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Abstract

Strongly interacting dark sectors predict novel LHC signatures such as semi-visible jets
resulting from dark showers that contain both stable and unstable dark mesons. Distin-
guishing such semi-visible jets from large QCD backgrounds is difficult and constitutes
an exciting challenge for jet classification. In this article we explore the potential of su-
pervised deep neural networks to identify semi-visible jets. We show that dynamic graph
convolutional neural networks operating on so-called particle clouds outperform convo-
lutional neural networks analysing jet images as well as other neural networks based
on Lorentz vectors. We investigate how the performance depends on the properties of
the dark shower and discuss training on mixed samples as a strategy to reduce model
dependence. By modifying an existing mono-jet analysis we show that LHC sensitivity to
dark sectors can be enhanced by more than an order of magnitude by using the dynamic
graph network as a dark shower tagger.
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1 Introduction

The huge wealth of data taken at the LHC offers a unique opportunity to explore the prop-
erties of dark sectors and uncover the nature of dark matter (DM). At the same time, such
an amount of data poses an unprecedented challenge to precisely determine and efficiently
suppress backgrounds in order to identify potential signals of new physics. As the complexity
of experimental analyses increases, there has been rapidly growing interest in using machine
learning techniques to distinguish signal from background. For example, deep neural networks
are powerful tools for the classification of jets, which can significantly improve the sensitivity
to new physics signals hidden in QCD background, see e.g. the reviews [1, 2]. A particularly
interesting and well-motivated case are so-called dark showers [3–11], which may resemble
QCD jets even though they result from new interactions and contain exotic particles.

Dark showers arise in extensions of the Standard Model (SM) that contain new strong
dynamics, i.e. exotic fermions charged under a new gauge group that confines at low ener-
gies [8–33]. If these fermions are produced at the LHC (for example via a heavy mediator),
they will undergo fragmentation and hadronisation similar to SM quarks. These processes
then lead to a shower of composite states that are neutral under the new gauge group, which
in analogy to the SM we will refer to as dark mesons and dark baryons. The detailed spec-
trum of such a dark sector is difficult to predict from first principles, but a common feature of
many models is the existence of dark pions πd, which are the Pseudo-Goldstone bosons from
the spontaneous breaking of chiral symmetry, and dark vector mesons ρd, which have a mass
similar to the confinement scale Λd.

What makes dark showers exciting to study at the LHC is the fact that some of the dark
mesons (e.g. the dark pions) may be stable on cosmological scales, thus providing a potential
explanation for DM, while other dark mesons (e.g. the dark vector mesons) may decay on
collider scales into SM particles, and in particular into SM quarks. This combination of visible
and invisible particles in the same shower then leads to so-called semi-visible jets [4,5,7,9–11].
The fraction of invisible particles in a dark shower will fluctuate around the expectation value
rinv, leading to sizeable amounts of missing energy even if two dark showers are produced
back-to-back. Moreover, there is a finite probability that a dark shower will remain completely
invisible, in which case the resulting signature is a mono-jet signature with a single semi-visible
jet pointing in the direction opposite to the missing energy vector.

Although LHC searches for jets and missing energy are not optimised for semi-visible jets,
their sensitivity can be enhanced significantly by suppressing QCD backgrounds with improved
jet classification. Traditional jet tagging algorithms rely on hand-crafted high-level features
such as N -subjettiness [34]. Basic machine learning algorithms like boosted decision trees can
then learn decision boundaries along those high-level features for classification. Deep learning
algorithms on the other hand are able to work on low-level quantities, such as particle four-
momenta, and extract complex features relevant for the classification. For an overview of deep
learning jet taggers and their performance on separating hadronic top jets from light QCD jets
we refer to ref. [35].

In this article we explore the potential of supervised deep neural networks to identify semi-
visible jets. For this purpose we consider three different architectures: a convolutional neural
network (CNN) working on jet images [36], a Lorentz layer (LoLa) network [37] working
on an ordered set of four-momenta of jet constituents and the dynamic graph convolutional
neural network (DGCNN) [38] of ref. [39]working on an unordered set of particles, a so-called
particle cloud, similar to the concept of point clouds in computer vision.1 While the different
techniques show similar performance on the task of top classification, we show that their
performances differ more significantly for the classification of semi-visible jets. In particular

1For other examples of graph networks in the context of LHC physics see e.g. refs. [40–45].
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dynamic graph neural networks are shown to be powerful tools for tagging semi-visible jets.
We find that it may be possible to enhance the sensitivity of LHC searches for signatures with
semi-visible jets by an order of magnitude through jet classification with a DGCNN.

This paper is structured as follows. In section 2 we discuss the properties of dark showers
and in particular semi-visible jet signatures. The neural networks used in our analysis are
introduced in section 3. We compare the classification performance of the different neural
network architectures and study the dependence of the jet identification on the parameters of
the dark sector model. To demonstrate the potential of a semi-visible jet classifier, we adapt
an existing mono-jet search to use a jet classifier based on a dynamic graph neural network
in section 4. Our conclusions are presented in section 5. In appendix A we describe the
generation of signal and background events or jets. The architectures of the neural networks
employed in our analysis are presented in detail in appendix B.

2 Dark sector models and semi-visible jets

The structure of a semi-visible jet is mostly characterised by three parameters: The fraction
of invisible particles rinv, the mass mmeson of the unstable dark mesons and the confinement
scale Λd. Indeed, even for rinv = 0 dark showers may differ substantially from ordinary QCD
jets, because of the different running of the dark gauge coupling, the absence of heavy quarks
in the shower and the presence of substructure corresponding to the decays of individual dark
mesons. With increasing rinv the semi-visible jet becomes increasingly different from QCD jets,
but also harder to study because of the smaller number of visible constituents.

In the following we will investigate how the properties of semi-visible jets enable us to
distinguish them from SM backgrounds. Unless explicitly stated otherwise, we will assume
that the dark mesons have a mass close to the confinement scale: mmeson ≈ Λd. Furthermore,
we will limit ourselves to the case of a dark SU(3) gauge group with two flavours of dark
quarks qd. This choice is based on a recent study on strongly interacting dark sectors [10],
which identified this scenario as particularly interesting, because it allows for a viable DM
candidate consistent with all cosmological and laboratory constraints. In the following we
briefly review the key aspects of this model, which will serve as a benchmark scenario for the
present study.

The two dark quarks qd are assumed to be in the fundamental representation of the dark
SU(3) gauge group and carry opposite charges with respect to an additional U(1)′ gauge sym-
metry. Below the confinement scale the dark quarks form mesons, which we denote by π0

d,π±d
and ρ0

d,ρ±d in analogy to their QCD counterparts, with the superscripts denoting the U(1)′

charges. The dark sector is therefore characterised by the meson masses mπd
and mρd

and
the coupling strength gd of their interactions. We furthermore assume that the dark baryons
are sufficiently heavy that they are irrelevant for phenomenology. It can be shown that in this
set-up all dark pions are stable on cosmological scales and therefore constitute a potential DM
candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in
association with a gluon. Figure taken from ref. [10].

promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints from
direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires mρd
≈ 5

GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the

Z ′ (possibly in association with SM particles) and its subsequent decays into either SM or
dark quarks. While the former case leads to di-jet resonances that can be easily reconstructed,
the latter case gives rise to more challenging semi-visible jets, see figure 1. Although existing
LHC searches for missing energy have some sensitivity to this set-up, they are not optimised
for the case of dark showers, where the missing energy tends to be aligned with a visible
jet. The reason is that such a configuration is difficult to disentangle from QCD backgrounds
resulting from mis-reconstructed jets [46,47]. A detailed reinterpretation of existing exclusion
limits from a search for di-jet resonances [48] and searches for missing energy [46, 49, 50]
was performed in ref. [10]. It was found that for the benchmark values mqd

= 500 MeV,
mπd

= 4 GeV, mρd
= Λd = 5 GeV and mZ ′ = 1TeV couplings of the order of 0.1 are still

consistent with all constraints, even though the production cross section for dark showers is
of the order of picobarn.

In order to enhance experimental sensitivity to dark showers it is essential to improve
background suppression, which potentially allows for other selection cuts to be relaxed. The
most promising strategy for doing so is to develop techniques for distinguishing semi-visible
jets from QCD jets and extend existing analyses by a dedicated tagger for semi-visible jets. In
the following section we will study how to achieve this goal with a neural network trained to
identify dark showers.

2We note that for small Z ′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced vertices
for dark sector models is subject of separate work in progress.
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Figure 2: Average jet images in the plane of pseudo-rapidity η and azimuthal angle
φ for light QCD (left), semi-visible dark jets (middle), and boosted top jets (right).
See appendices A and B for details on the event generation and the preprocessing
steps for the generation of the images.

3 Deep neural networks for semi-visible jets

Deep neural networks have been applied to a wide range of jet classification problems, includ-
ing the identification of jet substructures. It is not clear a priori how the information encoded
in a jet should be mapped to a particular data structure. The representation of jets as images
is motivated by jet reconstruction with calorimeters [51–53]. Convolutional neural networks
(CNNs) are a powerful tool to analyse jet images. CNNs apply convolution filters that oper-
ate on small windows of an image array and allow for an efficient identification of features
in the image. Convolutional networks have been very successful in the identification of jet
substructures, for example in the case of top jets, and serve as a benchmark for assessing jet
classification tools [35,36,54,55].

To illustrate the challenge of identifying semi-visible jets based on images, we show average
jet images for light QCD di-jets, semi-visible jets and hadronically decaying boosted top jets in
figure 2. The event generation and the preprocessing steps for the generation of the images
are described in appendices A and B, respectively. The average top jet has a clearly visible
substructure originating from the hadronic top decay and thus differs substantially from light
QCD jets. The semi-visible jets from the dark shower, on the other hand, are very similar to
QCD.

Instead of an image, a jet may be represented as a collection of particle constituents. A
strong top-jet identification performance can be achieved with so-called Lorentz-layer (LoLa)
networks. These architectures map constituent four-vectors to quantities more directly related
to physical observables, such as invariant masses, transverse momenta or linear combinations
of constituent energies [37, 56–58]. The input to the Lorentz layer typically consists of the
original particle four-momenta complemented by various learned linear combinations of those.
Providing learned linear combinations allows the network to identify jet substructures more
efficiently. The constituent four-momenta together with the learned linear combinations are
then transformed into invariant masses and other physical observables by the Lorentz layer,
before classification by a fully connected neural network.

Dynamic graph convolutional neural networks (DGCNNs) [38] are another class of pow-
erful classifiers which apply so-called edge convolutions to particle constituents, or particle
clouds, characterised by features such as energies, transverse momenta, or angular separa-
tions [39]. The edge convolution differs from a convolution over an image in the definition of
the local patch that the convolution kernel observes. In an image, the local patch corresponds
to some neighbourhood of pixels. For an edge convolution, a local graph is constructed for
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each point in the particle cloud from its nearest neighbours using a distance measure in the
space of input features. Calculating new nearest neighbours dynamically from the output of
the previous edge convolution allows for particles that are initially far apart to become close
in feature space already for the next convolution. In this way, long range correlations can be
accessed efficiently with few convolutional layers and the network is potentially able to learn
the graph structure that offers most information. For a cloud of particles representing a jet, it
appears natural that the correlation of particles which are not close in the initial features, can
be important for the classification of the jet. The dynamic update enables the network to link
those initially distant particles.

In the following, we will analyse and compare the classification performance of a CNN, a
LoLa network and a DGCNN for semi-visible jets against light QCD background jets. For com-
parison, we also show results for the well-established benchmark task of top-jet identification.
The architectures of the CNN, the LoLa network and the DGCNN are described in detail in
appendix B.

3.1 Classification performance

Our neural networks are trained on 200k background and 200k signal jets, with a validation
split of 10%. For the signal generation we use the benchmark parameters introduced above,
i.e. rinv = 0.75, mmeson = 5 GeV and mZ ′ = 1TeV. The network performance results presented
below are based on an independent test set of 100k background and 100k signal jets. Note
that for the moment we use the same dark sector parameters for training and testing, even
though these parameters would be unknown in a realistic setting. We will return to the issue
of model dependence in section 3.2 and present a mitigation strategy in section 3.3.

The networks output two numbers for each jet, which can be interpreted as the prob-
abilities to belong to the background or the signal class, respectively. Defining a threshold
probability necessary for a jet to be labelled as signal and scanning over this threshold, one
obtains the receiver operating characteristic (ROC) curve, i.e. the inverse of the fraction of
background jets passing the threshold (the background rejection 1/εB) as a function of the
fraction of signal events passing the threshold (the signal efficiency εS). Figure 3 shows the
ROC curve for semi-visible jet identification (left panel) and for top-jet identification (right
panel). To estimate the stability and reproducibility of the network performances, five net-
works with independent random weight initialisations are trained on the same training data
and tested on the same testing data. The small spread in performance indicated by the shaded
band around the ROC curves in figure 3 shows that the training convergence of the networks
is stable. For a comparison of the top-tagging performance of our networks with the results of
ref. [35], see figure 10 in appendix B.

Various network performance measures are collected in table 1. We display the accuracy,
i.e. the ratio of the number of correctly classified jets over the total number of jets, the area
under the ROC curve, AUC=

∫

dεB εS(εB), and the background rejection at a signal efficiency
of 30%. Error estimates correspond to the spread obtained from the five independent network
trainings mentioned above.

The results presented in figure 3 and table 1 first of all confirm that the classification of
semi-visible jets is more challenging than that of top jets. Comparing the CNN, LoLa and
DGCNN architectures, we find that the DGCNN performs best for both top and semi-visible jet
identification. While the difference between the CNN, the LoLa network and the DGCNN is
moderate for top identification, the strength of the DGCNN is particularly significant for the
classification of semi-visible jets. As shown in figure 3, the background rejection at a given
signal efficiency, which is most relevant for an experimental analysis, is significantly improved
by a DGCNN for a wide range of signal efficiencies. Specifically, at a signal efficiency of 30%,
the background rejection of the DGCNN is almost a factor of five stronger than that of the
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Figure 3: Comparison of the ROC curves in background rejection 1/εB and signal
efficiency εS for semi-visible jet identification (left panel) and for boosted top jet
identification (right panel) as obtained by the CNN, LoLa and DGCNN architectures,
respectively. The error bands correspond to the spread obtained from five indepen-
dent initialisations of the network.

CNN.

3.2 Model dependence of semi-visible jet classification

In this section we explore the model dependence of the semi-visible jet classification with the
DGCNN, i.e. we study how the performance changes as we vary the parameters of the strongly
interacting dark sector. This not only sheds light on how much a specific network generalises
to other dark shower scenarios, but it also provides some indication of which signal features
the network may learn.

As a crucial parameter, the invisible fraction rinv represents the average percentage of miss-
ing energy and characterises the composition of the dark showers. The model described in
section 2 predicts rinv = 0.75. However, for the purpose of this section we treat rinv as a phe-
nomenological parameter which can assume any value between zero and one. To this end,
we decay all the dark mesons in PYTHIA with branching ratio rinv into invisible particles and
branching ratio 1 − rinv into Standard Model quarks, respectively. Training and testing the
DGCNN classifier architecture on dark shower samples with different values of rinv we obtain
the ROC curves shown in the left panel of figure 4. We find that dark showers with larger rinv
are in general easier to distinguish from QCD. For 0.1 < εS < 0.3, which is the most inter-
esting range for improving an analysis with the jet tagger, the background suppression varies
by roughly an order of magnitude. Note that for very small rinv the classification performance
increases again as almost all the energy from the Z ′ resonance ends up in visible jets leading
to a harder jet pT distribution which is more different from QCD.

As another dark sector parameter we vary the dark meson mass mmeson = mπd
= mρd

,
together with the dark confinement scale Λd = mmeson. Note that the small mass splitting
between the πd and ρd motivated by cosmology has no impact on the LHC phenomenology.
Larger values of Λd lead to a stronger running of the dark sector coupling αd at the energy
scale of the semi-visible jet. Among other effects, the running of αd changes jet substructure
observables such as the distribution of the two-point energy correlation function discussed in
ref. [11]. Moreover, as the jet constituents arise from dark meson decays they encode the dark
meson mass scale mmeson. As shown in the right panel of figure 4, changing the confinement
and meson mass scale between 5 GeV and 20 GeV has no significant effect on the classification
performance.
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Table 1: Performance measures for classifying semi-visible jets and top jets by the
CNN, LoLa and DGCNN architectures, respectively, corresponding to the ROC curves
presented in figure 3. We show the accuracy, the AUC value and the background
rejection at a signal efficiency of 30%. The central value is the mean of the five
independent training runs of the network, while the error estimate corresponds to
the spread in the performance.

Acc [%] AUC 1/εB (εS = 0.3)

semi-visible jets

CNN 79.88+0.21
−0.22 0.8790+0.0019

−0.0019 137+6
−4

LoLa 83.26+0.14
−0.13 0.9118+0.0008

−0.0010 220+11
−17

DGCNN 85.04+0.12
−0.08 0.9258+0.0007

−0.0007 608+36
−40

top jets

CNN 92.98+0.05
−0.09 0.9802+0.0002

−0.0005 785+40
−29

LoLa 92.83+0.11
−0.11 0.9791+0.0007

−0.0008 540+77
−53

DGCNN 93.47+0.06
−0.06 0.9831+0.0001

−0.0002 1073+47
−75

Since the values of the dark sector parameters are not known a priori, it is a relevant
question to which extent the classification is model-dependent. Therefore, we next consider
samples with different dark sector parameters for training and testing. We train the network
on dark showers with our benchmark parameters rinv = 0.75 and mmeson = 5 GeV, and evaluate
the performance on a range of samples with different choices for rinv and mmeson, respectively.
The corresponding ROC curves are displayed in figure 5. ROC curves for training and testing
with identical parameter values (see figure 4) are shown for comparison. As expected, we
find a drop in performance as the difference between the model parameter settings in the
training and test samples increases. Varying rinv, the decrease in performance is modest. Only
for rinv = 0.1, the drop is larger since the tagger cannot benefit any more from the harder
jet pT distribution. The model dependence is significantly more pronounced for the dark
meson mass. The background suppression is reduced by about an order of magnitude for
0.1< εS < 0.3, indicating that the network learns to reconstruct the dark meson mass to some
extent from the constituents.

3.3 Mitigating model dependence with mixed samples

A simple way to mitigate this behaviour and provide a more model-independent semi-visible
jet classifier, is to train the network on a mixed sample, which contains a range of different rinv
values or dark meson masses. Here we consider a mixed rinv sample containing an equal num-
ber of jets with rinv = 0.1, 0.5, 0.75, and 0.9, as well as a mixed meson mass sample consisting
of an equal number of jets with mmeson = 5 GeV, 10 GeV, and 20 GeV. This way the network
is forced to learn features common to the different samples instead of learning to reconstruct,
for example, one specific dark meson mass. The performance of such a more general classifier
is significantly better than that of a classifier trained on specific values of rinv and mmeson when
both are applied to a wider range of model parameters, see figure 6 and table 2.3 A signifi-
cant improvement is also present for dark meson masses that were not included in the mixed
training sample, as the results for mmeson = 15 GeV show. Note that it may be possible to use

3We note that the DGCNN significantly outperforms both the CNN and the LoLa architecture also for training
on mixed samples.
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Figure 4: DGCNN ROC curves for the discrimination of dark showers from QCD for
different values of rinv (left panel) and mmeson (right panel). The error bands cor-
respond to the spread obtained from five independent initialisations of the network.
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Figure 5: ROC curves (dotted lines) for the DGCNN trained on dark showers with the
benchmark values (rinv = 0.75 and mmeson = Λd = 5 GeV) and tested on different
values of rinv (left panel) and mmeson (right panel). ROC curves for training and
testing on samples with identical parameters are shown for comparison (solid lines,
as in figure 4).

networks that each have learned a specific dark meson mass to reconstruct this mass from a
possible dark shower signal, e.g. with a parametrised network [59].

We have also studied the dependence of the network training and performance on the Z ′

mediator mass. We find only small differences in the ROC curves when varying the Z ′ mass
between 1 TeV and 2 TeV. Moreover, training the network on a Z ′ mass different from the mass
used in the test sample only has a small effect on the network performance.

4 Mono-jet analysis with machine learning

In this section, we study the sensitivity improvement for a dark shower search with the help of a
DGCNN classifier. As an example we consider the ATLAS mono-jet analysis with 36.1 fb−1 [46]
applied to a dark shower signal with the benchmark parameters from ref. [10], i.e. rinv = 0.75,
mπd

= 4 GeV and mρd
= Λd = 5 GeV. The mono-jet search is sensitive to dark shower events
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Figure 6: ROC curves (dashed lines) for the DGCNN trained on mixed samples of
dark showers with different values of rinv and mmeson, and tested on pure samples
each containing a specific value for rinv (left panel) and mmeson (right panel). ROC
curves for training and testing on samples with identical parameters are shown for
comparison (solid lines, as in figure 4).

where one of the dark showers stays invisible leading to a mono-jet topology, i.e. a large
angular distance ∆φ ≈ π between missing energy and the semi-visible jet.4 To identify these
jets as originating from a dark shower, we integrate our graph network into the analysis as a
dark shower tagger.

To generate signal and background events, we use the tools described in appendix A. Note
that we focus on the dominant Z+jets background. The signal jets for training the tagger are
extracted from a dark shower signal with mZ ′ = 1 TeV. The sample of a given signal region
consists of all fat jets from the corresponding signal events, where we require a truth-level dark
quark within the jet cone. We emphasise that we apply two different jet definitions to each
event. While the signal events are defined using the ATLAS jet definition of ref. [46], the fat
jets for the tagger training are anti-kT jets with a minimal transverse momentum of 100 GeV
and a jet radius R = 0.8 in order to contain all radiation from an underlying dark quark. The
background jet samples consist of all fat jets from the corresponding Z+jets events. We train
on 200k signal and 200k background jets.

In the analysis we first apply the cuts from ref. [46]. We then sort the remaining events
into signal regions and apply the DGCNN dark shower tagger, trained on the appropriate signal
region, to all fat jets in each event. If at least one of the jets in an event is tagged as a dark
shower jet the event is accepted. Otherwise the event is rejected. By varying the tagging
threshold we control the signal event efficiency and Z+jets background rejection rate. The
corresponding ROC curve is shown in the left panel of figure 7 for the signal region EM4,
which corresponds to 400 GeV< /ET < 500 GeV. EM4 is the signal region most sensitive to
the dark shower signal with our benchmark parameters. The efficiencies εS and εB shown
in figure 7 are relative to the event numbers after the ordinary mono-jet cuts. Hence, the
existing analysis without a dark shower tagger is equivalent to the point εS = εB = 1 in the
lower right-hand corner of the plot.

To estimate the influence of detector effects on the DGCNN tagger, we also show the anal-
ogous ROC curve for a tagger based on detector level quantities, i.e. towers and tracks from
DELPHES [60], instead of particles as input in the training and in the analysis. We find that
detector effects lead to a slightly reduced background rejection compared to the case with

4Other event topologies, where both dark showers are visible and recoil against an ISR jet to obtain a sizeable
∆φ, have been shown to be sub-leading in ref. [10].
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Table 2: Performance measures for the DGCNN for different dark meson masses. We
show the performance for networks trained and tested on the same mmeson, trained
on mmeson = 5 GeV, and trained on a mixed sample, corresponding to the ROC curves
in the right panels of Figs. 4, 5, and 6. We show the accuracy, the AUC value and the
background rejection at a signal efficiency of 30%. The central value is the mean of
five independent training runs, while the error estimate corresponds to the spread in
the performance.

mmeson [GeV] test mmeson [GeV] training Acc [%] AUC 1/εB (εS = 0.3)

5
5 85.14+0.04

−0.06 0.9267+0.0002
−0.0005 589+47

−46

mixed 83.61+0.09
−0.09 0.9148+0.0009

−0.0008 224+20
−15

10

10 86.04+0.05
−0.05 0.9333+0.0004

−0.0004 774+67
−59

5 81.2+0.3
−0.2 0.8965+0.0015

−0.0012 106+12
−6

mixed 84.03+0.05
−0.03 0.9180+0.0004

−0.0003 304+6
−7

15

15 86.24+0.03
−0.03 0.9336+0.0002

−0.0002 720+43
−53

5 81.00+0.17
−0.18 0.8950+0.0005

−0.0012 91+6
−3

mixed 84.38+0.11
−0.12 0.9198+0.0007

−0.0007 330+16
−15

20

20 86.03+0.09
−0.06 0.9316+0.0006

−0.0004 682+43
−33

5 79.2+0.2
−0.3 0.883+0.001

−0.002 65+2
−2

mixed 83.96+0.08
−0.08 0.9161+0.0011

−0.0009 270+15
−16

particles as DGCNN input.
Using the improved background suppression due to the DGCNN tagger in the mono-jet

search, we derive an expected limit on the dark shower cross section. The background event
numbers B and systematic uncertainties ∆B from the ATLAS analysis [46] are divided by the
background rejection obtained from our simulation of the dominant Z+jets background. We
apply the same additional rejection rate for the sub-leading background of W+jets events. Fur-
thermore we assume that contributions from other backgrounds, in particular from di-bosons
as well as t t̄ and single tops, are still negligible in the analysis with the tagger. This assump-
tion is based on the fact that dark showers are easier to distinguish from top jets than from
QCD jets, which should result in a tagger rejection rate of the top background that is at least
comparable to the rate for the V+jets background. Moreover these backgrounds would still
have little bearing on the final limits even if the rejection were significantly worse than for
V+jets. Hence, we apply the same universal rejection factor to all background contributions
and their respective systematic uncertainties. We derive the expected 95% C.L. limit on the
number of signal events assuming that the number of observed events is equal to the back-
ground prediction. Hence, we construct the profile likelihood [61]

L(µ) = 1
B!

�

µS + B
�

1+
∆B
B
θB

��B

e−(µS+B(1+∆B
B θB)) e−θ

2
B/2 , (1)

with the value of the nuisance parameter θB chosen such that it maximises the likelihood for
a given signal strength µ. We obtain the limit by excluding points for which the log-likelihood
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ratio

qµ = −2 (logL(µ= 1)− logL(µ= 0)) (2)

is larger than 3.84, which corresponds to a p-value of 0.05 for a χ2 distribution with 1 degree
of freedom. Thus we arrive at a limit on the number of signal events for a given signal region.

If backgrounds can be estimated directly from data in the same way as for existing monojet
searches (e.g. using Z(→ µµ) + jets as a control region for Z(→ νν) + jets), using a dark
shower tagger should not significantly increase the relative systematic uncertainties of the
background estimates (apart from decreasing the number of events in the control region, hence
increasing the corresponding statistical uncertainty). As indicated by the background numbers
and uncertainties in table 3, applying the dark shower tagger then takes the search from a
systematics dominated to a strongly statistics dominated regime. In other words, the number
of signal events that the search is sensitive to depends dominantly on the number of expected
background events rather than on the uncertainty of the background estimate.

The translation of the number of signal events into a dark shower production cross sec-
tion is potentially subject to large systematic uncertainties, which are difficult to estimate
from Monte Carlo simulations alone. Here we estimate the expected limit on the dark shower
production cross section σ95

exp using the nominal performance of the dark shower tagger, em-
phasizing that the tagger may show a different performance when applied to real data (see
discussion below). The improvement in the expected limit σ95

exp achieved by the dark shower
tagger is shown in the right panel of figure 7 for the signal region EM4. Note that the cross
section limit also takes the additional signal rejection caused by the tagger into account. The
event numbers and the expected limit for the optimal tagging threshold (corresponding to
εS = 0.13) are compiled in table 3.

We can then translate σ95
exp into a limit on the dark sector model coupling gq,

i.e. the coupling between the Z ′ mediator and the SM quarks. We use that
σ(pp → qd q̄d)∝ g2

q BR(Z ′ → qd q̄d), which holds as long as the Z ′ resonance is sufficiently
narrow. For each Z ′ mass we determine the limit based on the signal region that is most sen-
sitive without a dark shower tagger. In the mass range considered here these are EM4 for
1 TeV ® mZ ′ ® 1.3 TeV and EM2 for smaller mZ ′ . Exploring larger Z ′ masses would be com-
putationally expensive, as it would require training the network on different signal regions.
The expected limit is shown together with the existing LHC limits from ref. [10] in figure 8.
We conclude that the use of a DGCNN classifier for semi-visible jets from dark showers has
the potential to significantly improve the sensitivity of the search. For our benchmark model,
in particular, the DGCNN tagger may allow to probe dark sector model couplings in a region
of parameter space where conventional searches without neural network classifiers fail and
where searches for displaced vertices are not yet sensitive.

We emphasise that the analysis presented above is based on the selection cuts of an exist-
ing mono-jet analysis, which is not optimised for dark showers. Hence, even greater improve-
ments in sensitivity can be expected when combining the background reduction achieved by
the tagger for semi-visible jets with relaxed cuts on the overall event topology. Of particular
importance in the context of semi-visible jets is the cut on the separation angle ∆φ in the
azimuthal plane between the missing energy vector and any of the leading jets. In events
where two semi-visible jets are produced back-to-back one typically obtains ∆φ ≈ 0, unless
one of the jets remains fully invisible. However, conventional mono-jet analyses require ∆φ
to be sufficiently large to suppress backgrounds from mismeasured jets. If such mismeasured
jets can be reliably distinguished from semi-visible jets using deep neural networks, the cut
on ∆φ could be relaxed, which would significantly enhance the acceptance for semi-visible
jets. Accurate simulations of this particular background are however very challenging, and we
leave a study of the potential sensitivity of such a search to future work.
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Figure 7: Left: Event-level ROC curves for a mono-jet search including a DGCNN
dark shower tagger. Shown are the additional background event rejection and signal
event efficiency relative to the search without a tagger. Right: Corresponding im-
provement of the expected limit on the dark shower production cross section. The
jet constituents used as input for the DGCNN are either at the particle (solid lines)
or detector level (dash-dotted lines).

5 Conclusions

Dark sectors with new strong dynamics may reveal themselves at the LHC in the form of dark
showers resulting from the fragmentation and hadronisation of dark quarks. If some of the
dark mesons in the shower are stable on cosmological scales (potentially explaining dark mat-
ter), while other dark mesons decay on collider scales, such dark showers lead to semi-visible
jets. Although semi-visible jets depend on a number of dark sector parameters, such as the
fraction of invisible particles and the mass of the dark mesons, in practice they often resemble
QCD jets and are challenging to distinguish from backgrounds. Novel jet classification tech-
niques are hence essential to enhance the sensitivity of the LHC to strongly interacting dark
sectors.

In this paper we have explored the potential of supervised deep neural networks to identify
semi-visible jets. As specific benchmark we have considered a scenario with GeV-scale dark
mesons produced via a heavy vector mediator with mass in the TeV range; such a scenario
is motivated by cosmological and astrophysical considerations and at the same time leads to
a sizeable cross section for events with semi-visible jets at the LHC. We have compared three
different types of neural network architectures: a convolutional neural network working on jet
images, a Lorentz layer network based on an ordered set of four-momenta of jet constituents,
and a dynamic graph convolutional neural network operating on particle clouds, i.e. an un-
ordered set of jet constituents. While these three different neural network techniques deliver
comparable results for the classification of top jets, we find that their performance differs no-
tably in the more challenging classification of semi-visible jets. In particular, by dynamically
updating the relation between jet constituents the graph neural network is able to learn more
abstract features of a jet and outperforms the image-based convolutional and the Lorentz layer
networks that we have considered.

We have then studied how the performance of the dynamic graph network changes as we
vary the parameters of the strongly interacting dark sector and the corresponding semi-visible
jets. As long as the same parameters are used for training and testing, the dark meson and
mediator masses have no strong effect on the classification performance, while semi-visible
jets with a larger fraction of invisible particles are in general easier to distinguish from QCD.
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Table 3: Expected number of background events with systematic errors and expected
limit on the number of signal events in the signal region EM4 at an integrated lumi-
nosity of 36.1 fb−1. Listed are the event numbers for the mono-jet search without a
dark shower tagger, with a DGCNN tagger operating on particles, and with a DGCNN
tagger operating on detector level objects. For each case we also state the correspond-
ing improvement of the expected limit on the dark shower production cross section.
The DGCNN was trained and tested on a dark shower signal with our benchmark
parameters (see main text).

B S95
exp (σ95

exp)
w/oNN/σ95

exp

without DGCNN tagger 27640± 610 1239 1

with DGCNN tagger (particle level) 12.1± 0.3 8.2 19.7

with DGCNN tagger (detector level) 27.7± 0.6 11.7 13.8

However, the values of the dark sector parameters are not known a priori, and we find that the
performance of the network significantly deteriorates when different parameters are used for
training and testing. To mitigate this model dependence, we have trained the network on a
mixed sample, which contains semi-visible jets with varying properties. This approach yields a
more general classifier, which performs significantly better when applied to a range of model
parameters.

Finally, we have shown how the sensitivity of the LHC to dark showers can be substan-
tially enhanced by applying a jet classifier based on a dynamic graph neural network. For
this purpose we have considered an existing ATLAS search for mono-jets, which is sensitive to
events with one fully invisible dark shower and one semi-visible jet. We have then estimated
the sensitivity that can be achieved by integrating our graph network into the analysis as a
dark shower tagger. For our benchmark scenario we find an improvement in the sensitivity of
more than an order of magnitude, leading to a significantly improved expected limit on the
couplings of the model. The background reduction from tagging semi-visible jets may allow
to relax cuts on the overall event topology and thereby further improve the sensitivity.

Various directions for future research on detecting dark showers with deep learning meth-
ods should be pursued. While we could not identify a particular observable that would control
the classification performance of the neural network, more work is needed to explore what
the network actually learns and how the choice of input features may further enhance the
network performance. We refer to refs. [62–68] for examples of deep learning architectures
that incorporate specific physics features to guide event classification.

In supervised learning, we rely on Monte Carlo events for the training, and it is crucial
to avoid that the classification performance is biased by Monte Carlo artefacts. One should
thus try to incorporate systematic uncertainties that account for the approximate modelling
of a semi-visible jets, see e.g. [69–72], or further improve the Monte Carlo predictions for
observables that drive the event classification of such subtle signatures. Likewise it will be
important to asses the effect of pile-up removal on the performance of the neural network. We
leave this question to future work.

Last but not least, one would like to use semi-supervised or unsupervised learning meth-
ods for the identification of dark shower events. For example, unsupervised machine learning
algorithms based on autoencoders have successfully been used to search for anomalous jet
substructure, see e.g. [73–76]. However, we find that it is not straightforward to apply this
technique to the detection of semi-visible jets. Since the semi-visible jets often contain less
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Figure 8: Expected limit on the benchmark model considered in this work from a
mono-jet search [46] including a dynamic graph convolutional neural network dark
shower tagger (labelled “monojet DGCNN"). The couplings of the Z ′ mediator to
dark quarks and SM quarks are denoted by ed and gq, respectively. Other LHC limits
are taken from ref. [10].

information and structure than the QCD background jets, an autoencoder trained to recon-
struct QCD may also be able to reconstruct semi-visible jets and thus may not detect semi-
visible jets as an anomaly. Adapting the autoencoder approach for the detection of simple jet
structures, and exploring alternative unsupervised and semi-supervised deep learning tech-
niques [72,77–80] for the identification of dark shower events, is left for future work.
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A Jet and event generation

In this appendix, we first describe the generation of the signal and background jets used to
train and test the networks in section 3. We then give details on the event generation for the
search in section 4.

To simulate the dark shower jets, we generate leading-order parton-level events for the
dark quark production process pp → qdqd at a collider energy of 14 TeV with
MADGRAPH5_AMC@NLO [81] using the NN23LO1 PDF set [82] and a UFO file for the model
introduced in section 2 implemented with FEYNRULES [83]. Renormalisation and factorisa-
tion scales are set to the default dynamic scale choice of MADGRAPH5_AMC@NLO. The sam-
ples are MLM-matched [84] with up to one additional hard jet, setting the matching scale to
xqcut = 100 GeV. Shower and hadronisation are performed with PYTHIA 8 [85]. We employ
PYTHIA’s Hidden Valley module [14], which is adapted to the simulation of the dark shower
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and of dark meson production as detailed in [10]. The running of the dark coupling αd is
determined by the confinement scale Λd. If not explicitly stated otherwise we use the default
parameters mZ ′ = 1 TeV, mπ = mρ = Λd = 5 GeV. The couplings of the Z ′ mediator to dark
quarks and SM quarks are set to ed = 0.4 and gq = 0.1, respectively. These couplings enter
the Z ′ width, but their value is not relevant for the production of the training and test sets of
the dark shower jets.

The light QCD background jets are obtained from di-jet events generated at leading or-
der at a collider energy of 14 TeV with MADGRAPH5_AMC@NLO using the NN23LO1 PDF set.
Renormalisation and factorisation scales are set to the default dynamic scale choice of MAD-
GRAPH5_AMC@NLO. Shower and hadronisation are performed with PYTHIA 8.

In both the dark shower signal and the background event samples, we employ the Fast-
Jet [86] implementation of DELPHES 3 [60] to cluster fat jets using the anti-kT algorithm [87]
with jet radius R = 0.8. No detector simulation is performed unless explicitly stated. When
a detector simulation is included, it is performed with DELPHES 3 using the ATLAS detector
card. To select jets originating from dark showers for the signal sample, we additionally require
∆R < 0.8 for the angular distance ∆R =

p

∆η2 +∆φ2 between the jet axis and a truth-level
dark quark. Otherwise jets from QCD initial state radiation would enter the signal samples of
semi-visible jets. For the network comparisons in section 3 we use fat jets within the trans-
verse momentum range pT,jet = 150 . . . 350 GeV. To simulate samples with larger transverse
momenta would be computationally more expensive since there is no generator cut which can
be used to significantly enhance event generation in the high-pT tail.

For the classification of top-quark jets we use the benchmark dataset from ref. [37] to be
able to compare the network performance for top-tagging with the results quoted in [37]. The
dataset consists of jets from hadronically decaying tops and light QCD di-jets at a collision
energy of 14 TeV, simulated with PYTHIA 8. Jets in the pT interval [550 GeV, 650 GeV] are
clustered according to the anti-kT jet algorithm with a jet radius of 0.8, after a fast detector
simulation with DELPHES 3. Jets are required to fulfil |η|jet < 2. For the top jets, a parton level
top is required to fall within ∆R= 0.8 of the final jet. Additionally, the three quarks from the
hadronic top decay at tree-level are required to obey ∆R< 0.8 with respect to the top.

For all jet samples, the four-momenta of the 200 constituents with highest pT are stored
in descending pT order. For jets with fewer constituents, zeros are added to obtain the same
array size for each jet.

For the search discussed in section 4, the samples for training the jet tagger are produced
with the tool chain described above. Signal events are generated at a collision energy of 13 TeV
for the dark sector benchmark model with rinv = 0.75, mπd

= 4 GeV and mρd
= Λd = 5 GeV.

The QCD jets are extracted from Z+jets events produced at 13 TeV including MLM matching
with up to two hard jets. We generate two different samples which populate the fiducial
volume of the signal regions EM2 and EM4 defined in ref. [46], respectively. The samples
consist of 200k signal and 200k background jets.

To test exclusion for different parameter points, we generate events as described above to
determine the cut and tagging efficiencies. Note that much fewer events have to be generated
compared to the large event number needed to extract the jet sample for training.

B Neural network architectures

In this appendix we present the architectures for the convolutional neural network (CNN), the
Lorentz-layer neural network (LoLa), and the dynamic graph convolutional neural network
(DGCNN) used for the classification of semi-visible and top jets in the main part of the paper.

We use KERAS 2.3.1 [88] with TENSORFLOW 1.13.1 [89] as backend for the implemen-
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tation, training and evaluation of our networks. If not stated differently, we use the ADAM

optimiser [90] in its default configuration to optimise the categorical cross entropy loss. The
categorical cross entropy for one-hot encoded labels is given by

C E(ytrue, ypred) = −
2
∑

i=1

ytrue,i ln(ypred,i) = − ln(ypred,true).

Here, ytrue and ypred correspond to the true labels and the predicted labels, respectively. Since
labels are one-hot encoded, ytrue,i is equal to zero for the wrong class and equal to one for the
correct class.

Convolutional neural networks

We use a CNN consisting of several convolutions for feature extraction and maximum pooling
layers for dimensionality reduction, followed by a fully connected part for classification. The
convolutional layers use 128 filters with kernels covering 3x3 pixels, the pooling layers apply
the max-function on 2x2 pixel windows with stride two, reducing the dimension of the image
along both axes by a factor of two. Using the max function for pooling implicitly assumes that
pixels with higher intensity are more important for the classification.

The activation function of choice throughout the network is ReLu, only the last layer applies
softmax activation. The output consists of two nodes, one for each class. A sketch of the
architecture is shown in the left panel of figure 9. We have confirmed that varying the network
architecture does not improve the performance for semi-visible jets.

To obtain a jet image from the four-momenta of its constituents, we first calculate the
pseudo-rapidity η, azimuthal angle φ and the transverse momentum pT of each constituent.
The following preprocessing steps are applied [36]: (1) The pT -weighted centroid of the jet
is shifted to the origin in the η-φ-plane. (2) All constituents are rotated such that the pT -
weighted principal axis points in the η-direction. (3) The axes is flipped such that the maxi-
mum intensity (sum of pT ) is in the upper right quadrant. (4) The jet image is generated as
the pT weighted histogram in η and φ and normalised by dividing by the total pT . We use 40
bins within the interval [-0.8, 0.8] for both η and φ.

For the results shown in this appendix, we train the network on the training set for top
tagging provided in [37] to be able to compare with the results presented in [37]. The set
consists of 600k jets for each class. The maximum number of epochs is set to 100. The learning
rate is reduced, if the validation loss does not improve for three epochs, and the training is
stopped after five more epochs without improvement. The network performance results in this
section are based on the independent test of 200k background and 200k signal jets provided
along the benchmark data set.

Lorentz-layer neural networks

Following ref. [37] we construct a network based on a so-called combination layer (CoLa)
followed by a Lorentz layer (LoLa). The CoLa receives a list of particle four-momenta, ordered
in pT , and calculates a number of linear combinations of those vectors. The coefficients in
these linear combinations are trainable, and the output of this layer consists of the original list
of momenta appended by the learned linear combinations. The LoLa then transforms every
four-vector into

k̃ j → k j =











m2(k̃ j)
pT (k̃ j)

w(E)jm E(k̃m)

w(d)jm d2
jm











. (3)
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Figure 9: Sketch of the CNN architecture for jet image classification (left panel), the
LoLa architecture for classification on four-vectors (middle panel) and for the DGCNN
architecture for classification on particle clouds (right panel). Each block corresponds
to one layer in the network. The first line of each block describes the kind of layer
and the kernel size, if applicable. The first line in the blocks for EdgeConv layers
give the number of nearest neighbours k and the number of filters used in the three
convolutions C. The second line states the output dimension of each layer, with N the
number of jet constituents used, and M the number of added linear combinations in
the LoLa network.

The first entry corresponds to the invariant mass and the second entry to the transverse mo-
mentum of the particle. The third entry is a linear combination of the energies of all particles
weighted by trainable parameters. The last entry is a trainable combination of Minkowski dis-
tances between particle four-momenta. In practice four distance combinations are added to
the vector. For two of the added entries, we sum over the index m, while we take the minimum
for the other two entries. To obtain a classification, the output of the LoLa is flattened and
passed on to a fully connected network. We use ReLu as activation for the fully connected lay-
ers, except for the classification output, where we apply softmax. CoLa and LoLa do not apply
activation functions. A sketch of the architecture is displayed in the central panel of figure 9.
We have confirmed that varying the network architecture does not improve the performance
for semi-visible jets.

Training is performed in the same way as for the CNN, including the learning rate schedule
and early stopping.

The performance of the CoLa/LoLa architecture depends on the number of jet constituents
that is used as input for the network and on the number of linear combinations added by the
CoLa. Ordering the particles in descending pT , we find that the best performance is achieved
with about 40 jet constituents. The network performance is not particularly sensitive to the
number of linear combinations in the CoLa. We have chosen 40 constituents and 15 linear
combinations, consistent also with ref. [37].
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Dynamic graph neural networks

Dynamic graph convolutional neural networks (DGCNNs) have been introduced in ref. [38]
and applied to jet tagging in ref. [39]. These network architectures operate on point clouds
with so-called edge convolution (EdgeConv) layers. For jet-tagging the point cloud consists of
particles, i.e. the jet constituents.

The edge convolution differs from a convolution over an image in the definition of the
local patch that the kernel observes. In an image, the local patch corresponds to some neigh-
bourhood of pixels. For an edge convolution, a local graph is constructed for each point in the
cloud by finding its k nearest neighbours with respect to some metric which has to be speci-
fied. The corresponding graph is called a k-nearest-neighbour (knn) graph. For each particle
the convolution is then performed over its nearest neighbours, i.e. x ′i = Ω

k
j=1hΘ(x i , x j). Here,

x i corresponds to the i-th point in the cloud and x ′i to the output of the convolution at this
point. The kernel hΘ(x i , x j) is implemented as a fully connected layer and calculates edge
features for a point and each of its k neighbours. Those k edge features are reduced to one
output feature vector x ′ by the aggregation function Ω. This function should not depend on
the order of inputs. We use the mean in this work. The same h is then used on all points and
their neighbours, just like the kernel in a regular convolution. We follow ref. [39] and use
hΘ(x i ,∆x j), where ∆x j is the difference of the features of x i and x j .

Since the EdgeConv operation produces as output again a point cloud with the same num-
ber of points as the input, one can stack EdgeConvs onto each other. Note that the number
of output features for the particles is variable and changes from layer to layer. Calculating
new nearest neighbours from the output of the previous EdgeConv allows for points that are
initially far apart to be grouped close in feature space.

We follow ref. [39] in selecting the following input features for the DGCNN:

1. ∆η= η−ηjet where η (ηjet) is the rapidity of the constituent (the jet),

2. ∆φ = φ −φjet where φ (φjet) is the azimuthal angle of the constituent (the jet),

3. log(pT ) - constituent’s transverse momentum in GeV,

4. log(pT/pTjet
) - constituent’s pT relative to the jet pT ,

5. log(E) - constituent’s energy in GeV,

6. log(E/Ejet) - constituent’s energy relative to the jet energy,

7. ∆R=
p

∆η2 +∆φ2.

We use a combination of EdgeConv layers followed by fully connected layers for the classifi-
cation of particle clouds. First, we construct three EdgeConv blocks. At the beginning of each
block a new k-nearest-neighbours graph is generated. We set k = 16 for all blocks. In the first
block, the distance between particles is calculated only in η and φ. In the later blocks, the
distance is calculated as the euclidean distance of the complete feature vector. Each EdgeConv
block consists of three convolutions on the constructed graph with the same number of filters.
The number of convolution filters corresponds to the number of features for each particle in
the next layer. We use 64 filters in the first block, 128 in the second and 256 in the third. The
increasing number of filters allows the network to extract more and more detailed features.

We concatenate the input features and the features from each EdgeConv block for each
particle, so that we end up with 7 + 64 + 128 + 256 = 455 features for each jet constituent
after the EdgeConv layers of the network. Since we want to keep the network independent of
the ordering of the particles, we need to aggregate the constituents in a way that is invariant
under permutation. We choose to use the average feature vector, since it shows better results
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Figure 10: ROC curves for top tagging with the different neural networks architec-
tures described in this appendix. The dashed lines denote the ROC curves of the
corresponding architectures as presented in ref. [35].

than, for example, the max aggregation. This results in one feature vector with 455 features.
These 455 features are the input to the fully connected part of the network. We use three fully
connected layers with 256, 128 and 2 nodes respectively and adopt ReLu activation for each
layer except for the classification output, where we apply softmax.

To prevent the fully connected part of the network from overfitting, we use dropout layers
in front of the first two fully connected layers for regularisation and update only 90% of the
weights. A sketch of the architecture is shown in the right panel of figure 9.

As before, we use the training and test set for top tagging provided in ref. [35]. We use a
learning rate schedule during training. The initial learning rate is set to 3×10−4. We increase it
linearly for 8 epochs to 3×10−3 and decrease it to its initial value within another 8 epochs. The
next 4 epochs we reduce the learning rate further to 5× 10−7. Such a learning rate schedule
is supposed to lead to faster convergence [91]. Training finishes after 20 epochs. We do not
perform a dedicated hyperparameter optimisation in this work. The parameters we use for this
network are comparable to those in ref. [39], except for the number of jet constituents which
we fix to 40 for comparability with the LoLa network. We note that different hyperparameter
settings could be optimal for top tagging or for tagging semi-visible dark jets. This optimisation
is left for future work.

Network performances

Figure 10 compares the ROC curves (see section 3.1) for top tagging with the CNN, the LoLa
and the DGCNN, respectively, to the results presented in ref. [35]. As in section 3.1 the stability
and reproducibility of the network performance is evaluated by training five networks with
independent random weight initialisation. The small spread in performance indicated by the
shaded band around the ROC curves shows that the training convergence of the network is
stable.

We find very good agreement between our results and the results presented in ref. [35] for
the CNN and DGCNN, and a reasonable agreement for the LoLa network. Since the DGCNN
provides the best performance, we focus on this architecture in this work and do not attempt
to further optimise the performance of the LoLa network.

We compare the number of parameters, the inference time and the required storage for
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Table 4: Comparison of the number of parameters, the inference time and the storage
needed for the different architectures introduced in this section.

Network Parameters Inference time [µs] Needed storage [MB]

CNN 706,292 19.1 8.2

CoLa/LoLa 48,031 3.59 0.61

DGCNN 411,458 141.1 4.8

the different networks in table 4. The inference time of the networks may, for example, be
crucial when using them as event triggers and also affects the computational effort needed for
training. To obtain the inference time, we predict the output of 400k jets with a batch size of
512. We test the networks on a NVIDIA Tesla V100-SXM2-16GB GPU and display the average
time needed per image. While the CoLa/LoLa consists mostly of hand crafted, hard coded
features and thus involves comparably few trainable parameters, the large number of filters in
the convolutions results in a much larger number of trainable parameters for the CNN. Also
the DGCNN has many filters in the convolutions performed in the EdgeConv blocks, and thus
significantly more parameters than the CoLa/LoLa network. The inference time is largest for
the DGCNN, even though it has fewer parameters than the CNN. This is due to the number
of calculations needed specifically to compute the pairwise distance for all particles and to
construct the k-nearest-neighbours graph.
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