)]3/4 vs log t in XXZ model with various ∆ at β = 0. (c) [D(t)]3/4 vs log t
in Heisenberg model with 3rd nearest neighbor interaction and coupling coefficient
J3 = 0.5. (d) [D(t)]3/4 vs log t with random dynamics with time interval T = 0.2.
We take the same time interval in Fig. 4 and Fig. 5.

6.3 Symmetry sectors

We have thus seen evidence that could be interpreted as compatible with the claims of [32],
although not conclusively so. However, up until now, we have only studied the canonical
conservation laws of spin and energy. If the theory of [32] is correct, then there is an unam-
biguous numerical test: an emergent hydrodynamic mode must arise in the symmetry sector
of τ, defined in (102). More broadly, the analysis of Sec. 5 shows that, in order to have loga-
rithmic enhancements of diffusion, additional conserved charges are required. If no additional
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Table 1: The predicted decay rates γ (corresponding operators denoted in paren-
theses) which correspond to the leading order hydrodynamic decay modes in each
channel, assuming that energy is not conserved. nA denotes the conserved SU(2)
charge density.

PT adjoint trivial spin-2 (x y)

++ 5
2 (∇2nA) 1 (nAnA) 1 (nx ny)

+− 1
2 (nA) 3 (∇nA∇nA) 3 (∇nx∇ny)

−+ 3
2 (∇nA) 2 (nA∇nA) 2 (nx∇ny + ny∇nx)

−− 3
2 (∇nA) 2 (nA∇nA) 2 (nx∇ny + ny∇nx)

charges are present, our hydrodynamic effective field theory predicts conventional spin and
energy diffusion.

We have have looked at the autocorrelation function (104) for Oi belonging to 12 different
symmetry sectors, corresponding to operators which are even or odd under parity (P) and
time reversal (T), along with operators in the three “simplest" real representations of SU(2):
1 (scalar/spin 0), 3 (adjoint/spin 1), and 5 (spin 2 traceless/symmetric). The following 12
operators transform in the appropriate representations of the three groups above: labeling
operators with their PT = ±± eigenvalues: OPT for 1; OA

PT for 3; Ox y
PT

for 5 (for simplicity
we only compute one component of the transverse traceless symmetric tensor),

O++ = Si · Si+1, (109a)

OA
++ = SA

i [Si · (Si+1 × Si+2) + Si · (Si−1 × Si−2)], (109b)

Ox y
++ = (S

x
i S y

i+1 + S y
i S x

i+1)Si · Si+1, (109c)

O+− = Si · (Si+2 × Si+3 + Si−2 × Si−3), (109d)

OA
+− = SA

i , (109e)

Ox y
+− = (S

x
i−1S y

i+1 + S y
i−1S x

i+1)Si · (Si+2 × Si+3 + Si−2 × Si−3), (109f)

O−+ = (Si · Si+2)(Si+1 · Si+4)− (Si · Si−2)(Si−1 · Si−4), (109g)

OA
−+ = ε

ABCSB
i SC

i+1, (109h)

Ox y
−+ = (S

x
i−1S y

i+1 + S y
i−1S x

i+1)[(Si · Si+2)(Si+1 · Si+4)− (Si · Si−2)(Si−1 · Si−4)], (109i)

O−− = Si · (Si+1 × Si+2), (109j)

OA
−− = (S

A
i+1 − SA

i−1)(Si+1 · Si−1), (109k)

Ox y
−− = (S

x
i S y

i+2 + S y
i S x

i+2)Si · (Si+1 × Si+2). (109l)

Note that O−− is a proxy for τ.

6.3.1 No energy conservation

We begin by summarizing the hydrodynamic predictions for the decay exponents γ defined by

CO(t)∼ t−γ. (110)

Due to nonlinear hydrodynamic fluctuations, we expect that every γ is finite, even if SA is
the only hydrodynamic degree of freedom. Indeed, we expect that without fine tuning, the
decay of all of these operators will be set by the lowest possible dimension of a product of
hydrodynamic operators transforming in the appropriate representation.

Predictions for the exponents γ can be obtained from fluctuating hydrodynamics by writing
constitutive relations for the operators in Eq. (109). This strategy was advocated in the context
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of quantum field theories in [76] (where the symmetry used was spatial rotation SO(d)) and
was implicitly used in [77] for a Z2 symmetry; it will be particularly powerful in the present
context because both the internal symmetry SU(2) and discrete spatial symmetries P, T can be
used. Let us illustrate one of these constitutive equations, for the operator O−− in Eq. (109j)
:

O−− = λ∇(nAnA) +λ′∇3(nAnA) +λ′′εABC nA∇nB∇2nC + · · · , (111)

where · · · denotes less relevant contributions, and λ, λ′, λ′′ are nonuniversal coefficients that
may depend on the microscopic operator O−−. Given that ∇ has dimension 1 and nA has
dimension 1/2 (see discussion below eq. (74)), the first term in (111) has dimension 2 and
leads to the predicted decay rate γ = 2 in Table 1; the next two terms have dimension 4 and
9/2. Note that the first two terms are even under T – we emphasize that terms with derivatives
do not need to manifestly obey T, because derivative corrections in hydrodynamics generically
break T explicitly, as in Fick’s law: JA = −D∇nA relates a T-odd quantity JA to a T-even
quantity nA via a gradient. However, we do need to impose T for terms without gradients,
because they survive at equilibrium where T is a symmetry.

The constitutive relation for the spin current (59) is another example; generic operators
with the same symmetry OA

−+ will have the same terms in their constitutive relations, with
different non-universal coefficients in front of each term. Table 1 lists the hydrodynamic oper-
ators and predicted values of γ for all 12 symmetry sectors. This same approach also predicts
subleading corrections to (110) [51,78]: in the absence of a particle-hole type symmetry one
expects CO(t) ∼ t−γ(1+ 1p

t
+ · · · ).12 Such loop corrections to leading diffusive behavior are

further discussed in Sec. 6.4.

(a) (b) (c)

Figure 4: Correlation functions of the operators defined in Eq.(109). Here the dy-
namics is determined by the Heisenberg model with random coupling Ji ∈ [0, 1] in
both spatial and time directions. We only present the correlators which can show a
clear power law decay in time. (a) Correlators of the adjoint representation. The
black dashed line has the slope= −1.5. (b) Correlators of the trivial representations.
The black and pink dashed lines have the slopes −2 and −1 respectively. (c) Correla-
tors of the spin-2 representation. Ox y

++ is the product between O2 = S x
i S y

i+1 + S y
i S x

i+1
and O++. Both the correlators for O2 and Ox y

++ have slope −1 (the same as the black
dashed lines).

In Fig. 4 and Fig. 5, we present the results for J ∈ [0, 1] and J ∈ [−1, 1] respectively. No-
tice that only correlation functions with a clear power law decay are presented in the plots.

12There is a mistake in the argument of Ref. [78], which predicted a subleading correction 1/t1/4 instead of
1/t1/2. Their scaling argument shows correctly that cubic interactions of diffusive modes scale as 1/t1/4; however,
two such interactions are needed in any correction to diffusion [51]. Fluctuation corrections to diffusion can be
simply understood as higher powers of diffusive correlators 〈n(t)n〉+ 〈n(t)n〉2+ · · · ∼ 1/t1/2+1/t + · · · . This also
agrees with the scaling of corrections found in the optical conductivity [57].
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(a) (b)

Figure 5: Correlation functions of operators defined in Eq.(109). Here the dynamics
is determined by the Heisenberg model with random coupling Ji ∈ [−1,1] in both
spatial and time directions. We only present the correlators which can show a clear
power law decay in time. (a) Correlators of the adjoint and trivial representations.
The black and pink dashed lines have the slope −1.5 and −1 respectively. (b) Corre-
lators of the spin-2 representation. Ox y

++ is the product between O2 = S x
i S y

i+1+S y
i S x

i+1
and O++. Both the correlators for O2 and Ox y

++ have the slope −1 (the same as the
black dashed lines).

The correlator for τ has power law exponent close to 2 (Fig. 4(a)), consistent with the theo-
retical prediction in Table 1. The rest of correlation functions with γ < 2 are also confirmed
numerically. The exponent γ is not easy to estimate once γ ≥ 2, so we did not attempt a
precise prediction. However, we emphasize that there is no sign of any additional emergent
hydrodynamic modes, in any channel.

Some of the correlators in Fig. 5 decay faster than predicted in Table 1. This is due to
an emergent Z2 symmetry of the model with J ∈ [−1,1]. The equation of motion coming
from the Hamiltonian (108) is invariant under spin flip ~Si →−~Si accompanied with J →−J .
Additionally, for J ∈ [−1, 1] the averaged dynamics is invariant under J → −J , thus leading
to invariance under spin flip. Accounting for this additional symmetry, the operators OA

−+,
Ox y
−− and Ox y

+− reported in Fig. 5 should be matched with εABC nB∂x nC , n<AεB>C DnC∂x nD

and n<AεB>C Dnb∂ 2
x nD, where < AB > denotes symmetrized traceless indices, which predicts

γ = 2,2.5, 3.5, respectively. These exponents are consistent with Fig. 5. Note that Ox y
−− and

Ox y
+− are matched with a cubic expression of the density nA, implying that the predicted power

law decays γ are a two-loop effect of hydrodynamic fluctuations.
Note that dabc ≡ Tr(Ta{Tb, Tc}) vanishes for SU(2) – for bigger groups we could use dabc

in constitutive relations to obtain slower power laws. For example, dabcn
bnc is adjoint and

PT= ++ with dimension 1 instead of 3.

6.3.2 Energy conservation

In Table 2 we list the hydrodynamic operators and predicted values of γ for all 12 symmetry
sectors when both energy and spin are conserved. We numerically computed these correlation
functions in the Heisenberg model (99). The results are presented in Fig. 6 and Fig. 7(a) for
β = 0 and β = 0.5 respectively. The power law exponents (except Oab

++) remain the same as
we vary β . Notice that all of the decay rates are consistent with our theoretical prediction at
the level of precision of the numerics. In particular, due to energy conservation, the correlator
for τ operator has power law exponent close to 1.5 (See Fig. 6(a) and Fig. 7(a)). The results
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(a) (b)

Figure 6: Correlation functions of the operators defined in Eq.(109). Here the dy-
namics is determined by the Heisenberg model at β = 0. We only present the corre-
lators which can show a clear power law decay in time. (a) Correlators of the adjoint
and trivial representations. The black dashed line has the slope −1.5. (b) Correlators
of spin-2 representation. Ox y

++ is the product between O2 = S x
i S y

i+1+S y
i S x

i+1 and O++.
Both the correlators for O2 and Ox y

++ have the slope −1 (the same as the black dashed
lines).

Table 2: The predicted decay rate exponents γ (corresponding operators denoted in
parentheses) which correspond to the leading order hydrodynamic decay modes in
each channel, assuming that energy is conserved. nA denotes the conserved SU(2)
charge density, and ε denotes the conserved energy.

PT adjoint trivial spin-2 (x y)

++ 5
2 (∇2nA) 1

2 (ε) 1 (nx ny)
+− 1

2 (nA) 5
2 (∇2ε) 3 (∇nx∇ny)

−+ 3
2 (∇nA) 3

2 (∇ε) 2 (nx∇ny + ny∇nx)
−− 3

2 (∇nA) 3
2 (∇ε) 2 (nx∇ny + ny∇nx)

for Oz
−− Oab

++ and O−+ are further presented in Fig. 7(b), Fig. 7(c) and Fig. 7(d) at various
values of β .

We conclude that there is no discrepancy between the numerics of the Heisenberg model
and our hydrodynamic EFT, which predicts vanilla spin and energy diffusion. There appears
to be no emergent hydrodynamic mode with the same symmetries as τ, which is at odds with
the theoretical proposal that τ is an emergent hydrodynamic mode [32]. More in general,
our analysis did not detect additional emergent hydrodynamic modes, in any channel. In con-
clusion, we found no evidence that the integrability of the continuum Heisenberg model has
any consequence on the late time dynamics of the lattice model. We emphasize however that
our numerics appear consistent with the presence of an apparent logarithmically-enhanced
diffusion within a finite time window (see Fig. 2(c)); in this regime our results do agree with
those of [32].13 The next Section is devoted to clarify this point.

13In the numerics of [32], a larger number of states (5 · 105 − 106) was used in the ensemble average which
should ameliorate fluctuations in the data.
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(a) (b)

(c) (d)

Figure 7: (a) Correlation functions for operators defined in Eq.(109). Here the dy-
namics is determined by the Heisenberg model at β = 0.5. We only present the
correlators which can show a clear power law decay in time. The black dashed lines
have the slope −1.5. (b) Correlation function of Oz

−− at various β . The black dashed
line has the slope −1.5. (c) Correlation function of Oab

++ (referred as O2++ in Fig. 6)
at various β . The black dashed line has slope −1. (d) Correlation function of O−+ at
various β . The black dashed line has slope −1.5. The slope seems to approach 1.5
as we increase β .

6.4 Subleading corrections to hydrodynamics

We now explain the apparent logarithmic correction observed in the diffusion constant D(t),
within our effective field theory and numerical simulations. We start by considering a sin-
gle conserved density n and show qualitatively how loop corrections to the leading diffusive
behavior lead to

Cz(t)∼
1
p

t

�

1+
a
p

t

�

. (112)

A systematic study of these loop corrections using the action formalism presented in Sec. 3
can be found in Ref. [51]. The constitutive relation for a single conserved density has both
nonlinear and higher derivative terms

J = −D∇n+λn∇n+λ′n2∇n+ · · ·+ ζ∇3n+ · · · . (113)

The leading nonlinear term λ is forbidden in the presence of a particle-hole symmetry n→−n.
Since it is a total derivative, it will not lead to corrections to transport at k = 0 [57]; however it
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will lead to corrections to the local correlator Cn(t, x), which schematically will take the form

Cn(t)∼
1

td/2

�

1+
λ2

td/2
+
ζ

t
+
λ′2

td
+ · · ·

�

. (114)

In d = 1, the leading correction to diffusion comes from loop corrections λ2/
p

t. When λ is
forced to vanish by particle hole symmetry, the leading correction comes from higher gradient
terms in the constitutive relation (113) which give ζ/t; this correction cannot be forbidden by
any symmetry.

For SU(2) densities, the current constitutive relation contains a nonlinear term with the
same dimension as the one in (114), see Eq. (59). Written in terms of densities it takes the
form

JA = −D∇nA+λεABC nB∇nC + · · · , (115)

and will similarly lead to λ2/
p

t corrections to the spin diffusion constant.
We now confirm these expectations numerically. Instead of plotting [Dz(t)]3/4 vs log t as

shown in Fig. 2(c) and Fig. 3(d), we here plot Cz(t)
p

t vs 1/
p

t in Fig. 8 and we find that it
is a straight curve when t § 10, suggesting that (114) holds. Notice that in Fig. 8(a), as we
increase β , the coefficient a decreases and vanishes when β = 1. Furthermore, the overall
magnitude of these corrections is entirely within expectations: on dimensional grounds we
expect the coefficient in Eq. (112) to be a = αpτth, where14 α ® 1. From Fig. 8(a) one finds
that the correction is at most amax ∼ 1.3 at β = 0. Estimating τth ∼ 1 gives αmax ∼ 1.3.

Breaking the SU(2) symmetry with ∆ 6= 1, diffusion of spin n = Sz is not expected to
have the 1/

p
t correction because of spin-flip symmetry n→ −n. This is consistent with the

faster equilibration of the diffusion constant in Fig. 3(a), also observed in Ref. [32]. We indeed
observe in Fig. 8(c) that both the spin and energy correlators exhibit a 1/t correction. The
1/
p

t correction should reappear when studying states with a finite magnetization density
〈Sz〉 6= 0.

Finally, the result (114) can be applied to energy diffusion. At infinite temperature β = 0,
we expect a particle-hole–like symmetry β →−β to forbid the leading correction [77], whereas
this correction should be recovered when β > 0. Our numerical results for the energy corre-
lator Cε(t) are consistent with that prediction (see e.g. Fig. 8(c)), but unlike the results for
spin they are not precise enough to sharply distinguish 1/

p
t and 1/t. Hydrodynamic loop

corrections to diffusion will be further studied in Ref. [80].

7 Conclusion

In this paper, we have derived an effective action for nonlinear fluctuating hydrodynamics in
models with non-Abelian continuous symmetry groups. Our results agree with prior litera-
ture [11–13]: the non-Abelian hydrodynamics is similar to the Abelian hydrodynamics, up
to the emergence of new conserved charges (one for each symmetry generator). Nonlinear
fluctuations are irrelevant (in the absence of anomalies for the symmetries). These results
do not depend on the thermodynamic ensemble. In particular, one should not restrict to the
dynamics of a commuting (Cartan) subgroup of conserved charges, even at non-zero chemi-
cal potential. We have also discussed the fundamentally different situation of hydrodynamics
with non-abelian space-time symmetries, such as rotational invariance and dipole symmetry

14Various factors can lead to the suppression of loop corrections and make α� 1: large number of local degrees
of freedom [79], weak dependence of transport parameters on thermodynamic potentials [52], or simply an ap-
proximate particle-hole–like symmetry (which would not suppress all loop-corrections, but only the leading ones).
However we do not expect that α can be parametrically large.
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(a) (b)

(c)

Figure 8: (a) Cz(t)
p

t vs 1/
p

t for Heisenberg model at various β . The data for
β = 0.5 and β = 1 are increased by a small constant 0.015 and 0.03 respectively. (b)
Cz(t)

p
t vs 1/

p
t with random dynamics. The data for J ∈ [−0.8,1.2] is subtracted

by a constant 0.1. (c) Cz(t)
p

t and Cε(t)
p

t vs 1/t in XXZ model with ∆= 0.8.

where, contrary to the case of internal charges, the degrees of freedom are only commuting
densities. Our methods easily generalize to include the effects of conserved momentum, spon-
taneously broken symmetries (see [81] for related recent work), quantum anomalies, and so
on. It would be interesting to include such effects in future work.

We have applied our field theoretic framework to understand the classical dynamics of
SU(2)-symmetric spin chains. The field theoretic framework predicts plain vanilla diffusion
for both spin and (when conserved) energy. We have tested these predictions numerically. Our
numerics are compatible with conventional spin and energy diffusion, and inconsistent with
proposals that fluctuating hydrodynamics leads to anomalous divergent diffusion constants.
We showed that the apparent enhancement of diffusion is consistent with the presence of ir-
relevant hydrodynamic fluctuations associated to spin diffusion. Finally, we have proposed
one finely tuned mechanism through which hydrodynamics in one dimension may contain
marginally relevant operators that flow away from the diffusive fixed point. It would be inter-
esting if such a theory can be found in any microscopic lattice model.
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A Orthogonality of macroscopic spin sectors

We construct the projectors P(nA) using spin coherent states for the L individual spin-1
2 degrees

of freedom. For a single spin-1
2 system, we define a spin coherent state |s〉, parameterized by

a unit norm vector sA, by the identity

〈s|σA|s〉= sA. (116)

Note that this uniquely fixes |s〉. A convenient resolution of the identity is

1=

∫

dsA

2π
|s〉〈s|, (117)

with the integral measure dsA uniform on the sphere. We then pick a regulator δ � 1 and
define P(nA) as follows:

P(nA) =

∫

dλA
L
∏

i=1

�

dsA
i

2π
eiλAsA

i |sA
i 〉〈s

A
i |
�

e−L(iλAnA+δλAλA) . (118)

The integral over λA runs over R3. Intuitively, the integral over λA serves to dephase all terms
in the sum except for those which consist of products of spin eigenstates whose total spin
expectation value is LnA.

We now derive (13):

tr
�

P(nA
1)P(n

A
2)
�

=

∫

dλA
1dλA

2

L
∏

i=1

�

dsA
1i

2π

dsA
2i

2π
eiλA

1sA
1i+iλA

2sA
2i
�

�〈sA
1i|s

A
2i〉
�

�

2
�

e−L(iλA
1nA

1+iλA
2nA

2+δλ
A
1λ

A
1+δλ

A
2λ

A
2) .

(119)

Next, we observe that
�

�〈sA
1|s

A
2〉
�

�

2
=

1+ sA
1sA

2

2
, (120)
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and therefore we can carry out the sA
1i and sA

2i integrals. We start with the 2 integral,
orienting the z-direction (in standard polar coordinates) along λA

2:

∫

dsA
1dsA

2

(2π)2
eiλA

1sA
1+iλA

2sA
2
�

�〈sA
1|s

A
2〉
�

�

2
=

∫

dsA
1

2π

∫

d cosθdφ
2π

eiλA
1sA

1+iλ2 cosθ 1+ sx
1 sinθ cosφ + s y

1 sinθ sinφ + sz
1 cosθ

2

=

∫

dsA
1

2π
eiλA

1sA
1

�

sinλ2

λ2
−

i
λ2

�

sinλ2

λ2
− cosλ2

�

s1
z

�

. (121)

We have defined |λA
1|= λ1, etc. Now we perform the λ1 integral, switching the coordinates so

z aligns with λ1. Similar manipulations lead to
∫

dsA
1dsA

2

(2π)2
eiλA

1sA
1+iλA

2sA
2
�

�〈sA
1|s

A
2〉
�

�

2
= 2

sinλ1 sinλ2

λ1λ2
−

2λ1 ·λ2

λ2
1λ

2
2

�

sinλ1

λ1
− cosλ1

��

sinλ2

λ2
− cosλ2

�

= 2

�

1−
λ2

1 +λ
2
2

6
−
λ1 ·λ2

9
+

�

· · · , (122)

where in the second line we have approximated that λ1,2 are small. This approximation is
justified because this integral shows up L times in the product in (119), so the integral becomes
evaluable by saddle point methods. Therefore, we conclude that

tr
�

P(nA
1)P(n

A
2)
�

= 2L

∫

dλA
1dλA

2 exp

�

−L

�

λ2
1 +λ

2
2

2

�

1
3
+ 2δ

�

+
λ1 ·λ2

9
− iλA

1nA
1 − iλA

2nA
2

��

∼ L−3/22L exp
�

−L
�

9
8
(n1 + n2)

2 +
9
4
(n1 − n2)

2
��

, (123)

where in the second line we used that δ� 1, and neglected unimportant algebraic prefactors.
After a few more algebraic manipulations, we obtain (13).

B Green’s functions

In the main text we use the retarded, symmetric and time-ordered Green’s functions

GR
O1O2
(t, ~x)≡ iθ (t)〈[O1(t, ~x), O2(0,0)]〉 (124a)

GS
O1O2
(t, ~x)≡

1
2
〈{O1(t, ~x), O2(0, 0)}〉 (124b)

GT
O1O2
(t, ~x)≡ 〈T (O1(t, ~x)O2(0,0))〉 , (124c)

where O1, O2 are two operators, and 〈· · · 〉= tr(ρ · · · ), where ρ = e−βH/ tr(e−βH) is the thermal
density matrix at inverse temperature β . These are related by the identity

GT
O1O2

= GS
O1O2
−

i
2
(GR

O1O2
+ GA

O1O2
) , (125)

and by the fluctuation-dissipation theorem

GS
O1O2
(ω,~k) =

2
βω

ImGR
O1O2
(ω,~k) , (126)

where GA
O1O2
(t, ~x) = GR

O2O1
(−t,−~x) is the advanced Green’s function.
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For a conserved density ∂t n + ∂iJ
i = 0 with J i = −D∂in, the retarded and symmetric

Green’s functions read

GR
nn(ω,~k) =

Dχk2

−iω+ Dk2
, GS

nn(ω,~k) =
2χDk2/β

ω2 + (Dk2)2
. (127)

The simulations of Sec. 6 probe the time-ordered Green’s function G. Using (127) and relations
(125),(126) we find

GT
nn(t, ~x = 0)≈

1

(tD)
d
2

χ

β
(128)

as t →∞, where the leading contribution comes from GS
nn. This holds also for the non-Abelian

densities discussed in Sec. 3, including energy conservation. The form of the diffusive pole in
(127), or equivalently the scaling in (128), may change if additional charges are present, as
we discuss below.

C Dynamical KMS symmetry

Consider a system with Hamiltonian H coupled to a background source A(t, ~x) through an
operator O. The Schwinger-Keldysh generating functional is

eiW [A1,A2] = tr
�

T
�

e−i
∫ t f

ti
(H−

∫

x A1O)
�

ρ0T̄
�

ei
∫ t f

ti
(H−

∫

x A2O
��

. (129)

Choosing the initial state to be locally thermal ρ0 = e−βH0/ tr(e−βH0), and assuming that H is
invariant under PT as in the main text, one can derive the symmetry (50) using cylicity of the
trace (130) together with the fact that ρ0 generates Euclidean time translations:

eiW [A1,A2] = tr
�

T
�

e−i
∫ t f

ti
(H0−

∫

x A1O)
�

T̄
�

ei
∫ t f

ti
(H0−

∫

x A2O(t−iβ))
�

ρ0

�

= eiW [A1(−t,P~x),A2(−t−iβ ,P~x)] ,

(130)
where we assumed that O has unit eigenvalue under PT. At the level of the effective action
(26), this leads to the symmetry (31a),(31b). For the current associated to a non-abelian
group G there is one more step. Consider a Hamiltonian H0 coupled with background AA

µ as

H = H0 −
∫

dd xAA
µJAµ. The initial state is the Gibbs ensemble

ρ0 = e−β(H0−µA
0QA) , (131)

where QA are the generators of the algebra of G and µA
0 is the initial chemical potential. Com-

mutation with the evolution operator is accompanied by a transformation of the current

ρ0T̄
�

ei
∫ t f

ti
(H0−

∫

x tr(A2µJµ))
�

= T̄
�

ei
∫ t f

ti
(H0−tr(A2µRJµ(t−iβ)R−1))

�

ρ0 , (132)

where
RAB = (e

βµC T C
)AB , (133)

where TA
BC are generators in the fundamental representation. This transformation is due to

that the current operator JAµ is charged under G. We then have the following KMS symmetry
of the generating functional

W [A1µ, A2µ] =W [A1µ(−t,P~x), (R−1A2µ(−t − iβ ,P~x)R] . (134)

At the level of the effective action, the hydrodynamic degree of freedom U2 must also trans-
form. Recall that the effective action must depend on the combinations (41), as demanded
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by gauge invariance. For the KMS transformation to preserve such combinations U2 must
transform as

U2(t, ~x)→ U2(−t − iβ ,P~x)R , (135)

leading to eq. (49).

D Numerical methods

In this appendix, we explain the numerical method to solve the LL equation. We consider the
Heisenberg model (108) where ~Si is a vector with norm |~Si| = 1. The dynamics is described
by the following Landau-Lifshitz equation

d~Si(t)
dt

= ~hi,eff(t)× ~Si(t) , (136)

with the effective field

~hi,eff(t) = Ji~Si+1(t) + Ji−1~Si−1(t). (137)

Below we discuss two numerical methods which automatically conserve the magnitude of
~Si under time evolution.

D.1 Method 1

Consider a single spin governed by the Landau-Lifshitz equation,

d~S(t)
dt

= ~h× ~S. (138)

If the field ~h is a constant, the solution of the above equation takes the following form:

~S(t) = ~S‖0 + ~S
⊥
0 cos(|~h|t) +

~h

|~h|
× ~S⊥0 sin(|~h|t) , (139)

where ~S0 ≡ ~S(t = 0). The vector ~S is decomposed as

~S = ~S‖ + ~S⊥ , (140)

where ~S‖ is the component parallel to ~h and ~S⊥ is the component perpendicular to ~h:

~S‖ =

�

~S ·
~h

|~h|

�

~h

|~h|
~S⊥ = ~S − ~S‖. (141)

The many-body dynamics described by Eq. (136) can be solved by discretizing the equation
into short time intervals. In each time slice δt, we first freeze the spin ~S2i on the even sites
and only evolve the spin ~S2i+1 on the odd site for a time interval δt by using Eq. (139). The
effective field for ~S2i+1 are provided by the interaction between ~S2i+1 and ~S2i . We then do the
same thing for the spin on the even site for another δt. Under time evolution, both the spin
and energy are conserved. This staggered timestepping method is very efficient for large scale
simulation and we use it to numerically solve the Landau-Lifshitz equation in this paper. This
method was first proposed in Ref. [82]. In the numerical simulation of the main text, we will
set δt = 0.01, system size L = 103, and average over 105 states.
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Figure 9: The Cz and Cε for the Heisenberg model with two different numerical
methods. The system size is L = 200. In the first method, we take δt = 0.01.

D.2 Method 2

We re-write Landau-Lifshitz equation in spherical coordinates:

dθi

dt
= −hi,x sinφi + hi,y cosφi

sinθi
dφi

dt
= −hi,x cosθi cosφi − hi,y cosθi sinφi + hi,z sinθi , (142)

where hi,x , hi,y and hi,z are the three components of the effective field caused by the interaction
term in the Heisenberg model. We can solve this differential equation by the standard Runge-
Kutta method. The problem in this method is that the equation is singular when θ = 0,π. In
the numerical simulation, we choose the initial state as the random state to avoid these two
singular points.

D.3 Comparison between two methods

We present our results for Heisenberg model with two different methods in Fig 9 at infinite
temperature and we find that both methods give the same reliable results. In both methods,
we observe the same diffusive behavior of Cz and Cε. Furthermore, we find the same apparent

Figure 10: The scaling behavior of the diffusion constant for Cz(t) and Cε(t) as a
function of time.
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logarithmic growth of [t1/2Cz(t)]−3/2 at sufficiently early times (see Fig. 10(a)). On the other
hand, as shown in Fig. 10(b), the diffusion constant for the energy correlator Cε(t) saturates
to a constant as time evolves.
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