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Abstract

We quantize the D1-D5-P microstate geometries known as superstrata directly in super-
gravity. We use Rychkov’s consistency condition [hep-th/0512053] which was derived
for the D1-D5 system; for superstrata, this condition turns out to be strong enough to
fix the symplectic form uniquely. For the (1,0, n) superstrata, we further confirm this
quantization by a bona-fide explicit computation of the symplectic form using the semi-
classical covariant quantization method in supergravity. We use the resulting quantiza-
tions to count the known supergravity superstrata states, finding agreement with previ-
ous countings that the number of these states grows parametrically smaller than those
of the corresponding black hole.
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1 Introduction and Summary

The fuzzball paradigm in string theory posits that a black hole can be seen as an average geom-
etry over many states with quantum, stringy excitations that extend out to horizon scales [1].
The microstate geometry program aims to explicitly construct as many such microstates as
possible as smooth, horizonless solutions in classical supergravity [2, 3]. Such microstate
geometries can then be studied within supergravity, providing a unique insight into the mi-
crostructure of black hole systems.

The D1-D5 system played an important role as a great success story for the fuzzball paradigm
and microstate geometries. The Lunin-Mathur geometries were explicitly constructed [4–6],
their CFT duals worked out precisely [7, 8], and finally Rychkov showed that they could be
semi-classically quantized in supergravity, reproducing a finite fraction [9] (or all [8, 10]) of
the corresponding states as counted in the dual D1-D5 CFT.1

However, the D1-D5 system does not correspond to a black hole of finite horizon size, but
rather to a geometry where the horizon itself is singular [1]. To obtain a black hole with a
finite horizon area, a third charge must be added. The D1-D5-P black hole was the subject of
the original holographic counting by Strominger and Vafa [14]; they found that the entropy
of this black hole was precisely accounted for by the number of states in the dual CFT with
the same quantum numbers. This was also generalized to the BMPV black hole with angular
momentum [15].

Although a triumph for black hole physics and holograpy, the Strominger-Vafa counting of
D1-D5-P states was done in the dual CFT without any hint towards what these individual states
might look like on the supergravity side of the correspondence. This changed with the advent
of the superstrata solutions [16–19], the smooth, horizonless microstate geometries that each
correspond to a single microstate of the D1-D5-P BMPV black hole. There is a large family of
known superstrata geometries, although not all superstrata that are believed to exist within
this framework have known solutions.2 Known superstrata solutions are usually parametrized
and denoted by three integers (k, m, n); we review their construction briefly in section 2.1.

For these superstrata geometries, the explicit and precise map from supergravity solution
to CFT states is known [16, 17, 20, 21]; using this map, one can perform the counting of the
superstrata microstates in the CFT [22]. The purpose of this paper is to show that one can
also semi-classically quantize the superstrata geometries directly in supergravity. This can be
done by an application of the same consistency condition that Rychkov used [9] to quantize

1This may even be considered surprising, as the typical D1-D5 state in supergravity involves structure at scales
much smaller than one expects supergravity to be valid [11–13].

2Note also that the known superstrata are those that are based on AdS3×S3; more generally one could consider
also superstrata on AdS3 × S3/Zk or backgrounds with more than one three-cycle.

2

https://scipost.org
https://scipost.org/SciPostPhys.10.1.018


SciPost Phys. 10, 018 (2021)

the D1-D5 microstate geometries in supergravity. As it turns out, this consistency condition
is even stronger for superstrata, as it completely fixes the symplectic form — as opposed to
the D1-D5 microstates, where it did not fix an overall constant. To give a further support
to the correctness of this symplectic form, we also directly quantize the (1,0, n) superstrata
using the semi-classical covariant quantization method in supergravity [23–25]. We show
that this family of superstrata can be quantized easily in three dimensions using their recently
found dimensional reduction [26], and that this indeed leads to the same symplectic form.
It must also be possible to directly quantize the more general (k, m, n) family of superstrata
and rederive the symplectic form obtained by Rychkov’s consistency condition, although we
do not think this would be an interesting exercise. Instead, we emphasize that the consistency
condition is quite powerful, in spite of its simplicity, and must have more fruitful applications
in the microstate geometry program and elsewhere.

The rest of this paper is structured as follows. In section 2, we give a brief overview of the
necessary ingredients of the superstrata geometries we need, and then use Rychkov’s consis-
tency condition to find the symplectic form and quantize the (multimode) (1,0, n) and most
general (k, m, n) superstrata. Section 3 contains an explicit, direct verification in supergravity
of the (1, 0, n) symplectic form. Then, in section 4, we use the found quantizations to count the
(1, 0, n) and general (k, m, n) superstrata geometries; in agreement with earlier counting [22],
we find that the number of superstrata geometries grows parametrically smaller than the corre-
sponding black hole entropy. Finally, in appendix A we review the basic elements of symplectic
forms, and in appendix B we review Rychkov’s original consistency condition argument [9] in
the D1-D5 system.

2 Superstrata Symplectic Forms

Here, we will use Rychkov’s consistency condition (which we review in appendix B) to easily
find the symplectic form of superstrata directly in supergravity. First, in section 2.1, we give
a brief overview of the necessary ingredients of the general superstrata solutions. Section 2.2
contains a brief overview of the (1,0, n) subfamily of superstrata solutions, and details how
using the Rychkov consistency condition easily leads to the entire symplectic form (19). Then,
in section 2.3, we generalize these arguments to find the symplectic form for the most general
superstrata in supergravity.

2.1 Superstrata overview

We give a brief overview of the superstrata geometries, which are the known microstate ge-
ometries for the D1-D5-P black hole. We follow the holomorphic formulation of [18], and
give the most important properties of the solution here. For a more complete treatment of
the holomorphic formalism, we refer to [18] (especially section 2 and appendix A); a general
review of the superstrata solutions can be found in [19] (especially section 4.3).

The superstrata geometries are supersymmetric solutions of six-dimensional minimal su-
pergravity coupled to two tensor multiplets. The bosonic fields are a metric, three three-
form field strengths satisfying certain self-duality relations, and two scalars [27, 28]. The
six-dimensional metric, using coordinates u, v, r,θ ,ϕ1,ϕ2, is given by:

ds2
6 = −

2
p
P
(dv + β)

�

du+ω+
F
2
(dv + β)

�

+
p
P ds2

4 , (1)
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where:

ds2
4 = Σ

�

dr2

r2 + a2
+ dθ2

�

+ (r2 + a2) sin2 θ dϕ2
1 + r2 cos2 θ dϕ2

2 , Σ ≡ (r2 + a2 cos2 θ ) ,

β ≡
R y a2

p
2Σ
(sin2 θ dϕ1 − cos2 θ dϕ2) , P = Z1 Z2 − Z2

4 . (2)

The six-dimensional coordinates u, v are related to the time coordinate t and a compact y
coordinate with y ∼ y + 2πR y as:

u=
1
p

2
(t − y) , v =

1
p

2
(t + y) . (3)

Besides R y , the solution depends also on the constants a (related to the five-dimensional an-
gular momenta), and Q1,Q5 (the D1 and D5 charges of the solution).

The six-dimensional solution is determined by specifying three scalar functions Z1, Z2, Z4,
three two-forms Θ1,Θ2,Θ4 (which appear in the six-dimensional three-forms), as well as the
metric one-form ω and the metric scalar function F . The explicit expressions for ZI ,ΘI can
be found in eq. (6.9) in [18].

It is most convenient to use the following complex coordinates:

ξ ≡
r

p
r2 + a2

ei
p

2v
R y , χ ≡

a
p

r2 + a2
sinθ eiϕ1 , η ≡

a
p

r2 + a2
cosθ ei

�p
2v

R y
−ϕ2

�

, (4)

which satisfy |ξ|2 + |χ|2 + |η|2 = 1.
A superstrata geometry is in principle completely determined by two arbitrary holomorphic

functions of these three complex variables:3

G1(ξ,χ,η) ≡
∑

k,m,n

bk,m,n ξ
nχk−mηm , G2(ξ,χ,η) ≡

∑

k,m,n

ck,m,n ξ
nχk−mηm . (5)

Note that G1(ξ,χ,η) carries the so-called “original” (q = 0) superstrata mode information and
G2(ξ,χ,η) carries the so-called “supercharged” (q = 1) superstrata modes; see also section
4.1.

The metric warp factor is given by:

P = Z1Z2 − Z2
4 =

1
Σ2

�

Q1Q5 −
R2

y

2
|G1|2

�

. (6)

The scalar function F and the one-form ω depend on the particular G1, G2 and can be ex-
tremely complicated expressions. In [18], the explicit expressions for F ,ωwere found for cer-
tain families of superstrata; the general solution for arbitrary multimode G1, G2 is not known.
For a general single mode (only one bk,m,n or ck,m,n non-zero) geometry, the solution can be
found in e.g. section 4.3 of [19].

The superstrata geometries are three-charge geometries, carrying a D1-brane charge Q1,
D5-brane charge Q5, and momentum (P) charge QP . This momentum charge, in the most
general superstrata geometry, is most easily expressed in terms of the modes bk,m,n, ck,m,n:

QP =
∑

k,m,n

m+ n
2k

(Ck,m,n)
2

�

|bk,m,n|2 +
k2

mn(k−m)(k+ n)
|ck,m,n|2

�

, (7)

3The range of the integers is: k ≥ 1, 0 ≤ m ≤ k, and n ≥ 1 for G1 and k ≥ 1, 1 ≤ m ≤ k − 1, and n ≥ 1 for
G2 [29].

4

https://scipost.org
https://scipost.org/SciPostPhys.10.1.018


SciPost Phys. 10, 018 (2021)

where we have defined the combinatorial factor:

Ck,m,n ≡
��

k
m

��

k+ n− 1
n

��−1/2

. (8)

Finally, regularity forces the holomorphic functions to be constrained by the other parameters
of the solution through [30]:

2

�

Q1Q5

R2
y
− a2

�

=
∑

k,m,n

(Ck,m,n)
2

�

|bk,m,n|2 +
k2

mn(k−m)(k+ n)
|ck,m,n|2

�

. (9)

2.2 (1, 0, n) superstrata

First, we turn our attention to perhaps the simplest family of superstrata: the so-called (1, 0, n)
solutions. This family of solutions has the advantage of being explicitly known for any (mul-
timode) solution, and in addition it can be reduced to three dimensions (which we will use in
section 3 to calculate the symplectic form in supergravity explicitly). We will first review the
(1, 0, n) solutions below, before deriving their symplectic form.

2.2.1 The solutions

The (1,0, n) family of superstrata has G2 = 0 and G1 = χF(ξ) in (5), with F an arbitrary
holomorphic function:

F(ξ) =
∞
∑

n=1

bnξ
n, (10)

which satisfies F(0) = 0 and its complex conjugate is F̄ ≡ F̄(ξ̄). The metric functions are then
given by the simple expressions:

F = 1
a2
(|F |2 − |F∞|2), (11)

ω=
�

1−
1

2a2
(|F∞|2 − c)

�

ω0 +
R y
p

2Σ
(|F∞|2 − |F |2) sin2 θdϕ1,

ω0 =
a2 R y
p

2Σ
(sin2 θ dϕ1 + cos2 θ dϕ2) ,

where we have defined:

ξ∞ := lim
r→∞

ξ= ei
p

2v
R y , F∞ := F(ξ∞). (12)

The function F and constant c must satisfy the constraint (9), which for the (1, 0, n) family
reads:

c = 2

�

Q1Q5

R2
y
− a2

�

=
1

p
2πR y

∫

p
2πR y

0

dv′|F∞|2 =
∞
∑

n=1

|bn|2. (13)

For more details, see [18] (sections 2.5 and 3.1) and [26] (appendix D, especially D.5). These
solutions are completely regular for any choice of F [18]. The momentum charge (7) can be
expressed as a sum over modes or as a particular integral involving F :

QP =
1

4
p

2πR y

∫

p
2πR y

0

dv(ξ∞F ′∞ F̄∞ + ξ̄∞F∞ F̄ ′∞) =
1
2

∞
∑

n=1

n|bn|2. (14)
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2.2.2 The symplectic form

The D1-D5-P superstrata are supersymmetric, so the Hamiltonian is quite simply (in units
where G5 = π/4, see section 3.2):

H =Q1 +Q5 +QP , (15)

where QP is given by (14). Noting that the derivative in the integral in (14) is with respect
to ξ, we can rewrite the Hamiltonian in a simpler form involving only v and using partial
integration together with the periodicity condition F∞(v = 0) = F∞(v =

p
2πR y), giving:

H =Q1 +Q5 +
1

4πi

∫

dv F̄∞∂v F∞. (16)

From this expression, it is clear that F∞, F̄∞ will be the coordinates on the phase space.4

Now, using the relation (3) between v and the time coordinate t, the time-dependence of the
geometry must be given by:

d
d t

F∞(v) =
i

R y
F ′∞(v)ξ∞ =

1
p

2
∂v F∞. (17)

However, we can also use the fundamental relation (115) involving the symplectic form:

d
d t

F∞(v) = {F∞, H}PB =ω
F F̄ 1

4πi
∂v F∞. (18)

From (17) and (18) it follows that ωF F̄ = 2
p

2πi and thus the symplectic form is:

Ω=
i
p

2
4π

∫

dvδF∞ ∧δF̄∞. (19)

Note that the fundamental Poisson bracket is:

{F∞(v), F̄∞(v
′)}PB = i2

p
2πδ(v − v′). (20)

We can also express the symplectic form and Poisson bracket in terms of the oscillators bn.
Noting that:

bn =
1

p
2πR y

∫

dv F∞(v)e
−ni

p
2

R y
v
, (21)

we integrate the Poisson bracket (20) to get:

{bn, b̄m}PB = iδmn
2

R y
. (22)

So, we recognize that actually the rescaled operators

b̂m ≡

√

√R y

2
bm, (23)

are those that satisfy the canonical commutators:

{b̂n, ¯̂bm}PB = iδmn. (24)

4In principle, it is possible that we would also need to include derivatives (with respect to v) of F∞, F̄∞ as
coordinates in the symplectic form, just as the D1-D5 supertube symplectic form (124) contains both ~F(s) and
~F ′(s). One could redo the analysis allowing for this possibility, but a posteriori it is clear that only considering
F∞, F̄∞ as phase space coordinates is sufficient.
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Note that the time-dependence of bn is simply given by:

d
d t

bn = i
n

R y
bn, bn(t) = bn(t = 0) ei n

R y
t
, (25)

which (as should be expected) is simply the time dependence of the bnξ
n
∞ term in F(ξ∞) in

(10).
We see that using the Rychkov consistency condition, we are easily able to find the super-

gravity symplectic form of the (1,0, n) superstrata; we will further confirm this by an explicit
calculation in section 3. Note that the consistency condition for the D1-D5 system was only
enough to find the symplectic form up to an overall constant (see appendix B) which then
required an explicit calculation to find; by contrast, for the superstrata, we are able to obtain
the entire symplectic form directly from the consistency condition.

2.3 (k, m, n) general superstrata

The solution for the most generic superstrata with multiple original and supercharged modes
turned on is not explicitly known. However, the above analysis of the (1,0, n) subfamily of
superstrata has taught us that the only ingredients necessary to find the symplectic form in
supergravity are the Hamiltonian in terms of the modes and the expected time-dependence of
the modes. Thus, we will easily be able to generalize the above analysis to find the supergravity
symplectic form for the (at this moment, strictly speaking, hypothetical) general multimode
superstrata geometry.

The Hamiltonian is still given by the sum of charges (15), but now the momentum charge
QP is given by the more complicated expression (7). For the general superstrata, it is more
convenient to work directly with the oscillators directly when applying the Rychkov consistency
condition, since an expression for QP in terms of the holomorphic functions (5) would be too
unwieldy.

Focusing on a single bk,m,n, the required time-dependence can be read off simply from (4)
and (5), which gives (generalizing (25)):

d
d t

bk,m,n = i
n+m

R y
bk,m,n, (26)

whereas from the Hamiltonian and (7), it follows that:

d
d t

�

log bk,m,n

�

=
1
2
(Ck,m,n)

2 m+ n
k
{bk,m,n, b̄k,m,n}PB . (27)

From this, we can immediately and easily read off the Poisson bracket:

{bk,m,n, b̄k′,m′,n′}PB = iδkk′δmm′δnn′
k

(Ck,m,n)2
2

R y
. (28)

Again, we can rescale the oscillators to:

b̂k,m,n ≡

√

√R y

2k
Ck,m,n bk,m,n, (29)

which satisfy the canonical bracket:

{b̂k,m,n, ˆ̄bk′,m′,n′}PB = iδkk′δmm′δnn′ . (30)

These expressions (29) and (30) generalize the (1,0, n) results (23) and (24) above.
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The analysis of the supercharged modes ck,m,n proceeds in a precisely analogous way, and
leads to the rescaled oscillators:

ĉk,m,n ≡

√

√R y

2
Ck,m,n

√

√ k
mn(k−m)(k+ n)

ck,m,n, (31)

which satisfy the canonical bracket:

{ĉk,m,n, ˆ̄ck′,m′,n′}PB = iδkk′δmm′δnn′ . (32)

Finally, for completeness, we state the resulting total symplectic form for the most general
superstrata:

Ω= i

 

∑

k,m,n

δ b̂k,m,n ∧δˆ̄bk,m,n +
∑

k,m,n

δĉk,m,n ∧δˆ̄ck,m,n

!

, (33)

where we used the mode expansions (5) and the rescaled operators (29) and (31).

3 Explicit Supergravity Computation for (1,0, n)

Recently, it was found that the generic (1,0, n) superstrata (as well as the more general (1, m, n)
superstrata) can be dimensionally reduced from six to three dimensions [26]. As we show
here, this dimensional reduction makes it possible to explicitly calculate the symplectic form
for these superstrata very easily using the standard methods in supergravity. This allows us
to explicitly confirm the symplectic form (19) as found above using Rychkov’s consistency
condition.

3.1 The (1,0, n) superstrata in 3D

We have already introduced the (1, 0, n) superstrata in a six-dimensional form in sections 2.1
and 2.2.1. Here, we will briefly review the Lagrangian and solution for the general (1, 0, n)
superstrata when we reduce the solution to three dimensions (as discussed in sections 3.4 &
4.3 of [26]).

The bosonic sector of the relevant three-dimensional supergravity theory contains the met-
ric, 6 scalars ξ1,ξ2,ξ3,ξ4,χ1,χ2, and two U(1) gauge fields Aϕ1 , Aϕ2 . The Lagrangian is [26]:

L3D,U(1)2 = R−
1
2
(∂µξ1)

2 −
1
2
(∂µξ2)

2 −
1
2
(∂µξ3)

2 −
1
2

sinh2 ξ3(Dµξ4)
2 (34)

−
1
4

e−2ξ1 Fϕ1
µν Fϕ1,µν −

1
4

e−2ξ2 Fϕ2
µν Fϕ2,µν −

1
2

eξ2
�

coshξ3

�

(Dµχ1)
2 + (Dµχ2)

2
�

− sinhξ3

�

sinξ4

�

(Dµχ1)
2 − (Dµχ2)

2
�

+ 2cosξ4Dµχ1Dµχ2

��

+ e−1εµνρ
�

2αAϕ1
µ Fϕ2

νρ +
1
4
ε Fϕ2

µν (χ2Dρχ1 −χ1Dρχ2)
�

− V,

where the scalar potential is given by:

V = −2g2
0 eξ1

�

2eξ2 coshξ3 − eξ1 sinh2 ξ3

�

+
g2

0

2
e2ξ1+ξ2

�

eξ2

�

1
2
ε χ2

1 +
1
2
ε χ2

2 + 4g−1
0 α

�2

+ coshξ3

�

χ2
1 +χ

2
2

�

+ sinhξ3

�

(χ2
1 −χ

2
2 ) sinξ4 + 2χ1χ2 cosξ4

�

�

, (35)

and the gauge-covariant derivatives are:

Dµχ1 = ∂µχ1 + g0χ2Aϕ1
µ , Dµχ2 = ∂µχ2 − g0χ1Aϕ1

µ , (36)

Dµξ4 = ∂µξ4 + 2g0Aϕ1
µ . (37)
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A series of rescalings can take α, g0 to any value we wish [26]; it is most convenient to choose:

α= −
1
2
εg0, g0 = (Q1Q5)

−1/4, (38)

so that g−1
0 is the radius of the S3 in the six-dimensional uplift appropriate for a D1-D5-P

superstrata. The Lagrangian (34) also depends on the sign ε = ±1, which is related to the
supersymmetry of the solution [26,31].

The general (multimode) (1, 0, n) superstrata solution in this three-dimensional system
can be given in the coordinates (u, v, r), where u, v are related to t, y as in (3). In particular,
recall that y is periodic with radius R y . It is often convenient to package the coordinates v, r
into the complex coordinate ξ given in (4). We are required to take the orientation [26]:

e−1εuvr = −ε. (39)

This is the only place that the sign ε shows up in the solution.
We repeat that the (1, 0, n) solution is then completely determined by an arbitrary holo-

morphic function (10) of this coordinate [18]:

F ≡ F(ξ) =
∞
∑

n=1

bnξ
n, (40)

that satisfies F(0) = 0.
Explicitly, the (1,0, n) solution reduced to three dimensions is given by the solution of the

Lagrangian (34) with ξ1 = ξ3 = ξ4 = 0 and [26]:

χ1,2 = 2S1,2 , (41)

with

S1 = −
iaR y g2

0

2
p

2(a2 + r2)

�

F − F̄
�

and S2 = −
aR y g2

0

2
p

2(a2 + r2)

�

F + F̄
�

. (42)

The three dimensional metric, ds2
3, takes the form:5

ds2
3 =

R2
y g2

0

2



Ξ2 ds2
2 − a4 g4

0

�

du+ dv +
p

2

a2R y g4
0

A

�2


 , (43)

where:

ds2
2 =

|dξ|2

(1− |ξ|2)2
, Ξ2 =

2

R2
y g4

0

(1− SASA) , A =
i
2

�

ξ dξ̄− ξ̄ dξ
1− |ξ|2

�

, (44)

and:

Ξ2 =
2

R2
y g4

0

(1− S2
1 − S2

2) . (45)

The remaining scalar is:

e−ξ2 =
1
2

R2
y g4

0Ξ
2 . (46)

5Note that we would need to perform a large gauge transformation on (43) to put it in a form which is asymp-
totically AdS3 (see [26], appendix D.3), which is the gauge in which it is given in (11). This distinction using the
gauge transformation will not be necessary or important for our calculations.
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The vector fields are:

Aϕ1
µ d xµ = −

a2R y g3
0p

2
(du+ dv) , (47)

Aϕ2
µ d xµ =

p
2

R y g0Ξ2

�

a2(du+ dv) +
2

a2R2
y g4

0

�

(a2 + r2)(S2
1 + S2

2)− a2
�

dv

�

. (48)

Note that all fields except the scalars χ1,2 only depend on F, F̄ through the combination Ξ2.
The parameters of this solution are the same as those of the six-dimensional solution in

section 2.2.1: the D1 and D5 charges Q1,Q5 (through (38)), the angular momentum parameter
a, and the radius R y of the y-circle. Recall that the parameters must satisfy the constraint (13),
and that the momentum P charge is given by QP in (14).

3.2 The symplectic form from 3D supergravity

To find the symplectic form in supergravity, we first calculate the symplectic current using the
standard formalism of [24] (see also [23]). The general semi-classical symplectic form for a
theory with Lagrangian L is:

Jµ =
∑

A

δ

�

∂ L
∂ (∂µφA)

�

∧δφA, (49)

where the sum is over all (fundamental) fields φA in the theory. Note that L includes the
prefactor of

p
−g, so the action (in three dimensions) is simply:

S =

∫

d3 x L. (50)

The symplectic form is then given by:

Ω=

∫

Σ

dΣµJµ, (51)

where we integrate the symplectic current over a Cauchy surface Σ.
The symplectic current is an object that lives on the solution phase space, which means the

variations considered in (49) are on-shell. In other words, the fields φA as well as φA+ δφA

always solve the equations of motion. We can then further restrict the phase space to the
family of solutions we are interested in — in this case, the (1,0, n) superstrata.

Since the (1,0, n) superstrata solutions can be reduced to three dimensions, the symplectic
form as calculated with the three-dimensional effective action (34) gives the same result as the
calculation in the full ten-dimensional supergravity would. Specifically, the three-dimensional
theory is obtained from six dimensions by reducing on an S3 with radius g−1

0 [26], which in
turn is obtained from ten dimensions by reducing over a T4 with volume V4 [27, 28], so the
various Newton constants are related by:

G3 =
G10

V4 vol(S3)
=

G10

V4 2π2 g−3
0

. (52)

We are working in units where in a five-dimensional frame, obtained from ten dimensions by
reducing over the same T4 and then also reducing over the S1 parametrized by y , the Newton
constant is given by:

G5 =
G10

V4(2πR y)
=
π

4
. (53)

10

https://scipost.org
https://scipost.org/SciPostPhys.10.1.018


SciPost Phys. 10, 018 (2021)

This choice of units follows since we want the five-dimensional mass to be given by
M5D =Q1 +Q5 +QP [32]. Together, (52) and (53) imply that:

G3 =
R y g3

0

4
. (54)

Note that the action of our three-dimensional theory is given by:

S =
1

16πG3

∫

d3 x
p

−g L3D,U(1)2 , (55)

with the Lagrangian given in (34).

3.3 Calculating the (1, 0, n) symplectic form

As we discussed above, a (1,0, n) superstrata geometry is entirely determined by the holo-
morphic function F(ξ), as detailed above in section 3.1. A perturbation in the solution space,
φA→ φA+δφA, is generated by perturbing this function, F → F +δF . This simplifies the cal-
culation, since the only fields of the solution that change when perturbing F are the metric gµν,
the gauge field Aϕ2 , and the scalars ξ2,χ1,χ2; thus, these are the only fields we need to con-
sider in the sum over fields in (49). We can now explicitly calculate each of their contributions
to (49), using the Lagrangian (34) and the solution of section 3.1.

Metric gµν The metric symplectic current is the Crnkovic-Witten current [23–25]:

16πG3 Jµg = −δΓ
µ
νρ ∧δ(

p

−g gνρ) +δΓρνρ ∧δ(
p

−g gµν). (56)

Note that the metric (43) only depends on F (and F̄) through the combination Ξ. After explicit
evaluation, we simply find:

Jµg = 0. (57)

Scalar ξ2 Note that ξ2 in (46) also only depends on F, F̄ through Ξ. We find:

16πG3 Jµ
ξ2
= δ

�p

−g [−∂ µξ2]
�

∧δξ2 (58)

=



−
δΞ2 ∧δ∂vΞ

2
�

a4 g4
0R2

y + 2r2
�

2g0r (a2 + r2)Ξ4
,

a4 g3
0R2

yδΞ
2 ∧δ∂vΞ

2

2r (a2 + r2)Ξ4
,

g3
0 r
�

a2 + r2
�

δΞ2 ∧δ∂rΞ
2

Ξ4



 .

Gauge field Aϕ2
µ Note that Aϕ2 in (48) only depends on Ξ, but its action depends explicitly

on F through the scalars χ1,2. It is convenient to split the contribution from Aϕ2 into two parts:

JµAϕ2 = JµAϕ2 ,(1) + JµAϕ2 ,(2), (59)

16πG3 JµAϕ2 ,(1) := δ
�

p

−g
�

−e−2ξ2 Fϕ2,µν + 4αe−1εµνρAϕ1
ρ

��

∧δAϕ2
µ = −Jµ

ξ2
, (60)

16πG3 JµAϕ2 ,(2) := δ
�

p

−g
�

1
2

e−1εµνρ(χ2Dρχ1 −χ1Dρχ2)
��

∧δAϕ2
µ . (61)

The first contribution JµAϕ2 ,(1) to the symplectic current cancels the contribution of ξ2, so we

are only left with the contribution of JµAϕ2 ,(2). We do not give this expression here, since it is
rather lengthy and unilluminating.
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Scalars χ1,2 The symplectic form contributions are:

16πG3 Jµχ1
= δ

�

p

−g
�

−eξ2 Dµχ1 +
1
4
χ2e−1ενρµFϕ2

νρ

��

∧δχ1 (62)

16πG3 Jµχ2
= δ

�

p

−g
�

−eξ2 Dµχ2 −
1
4
χ1e−1ενρµFϕ2

νρ

��

∧δχ2 . (63)

We again choose not to write these expressions explicitly as they are unilluminating.

Total symplectic current Putting the pieces together from above, the full expression for the
symplectic current will be given by:

Jµ = JµAϕ2 ,(2) + Jµχ1
+ Jµχ2

. (64)

Since it is a symplectic vector (density), it satisfies:6

∂µJµ = 0, (65)

and so we can find a symplectic potential Kµν, such that:

Jµ = ∂νKµν. (66)

It is easiest to express this potential in (u,ξ, ξ̄) coordinates; we find:

16πG3 Kξξ̄ =
2i
p

2a2 g7
0R3

y(|ξ|
2 − 1)

(2− g4
0R2

y(1− |ξ|2)|F(ξ)|2)2
δF(ξ)∧δF̄(ξ̄), (67)

16πG3 Kξu = −g3
0R2

y

a2 g4
0(1− |ξ|

2)R2
y + 2|ξ|2

ξ̄(2− g4
0R2

y(1− |ξ|2)|F(ξ)|2)2
δF(ξ)∧δF̄(ξ̄), (68)

K ξ̄u =
�

Kξu
�∗

. (69)

Note that Jµ is completely regular, so we do not require a regularizing gauge transformation to
accompany the bare, “naive” variation of the solution, as opposed to the situation in e.g. [9,24].
In particular, notice that Kµν vanishes at the “origin” r = 0, since F(0) = 0 and δF(0) = 0.

Finally, to get the symplectic form Ω, we integrate the current Jµ over the Cauchy surface
Σ defined by u= c te:

Ω=

∫

Σ

dΣµJµ =

∫

dξdξ̄Ju. (70)

Using (66), we can convert this into a surface integral over the boundary ∂Σ at r →∞:

Ω=
1
2

∫

∂Σ

dΣµνKµν (71)

= −
∫

|ξ|=1

dξKuξ̄ +

∫

|ξ|=1

dξ̄Kuξ (72)

=
1

16πG3
(i
p

2g3
0R y)

∫

dvδF∞(v)∧δF̄∞(v) , (73)

where we used that e.g. dξ= i
p

2/R yξ∞dv. Finally, we conclude that:

Ω=
i
p

2
4π

∫

dvδF∞ ∧δF̄∞, (74)

which is precisely the symplectic form we found above in (19).
6Note that including the factor of

p
−g in the calculations implies Jµ is a vector density instead of a vector.
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4 Counting Superstrata

The superstrata geometry is completely determined by two holomorphic functions of three
variables, (5), which can be taken as the coordinates of the phase space as we showed in
section 2. Using Rychkov’s consistency condition (section 2) and also by explicit computation
in supergravity (section 3), we derived the phase space symplectic form for superstrata and
showed that the Poisson bracket between the mode coefficients are simply given by (24),
(30), and (32). In this section, we pass to quantum mechanics by replacing Poisson bracket by
commutators, enabling us to count the number of superstrata states available for given D1, D5,
and P charges. In our units (53), the charges Q1,Q5,QP are related to the quantized numbers
of branes N1, N5, NP by

Q1Q5

R y
= N1N5 =: N , R yQP = NP . (75)

We are interested in counting these superstrata in the regime N , NP � 1.
Counting of superstrata has already been done in [22] from the CFT side, and for states that

correspond to superstrata more general than are discussed in the current paper. In that sense,
the counting presented in this section is not new. Here, for the generic (k, m, n) superstrata,
we will reproduce (see (103)) the entropy growth S ∼ N1/4N1/2

P (for NP � N) found in [22],
using the symplectic form obtained in the previous sections from supergravity. The difference
with the calculation in [22], besides being done here from the gravity side, is that we restrict to
a simple subsector (the original superstrata based on |00〉) instead of the general superstrata
counted in [22], and that we consider ensembles characterized only by N , NP ; we ignore the
R-charge J := J3

0 = m which corresponds to left-moving angular momentum in six dimensions.

4.1 CFT dual

So far we have been discussing superstrata solutions in supergravity and their phase space.
Here we very briefly describe their CFT dual, for it is useful in understanding the structure of
phase and Hilbert spaces that we have in supergravity.

The AdS/CFT dual of our six- or three-dimensional gravity is a two-dimensional orbifold
CFT with target space (T4)N/SN , called the D1-D5 CFT.7 The states in the Hilbert space of
this theory can be thought of as made of strings or “strands”. A strand of length k represents k
copies of T4 intertwined with each other by the orbifold action. Because we have N copies of
T4, the total length of all the strands must be equal to N . Strands come in multiple flavors and
the ones relevant here are denoted by |++〉k and |00〉k, where k (1 ≤ k ≤ N) is the length of
the strand. These strands are generically 1/4-BPS (preserving 8 supercharges). Empty AdS3
space corresponds to [|++〉1]N , while the D1-D5 geometries [5, 6] counted by Rychkov [9]
(see also appendix B) correspond to additionally considering 1/4-BPS strands with different
flavors and lengths.

We can excite various modes on these strands. In particular, by acting on these strands
with generators of the superconformal algebra, we can construct 1/8-BPS excitations denoted
by |k, m, n, q = 0〉 and |k, m, n, q = 1〉,8 which are in direct correspondence with the (k, m, n)
family of superstrata (original and supercharged, respectively). The 1/8-BPS strand |k, m, n, q〉
has length k and left-moving momentum m+ n. (It also has R-charge J := J3

0 = m.)
Assume that we start with N |++〉1 strands (representing empty AdS3) and replace some of

them with the excited strands |k, m, n, q = 0〉with various k, m, n. This corresponds to exciting
7For more detail about the D1-D5 CFT, see e.g. [33,34].
8More explicitly, |k, m, n, q = 0〉= (J+−1)

m(L−1−J3
−1)

n |00〉k, |00, k, m, n, q = 1〉= (J+−1)
m−1(L−1−J3

−1)
n−1(G+,1

−1/2G+,2
−1/2

+ (1/2hNS)(L−1 − J3
−1)J

+
−1) |00〉k, where Ln, J i

n, GαA
n are generators of the superconformal symmetry SU(1,1|2)L .

See [19,29,30] for more detail.
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the (k, m, n) superstrata. If Nk,m,n is the number of the |k, m, n, q = 0〉 strands and N0 is the
number of |++〉1 strands, then we must demand that the total strand length remains fixed at
N :

N0 +
∑

k,m,n

kNk,m,n = N . (76)

In supergravity, this condition appears as the regularity condition (9) in the geometry.

4.2 Counting (1, 0, n)

Let us come back to supergravity and count the (1, 0, n) family of superstrata whose phase
space structure was studied in sections 2.2 and 3. This is not a “natural” ensemble in the sense
that this is not the most general family of supergravity solutions specified by the macroscopic
charges N and NP ; we are imposing by hand the condition that k = m = 0.9 However, this is
a simple, illustrative example that we can work out before discussing the more general case.

The Poisson bracket (24) for the mode coefficients b̂n, ¯̂bm is replaced by the canonical
bosonic quantum commutator

[b̂n, b̂†
m] = δmn. (77)

From (14) and (75), the quantized momentum number NP is given by

NP =
∞
∑

n=1

nNn, Nn := 〈b̂†
n b̂n〉, (78)

where Nn = 0,1, 2, . . . counts the excitation number of mode n. Therefore, counting the
(1, 0, n) family of superstrata amounts to counting possible partitions {Nn} of the integer NP .
However, we must also take into account the additional constraint (76) on Nn (equivalent to
(13)), which implies:

∞
∑

n=1

Nn ≤ N . (79)

In the dual CFT, this corresponds to the fact that the sum of the lengths of the excited strands
|1, 0, n, q = 0〉 cannot exceed the total length N .

Our task is, for given N and NP , to count the partitions {Nn} that satisfies (78) and (79). If
NP is small compared to N (note that also both N , NP � 1), the constraint (79) is ineffective
and the counting is that of a free chiral boson with energy NP . How small should NP be for
this to be valid? For a free boson, low (n=O(1)) modes are most excited, with the excitation
number Nn ∼

p

NP . Thus the left-hand side of (79) is roughly ∼
p

NP and therefore this
approximation is valid only for

p

NP � N . Let us call this the “low-temperature” regime.10

So, the entropy in the low-temperature regime is

S(1,0,n) ≈ 2π

√

√NP

6
, NP � N2. (80)

Let us confirm this by thermodynamic arguments. If we introduce N0 ≥ 0, equations (78)

9Also, we are restricting ourselves to states that are based on the strand of the special flavor, |00〉, among all
possible flavors.

10Superstrata are supersymmetric and the physical temperature is zero. Here we are talking about the “temper-
ature” conjugate to NP regarded as energy.
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and (79) can be written as

∞
∑

n=0

nNn = NP , (81)

∞
∑

n=0

Nn = N . (82)

So, mode n contributes n and 1 to NP and N , respectively. In CFT, N0 represents the number of
the ground-state strands, |++〉1. Eq. (82) corresponds to the strand-length budget constraint
(76) in CFT, with the identification Nn = N1,0,n.

If we define fugacities by

p = e−α, q = e−β , (83)

we can write down a grand-canonical partition function

Z(p, q) =
∑

N ,NP

c(N , NP) p
N qNP =

1
(1− p)c0

∞
∏

n=1

1
1− pqn

, (84)

from which we can read off the number of states c(N , NP). Here c0 = 1 is the number of species
of the n= 0 mode (|++〉1 in CFT). If we also allow the (1,0, 0) superstratum, which is dual to
|1, 0,0, q = 0〉 = |00〉1, we should set c0 = 2. However, the value of c0 does not matter to the
final entropy. By using the formula − log(1− x) =

∑∞
r=0 x r/r and carrying out the summation

over n, we find

log Z = −c0 log(1− p)−
∞
∑

n=1

log(1− pqn)

= −c0 log(1− p) +
∞
∑

r=1

prqr

r(1− qr)
. (85)

The low-temperature regime corresponds to 0< α� β � 1. In this case, we can approx-
imate the sum in (85) as

log Z ≈ −c0 log(1− p) +
∞
∑

r=1

1
β r2

≈ −c0 logα+
π2

6β
. (86)

Then, we use the thermodynamical relations:

N = −∂α log Z =
c0

α
, α=

c0

N
, (87)

Np = −∂β log Z =
π2

6β2
, β =

π
Æ

6Np
. (88)

We can see that 0< α� β � 1 indeed means that NP � N2. The entropy is

S(1,0,n) = log Z +αN + βNp ≈ 2π

√

√Np

6
, (89)

which reproduces (80). The fact that N depends only on c0,α and not on β means that the
most of the system (which is of length N) is filled with the n = 0 modes which do not feel β .
A negligibly small part (of length ∼

Æ

Np � N) of the system is populated with n > 0 modes
which are effectively free and responsible for the entropy (89).

15

https://scipost.org
https://scipost.org/SciPostPhys.10.1.018


SciPost Phys. 10, 018 (2021)

In the opposite, “high-temperature” regime Np � N2, the picture is totally different. This
corresponds to 0< β � α. Actually, it turns out that β � 1 and α� 1 (and therefore p� 1).
Physically, this means that the cost pqn = e−α−βn to create an excitation in mode n is almost
the same for a wide range of n, ∆n∼ α/β . This allows modes with very large n to be excited
as easily as small n modes, making it possible for large momentum to be carried by those large
n modes. Also, p = e−α � 1 means that only one quantum can be excited in each mode.
So, in the high-temperature regime, NP is carried by a large number of modes with different
values of n, each of which is excited only once. This in particular means that, in the partition
function (85), the contribution from the n = 0 mode (the first term) is negligible compared
to the contribution from other modes (the second term). Therefore, we can approximate the
partition function as

log Z ≈
∞
∑

r=1

pr

r(eβ r − 1)
≈

p
eβ − 1

≈
p
β

. (90)

In the second “≈”, we only kept the r = 1 term because p� 1. From this, we find

N = p ∂p log Z =
p
β

, NP = −∂β log Z =
p
β2

. (91)

In other words,

p =
N2

NP
, β =

N
NP

, (92)

which indeed means that p � 1, β � 1, and β � α = − log p if NP � N2. The entropy is
computed to be

S(1,0,n) = N
�

2+ log
NP

N2

�

, NP � N2. (93)

We have numerically checked that this correctly reproduces the growth of c(N , NP) in this
regime.

Finally, note that this high-temperature regime NP � N2 is outside of the regime of va-
lidity of the decoupling limit from which the AdS/CFT correspondence was derived [35]; the
excitation is not confined within the near-brane region. Still, this counting is a well-defined
problem with a clear physical interpretation, so is interesting in its own right.

4.3 Counting general (k, m, n)

Let us move on to counting (k, m, n) strata. For simplicity, we focus on the original (and not
the supercharged) superstrata. In [22], counting of (k, m, n) superstrata, both original and
supercharged, was done from the CFT side, not just for ones based on the |00〉 strand but also
other flavors such as |±±〉.

Now, we have the occupation numbers Nk,m,n := 〈b̂†
k,m,n b̂k,m,n〉 ≥ 0 that satisfy the con-

straint that comes from (7).
∑

k,m,n

(m+ n)Nk,m,n = NP . (94)

In addition, (76) or equivalently (9) means that
∑

k,m,n

kNk,m,n = N , (95)
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where, just like in the (1,0, n) case, we introduced Nk,0,0 ≥ 0, which does not carry NP , to “fill”
the Hilbert space of length N . The range of k, m, n is: k ≥ 1, 0 ≤ m ≤ k, and n ≥ 1.11 The
partition function is

Z(p, q) =
∞
∏

k=1

k
∏

m=0

∞
∏

n=1

1
(1− pkqm+n)

. (96)

By similar manipulations as in (85), we can rewrite this as

log Z = −
∞
∑

r=1

1
r(1− qr)2

�

prqr

1− pr
−

prq3r

1− prqr

�

. (97)

Let us discuss the entropy of this system in the low- and high-temperature regimes, just as in
the (1,0, n) case.

First, in the low-temperature regime defined by 0< α∼ β � 1, we can approximate (97)
by

log Z ≈
∞
∑

r=1

1
r(β r)2

�

1
αr
−

1
(α+ β)r

�

=
1

αβ(α+ β)

∞
∑

r=1

1
r4
=
π4

90
1

αβ(α+ β)
. (98)

The low-temperature regime for (k, m, n) is defined by α ∼ β , unlike for (1, 0, n), because α
and β enter log Z in the same way at the leading order. Using thermodynamic relations, we
find

N =
π4

90
2α+ β

α2β(α+ β)2
, NP =

π4

90
α+ 2β

αβ2(α+ β)2
. (99)

The condition 0< α∼ β � 1 means that

1� N ∼ NP . (100)

Solving (99) for α,β and plugging in the result, we find that the entropy is given by

S(k,m,n) =
27/4π

35/451/4

�

2(N2 − NNP + N2
P )

3/2 − (N − 2NP)(2N − NP)(NP + N)
�1/4

. (101)

In [22], superstrata were counted from the CFT side and it was found that, for N ∼ NP ∼ J ,
where J := J3

0 is the R-charge, the entropy is given by [22, eq. (4.77)]

SCFT strata∝ [J(N − J)(NP − J)]1/4. (102)

By maximizing this with respect to J , it is straightforward to show that this reduces to (102),
up to the overall coefficient (which is due to the fact that we are considering a subsector of all
possible superstrata). The entropy (101) behaves for small and large NP as12

S ≈







25/4π
31/251/4 N1/4N1/2

P (NP � N),

25/4π
31/251/4 N1/2N1/4

P (N � NP).
(103)

11We could include n = 0 modes, which are 1/4-BPS, not 1/8-BPS as generic superstrata. However, this would
not make any difference to the thermodynamic quantities such as the entropy.

12In (101) we have already assumed that N ∼ NP . So, NP � N and N � NP here are within the extent that we
do not change the parametric scaling between them.
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This is the same entropy growth found in [22] (see eq. (4.90) there), again, up to the overall co-
efficient. This is parametrically smaller than the D1-D5-P black hole entropy SBH ∼ N1/2N1/2

P .

The high-temperature regime, 0 < β � 1� α, can be worked out almost the same way
as for (1,0, n). Because p� 1, the partition function (97) can be approximated as

log Z ≈
2p
β

. (104)

From this, we can derive

N =
2p
β

, NP =
2p
β2

, therefore p =
N2

2NP
, β =

N
NP

. (105)

p� 1 means that NP � N2. The entropy is

S ∼ N

�

2+ log
2Np

N2

�

. (106)

This is parametrically smaller than the Cardy growth SCFT ∼
p

NNP . As mentioned at the end
of section 4.2, the relevance of the high-temperature regime within AdS/CFT is unclear.
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A Symplectic Form Review

In this appendix, we will briefly review the formalism of the phase space symplectic form
and its relation to the Poisson bracket and time evolution. For definitiveness, we follow the
normalizations of [24].

The symplectic form is a two-form Ω on the even-dimensional phase space manifold M of
a physical system. For any one-form on this phase space, it can define a vector through:

V : T ∗M → T M , α 7→ Vα; iVαΩ= α, (107)

so that iVαΩ(w) = Ω(Vα, w). For a function f on the phase space, the natural associated vector
is Vf := Vd f . The Poisson bracket of two functions is then given by:

{ f , g}PB = −Ω(Vf , Vg). (108)

Given the Hamiltonian H(xA), the time evolution of a function f is simply given by:

d
d t

f = { f , H}PB. (109)

If we introduce coordinates xA on the phase space, then the symplectic form can be written
as:

Ω=
1
2
ωABδxA∧δxB. (110)
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The components of the vector Vα associated to a one-form α= αAδxA is given by:

V A
α = −ω

ABαB, (111)

where we used thatωAB is antisymmetric, andωAB is the inverse matrix ofωAB. For a function
f (xA), we have:

Vf = Vd f = −ωAB∂B f . (112)

Finally, the Poisson bracket is given by:

{ f , g}PB =ω
AB∂A f ∂B g. (113)

In particular, it follows that:
{xA, xB}PB =ω

AB. (114)

Time evolution can also be written in coordinate form as:

d
d t

f = { f , H}PB =ω
AB∂A f ∂BH. (115)

As a simple example, the Lagrangian, Hamiltonian, and symplectic form for a simple, free
particle in one dimension with position q, mass m, and momentum p is given by:

L =
1
2

mq̇2, H =
p2

2m
, Ω= δp ∧δq . (116)

This implies that ωpq = −ωqp = 1 and so also ωqp = +1, which gives the canonical Poisson
bracket:

{q, p}PB = 1, (117)

and the correct time evolution, for example:

dq
d t
=ωAB∂Aq∂BH =ωqp∂pH =

p
m

. (118)

B Review of Rychkov’s Consistency Condition for D1-D5

In this appendix, we briefly review the crucial steps of Rychkov’s consistency condition argu-
ments for the D1-D5 symplectic form13 [9], which immediately leads to the correct symplectic
form for the D1-D5 Lunin-Mathur supertube geometries, up to an overall constant.

B.1 The consistency condition

For a general Hamiltonian system (H,Ω), we can restrict to a subsystem M which is invariant
under Hamiltonian evolution, and define the restrictions of H,Ω on this subspace:

h := H|M, ω := Ω|M. (119)

Then Rychkov’s key theorem, the consistency condition, is the statement that on M, the flows
(H,Ω) and (h,ω) are equivalent.

In principle, to calculate the symplectic form in supergravity, one must consider the rel-
evant solutions in the full, ten-dimensional supergravity action. However, this consistency

13Another work where the D1-D5 symplectic form was calculated explicitly in supergravity is [36].
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condition immediately implies that, if all of the solutions we are interested in live in a subsec-
tor of this full supergravity, we can simply restrict ourselves to the (consistent) truncation of
the ten-dimensional supergravity.

It is important to note that while Rychkov [9] uses this consistency condition for time-
independent solutions, all that is really required for this consistency condition to hold is that
the entire subspace M is invariant under the Hamiltonian evolution — the independent solu-
tions need not be invariant.

Rychkov’s consistency condition then immediately implies (in section 2) that we can simply
restrict ourselves to the on-shell Hamiltonian of the superstrata. In section 3, this consistency
condition implies that we can restrict ourselves to calculating the symplectic form directly
in the three-dimensional supergravity theory where the (1,0, n) superstrata live in, without
having to resort to more complicated, higher dimensional theories.

B.2 D1-D5 symplectic form, quantization, and counting

We will not review the D1-D5 Lunin-Mathur supertube geometries [4–6] in detail here, but
only mention their most relevant features. (A succinct summary of the solutions in type IIB
can be found in [9].) The D1-D5 geometries are completely smooth (in ten dimensions),
horizonless, and are characterized by four arbitrary periodic functions Fi(s) (with i = 1, · · · , 4,
and Fi(s)∼ Fi(s+L)) that determine a closed curve14 inR4. The geometry further is dependent
on the parameters Q5 (the D5-brane charge) and R y (the radius of the S1 in six dimensions).
Note that the parameter period is L = 2πQ5/R y . The D1-brane charge Q1 of the geometry is
then given by:

Q1 =
Q5

L

∫ L

0

|~F ′(s)|2ds. (120)

The degeneracy of the D1-D5 system with fixed charges Q1,Q5 is then given by the counting
of the number of curves ~F that satisfy (120); classically, there are infinitely many such curves,
but after quantization this becomes a well-posed question with a finite answer.

In particular, using units where G5 = π/4 (see also section 3.2), the Hamiltonian of this
system is simply the BPS energy, so:

HD1−D5 =Q5 +Q1 =Q5 +
Q5

L

∫ L

0

|~F ′(s)|2ds. (121)

The D1-D5 geometries are time-independent, and also invariant under shifts of the parameter
F(s)→ F(s+ c). It follows that the only possible allowed Hamiltonian evolution is:

d ~F
d t
= c

d ~F
ds

, ↔ ~F(s, t) = ~F(s+ c t, t) . (122)

This implies (using the prime to denote s-derivatives):

d ~F
d t
= {~F , H}PB = αF ′ = 2

�

Q5

L

�

ωF F ′F ′, (123)

which immediately give the symplectic form15:

Ω= 2
Q5

αL

∫

dsδF ′(s)∧δF(s), (124)

14This curve should further be taken to be non-self intersecting, and should satisfy |~F ′(s)| 6= 0 everywhere.
15Note that we are using a different normalization than Rychkov [9], so our α is different than his.
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and the Poisson bracket:

{Fi(s), F ′j(s
′)}PB =

αL
2Q5

δi jδ(s− s′). (125)

The consistency condition, together with knowledge of the Hamiltonian of the solutions, has
determined the symplectic form (124) up to a constant α. To further determine this constant,
an explicit computation in supergravity is needed; this explicit computation then shows [9]:

α=
2Q5

L
πµ2, (126)

where µ = gs/(R y V 1/2
4 ), using the string coupling gs and the volume V4 of the T4 which the

D5 branes wrap.
We can also rewrite the symplectic form (124) and the Poisson bracket (125) in terms of

individual oscillators. We can expand:

~F(s) = µ
∞
∑

k=1

1
p

2k

�

~ckei 2π
L ks + ~c †

k e−i 2π
L ks
�

. (127)

Integrating the Poisson bracket then gives:

{c i
k, c† j

l }PB = +i

∫ L

0

ds

∫ L

0

ds′
p

2k
µL

1

πµ
p

2l
e−i 2π

L ksei 2π
L ls′{F i(s), F ′ j(s′)}PB (128)

= iδi j

∫ L

0

dsei 2π
L (l−k)s

p
2k
p

2l

1
µ2πL

�

αL
2Q5

�

(129)

= iδi jδkl
αL

2Q5µ2π
. (130)

With α as given in (126), we get the canonical Poisson bracket

{c i
k, c† j

l }PB = iδi jδkl , (131)

as expected.
We can pass from the Poisson bracket (131) to the quantum commutator:16

[c i
k, c† j

l ] = δ
i jδkl . (132)

The condition (120) can be rewritten as:

∞
∑

k=1

k〈c†i
k c i

k〉= N1N5, (133)

where N1, N5 is the number of D1, D5 branes. Then, (133) corresponds to the (N1N5)-th energy
level of a CFT of 4 (since i = 1, · · · , 4) chiral bosons (c = 4), with entropy (for large N1N5):

S = 2π
s

c
6

N1N5 = 2π

√

√2
3

N1N5. (134)

This corresponds to a finite fraction of the full D1-D5 entropy. If one additionally allows for
curves ~F on the compact T4, then the full D1-D5 entropy is reproduced by this counting [8,10].

16Here, one uses the map { f , g}PB →−i[ f̂ , ĝ]; the normal ordering ambiguity in (121) allows us to choose the
sign of this particular quantum commutator. See also [37].
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