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Abstract

We reveal an iso(2, 1) Poincaré algebra of conserved charges associated with the dy-
namics of the interior of black holes. The action of these Noether charges integrates to a
symmetry of the gravitational system under the Poincaré group ISO(2, 1), which allows
to describe the evolution of the geometry inside the black hole in terms of geodesics and
horocycles of AdS2. At the Lagrangian level, this symmetry corresponds to Möbius trans-
formations of the proper time together with translations. Remarkably, this is a physical
symmetry changing the state of the system, which also naturally forms a subgroup of the
much larger BMS3 = Diff(S1) n Vect(S1) group, where S1 is the compactified time axis.
It is intriguing to discover this structure for the black hole interior, and this hints at a
fundamental role of BMS symmetry for black hole physics. The existence of this symme-
try provides a powerful criterion to discriminate between different regularization and
quantization schemes. Following loop quantum cosmology, we identify a regularized set
of variables and Hamiltonian for the black hole interior, which allows to resolve the sin-
gularity in a black-to-white hole transition while preserving the Poincaré symmetry on
phase space. This unravels new aspects of symmetry for black holes, and opens the way
towards a rigorous group quantization of the interior.
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1 Introduction

Symmetries play a fundamental role in modern physics. They give rise to conservation laws
via Noether’s theorem [1], control the structure of classical solutions of a system, and also
organize its quantum states via representation theory. They can be either as global or gauge
symmetries, which can in turn be hidden, broken, restored, or deformed, and even have quan-
tum realizations without classical analogue. General relativity is the typical example of a
theory which rests solely on a principle of symmetry, namely that of invariance under space-
time diffeomorphisms. This simplicity and elegance in the structure of the theory is however
the tree hiding the forest, and it has been realized since the insight of Einstein that symmetries
in general relativity play a very subtle role and are far from being completely understood.

Studying symmetries becomes particularly intriguing in the presence of boundaries. In
gauge theories, boundaries can promote a subset of the gauge symmetries to global, physical
symmetries, which in turn implies the existence of degenerate vacua [2–4]. For gravity in
asymptotically flat spacetimes, the existence of these vacua is related to an enlargement of the
symmetry group from Poincaré to the BMS group [5–7]. Such infinite-dimensional symmetry
groups are in fact ubiquitous in gravity, and a whole zoology exists depending on the type
and location of the boundary, the boundary conditions, the geometry and dimensionality of
spacetime, and the formulation of gravity being considered. Interest in these symmetries lies
in their (sometimes conjectural) ability to control gravitational scattering [2, 8, 9], to count
states in black hole entropy [10–15], and to even define theories of quantum gravity [16–25].

Even setting aside the role of boundaries, bulk symmetries present their own subtleties.
There exist many formulations of general relativity, which possess more or less gauge and in
which diffeomorphism freedom may either be partially fixed or supplemented with additional
gauge invariances [26–29], and it is not clear whether this freedom is actually innocent or
not [30–32]. If, as made manifest in the presence of boundaries, gauge has indeed more
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physical content than meets the eye [33–36], one should aim to understand in details the
symmetry content of a given formulation.

In the context of symmetry-reduced models, it has recently been shown that homogeneous
and isotropic cosmology coupled with a massless scalar field exhibits a 1-dimensional SL(2,R)
conformal invariance in the form of Möbius transformations of the proper time [37–41] (see
also [42–46]). This symmetry also exists in Bianchi I models [38] and in the presence of a
cosmological constant [41], and the relationship with this latter was in fact already pointed
out by Gibbons in [47]. What comes as a surprise is that this conformal symmetry exists on top
of the usual time reparametrization invariance, which itself is what survives of the spacetime
diffeomorphisms in homogeneous cosmological models. In this sense this symmetry is “hid-
den”. Furthermore, there is so far no systematic understanding of its origin and of whether it
extends to other setups and embeds into a large symmetry. Perhaps not surprisingly however,
in the analysis of this symmetry a central role is played by the Schwarzian derivative [48],
whose relationship with conformal symmetry has been known ever since. This appearance
of SL(2,R) symmetry, of the underlying AdS2 geometry, and of the Schwarzian, is very remi-
niscent of recent developments in 2-dimensional gravity and holography [49–56]. While this
strongly suggests that there should be a relationship between these two bodies of work, the
question remains open since the cosmological models studied in [37–41] have a very differ-
ent geometrical setup from 2-dimensional gravity, and in particular do not a priori involve
boundary physics.

In this article we study another homogeneous cosmological model1, which is the black
hole interior, or Kantowski–Sachs spacetime. Its 4-dimensional phase space is parametrized
by two “positions” (V1, V2) and their momenta (P1, P2). We find that it naturally carries an
iso(2,1) algebra, which is that of the (2+1)-dimensional Poincaré group. As this algebra is
given by the (semi-direct) sum sl(2,R)⊕R3, this provides in a sense an extension, including
translations, of the results obtained for FLRW spacetimes in [37–41]. The sl(2,R) piece is
formed by what is now known as the CVH generators, namely the generator of phase space
dilatations C , the position variable V2 (which here for dimensional reasons we refrain from
calling the volume), and the Hamiltonian H. The 3-dimensional Abelian part corresponding to
the translations is generated by the position V1, a constant of the motion, and V1P2. At the level
of the action, this results once again in an SL(2,R) invariance under Möbius transformations
of the proper time, and in addition to an invariance under translations of V2. We compute the
conserved Noether charges associated with these symmetries, and relate them to the phase
space functions forming the above-mentioned iso(2, 1) algebra.

Interestingly, it is possible to show that the Poincaré transformations which leave the action
invariant actually descend from the 3-dimensional BMS group [57–59]. This latter is given by
the semi-direct product structure BMS3 = Diff(S1)n Vect(S1), whose factors act here respec-
tively as arbitrary reparametrizations of the proper time and generalized translations (whose
explicit form we give below). By studying the action of the BMS group by conjugation, we
are led to interpret the variables (V1, V2) as vector fields on the circle S1 (which here is the
compactified time axis), i.e. as elements of the bms3 Lie algebra. While the theory itself is not
invariant under BMS transformations, but only under Möbius transformations of proper time
and some specific translations, this still suggests a possible important role of BMS symmetry in
the black hole interior spacetime. There could for example exist a BMS-invariant formulation
of the dynamics, or a boundary symmetry living e.g. on the horizon. As already mentioned
above, the role of BMS (or Virasoro, or extensions thereof) symmetry in black hole spacetimes
has been recognized long ago and studied in depth [15,59–62], and recent work has also fo-
cused on cosmology [63, 64]. It is however at present not clear how to connect these results
with our work. Indeed, what is surprising in our findings is i) that it is the 3-dimensional BMS

1By “cosmological” we mean symmetry-reduced, with finitely-many degrees of freedom.
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group which seems to play a role even though we are in a 4-dimensional context, and ii) that
we are not explicitly studying boundaries or boundary conditions. The answer to puzzle i)
is probably that, due to the fact that we consider a homogeneous and spherically-symmetric
model for the black hole interior, there could be a dimensional reduction at play and unsus-
pected connections with two or 3-dimensional gravity. Concerning point ii), we will see that
there is a subtle sense in which a boundary actually has to be considered. This is because
non-closed homogeneous cosmological models, like FLRW or the black hole interior which we
study, require an IR cutoff in order for the spatial integrals to be well-defined and to obtain for
the symmetry-reduced action (and symplectic structure and Hamiltonian) a mechanical model
depending only on time. This cutoff, which we will introduce as a fiducial length L0 restricting
the radial integrals, plays a subtle role and appears in particular as a shift in the Hamiltonian
constraint. It could be that homogeneous cosmological models are too “simple” in the sense
that they blur the difference between bulk and boundary, which makes the contact with the
topic of boundary symmetries evidently subtle. We will come back to this issue in future work,
and for now continue to spell out the results of the present work.

Just like in the case of the homogeneous and isotropic FLRW model, the presence of an
sl(2,R) structure enables to reformulate the phase space dynamics of the black hole interior in
terms of the exponentiated SL(2,R) flow on the AdS2 hyperboloid. This leads to an elegant ge-
ometrization of the dynamics in terms of horocycles (these are curves whose normal geodesics
converge all asymptotically in the same direction). In addition, having the full Poincaré struc-
ture available on phase space open up the possibility of studying the quantization of the black
hole interior in terms of representations of the algebra.

We finish this work by a discussion of the regularization of the black hole singularity. This
is motivated by theories of quantum gravity such as loop quantum gravity (LQG) [65, 66],
and its application to homogeneous symmetry-reduced models known as loop quantum cos-
mology (LQC) [67, 68]. In LQC, the Hamiltonian constraint is regularized by replacing a
well-motivated choice of phase space variables, say q, by a compact periodic function such
as sin(λq)/λ, where λ is a (possibly phase space dependent) UV cutoff related to the minimal
area gap of LQG. This procedure, known as “polymerization”, emulates the fact that in full LQG
the connection variable is defined in the quantum theory only through its holonomies (i.e. ex-
ponentiated operators). In the quantum theory, this leads to a quantization on a Hilbert space
which is unitarily inequivalent to the Schrödinger representation used in Wheeler–DeWitt
quantum cosmology, and in turn to a robust resolution of the big-bang singularity in FLRW
models [69–71]. However, in the case of the black hole interior the choice of regularization
scheme for the Hamiltonian constraint (i.e. the choice of phase space variables to polymerize
and the expressions for the regulators) suffers from ambiguities which have so far not been
settled [72–91]. While most schemes predict that the singularity is replaced by a bounce from
the black hole to a white hole (see also [92–94] for a bounce towards a dS universe), there
are disagreements as to which regularization to adopt, and as to the nature of the resulting
effective spacetime geometry [95–102]. Luckily, symmetries provide a powerful criterion for
reducing regularization and quantization ambiguities. Following [103], we find an LQC-like
polymerization which preserves the Poincaré algebra structure on phase space. This is possible
because polymerization is then simply viewed as a canonical transformation. This example of
a polymerization scheme, which we study in section 6, is therefore in this sense compatible
with the symmetries of the classical phase space. There exist however many other polymeriza-
tion schemes (see references above), and one can ask if they are compatible with the Poincaré
symmetry as well. This therefore provides a criterion to discriminate between the different
schemes. We keep this investigation for future work. Sticking to the choice compatible with
the Poincaré symmetry, the effective evolution shows that the polymerized model transitions
via a bounce to a white hole. This therefore provides a black-to-white hole evolution which
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preserves the symmetry on phase space, and opens up new interesting questions about the
quantization of this model and its possible generalization.

The article is organized as follows. We start in section 2 by reviewing the classical setup for
the study of the black hole interior dynamics as described by a Kantowski–Sachs spacetime.
After solving the dynamics in the Hamiltonian formulation, we exhibit the iso(2, 1) algebra
which controls this dynamics and the scaling properties of the phase space variables. In section
3, we then establish the relationship between this algebraic structure and classical symmetries
of the action. In particular, we identify the Noether charges as the initial conditions for the
iso(2,1) generators. Section 4 is then devoted to the study of the BMS3 group and of the
embedding of the newly discovered Poincré symmetries of the action into it. In section 5 we
endow (part of) the phase space with a geometrical structure, and reformulate the physical
trajectories as curves on the hyperbolic AdS2 plane. Finally, section 6 presents the construction
of a symmetry-preserving regularization of the phase space, and studies the resulting black-
to-white hole bouncing evolution. In appendix A we summarize some of the notations which
are used throughout the paper.

2 Classical theory

We start by reviewing the Lagrangian and Hamiltonian formulations of the interior of
Schwarzschild black holes. This enables us to introduce the phase space variables of the the-
ory, along with the IR regulator needed in order to define it. We then solve the dynamics in
the Hamiltonian picture, and show that this dynamics and the scaling properties of the phase
space can be encoded in an iso(2,1) Lie algebra. In the following section we then compute
the Noether charges associated with the Poincaré symmetry of the action, and show that the
iso(2,1) algebra can equivalently be seen as generated by (evolving) constants of the motion.

In the region inside the horizon of a Schwarzschild BH, the radial direction becomes time-
like, and on hypersurfaces orthogonal to this direction the metric is homogeneous. The whole
interior can then be described by a Kantowski–Sachs cosmological spacetime with line element

ds2 = −
�

2M
T
− 1

�−1

dT2 +
�

2M
T
− 1

�

dr2 + T2dΩ2 , (2.1)

where M is the BH mass and dΩ2 the metric on the 2-spheres at constant r and T . In these
homogeneous coordinates the spatial slices areΣ= R×S2 with r ∈ R, the singularity is located
at T = 0, and the horizon is at T = 2M .

The metric (2.1) solves Einstein’s equations, and in particular has a vanishing 4-dimensional
Ricci scalar. In order to study the symmetries of the gravitational dynamics in the BH interior,
as well as potential (quantum) corrections and regularizations, we want to construct a phase
space. For this, we consider line elements of the more general form

ds2 = −N2dt2 +
8V2

V1
dx2 + V1dΩ2 , (2.2)

where the metric components N(t), V1(t), and V2(t) are three time-dependent functions. The
lapse is dimensionless, while the Vi ’s have the physical dimensions of areas.

Since the spatial geometry is homogeneous, integrals over non-compact spatial slices Σ di-
verge. In order to compute the Einstein–Hilbert action, we therefore need to introduce a fidu-
cial length L0 which acts as an IR cutoff for the spatial integrations. Restricting the integration
range to x ∈ [0, L0], the vacuum Einstein–Hilbert action integrated over M= R× [0, L0]×S2
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and evaluated on (2.2) becomes

S = 1
16π

∫

M
d4 x

p

−g R=

∫

R
dt L0

�

V2(4N2V1 + V ′21 )− 2V1V ′1V ′2
2
p

2N(V 3
1 V2)1/2

+
d
dt

�

1
p

2N

�p

V1V2

�′
�

�

,

(2.3)

where the prime ′ denotes derivation with respect to t. We recognize in this action the two
terms of the 3+1 ADM decomposition, namely the kinetic term in 1/N involving the time
derivative of the 3-metric coming from the spatial curvature, and the potential term in N
without time derivatives. The boundary term appearing as a total time derivative in this action
is precisely the Gibbons–Hawking–York term associated with the constant t hypersurfaces Σ.
We drop it in what follows since it does not play any role.

2.1 Hamiltonian formalism and classical solutions

With the action at our disposal, the next step is to compute the canonical momenta conju-
gated to the classical fields Vi , and to find the Hamiltonian. Dropping the boundary term, the
Legendre transform is

S =
∫

dt
�

PiV
′
i −H

�

, (2.4)

where the canonical momenta are

P1 = −
L0

p
2N
�

V 2
1 V2

�1/2

�

V1V ′2 − V ′1V2

�

, P2 = −
L0

p
2N
�

V 2
1 V2

�1/2
V ′1V1 . (2.5)

As usual, we do not assign a momentum to N and treat it as a Lagrange multiplier. The
Hamiltonian is

H = − N
L0

√

√2V2

V1

�

L2
0 + V1P1P2 +

1
2

V2P2
2

�

. (2.6)

The classical theory is now described by a 4-dimensional phase space equipped with the Poisson
brackets {Vi , Pj} = δi j . As usual, the lapse enforces the scalar constraint H ≈ 0, and the time
evolution of a phase space function O(t) is given by the Poisson bracket O′ = {O,H}.

It is now convenient to absorb the pre-factor in the expression (2.6) for the Hamiltonian
by performing a redefinition of the lapse function such that

N = L0

√

√ V1

2V2
Np , H = NpHp . (2.7)

This simplification of the Hamiltonian will turn out to be very useful for the analysis of the
symmetries. In particular, note that it implies that the L0 contribution to the Hamiltonian (2.6)
becomes constant in phase space with the choice of lapse (2.7). This is the condition which will
later on enable us to define a closed algebra of observables on phase space. Let us nevertheless
emphasize that, although one does often perform such reparametrizations and changes of the
lapse, this is actually a field-dependent redefinition2, and is therefore only possible because

2This change of lapse function corresponds to a field-dependent time reparametrization

t 7→ t̄ ,
dt
d t̄
= L0

√

√ V1

2V2

Np

N
.

Since the fields V1 and V2 are dynamical, this begs the question of whether or not the physics using t or t̄ are
equivalent, especially at the quantum level where those fields acquire quantum fluctuations and it seems likely
that a given time t would correspond to a non-trivial probability distribution for t̄ and vice-versa.
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we do not impose specific boundary conditions on the lapse. Here we put aside the questions
about such boundary conditions and the choice of physical time for cosmology, and consider
this change of lapse as a mere technicality.

In terms of this redefined lapse function, the initial line element (2.2) becomes

ds2 = −
V1 L2

0

2V2
N2

p dt2 +
8V2

V1
dx2 + V1dΩ2 , (2.8)

leading to the reduced action (dropping once again the boundary term)

S =
∫

dt

�

Np L2
0 +

V ′1(V2V ′1 − 2V1V ′2)

2NpV 2
1

�

, (2.9)

and the canonical momenta

P1 =
1
Np

V2V ′1 − V1V ′2
V 2

1

, P2 = −
1
Np

V ′1
V1

. (2.10)

The lapse Np is now a Lagrange multiplier imposing the Hamiltonian constraint Hp ≈ 0. As
usual, this constraint generates the invariance of the action under time reparametrization

t 7→ t̃ = f (t) ,
Np 7→ eNp( t̃) = f ′(t)−1 Np(t) ,
Vi 7→ eVi( t̃) = Vi(t) .

(2.11)

This invariance means that we can completely reabsorb the lapse in a redefinition of the time
coordinate. For this, we introduce the proper time (or comoving or cosmic time) dτ = Np dt,
and use the dot Ȯ := dτO to denote derivation with respect to proper time. For an arbi-
trary phase space function O, this gives the proper time evolution Ȯ = {O, Hp} generated by
the Hamiltonian constraint Hp. With this redefinition of the time coordinate, the action now
becomes

S =
∫

dτ

�

L2
0 +

V̇1(V2V̇1 − 2V1V̇2)
2V 2

1

�

, (2.12)

and the lapse Np has therefore disappeared. Let us however emphasize that the lapse remains
implicit in the definition of the integration variable τ. It still plays the role of enforcing the
Hamiltonian constraint Hp ≈ 0. If we were to truly forget about the lapse, Hp could take any
arbitrary constant value, but here we still impose that Hp vanishes on-shell along the physical
trajectories3.

The Poisson brackets of the phase space variables with the Hamiltonian Hp now give the
evolution equations

V̇1 = −V1P2 , (2.13a)

Ṗ1 = P1P2 , (2.13b)

V̇2 = −V1P1 − V2P2 , (2.13c)

Ṗ2 =
P2

2

2
. (2.13d)

3Let us point out that, in the 4-dimensional scalar curvature, the term L2
0 is the potential term coming from the

3-dimensional spatial curvature. Writing the action as an integral over proper time makes this term appear as a
constant which therefore seems not to affect the equations of motion and the physical evolution. However, since a
dynamical field (namely the lapse) is hidden in the definition of proper time τ, the term L2

0 nevertheless appears
as a shift in the Hamiltonian. One should therefore be very careful with such constant/boundary terms, and how
their status changes with changes of the time coordinate.
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A straightforward calculation also reveals that the following quantities are first integrals of
motion:

A=
V1P2

2

2
, B = V1P1 , {A, Hp}= 0= {B, Hp} . (2.14)

The equation of motion for P2 can be directly integrated on its own. Then we use the two
constants of the motion to obtain the evolution of V1 and P1. Finally, we use the fact that
Hp = 0 on-shell to find the trajectory for V2. At the end of the day, we find that the evolution
in proper time is given by

V1 =
A
2
(τ−τ0)

2 , (2.15a)

P1 =
2B

A(τ−τ0)2
, (2.15b)

V2 = B(τ−τ0)−
L2

0

2
(τ−τ0)

2 , (2.15c)

P2 = −
2

τ−τ0
. (2.15d)

Inserting these solutions in the metric, and changing the variables as4

τ−τ0 =

√

√2
A

T , x =
1

2L0

√

√A
2

r , (2.16)

we recover the standard Schwarzschild BH interior metric (2.1) with mass

M =
B
p

A
p

2L2
0

. (2.17)

Let us emphasize that this change of coordinates (τ, x) → (T, r) contains a factor A, which
is treated as a constant of the motion and not as a field-dependent phase space function
A= V1P2

2 /2.
The 4-metric is singular for both V1 = 0 and V2 = 0. During the evolution, τ = τ0 corre-

sponds to the true singularity at T = 0, where both metric components vanish V1 = 0 = V2,
while at the horizon singularity T = 2M only the component V2 = 0 vanishes. We draw the
classical trajectories for different values of the initial conditions on figure 1.

Let us reflect on the apparent dependency on L0 of the mass and evolution. Since this
quantity was introduced as an IR regulator for the homogeneous metric, it should not play a
role in the physical predictions, and consistently this is indeed the case. To make this explicit,
notice that under a rescaling of the fiducial scale L0 → αL0 the canonical momenta scale as
Pi → αPi . This implies that the first integrals are also dilated as A→ α2A and B→ αB, so that
at the end of the day the mass (2.17) is indeed invariant under rescalings of the fiducial cell.

Another subtlety concerns the role of the constants of the motion. Despite the fact that
there are two independent constants of the motion in the Hamiltonian, namely A and B, once
we plug the solutions for the configuration variables back in the metric line element (2.2),
it turns out that only the combination B

p
A is a physical observable. It does indeed measure

the BH mass M and the physical metric only depends on that parameter. We can neverthe-
less provide a physical interpretation for the first integral B. For this, notice that the vector
field ξ = ∂x is a Killing vector for the family of metrics (2.8). The invariance of the metric

4Without loss of generality, the integration constant τ0 could be set to zero as a simple consequence of the
gauge freedom in shifting time by a constant.
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(a) Fixed mass M = 100 with varying
A= 1;4; 9.

2 4 6 8 10 12
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(b) Varying mass M = 50; 100;200 with fixed
A= 1.

Figure 1: Plot of the classical trajectories in configuration space (log V1, V2). The
singularity is located at V1 = V2 = 0, while the BH horizon is at V2 = 0, V1 6= 0. The
fiducial length scale is set to L0 = 1.

along this Killing vector gives a conserved Komar charge QK. To compute this charge, we in-
troduce the determinant q of the metric induced on the boundary 2-sphere, and the binormal
εµν = (sµnν− sνnµ) defined in terms of the time-like normal nµ to the space-like foliation, and
the space-like normal sµ to the time-like boundary. The charge is then given by

QK =
1

8π

∫

S2

d2Ω
p

q εµν∇µξν =
2

L0Np

V2V ′1 − V1V ′2
V1

= 2
V1P1

L0
= 2

B
L0

. (2.18)

We indeed have that dtQK = 0 on-shell along physical trajectories. As for the mass, the charge
QK is invariant under rescalings of the fiducial length L0. The difference with the BH mass is
that M is the Komar charge associated to the vector field ∂r in the Kantowski–Sachs metric
(2.1), which differs from ∂x by the rescaling in (2.16). One can see that this rescaling changes
QK to the mass M .

2.2 The Poincaré algebra iso(2, 1) encoding the dynamics

We now dig deeper into the algebraic structure of the evolution equations. The (proper) time
variation of the metric components V1 and V2 is given by their Poisson brackets with the Hamil-
tonian density Hp. The second order time derivatives are then given by the iterated brackets
{{Vi , Hp}, Hp}, and so on. One can then check if and at which stage this iteration closes and
forms a Lie algebra. This gives the order of the differential equations which have to be solved
in order to integrate the motion. In the present case, the generalized Kantowski–Sachs line
element (2.2) is very similar to the homogenous metric of FLRW cosmology, and we might
therefore expect a similar sl(2,R) algebraic structure as that identified in [37–40]. We now
show that this structure is actually extended to a Poincaré iso(2,1) Lie algebra encoding the
dynamics of the BH interior.

Let us start with the metric component V2. Its proper time variation is given by the Poisson
bracket

V̇2 = {V2, Hp}= C , C = −V1P1 − V2P2 . (2.19)

This phase space function C is the generator of isotropic dilations of the phase space, as one
can check that

e{ηC ,·} . Pi = e−ηPi , e{ηC ,·} . Vi = eηVi , ∀ i ∈ {1, 2} . (2.20)

These transformations should not be confused with the physical rescalings of the fiducial length
L0. Indeed, here both the configuration variables and the momenta are rescaled by the finite
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action of C , while if we change the size of the fiducial cell only the momenta are dilated. We
come back to this subtle point in the next section. Now, let us consider the following modified
Hamiltonian density obtained by a shift with the fiducial length:

H := Hp + L2
0 = −V1P1P2 −

V2P2
2

2
. (2.21)

We then have that the three quantities (C , V2, H) form an sl(2,R) Lie algebra, which we will
refer to as the CVH algebra as in the previous work on FLRW cosmology [37–40]. The brackets
are

{C , V2}= V2 , {V2, H}= C , {C , H}= −H . (2.22)

The sl(2,R) Casimir necessarily commutes with the Hamiltonian constraint, and one finds that
it is related to the constant of the motion B as

Csl(2,R) = −C2 − 2HV2 = −B2 < 0 . (2.23)

An important difference with the previous work on FLRW cosmology nevertheless remains
the shift by the fiducial length term L2

0. In the cosmological context of an FLRW model, this
term would actually correspond to a non-vanishing spatial curvature. This was not considered
in [37–40] which focused on the spatially flat model. Here, going back to the initial unshifted
Hamiltonian, it means that we are actually working with a centrally-extended sl(2,R) Lie
algebra with brackets

{C , V2}= V2 , {V2, Hp}= C , {C , Hp}= −Hp − L2
0 . (2.24)

When integrating the algebra into a group action, the extra central term simply produces
phases which can easily be tracked.

Repeating the above construction starting from the other configuration variable V1, we
again obtain a closed Lie algebra, this time involving the other constant of the motion A and a
new phase space function D defined as

V1 , A=
V1P2

2

2
, D = V1P2 . (2.25)

Putting this together, all the non-vanishing Poisson brackets of interest are

{C , V2} = V2 ,

{V2, H} = C ,

{C , H} = −H ,

{C , V1} = V1 ,

{A, C} = A ,

{A, V2} = −D ,

{D, H} = −A ,

{V1, H} = −D ,

{D, V2} = −V1 .

(2.26)

We recognize this as the Poincaré algebra iso(2,1) given by the semi-direct sum sl(2,R)⊕R3.
Writing the sl(2,R) commutators in the usual so(2,1) generator basis, one can write the brack-
ets above in terms of the standard iso(2, 1) generators

jz =
1
p

2
(V2 −H) ,

Πx = D ,

kx =
1
p

2
(V2 +H) ,

Πy =
1
p

2
(V1 − A) ,

ky = C ,

Π0 =
1
p

2
(V1 + A) ,

(2.27)

for which we find

{ jz , ki} = εi jk j , {kx , ky} = − jz ,

{ jz ,Πi} = εi jΠ j , {ki ,Π0} = Πi , {ki ,Π j} = δi jΠ0 , (2.28)
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with i, j ∈ {x , y}. The two Poincaré Casimirs are given by

C1 = Π
2
0 −Π

2
x −Π

2
y , C2 = jzΠ0 + kyΠx −Πy kx . (2.29)

Expressing the generators in terms of phase space variables we find that both C1 and C2 are
identically vanishing. These two Casimir conditions reduce the 6-dimensional Lie algebra
iso(2,1) back to the original 4-dimensional phase space generated by the configuration and
momentum variables (Vi , Pi)i=1,2. This also means that the mini-superspace black hole interior
carries a massless unitary representation of the Lie algebra iso(2, 1). Preserving this structure
at the quantum level means quantizing the black hole interior dynamics in terms of Poincaré
representations, similarly to what has been developed for the FLRW cosmological model5 in
[38,39].

The beautiful feature of this algebraic structure for the black hole dynamics in the Hamil-
tonian formalism is that the Poincaré algebra iso(2,1) can be exponentiated into an actual
symmetry of the Lagrangian. The Poincaré group symmetry ISO(2,1) is generated by the ini-
tial conditions for the evolution of the Poincaré generators in proper time, similarly to the
construction done for the SL(2,R) symmetry in the cosmological case [39]. This is the subject
of the next section.

As a remark, we note that here the Hamiltonian H belongs to the non-Abelian sl(2,R)
subalgebra of the Poincaré algebra iso(2, 1). This is very different from the usual spacetime
picture, where the Hamiltonian is part of the Abelian generators, and can be seen as a conse-
quence of the fact that, as pointed out above, the Poincaré structure which we have discovered
here has nothing to do per se with the isometries of spacetime. In the group quantization of the
model using representation theory, this will have important consequences as it will determine
how the Hamiltonian is represented.

3 Symmetries of the classical action

In this section, we show how the iso(2,1) algebraic structure encoding the Hamiltonian dy-
namics generates an invariance of the action under ISO(2,1) Poincaré group transformations.
On the one hand, the SO(2, 1) ∼ SL(2,R) subgroup corresponds to Möbius transformations,
for which the metric components transform as primary fields under conformal transformation
of the proper time. On the other hand, the Abelian subgroup R3 defines a symmetry under
special time-dependent field transformations. We compute the Noether charges corresponding
to this symmetry under infinitesimal Poincaré transformations and show that we recover the
iso(2,1) generators (2.26) derived in the previous section.

3.1 Poincaré invariance: Möbius transformations and translations

3.1.1 The SL(2,R) invariance under Möbius transformations

Following the logic introduced for FLRW cosmology in [39,41,104], we start from the action
(2.9) written as an integral over the proper time τ, and show that it is invariant up to a

5In fact, one could ask whether it possible to identify an actual limit of the present construction which gives
back FLRW cosmology. For instance, for an arbitrary integer k ∈ N, one can take V1 = ak L2

0, k(6− k)V2 = a3 L2
0,

Np = N/L0 in (2.9) to obtain the action

S→
∫

dt
�

L0N − V0
3aa′2

8πN

�

,

where V0 = 4πL3
0/3 is the fiducial volume. Up to a constant shift in the energy, this is the reduced FLRW action.

However, simply looking at the metric reveals that it is actually not possible to relate the two spacetimes, since e.g.
in spherical coordinates the FLRW metric has gΩΩ = r2 while in (2.8) this component is homogeneous.
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boundary term under 1-dimensional conformal transformations. More precisely, we perform
a Möbius transformation on the proper time τ and assume that the configuration fields Vi
transform as primary fields of weight 1. This transformation is

τ 7→ τ̃=
aτ+ b
cτ+ d

with ad − bc = 1 , (3.1)

Vi 7→ eVi(τ̃) =
Vi(τ)
(cτ+ d)2

.

The time derivatives transform as

dτ 7→ dτ̃=
dτ

(cτ+ d)2
, (3.2)

deVi

dτ̃
=

dVi

dτ
−

2c Vi

cτ+ d
,

while the action is invariant up to a total derivative and gives

∫

dτ̃L
�

eVi(τ̃), ėVi(τ̃)
�

=

∫

dτ̃

�

L2
0 +

ėV1(eV2 ėV1 − 2eV1 ėV2)

2eV 2
1

�

(3.3)

=

∫

dτ

�

L
�

Vi(τ), V̇i(τ)
�

−
d

dτ

�

L2
0

cτ+ d
+τL2

0 −
2c V2

cτ+ d

��

.

This total derivative defines a boundary term which enters the derivation of the Noether
charges computed below.

Before moving on to the translation symmetry of the model, let us take a step back and
reflect on the peculiar role of the fiducial length scale (or IR cutoff) L0. The term L2

0 in the
Lagrangian is clearly not invariant under the Möbius transformations. It nevertheless does not
spoil the theory’s invariance under Möbius transformations since it only produces a function of
τ, which does not depend on the dynamical fields and can therefore be considered as a mere
total derivative or boundary term. This observation does however open the door to three
inter-related questions:

1. The Lagrangian term L2
0 comes from the 3-dimensional spatial curvature, and is only a

constant with respect to the time τ chosen as the integration variable. For instance, with
respect to the original time coordinate t, this term involves the lapse N as well as the
metric components V1 and V2. What is so special about the choice of time τ?

2. Since Möbius transformations map L2
0 to a function of the proper time, it might be more

natural to begin from the onset with a time-dependent cutoff L0(τ). In that case, working
with a time-dependent boundary defined by L0(τ) would require to consider corner
contributions to the action due to the non-orthogonality of the time-like boundary and
the spatial slices (e.g. see the recent works on space-time corners and the Hayward term
for general relativity [24,105–107]).

3. Introducing an explicitly time-dependent fiducial length could mean deciding on some
profile L0(τ), inserting it in the symmetry-reduced action, and considering it as a forced
system. A more natural option would be to consider L0(τ) as a dynamical field. This
amounts to considering the spatial boundary as a dynamical variable of the theory, with
its own physical variation, equations of motion and quantum fluctuations. This is remi-
niscent of recent work on edge modes which suggest to consider the embedding variables
defining the location of the boundary as fields [108–111].
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We believe that this elucidation of the role of the IR cutoff will play an essential role in un-
derstanding the origin of the symmetries and possible holographic properties of the black hole
interior dynamics. These aspects are however not essential for the rest of the present discus-
sion, and we leave them for future investigation.

3.1.2 The R3 invariance under translations

On top of the invariance under conformal reparametrizations of the proper time, the classical
action admits another symmetry. This symmetry does not modify the time coordinate nor the
metric component V1, but only V2, and acts as

τ 7→ τ̃= τ , (3.4a)

V1 7→ eV1(τ) = V1 , (3.4b)

V2 7→ eV2(τ) = V2 + (α+ βτ+ γτ
2)V̇1 − (β + 2γτ)V1 , (3.4c)

where one should notice that dτ(α+ βτ+ γτ2) = (β + 2γτ). The induced variation of the
action yields a total derivative as

∫

dτ̃L
�

eVi(τ̃), ėVi(τ̃)
�

=

∫

dτ

�

L
�

Vi(τ), V̇i(τ)
�

+
d

dτ

�

2γV1 − (α+ βτ+ γτ2)
V̇ 2

1

2V1

��

, (3.5)

meaning that these translation are indeed a symmetry of the theory. Below we compute the
corresponding Noether charges and associated constants of the motion.

3.2 Infinitesimal transformations and Noether charges

According to Noether’s theorem, if the action of a system with Lagrangian coordinates Vi is
invariant under the infinitesimal variations

δτ= τ̃−τ , δVi = eVi(τ)− Vi(τ) , (3.6)

in the sense that

δS = S
�

τ̃, eVi(τ̃), ėVi(τ̃)
�

−S
�

τ, Vi(τ), V̇i(τ)
�

≈
∫

dτ
dF
dτ

, (3.7)

where the last relation holds on-shell, then the Noether charge defined as

Q := −
∂L
∂ V̇i

δVi −Lδτ+ F (3.8)

is a constant of the motion along classical trajectories.
Let us start by identifying the charges corresponding to the conformal symmetry. An ar-

bitrary Möbius transformation can be decomposed in terms of three types of transformations:
translations, dilations and special conformal transformations. Their infinitesimal generators
are given for an infinitesimal parameter ε→ 0 by the following choice of Möbius parameters:

− Translations: a = 1, b = ε, c = 0, d = 1,
− Dilations: a = 1/d =

p
1+ ε, b = 0, c = 0,

− Special conformal: a = 1, b = 0, c = ε, d = 1.

A straightforward calculation gives the infinitesimal variations of the proper time and of the
metic components under these transformations, as well as the variation of the action given by
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the total derivative term F . We find

δ(t)
ε τ= ε , δ(t)

ε Vi = −εV̇i , F (t) = ε ,

δ(d)
ε τ= ετ , δ(d)

ε Vi = ε(Vi −τV̇i) , F (d) = ετ , (3.9)

δ(s)
ε τ= −ετ

2 , δ(s)
ε Vi = −ετ(2Vi −τV̇i) , F (s) = −ετ2 + 2εV2 .

We then find that the associated conserved charges are given by

Q− =
V̇1V2 − 2V1V̇2

2V 2
1

,

Q0 = τ

�

V̇1V2 − 2V1V̇2

2V 2
1

�

+ V̇2 = V̇2 +τQ− , (3.10)

Q+ = −τ2

�

V̇1V2 − 2V1V̇2

2V 2
1

�

− 2τV̇2 + 2V2 = 2V2 − 2τQ0 +τ
2Q− ,

which generate respectively the translations, dilations, and special conformal transformations.
The conservation of these charges can be verified explicitly using the solutions (2.15) to the
equations of motion found in the previous section. This gives the on-shell values of the charges

Q− ≈ L2
0 , Q0 ≈ B , Q+ ≈ 0 . (3.11)

The last step is now to translate these charges into the Hamiltonian formalism, and to express
them in terms of the canonical variables. Translating the time derivatives V̇i into the conjugate
momenta Pi , we find that the Noether charges admit a remarkably simple expression in terms
of the CVH generators, given by

Q− = H , Q0 = C +τH , Q+ = 2V2 − 2τC −τ2H . (3.12)

Keeping in mind the fact that the time evolution of a phase space function O is given by the
expression Ȯ = {O, Hp} + ∂τO = {O, H} + ∂τO, it is straightforward to check directly the
conservation of these charges. Since they explicitly depend on τ, these are actually evolving
constants of the motion.

Finally, we remark that the Noether charges are indeed the generators of the infinitesimal
Möbius transformation. Computing their bracket with the fields Vi , and replacing the momenta
with their expression in terms of derivative of Vi , gives back the variations (3.9). In fact, the
Noether charges are actually the initial conditions for the three observables H, C and V2.
Indeed, if we reverse the expression of the charges given above, we obtain the trajectories for
the CVH observables given by

H =Q− , C =Q0 −τQ− , V2 =Q+ +τQ0 −
1
2
τ2Q− . (3.13)

Let us now look into the Abelian symmetry (3.4). We distinguish the three types of trans-
formations in terms of the degree of the polynomial in τ. Their infinitesimal versions and the
resulting variation of the Lagrangian given by the total derivative F are

δ(−)ε V2 = εV̇1 , F (−) = −ε
V̇ 2

1

2V1
,

δ(0)ε V2 = −ε(V1 −τV̇1) , F (0) = −ετ
V̇ 2

1

2V1
, (3.14)

δ(+)ε V2 = ετ(2V1 −τV̇1) , F (−) = −2εV1 + ετ
2 V̇ 2

1

2V1
,
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where (−, 0,+) represent respectively the transformations of degree (0, 1,2). We recall that
for the translations there is no variation of the proper time τ or of the metric component V1.
We now compute the corresponding Noether charges and express them as functions on the
phase space to find

P− = A , P0 = D+τA , P+ = −2V1 − 2τD−τ2A , (3.15)

which means that the Noether charges P are the initial conditions for the three observables A,
D and V1. Moreover, computing their on-shell value gives

P− ≈ A , P0 ≈ 0 , P+ ≈ 0 . (3.16)

Finally, it is straightforward to check that the Poisson brackets with the P ’s do generate the
infinitesimal variations of the field translations (3.14).

With the expressions (3.12) and (3.15) for the charges in terms of the canonical variables,
it is direct to verify that the Noether charges reproduce the iso(2,1) algebra

{Q0,Q±}= ±Q± , {Q+,Q−}= 2Q0 ,

{Q0, P±}= ±P± , {Q0, P0}= 0 , (3.17)

{Q±, P±}= 0 , {Q±, P∓}= ±2P0 ,

{Q±, P0}= ∓P± , {PI , PJ}= 0 , I , J = 0,± .

We have shown that the Q’s and P ’s are the initial conditions for the phase space observables
{V1, V2, H, C , A, D}. Conversely, the observables {V1, V2, H, C , A, D} are the evolving version of
the Noether charges, i.e. they are obtained by the exponentiated action of the constraint
operator exp

�

{τH, •}
�

on the Q’s and P ’s. This explain why the observables {V1, V2, H, C , A, D}
form a closed iso(2,1) Lie algebra, which is to be understood as the dynamical version of the
Poincaré algebra for the conserved charges derived above.

This shows how the iso(2,1) Lie algebra of observables encodes both the dynamics and the
scaling properties of the phase space and comes from the invariance of the Kantowski–Sachs
action under conformal transformations in proper time and under the field translations (3.4).
We will furthermore show in section 4 that these symmetry transformations form a subgroup
of the more general BMS transformations acting as proper time reparametrizations.

3.3 Action on the physical trajectories

Before moving on to closer mathematical investigation of the group properties of the sym-
metry transformations, we would like to understand how these transformations act on the
physical trajectories of the system. In particular, we want to determine if they simply consist
in a different time parametrization of the same trajectories, or if they map between different
trajectories. Since different trajectories are labelled by the values of the first integrals A and
B, we will study how these are modified by the conformal transformations in proper time and
field translations.

Möbius reparametrizations of the proper time (3.1) are symmetries, which means that they
map classical solutions onto classical solutions. Computing their explicit action on a physical
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trajectory (2.15) gives

V1(τ) =
A
2
τ2 7→ eV1(τ̃) =

A
2
(dτ̃− b)2 , (3.18)

V2(τ) = τ
�

B − L2
0
τ

2

�

7→ eV2(τ̃) = (dτ̃− b)

�

B(a− cτ̃)−
L2

0

2
(dτ̃− b)

�

, (3.19)

P1(τ) 7→ eP1(τ̃) =
2B
A

1
(dτ̃− b)2

, (3.20)

P2(τ) 7→ eP2(τ̃) =
2d

b− dτ̃
, (3.21)

where we have used the inverse Möbius transformation to (3.1), given by τ= (dτ̃−b)/(a−cτ̃).
The new metric components Ṽi(τ̃) are obviously still solutions to the equations of motion, but
the values of the constants of the motion need to be slightly adjusted. Actually, closer inspec-
tion reveals that the value of B remains the same while the value of A acquires a transformation-
dependent factor. Explicitly, we have

A=
V1P2

2

2
7→ Ã=

eV1eP
2
2

2
= d2A , B = V1P1 7→ eB = eV1eP1 = B . (3.22)

This result is consistent with the fact that B is the Casimir invariant of the sl(2,R) algebra,
and as such is expected to be conserved under SL(2,R) transformations. On the other hand,
A belongs to the translational sector of iso(2, 1) and is therefore naturally modified by this
symmetry.

However, the story of the conformal mapping is actually more subtle because it happens to
shift the Hamiltonian constraint, which therefore does not seem to vanish anymore. Indeed,
we have

Hp = −L2
0 −

P2

2
(2V1P1 + V2P2) = 0 7→ eHp = −L2

0 −
eP2

2
(2eV1eP1 + eV2eP2) = 2cdB + (d2 − 1)L2

0 .

This apparent puzzle is resolved by the fact that the fiducial length does actually change under
conformal transformations. More precisely, in order to interpret the new trajectory as a black
hole solution, we need to restore the on-shell condition and redefine the fiducial scale as

L2
0 7→ eL2

0 = 2cdB + d2 L2
0. (3.23)

Indeed, one can see that this requirement ensures that

Hp = 0 7→ eHp = −eL2
0 −

eP2

2
(2eV1eP1 + eV2eP2) = 0. (3.24)

Because of the presence of the fiducial length in the line element (2.8), the 4-metric gets
modified as well, and becomes

ds̃2 = −
eV1eL

2
0

2eV2

dτ̃2 +
8eV2

eV1

dx2 + eV1dΩ2 . (3.25)

Inserting the explicit trajectories in τ̃ in this expression and performing the change of coordi-
nates

t =

√

√A
2
(dτ̃+ b) , x =

d

2eL0

√

√A
2

r , (3.26)
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gives the Kantowski–Sachs metric with a dilated mass

MBH 7→ eMBH =
d L2

0

eL2
0

MBH =
dB
p

A
p

2eL2
0

. (3.27)

This shows that the Möbius symmetry transformations are not mere time reparametrizations
of the classical solutions, but actually map physical black hole trajectories onto different tra-
jectories with different initial conditions (the values of A and B) and a different black hole
mass.

We treat the R3 symmetry transformations in the same manner. Field translations (3.4)
act only on V2. The resulting flow between trajectories corresponds to a simple shift in the
constants of the motion, given by

A 7→ eA= A , B 7→ eB = B +αA . (3.28)

In order to preserve the Hamiltonian constraint and stay on-shell we need to modify the fiducial
length as

L2
0 7→ eL2

0 = L2
0 − βA , (3.29)

which in turn leads to a shifted BH mass

MBH 7→ eMBH =
1
eL2

0

�

L2
0 MBH +α

A3/2

p
2

�

. (3.30)

This shows that the Poincaré symmetry transformations given by both Möbius transformations
and field translations, are not simple trajectory reparametrizations but more generally allow to
flow between black hole solutions with different masses and explore the physical phase space.

4 Poincaré group and BMS transformations

We have shown in the previous section that the Kantowski–Sachs mini-superspace for the black
hole interior metric admits a conformal and translational invariance on top of the diffeomor-
phism symmetry of general relativity. Indeed, as we have just seen in section 3.3, the conformal
and translational invariance act non-trivially on the physical parameter labelling the solutions
(i.e. the mass), at the difference with diffeomorphisms. The present section is dedicated to
the deeper analysis of the group properties of these new symmetry transformations. Indeed,
we have introduced and studied in totally independent ways the Möbius SL(2,R) transforma-
tions and the R3 field translations acting on the action, but also shown that their infinitesimal
variations couple to each other to form an iso(2, 1) Lie algebra. Here, we explicitly show
that the finite transformations form an ISO(2, 1) Poincaré group. Moreover, this is realized by
the natural embedding of this group into the larger group BMS3 = Diff(S1) n Vect(S1). It is
compelling to consider this BMS group as the fundamental symmetry group of the black hole
mini-superspace dynamics.

Note however, that the BMS group identified here has a priori nothing to do with the
“usual” BMS group of spacetime symmetries which extends the Poincaré group of isometries.
The BMS group structure does indeed appear here, but it is not inherited from e.g. the asymp-
totic symmetries of the spacetime. In particular, the translations in Vect(S1) are not a priori
related to the translations of the spacetime BMS group, but instead simply correspond to the
Abelian part of the symmetry which we unravel.
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4.1 Extended Poincaré transformations and the BMS3 group

As we have introduced Möbius reparametrizations of the proper time in (3.1), it is natural to
extend these to arbitrary reparametrizations of the proper time. This follows the work done
on the conformal invariance of FLRW cosmology [39, 41, 47, 104]. We therefore consider a
general reparametrization of the proper time, and assume that the metric components Vi are
primary fields of weight 1. This is

Df :

�

�

�

�

�

τ 7→ τ̃= f (τ) ,

Vi 7→ eVi(τ̃) = ḟ (τ)Vi(τ) ,
thus

�

�

�

�

�

dτ 7→ dτ̃= ḟ dτ ,

dτVi 7→ dτ̃eVi = dτVi + Vi dτ ln ḟ .

(4.1)

The resulting variation of the action is a volume term weighted by a Schwarzian derivative,
plus a boundary term given by a total derivative, i.e.

∆ f S = S
�

eVi(τ̃), ėVi(τ̃)
�

−S
�

Vi(τ), V̇i(τ)
�

=

∫

dτ

�

Sch[ f ]V2 +
d

dτ

�

L2
0( f −τ)−

f̈

ḟ
V2

��

,

(4.2)

where the Schwarzian derivative Sch[·] is defined as

Sch[ f ] =
f (3)

ḟ
−

3
2

�

f̈

ḟ

�2

= d2
τ ln ḟ −

1
2

�

dτ ln ḟ
�2

. (4.3)

Such a transformation is therefore a classical symmetry only if the bulk variation vanishes,
which requires the Schwarzian derivative Sch[ f ] to vanish. This happens if and only if f is a
Möbius transformation, i.e.

Sch[ f ] = 0 ⇔ ∃ (a, b, c, d) , f (τ) =
aτ+ b
cτ+ d

. (4.4)

This shows that the Möbius transformations (3.1) introduced in the previous section are indeed
the only case in which the proper time reparametrizations are a symmetry of the theory.

We can similarly extend the R3 field translations (3.4) and consider the more general
transformations parametrized by an arbitrary function g(τ) and acting as

Tg :

�

�

�

�

�

�

τ 7→ τ̃= τ ,
V1 7→ eV1(τ) = V1 ,
V2 7→ eV2(τ) = V2 + gV̇1 − V1 ġ .

(4.5)

Under this transformation, the induced variation of the action is a volume term weighted by
the third derivative of the transformation parameter, plus a boundary term, i.e.

∆gS = S
�

eVi(τ̃), ėVi(τ̃)
�

−S
�

Vi(τ), V̇i(τ)
�

=

∫

dτ

�

−g(3)V1 +
d

dτ

�

g̈V1 −
gV̇ 2

1

2V1

��

. (4.6)

Such a transformation is therefore a classical symmetry only if the third derivative vanishes,
g(3) = 0, which means that g(τ) is a second degree polynomial in the proper time,
g(τ) = γτ2 + βτ + α. This gives back precisely the R3 field translations parametrized by
three real numbers considered in (3.4).

A beautiful point is that these extended transformations, namely the conformal
reparametrizations (4.1) and the field translations (4.5), actually form a group
Diff(S1)nVect(S1), which one can recognize as the BMS3 group [57–59]. As mentioned in the
introduction, this group usually appears in the study of the symmetries of asymptotically flat
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spacetimes [19, 20, 22, 112], where it produces an infinite-dimensional enhancement of the
Poincaré group of isometries (like the two copies of Virasoro extend the two copies of SL(2,R)
in AdS3 [16]). It is also heavily suspected to play a fundamental role in the presence of black
holes [3, 15, 60, 113–117], in cosmological contexts [61, 63, 64], and has been shown to be
related to fluid symmetries [118, 119]. Given this abundant literature, it is intriguing to find
the BMS group in the new context described here. This happy coincidence points towards a
deeper symmetry principle for the black hole mini-superspace. Furthermore, it turns out that
the two volume terms appearing in the variation of the action above, namely the Schwarzian
derivative Sch[ f ] and the third derivative g(3), are actually the group cocycle and the algebra
cocycle corresponding to the central charges of the BMS3 group. This definitely suggests that
there should be a BMS group reformulation of the Kantowski–Sachs spacetime geometry. This
line of research is postponed to future investigation.

For the time being, let us thus check the group structure of the extended transformations.
To start with, on the one hand, the field translations form on their own an Abelian group with
a simple composition law

Tg2
◦ Tg1

= Tg2+g1
. (4.7)

This is the group Vect(S1) of 1-dimensional vector fields. On the other hand, the proper time
reparametrizations also form a group with composition law

Df2 ◦ Df1 = Df2◦ f1 , (4.8)

which we recognize as the group Diff(S1) of diffeomorphisms of the circle. The coupling be-
tween the two types of transformations comes from the non-trivial conjugation of a translation
by a reparametrization, for which we obtain

Df −1 ◦ Tg ◦ Df = T(g◦ f )/ ḟ . (4.9)

Putting conformal reparametrizations together with the field translations, we can consider
pairs of transformations (Tg , Df ) ∈ Vect(S1) × Diff(S1), which we define as the composed
transformation

(Tg , Df ) := Tg ◦ Df . (4.10)

The conjugation formula allows to compute the general composition laws for such pairs, which
is given by

(Tg2
◦ Df2) ◦ (Tg1

◦ Df1) = Tg2
◦ (Df2 ◦ Tg1

◦ D−1
f2
) ◦ (Df2 ◦ Df1)

= Tg2+ ḟ2 g1◦ f −1
2
◦ Df2◦ f1 , (4.11)

along with the inverse transformation

(Tg ◦ Df )
−1 = Df −1 ◦ T−g = T−(g◦ f )/ ḟ ◦ Df −1 . (4.12)

This is the group multiplication and its inverse for the Lie group defined as a semi-direct
product Vect(S1)oDiff(S1).

4.2 Adjoint BMS transformations

An enlightening point of view is to reverse the logic presented above. More precisely, we
would like to start with the Diff(S1)nVect(S1) structure and the group multiplication (4.11),
and then derive the field transformations (4.1) and (4.5) for the metric components. The
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question is what are the metric components V1 and V2 with respect to the Diff(S1)n Vect(S1)
structure. The key insight is that the transformation law (4.1) of the metric components under
a proper time reparametrization Df is exactly the transformation law for vector fields on the
circle under a diffeomorphism in Diff(S1). Since both Lie groups Vect(S1) and Diff(S1) are
generated by vector fields on S1, it is tempting to imagine V1 and V2 as the bms Lie algebra
elements living in the adjoint representation with the BMS group elements (Tg , Df ) acting
on them by conjugation. This can be confirmed by a straightforward calculation, as we now
demonstrate.

Let us consider the action by conjugation of an arbitrary BMS transformation (Tg , Df ) on
an infinitesimal BMS transformations (Tv2

, Dv1
),

(Tg , Df ) . (Tv2
, Dv1
) = (Tg , Df )(Tv2

, Dv1
)(Tg , Df )

−1 with

�

�

�

�

v1(τ) = τ+ εV1(τ)
v2(τ) = −εV2(τ)

,

(4.13)

for an infinitesimal parameter ε→ 0. Starting with the action of a circle diffeomorphism, we
compute

Df ◦ (Tv2
◦ Dv1

) ◦ Df −1 = T ḟ v2◦ f −1 ◦ Df ◦v1◦ f −1 = Tv( f )2
◦ Dv( f )1

, (4.14)

giving for the Lie algebra elements the variation

∀ i = 1, 2 , V ( f )i (τ) = ḟ
�

f −1(τ)
�

Vi

�

f −1(τ)
�

, or equivalently V ( f )i

�

f (τ)
�

= ḟ Vi(τ) .
(4.15)

This is exactly the transformation law (4.1). Similarly, we compute the action of a circle vector
field

Tg ◦ (Tv2
◦ Dv1

) ◦ T−g = Tv2+g−v̇1 g◦v−1
1
◦ Dv1

. (4.16)

The parameter V1 clearly does not vary, while we calculate the transformation for the param-
eter V2 to find

εV (g)2 = −v(g)2 = −v2 − g + v̇1 g ◦ v−1
1 = ε(V2 + gV̇1 − V1 ġ) , (4.17)

which reproduces the expected field translations (4.5).
This confirms the interpretation of the metric coefficients V1 and V2 as vector fields on the

circle S1. Let us remember that here this circle is simply the compactified time axis. This seems
to imply a possible reformulation of the black hole reduced action in terms of differential forms
on S1, and one might wonder if this could then extend to full general relativity.

It is important to notice that here the BMS3 group is acting on the metric coefficients V1 and
V2 via the adjoint action. This is to be contrasted with the “usual” situation of geometric ac-
tions, where the asymptotic symmetry group (i.e. BMS or Virasoro) act by the coadjoint action
instead [58, 120–122]. This enables a symplectic structure to be induced on the orbits, and
therefore suggests that this might not be possible in the present situation. It is however possi-
ble to construct a geometric action where the conjugate variables P1 and P2 transform under
the coadjoint action, although these are not the components which appear in the metric [123].
Alternatively, it could be interesting to study the “dual BMS group” Diff(S1)n

�

Vect(S1)
�∗

, un-
der which the metric coefficients V1 and V2 would transform as coadjoint vectors [124].
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4.3 Back to the Poincaré subgroup

Now that we have explored the whole algebraic and group structure of the extended Poincaré
transformations, we are ready to come back to the original set of symmetry transformations,
consisting in the Möbius transformations given by the vanishing Schwarzian time reparametriza-
tions and the field translations with vanishing third derivatives. We would like to make explicit
how they combine together to form the Poincaré group ISO(2, 1).

Starting with the proper time reparametrizations T f for f a Möbius transformation of the
proper time, i.e.

fM (τ) =
aτ+ b
cτ+ d

, with M =

�

a b
c d

�

, det M = ad − bc = 1 , (4.18)

the composition law for reparametrizations along the circle simply translates in the multipli-
cation of 2×2 matrices as

T fM1
◦ T fM2

= T fM1
◦ fM2
= T fM1M2

, ∀M1, M2 ∈ SL(2,R) . (4.19)

Similarly, the action by conjugation of proper time reparametrizations on field translations gets
encoded in matrix terms. For this, we represent the adjoint action of Df on Tg as the action
by conjugation of SL(2,R) matrices on real symmetric matrices, i.e.

Df −1 ◦ Tg ◦ Df = T(g◦ f )/ ḟ ⇒ DfM−1 ◦ TgZ
◦ DfM

= Tg M t Z M
, (4.20)

where the translation parameters have been repackaged into a 2×2 symmetric matrix

gZ(τ) = α+ βτ+ γτ
2 , Z =

�

γ
β
2

β
2 α

�

, Z = Z t . (4.21)

Then, we consider the subset of the group BMS3 = Vect(S1)oDiff(S1) consisting in the pairs
(Z , M) := (TgZ

, DfM
), which stands standing for the composed transformations TgZ

◦DfM
. These

form a Lie group with the group multiplication law6

(Z1, M1).(Z2, M2) =
�

Z1 + (M
−1
1 )

t Z2M−1
1 , M1M2

�

, (4.22)

which we recognize as expected as the Poincaré group ISO(2,1) = R3 o SL(2,R).
This concludes the proof that the symmetry transformations we have exhibited do form the

ISO(2,1) Poincaré group, which is best understood as a subgroup of the much larger group
BMS3 = Vect(S1)oDiff(S1). BMS transformations, or extended Poincaré transformations, are
not strictly speaking symmetries since they induce variations of the action with non-vanishing
bulk terms, but we will come back to the study of this point in future work.

5 Black hole evolution as trajectories on AdS2

In this section we explore the geometrical consequences of the action of SL(2,R) on the black
hole phase space. This is especially relevant since the Hamiltonian constraint Hp generating
the evolution in time belongs to the sl(2,R) Lie algebra formed by the CVH observables, and
thus exponentiates to SL(2,R) transformations. It is therefore natural to look at the black hole

6If we were to choose the other ordering, namely (Z , M) := DfM ◦ TgZ
, the group operation would read

(Z1, M1).(Z2, M2) = (M
t
2 Z1M2 + Z2, M1M2) ,

which is the other standard version of the Poincaré group multiplication law.
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evolution as trajectories for the three observables C , V2 and H = Hp+L2
0, generating the sl(2,R)

Lie algebra. Since these observables are constrained by the Casimir relation C2 + HV2 = B2,
with B a constant of the motion, this means looking at the black hole trajectory in terms of an
SL(2,R) flow on the AdS2 hyperboloid.

This is similar to what has been worked out for FLRW cosmology in [37–39], where the
evolution can be mapped to geodesics on the AdS2 geometry. The main difference here is
the shift between the Hamiltonian constraint Hp and the sl(2,R) generator H = Hp + L2

0.
This apparently small point has far-reaching consequences: it translates into a non-vanishing
acceleration along the evolution curve, in such a way that the black hole trajectories are not
AdS2 geodesics as for FLRW cosmological trajectories, but are instead identified as horocycles
on the hyperboloid. Horocycles are curves whose normal geodesics converge all asymptotically
in the same direction.

We note that this geometrical description of the black hole phase space relies essentially
on the sl(2,R) part and variables of the Poincaré algebra which we have unraveled.

5.1 Algebraic structure of the AdS2 geometry

5.1.1 The sl(2,R) parametrization

The AdS2 manifold is a 1-sheet hyperboloid, which can be defined through its embedding in
3-dimensional Minkowski space by the quadratic equation

−X 2
0 + X 2

1 + X 2
2 = `

2 , (5.1)

where ` is the AdS curvature radius. A useful parametrization is given by the light-cone vari-
ables7

X0 = −`
u+ − u−

1+ u+u−
, X1 = `

u+ + u−
1+ u+u−

, X2 = `
u+u− − 1
1+ u+u−

. (5.2)

Starting with the flat 3-dimensional line element, ds2 = −dX 2
0+dX 2

1+dX 2
2 , the induced metric

on the AdS2 hyperboloid is

ds2 = 4`2 du+ du−
(1+ u+u−)2

. (5.3)

Our goal is to explain how the Kantowski–Sachs phase space can be described in terms of
the AdS2 geometry. In fact, we distinguish the two sectors of the phase space: on the one hand
the sl(2,R) Lie algebra formed by the observables C , H and V2 , which encodes the dynamics of
the configuration variable V2 and its momentum P2, and on the other hand the sector generate
by V1 and P1. The interesting fact is that the latter sector only affects the dynamics of the first
sector through the constant of the motion B = P1V1, which gives the value of the quadratic
Casimir operator of the sl(2,R) algebra (2.23). This condition allows to write the sl(2,R)
generators in terms of the canonical pair (V2, P2) plus the value of B, i.e.

jz =
1

2
p

2

�

2V2 + 2P2B + V2P2
2

�

, kx =
1

2
p

2

�

2V2 − 2P2B − V2P2
2

�

, ky = −V2P2 − B .

(5.4)

This parametrization automatically satisfies the quadratic Casimir condition− j2z +k2
x+k2

y = B2.
Given the Lie algebra with the flat metric

ds2 = −d j2z + dk2
x + dk2

y , (5.5)

7This parametrization corresponds to the stereographic projection to the X2 = 0 plane through the base point
p= (0, 0,1).
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this Casimir equation gives back the AdS2 hyperboloid. The change of coordinates to light-cone
variables is then explicitly given by

u− =
p

2V2

2B + V2P2
, u+ = −

P2p
2

. (5.6)

Finally, this allows to express the line element in terms of the canonical pair (V2, P2) as

ds2 = −2B dV2 dP2 + V 2
2 dP2

2 . (5.7)

Let us now introduce the last ingredients we need in order to describe the trajectories, namely
the group action on sl(2,R).

5.1.2 Isometries of AdS2 and the SL(2,R) action

The closed sl(2,R) algebra exponentiates to Killing flows on AdS2 by means of SL(2,R) group
elements. To represent this in an explicit way, we use the 2-dimensional matrix representation
of the sl(2,R) Lie algebra and map the phase space to real matrices with vanishing trace of
the form

M =

�

ky kx − jz
kx + jz −ky

�

. (5.8)

The Poisson structure on Minkowski space spanned by the Lie algebra vectors J = { jz , kx , ky}
in (2.27) can be written in a more compact manner as the matrix product

{η ·J , M}= i(η ·λ)M − iM(η ·λ) , (5.9)

where the Minkowski scalar product is η·J = −ηz jz+ηx kx+ηy ky , and the sl(2,R) generators
are represented by the matrices

λz =
i
2

�

0 1
−1 0

�

, λx =
i
2

�

0 1
1 0

�

, λy =
i
2

�

1 0
0 −1

�

. (5.10)

This exponentiates to the adjoint representation of the SL(2,R) Lie group on its algebra ex-
pressed as the matrix product

e{η·J ,•}M = GMG−1 , with G = eiη·λ ∈ SL(2,R) . (5.11)

The quadratic Casimir condition Csl(2,R) = j2z − k2
x − k2

y = −B2 simply becomes det(M) = −B2,
which is manifestly invariant under the group action above. As a consequence, SL(2,R) is
indeed the group of isometries on AdS2. These isometries take an elegant expression in terms
of the null parametrization u±. Indeed, the action of a general group element G ∈ SL(2,R) on
AdS2 becomes a Möbius transformation on the null coordinates, i.e.

G =

�

a b
c d

�

∈ SL(2,R) , u+ 7→ G . u+ =
a u+ + b
c u+ + d

, u− 7→ (G−1)t . u− =
d u− − c
a− b u−

.

(5.12)

5.2 Physical trajectories

We now look at the flow along the physical trajectories generated by the Hamiltonian con-
straint. As already pointed out in the section about the classical evolution, the sl(2,R) gener-
ator H differs from the Hamiltonian density Hp by a constant shift L2

0. This means that we can
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recover the time evolution by the group flow, e{−τHp,•} = e{−τH,•}, while we must nevertheless
be careful to select the trajectories with a non-vanishing value H = L2

0 6= 0.
We easily integrate the SL(2,R) flow generated by H to find

M(τ) = GτM (0)G−1
τ , with Gτ = ei τp

2
(λz−λx ) =

�

1 0
τp
2

1

�

, (5.13)

which gives the evolution of the sl(2,R) generators with respect to the proper time τ in the
form

jz(τ) = j(0)z +
τ
p

2
k(0)y −

τ2

4

�

k(0)x − j(0)z

�

, (5.14a)

kx(τ) = k(0)x +
τ
p

2
k(0)y −

τ2

4

�

k(0)x − j(0)z

�

, (5.14b)

ky(τ) = k(0)y −
τ
p

2

�

k(0)x − j(0)z

�

. (5.14c)

Taking into account the on-shell condition H = (kx − jz)/
p

2 ≈ L2
0 and enforcing the Casimir

condition uniquely specifies the initial condition M (0) (up to a constant time shift) in the form

M (0) =

�

B
p

2L2
0

0 −B

�

. (5.15)

Then, translating the evolution for the sl(2,R) generators into the original canonical pairs
(Vi , Pi) as given by the parametrization (5.4), we can check that this is in perfect agreement
with the classical trajectories (2.15) found in the previous sections. In figure 2, we draw the
physical trajectories on the AdS2 hyperboloid for a fixed value of the constant of the motion
B = 1.

Figure 2: Plot of the physical trajectories corresponding to the flow generated by H
on a fixed hyperboloid, for B = 1. For non-vanishing L0, these are horocycles on
the AdS hyperboloid. The green curves correspond to L0 = 0.5, 1, 1.5. Only the
case L0 = 0 in red gives a (null) geodesic, similarly to the trajectories of flat FLRW
cosmology.

An important feature of the classical trajectories is that, unlike for FLRW cosmology, they
are not AdS2 geodesics but AdS2 horocycles. In the u± parametrization, the Hamiltonian flow
(5.14) is represented by a hyperbolic curve

u+

�

u− −
p

2B
L2

0

�

= −1 , u+ =
p

2
τ

, u− =
2B − L2

0τp
2L2

0

. (5.16)
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One can compute the acceleration along these curves and realize that it is non-vanishing and
actually orthogonal to the velocity: these are not geodesics, but the orthogonal notion in some
sense. Note that the way in which L0 appears can be traced back to the contribution of the 3d
Ricci scalar to the Hamiltonian.

Now, we would finally like to show that all the geodesics perpendicular to one of these
curves converge to the same point (u+, u−) = (0,∞). For this, we first notice that the vec-
tor parallel to the trajectories has a positive norm ds/dτ = L2

0, so that all the perpendicular
geodesics are tachyonic. Moreover, we have that the geodesic that intersects the trajectory at

the point (u+, u−) =
�p

2L2
0

B , Bp
2L2

0

�

, corresponding to τ = B/L2
0, is generated as a group flow

by exp(iη/Bλy) acting on the intersection point8, with η the proper time along the geodesic.
Using the property that isometries map geodesics to geodesics, and the fact that the physical
solutions are generated as a group flow, we obtain the class of geodesics perpendicular to the
classical trajectories as

(u+, u−) = ei
τ−B/L2

0p
2
(λz−λx )eiη/Bλy .

�p
2L2

0

B
,

B
p

2L2
0

�

=

� p
2L2

0

−B + Beη/B + L2
0τ

,
B + Beη/B − L2

0τp
2L2

0

�

. (5.17)

We see that these geodesics indeed all converge to (u+, u−) = (0,∞) when η → ∞. This
point corresponds to ( jz , kx , ky)→ (∞,∞, 0). This result is illustrated below on figure 3.

Figure 3: Plot of the perpendicular geodesics (in red) to the trajectory corresponding
to L0 = 1 (in green) for a Casimir value of B = 1. We see that the geodesics converge
as ( jz , kx , ky)→ (∞,∞, 0).

8This is a consequence of the fact that the group elements generate geodesics on AdS2 when the corresponding
generator vanishes on the flow lines. In this particular case we have that the group element exp(iη/Bλy) generates
a tachyonic geodesic on the plane ky = 0, given by

(u+, u−) =

�p
2L2

0

B
e−η/B ,

B
p

2L2
0

eη/B
�

.

This geodesic is perpendicular to the trajectory and intersects it at (u+, u−) =
�p

2L2
0

B , Bp
2L2

0

�

.
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6 Symmetry-preserving regularization: solving the singularity

In this section we show that it is possible to define a “polymer” regularization for the black hole
evolution, inspired by the techniques of loop quantum cosmology (LQC), while preserving the
classical Poincaré symmetry which we have identified. This regularization resolves the black
hole singularity and replaces it by a black-to-white hole transition. At the technical level,
this is simply realized by a canonical transformation on the Kantowski–Sachs phase space,
similarly to what was achieved for the polymer regularization of the big bang singularity of
FLRW cosmology in [38].

The main ingredient of the polymer regularization scheme, as used in effective LQC [68],
is to replace a suitable choice of phase space coordinates, say q by their “polymerized” ex-
pression9 sin(λq)/λ, where λ is a UV regulator related to the minimal area gap of full loop
quantum gravity. These heuristic corrections, which one can put by hand in order to study
the effective classical dynamics, but would nevertheless like to derive from the full theory, are
supposed to capture features of the quantization scheme used in loop quantum gravity. There,
one is working with Yang–Mills like connection variables, which in the quantum theory are
only represented as exponentiated holonomy operators. For this reason, the polymerisation is
also known as the inclusion of holonomy corrections.

The form of this polymerization scheme (i.e. which variables to polymerize and which
regulator to choose) has been heavily debated in the context of the Kantowski–Sachs black
hole interior spacetime [72–94]. It is therefore natural to use the notion of symmetry to study
this problem, and we have now a powerful criterion at our disposal. To start with, consider
for example the polymerization of the momenta as

Pi →
sin(λi Pi)
λi

∀ i ∈ {1,2} , (6.1)

where the λi ’s are effective parameters encoding the quantum gravity corrections, and in terms
of which the effective Hamiltonian becomes

H(λ)p = −L2
0 − V1

sin(λ1P1)
λ1

sin(λ2P2)
λ2

− V2
sin2(λ2P2)

2λ2
2

. (6.2)

Here the λi ’s are taken to be constants in the phase space, which therefore represents the so-
called µ0 scheme10. In the low curvature regime λi Pi � 1, the classical evolution is restored.
However, defining the regularized shifted Hamiltonian density as H(λ) = H(λ)p + L2

0, one can
easily see that regularization breaks the Poincaré symmetry unraveled in the previous sections.
While it is of course plausible that the quantization of a theory breaks a classical symmetry,
with possible deep physical reasons for this, and consequences, here we take the viewpoint
that there should actually exist a polymer regularization which preserves the iso(2, 1) Poincaré
algebra and the symmetries it generates.

We recall in appendix B the CVH structure within the full algebra of constraints of LQG
(which however does not have an interpretation in terms of symmetries of the action so far),
and the link between the (Vi , Pi) black hole phase space used here and the (b, c, pb, pc) phase
space variables traditionally used in LQC.

9One can more generally consider higher Fourier modes and arbitrary compactifying functions, as in [125].
10It would be possible, and interesting, to consider µ̄ schemes where the λi ’s are functions of the phase space

variables. In this case, contrary to the µ0 scheme, it is not guaranteed that it is always possible to realize the
polymerization as a canonical transformation. Investigating this in details would allow to discriminate between
the various polymerization (or µ) schemes which have been proposed in the literature.
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6.1 Polymerization as a canonical transformation

As pointed out in the context of FLRW LQC in [38], a systematic way to ensure that the Poisson
bracket relations are preserved is to perform a canonical transformation on the phase space.
It is possible to use such a redefinition of the phase space variables to produce a polymerized
version of the Hamiltonian constraint and of the Poincaré generators. A general symplecto-
morphism changing the canonical momenta is by definition

(Vi , Pi)→ (vi , pi) with {vi , p j}= δi j , (6.3)

with defining functions Fi such that

Pi = Fi(pi) Vi =
�

dFi

dpi

�−1

vi + k, k = constant. (6.4)

The lowercase (vi , pi) represent the new polymer variables obtained by transformation of the
original phase space canonical pairs (Vi , Pi).

Let us now find a canonical transformation leading to the Hamiltonian (6.2). For this,
we start with the sector (v2, p2). The effective Hamiltonian (6.2), now written in terms of
lowercase variables, gives the following equations of motion:

v̇2 = {v2, Hp}= − cos(λ2p2)
�

v1
sin(λ1p1)
λ1

+ v2
sin(λ2p2)
λ2

�

, (6.5a)

ṗ2 = {p2, Hp}=
sin2(λ2p2)

2λ2
2

. (6.5b)

Let us solve the evolution by deparametrizing it. We recall that under the hypothesis that
Hp = 0 this procedure does not depend on the lapse. Using this constraint, the evolution
equation for v2 with respect to p2 reads

dv2

dp2
= −λ2 cot(λ2p2)

�

v2 −
2L2

0λ
2
2

sin2(λ2p2)

�

. (6.6)

This differential equation then integrates to

v2(p2) = −
2λ2

sin(λ2p2)

�

B +
L2

0λ2

sin(λ2p2)

�

. (6.7)

This can now be compared with the classical deparametrized evolution (2.15), which is

V2(P2) = −
2
P2

�

B +
L2

0

P2

�

, (6.8)

to find that the mapping (6.3) between the classical variables and the polymerized ones must
satisfy

2
F2

�

B +
L2

0

F2

�

=
2λ2

sin(λ2p2)

�

B +
L2

0λ2

sin(λ2p2)

�

�

dF2

dp2

�−1

− k . (6.9)

Requiring the canonical transformation F to be independent from the initial condition B, we
need to impose

2
F2
=

2λ2

sin(λ2p2)

�

dF2

dp2

�−1

⇒ F2(p2) =
2
λ2

tan
�

λ2p2

2

�

, (6.10)
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and fix the value of the constant to k = λ2
2 L2

0/2. At the end of the day, this gives the following
canonical transformation:

P2 =
2
λ2

tan
�

λ2p2

2

�

, V2 = v2 cos2
�

λ2p2

2

�

+
λ2

2 L2
0

2
. (6.11)

Following the same procedure for the sector (v1, p1), we find

P1 =
2
λ1

tan
�

λ1p1

2

�

, V1 = v1 cos2
�

λ1p1

2

�

. (6.12)

The change of variables defined by (6.11) and (6.12) preserves the Poisson brackets by
construction, and therefore the phase space Poincaré symmetry. We can thus obtain the poly-
merized Hamiltonian (up to a redefinition of the lapse) as well as regularized versions of all
the other observables A, C , D such that the iso(2, 1) algebra is preserved. In particular, the
regularized effective Hamiltonian reads11

H(λ) = − cos−2
�

λ2p2

2

�

�

v1
sin(λ2p2)
λ2

sin(λ1p1)
λ1

+ v2
sin2(λ2p2)

2λ2
2

�

. (6.13)

Having shown that this regularization preserves the Poincaré symmetry, we now show that it
also solves the black hole singularity and replaces it by a black-to-white hole transition.

6.2 Evolution of the polymerized model

The key step leading to the singularity resolution in the effective model is to replace the vari-
ables in the metric coefficients by the polymerized one. Moreover, in order to be in line with
the existing literature on effective polymer Hamiltonian dynamics in cosmology, we will re-
absorb the lapse in a redefinition of the proper time in the metric. The effective line element
which we consider is therefore

ds2 = −
v1 L2

0

2v2
dτ′2 +

8v2

v1
dx2 + v1dΩ2 , dτ= cos2

�

λ2p2

2

�

dτ′ . (6.14)

We can then invert the canonical transformation and find the evolution of the new variables.
In order to see if the singularity is resolved, we need to find out if v1 is vanishing at some
point. We have that

v1 = V1

�

1+
λ2

1P2
1

4

�

= V1 +
λ2

1B2

4V1
. (6.15)

It is evident from this expression that, although V1 follows the classical trajectory towards the
singularity at V1 = 0, the modified variable v1 never vanishes and reaches a minimum at

v1
(min) = λ1B. (6.16)

11The other regularized Poincaré observables are

A=
2
λ2

2

v1 tan2
�

λ2p2

2

�

cos2
�

λ1p1

2

�

,

C =
sin(λ1p1)
λ1

v1 +
sin(λ2p2)
λ2

v2 +λ2 tan
�

λ2p2

2

�

,

D =
2
λ2

v1 tan
�

λ2p2

2

�

cos2
�

λ1p1

2

�

.
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The explicit time evolution for the two configuration variables is given by

v1 =
A
2
τ2 +

λ2
1B2

2Aτ2
, (6.17a)

v2 = B
�

τ+τ−1λ2
2

�

−
L2

0

2

�

τ+τ−1λ2
2

�2
, (6.17b)

which can be compared with the classical evolution (2.15) recovered in the limit λi → 0.
Note that these effective evolution equations are much simpler than the evolution equations
obtained in the usual polymerization schemes [85, 87–90, 126]. This effective bouncing evo-
lution is represented on figure 4 below.
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Figure 4: Plot of the effective trajectories in configuration space (log v1, v2) in solid red,
compared to the respective classical ones in dashed. On the left, the value of the BH mass
(i.e. B

p
A) is fixed to M = 100 and A= 1, 4, 9. On the right, the mass is varied as M = 50,

100, 200, and A= 1. We take both λ1 = λ2 = 1, as well as L0 = 1.

Note that the on-shell value of the line element (6.14) is not a solution of the Einstein
equations because of the (effective) quantum effects. On the other hand, we expect these
effect to be negligible in the low curvature regime, which here corresponds to the region near
the black hole horizon. This is when τ→ 2B, where we have

v1 ∼
A
2
τ2 , v2 ∼ Bτ−

L2
0

2
τ2 . (6.18)

Repeating the change of variables (2.16) of the previous section, we find a Schwarzschild
metric with MBH = B

p
A/
p

2. This shows that near the black hole horizon there are no correc-
tions at leading order. The quantum effects becomes important as we approach the would-be
singularity, which is at τ→ 0 and gives

v1 ∼
B2λ2

1

2Aτ2
+O(t2) , v2 ∼ −λ2

2

�

L2
0 +

L2
0λ

2
2

2τ2
−

B
τ

�

+O(t) . (6.19)

If we now set

τ=
Bλ1p

2A

1
t

, x =
Bλ1

2L0
p

2Aλ2
2

r , (6.20)

the metric (6.14) becomes

ds2 = − f (t)−1dt2 + f (t)dr2 + t2dΩ2 , (6.21)

with

f (t) =
�

2MWH

t
− 1

�

, MWH =
B2λ1

λ2
2 L2

0

p
2A

. (6.22)
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Just like in most of the effective studies of the LQC black hole interior, we find that the singu-
larity is replaced by a black-to-white hole transition. The physical radius represented by

p
v1 is

never vanishing and reaches a minimal value (6.16), where we have a minimal sphere which is
a transition surface between the trapped (BH) and anti-trapped (WH) space-like regions. This
can be checked by computing the expansion of the future pointing null normal to the 2-sphere
at constant time, which changes sign while passing through the transition surface. We refer
the reader to [88] for details about the causal structure of this kind of effective spacetimes.

Let us conclude with a comment on the role of the fiducial length L0. As pointed out in the
first section, under a rescaling L0→ αL0 the momenta scale linearly with α, which implies that
B scales linearly while A scales quadratically. In order to have a well-defined regularization
(6.1), we also need to rescale the UV regulator λi → α−1λi so that the product Piλi is invariant.
Altogether, we find that the expression for the white hole mass is therefore unaffected by a
scaling of the cell.

7 Discussion and perspectives

In this article we have revealed surprising features inside a simple yet physically relevant
system in general relativity, namely the black hole interior spacetime described by a Kantowski–
Sachs family of metrics. Because of the homogeneity, the Einstein–Hilbert action for these
metrics (2.2) reduces to a mechanical model whose configuration space consists of two degrees
of freedom. Its phase space dynamics is well-known and can be explicitly solved. Yet, in
the line of recent work on homogeneous FLRW cosmology [37–40], we have unraveled an
iso(2,1) algebra of observables on this phase space. This Poincaré structure has the interesting
property of controlling the dynamics and, perhaps more intriguingly, of lifting up to Lagrangian
symmetries. These symmetries decompose into a conformal sl(2,R) sector acting as Möbius
transformations of the proper time, and a 3-dimensional Abelian part generating translations
of one of the configuration variables.

In section 3, we have studied in details the Poincaré symmetries of the classical action. We
stress out once again that these are not mere time reparametrizations left over from diffeo-
morphism invariance by the fixing to homogeneous metrics. These are new symmetries existing
on top. We have computed their conserved Noether charges, and found that they are actually
the initial conditions for the evolution of the phase space functions forming the above men-
tioned Poincaré algebra. The iso(2,1) algebra of observables on the phase space is therefore
a dynamical, time evolved version of the Noether charges. Importantly, we have computed
the action of the symmetries of the Lagrangian on the physical trajectories of the system, and
found that they act indeed as physical symmetries changing the mass of the black hole.

Perhaps even more surprisingly, we have revealed in section 4 that the newly discovered
Poincaré symmetries actually descend from BMS3 transformations. Although general BMS
transformations are not symmetries of the action, this has revealed that the configuration space
variables V1 and V2 have a natural interpretation as bms3 Lie algebra elements. Although the
role of BMS symmetries in the context of black hole spacetimes has been considered now for a
long time, it is the first time, to our knowledge, that such hints at a BMS structure appears in
mini-superspace descriptions of the black hole interior. This raises many interesting questions,
such as that of the dimensionality: why is it BMS3 which appears in this 4-dimensional context?
Naturally, one could think that this is because of the symmetry reduction to a cosmological
model, but the question remains open. Then, this also begs the question of whether boundaries
should play a role in our construction. Indeed, boundaries (asymptotic or at finite distance)
are the natural location where symmetries such as BMS live, and in the homogeneous black
hole interior they could play a role which has been obscured by the symmetry reduction. This
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is also supported by the intriguing role of the IR cutoff L0 which we have witnessed at various
stages of our study. It seems that the next step ahead is to unleash some freedom for this cutoff,
to let the boundary evolve in time, and to discuss more precisely the variational principle and
the role of the boundary terms. We have started to investigate these aspects.

Going back to more pragmatic grounds, we have used in section 5 the availability of an
AdS2 structure on phase space to reformulate the dynamics geometrically. This gives rise to
an interesting picture where physical trajectories are horocycles on the hyperboloid.

We have proposed to use this new way of looking at the black hole interior phase space to
study the quantum theory. Ideally, and as a natural next step, we are going to use Poincaré
representation theory to bring the algebraic and geometrical structures on phase space into
the quantum realm. This can be done because we have sl(2,R) and Poincaré Casimir bal-
ance relations guiding the representation theory. This is reminiscent of how quantization of
(boundary) symmetry algebras has been proposed in [25,127].

In lack of an explicit quantization for the moment, we have studied the effective dynamics
encoding heuristic quantum gravity corrections, in the spirit of effective loop quantum cosmol-
ogy. Indeed, it is also very natural to use symmetry principles as a non-perturbative guide to
reduce quantization ambiguities. Such quantization ambiguities have precisely been discussed
recently in the study of the black hole interior in LQC. Here we have shown in section 6, fol-
lowing [103], that it is possible to view the polymerization as a canonical transformation on
phase space. This has the advantage of intertwining, by construction, any structure on phase
space such as the symmetry discovered here. We have exhibited such a canonical transforma-
tion to polymerized variables, and shown that in terms of these variables the evolution of the
black hole interior is non-singular and results in a replacement of the singularity by a black-
to-white hole transition. For future work it will be interesting to study more quantitatively
this non-singular evolution, and also to perform the quantization of the model along the lines
mentioned above.

Finally, let us point out that a clear understanding of the origin of the Poincaré symmetry,
and its possible relationship with the spacetime BMS symmetries, could be achieved by study-
ing the symmetries of the inhomogeneous black hole (interior and exterior) spacetime. It is
possible to consider for example a spherically-symmetric ansatz for the metric, and thereby
reduce the problem to a two-dimensional (r, t)-plane gravitational theory with an inhomoge-
neous radial direction. Upon imposition of homogeneity this reduces to the Kantowski–Sachs
model studied here, and for which the symmetries have been identified. The question is then
that of the origin and the realization of these symmetries in the inhomogeneous precursor
model. We are currently investigating this problem.

A List of variables

In this appendix we gather some of the notations which are used throughout the paper to de-
note certain variables. In particular, the Poincaré generators have appeared in many different
forms depending on the context. We give here these different forms as well as the equations
defining them.

B Connection-triad variables

Early work on the effective dynamics of the Kantowski–Sachs black hole interior used a slightly
different language based on the connection-triad variables of loop quantum gravity [69, 75].
In this appendix write down the relationship between these and our variables, and also recall
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phase space variables
coordinates (V1, V2)
momenta (P1, P2)

phase space iso(2,1) generators
so(2,1) part (V2, C , H)

translation part (V1, A, D)

algebraic iso(2, 1) generators
defined as (2.27)

so(2, 1) part ( jz , kx , ky)
translation part (Π0,Πx ,Πy)

Noether charge iso(2, 1) generators
defined as (3.12) and (3.15)

so(2,1) part (Q0,Q−,Q+)
translation part (P0, P−, P+)

the structure of the CVH algebra of full LQG.
The line element used in e.g. [75] is

ds2 = −N2dt2 +
p2

b

L2
0 pc

dx2 + pcdΩ
2 . (B.1)

This corresponds to the choice of a densitized triad

E = Ea
i τ

i∂a = pc sinθ τ1∂x +
pb

L0
sinθ τ2∂θ +

pb

L0
τ3∂φ . (B.2)

In LQG this densitized triad is canonically conjugated to the SU(2) Ashtekar–Barbero connec-
tion, and the symplectic structure is

{Ai
a(x), E b

j (y)}= 8πγδb
aδ

i
jδ(x − y) . (B.3)

In the case of the homogeneous spherically-symmetric BH interior the connection is

A= Ai
aτidxa =

c
L0
τ1dx + bτ2dθ + b sinθ τ3dφ + cosθ τ1dφ , (B.4)

and the Poisson brackets reduce to

{c, pc}= 2γ {b, pb}= γ . (B.5)

These phase space variables are related to the ones used here by

V1 = pc , V2 =
1
8

p2
b

L2
0

, P1 = −
1

2γ
c , P2 = −

4L2
0

γ

b
pb

. (B.6)

We now close this appendix by commenting on the CVH algebra structure of full gen-
eral relativity in Ashtekar–Barbero canonical variables. This follows the appendix of [37] and
corrects a minor point there. We then connect the results to the spherically-symmetric homo-
geneous spacetime considered here. The connection-triad variables are built from the spatial
triad ei

adxa and the extrinsic curvature K i
adxa, where i, j, k are internal su(2) indices, as

Ea
i = det(ei

a)e
a
i , Ai

a = Γ
i
a[E] + γK i

a , (B.7)

with the torsion-free spin connection Γ i
a[E] is

Γ i
a =

1
2
εi jkE b

k

�

2∂[bE j
a] + Ec

j E l
a∂bE l

c

�

+
1
4

εi jkE b
k

det E

�

2E j
a∂b det E − E j

b∂a det E
�

. (B.8)
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The canonical pairs (Ai
a, E i

a) are subject to seven first class constraints given by Gauss, diffeo-
morphism and scalar constraints. Here we are interested in the scalar constraint

H[N] =

∫

Σ

d3 x H = 1
16π

∫

Σ

d3 x
N
p

q
Ea

i E b
j

�

εi j
kF k

ab − 2(1+ γ2)K i
[aK j

b]

�

. (B.9)

It is useful to split the constraint into the so-called Euclidean HE and Lorentzian HK parts given
by

HE[N] =

∫

Σ

d3 x NHE =
1

16π

∫

Σ

d3 xN
Ea

i E b
j

p
det E

�

ε
i j
kF k

ab

�

, (B.10a)

HK[N] =

∫

Σ

d3 x NHK = −
1+ γ2

8π

∫

Σ

d3 xN
Ea

i E b
j

p
det E

K i
[aK j

b] . (B.10b)

The generator of dilation in the phase space is here the trace of the extrinsic curvature, also
known as the complexifier (hence its name C in the main text) as it plays a primary role in
defining the Wick transform between real and self-dual version of LQG. The last quantity to
consider is the volume of the space-like hypersurface. These quantities are given by

C =
1

8π

∫

Σ

d3 x Ea
i K i

a , V =

∫

Σ

d3 x
q

det(Ea
i ) . (B.11)

A straightforward calculation shows that, together with the Lorentzian part for a constant lapse
function, they form an sl(2,R) CVH algebra

{C , V}=
3
2

V , {V, HK}= (1+ γ2)8πC , {C , HK}= −
3
2

HK . (B.12)

On the other hand, if we also consider the Euclidean part of the Hamiltonian constraint the
algebra fails to be closed and we find

{V, HE}= −8πγ2C , {C , HE}=
1
2

HE + 2
γ2

1+ γ2
HK , (B.13)

{HE, HK}=
1+ γ2

16π

∫

Σ

d3 x
�

εabc F i
bcK

i
a − 6γ2 det(K i

a)
�

.

Note the particular role played by the self-dual value γ= ±i.
In flat FLRW cosmology, it turns out that the Euclidean and Lorentzian parts of the Hamilto-

nian constraint are actually proportional. This is however not the case for the Kantowski–Sachs
geometry, where with the variables introduced above and for N = 1 we get

HE =
2bcpc + (b2 − 1)pb

2
p

pc
, HK = −(1+ γ−2)

2bcpc + b2pb

2
p

pc
, (B.14)

while the complexifier and the volume are given by

C =
2bpb + cpc

2γ
, V = 4πpb

p

pc . (B.15)

The algebra is then obviously given again by (B.12) and (B.13), with the last bracket changed
to

{HE, HK}= −
1+ γ2

2γ
c . (B.16)
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The key idea which leads to the CVH algebra for the black hole interior is to change the lapse
so as to recover the same property as in FLRW, namely a simple phase space independent
relationship between HE and HK. This choice corresponds to

N =
2
p

pc

pb
⇒ HK[N] = −(1+ γ2)(HE[N] + 1) . (B.17)

Using (B.6) shows that this lapse is indeed (up to a factor of L0) the one used in (2.7). Re-
absorbing the lapse and redefining the volume and the complexifier, we see that the modified
CVH algebra gives indeed the sl(2,R) sector of the iso(2, 1) structure presented in the main
text, with

1
1+ γ2

HK[N] = −
1
2
(2P1V1 + P2V2)P2 = H , (B.18a)

V →
V

16πN
=

p2
b

8
∝ V2 , (B.18b)

C → C = {V2, H}= −V1P1 − V2P2 . (B.18c)
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