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Abstract

It has been recently shown that classical J T̄ - deformed CFTs possess an
infinite-dimensional Witt-Kac-Moody symmetry, generated by certain field-dependent co-
ordinate and gauge transformations. On a cylinder, however, the equal spacing of the
descendants’ energies predicted by such a symmetry algebra is inconsistent with the
known finite-size spectrum of J T̄ - deformed CFTs. Also, the associated quantum sym-
metry generators do not have a proper action on the Hilbert space. In this article, we
resolve this tension by finding a new set of (classical) conserved charges, whose action is
consistent with semiclassical quantization, and which are related to the previous symme-
try generators by a type of energy-dependent spectral flow. The previous inconsistency
between the algebra and the spectrum is resolved because the energy operator does not
belong to the spectrally flowed sector.
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1. Introduction and statement of the problem

The discovery of the AdS/CFT correspondence [1] has marked a major step in our current
understanding of quantum gravity. While there are good reasons to believe that gravity in
general backgrounds is holographic, various clues point towards the fact that for asymptoti-
cally flat spacetimes [2] or spacetimes related to the near-horizon geometry of extremal black
holes [3], the dual QFT may be non-local. However, non-local quantum field theories are still
relatively poorly understood, in comparison with their local counterparts.

In [4], Smirnov and Zamolodchikov (see also [5]) laid out the construction of a set of
tractable irrelevant deformations of two-dimensional local QFTs which result into QFTs that
are non-local, yet appear to be UV complete [6,7]. Moreover, these theories are solvable, in the
sense that one can compute their spectrum, S-matrix and other observables [8–11] in terms of
the corresponding quantities in the undeformed QFT. Even more interestingly, certain single-
trace analogues of the Smirnov-Zamolodchikov deformations have been related to holography
in non-asymptotically AdS spacetimes [12–14].

The Smirnov-Zamolodchikov deformations are constructed from bilinears of two conserved
currents. The best studied of these is the so-called T T̄ deformation, constructed from the
components of the stress tensor. Deformations constructed from a U(1) current and the stress
tensor, such as the J T̄ [15] and the J Ta [16] deformations are also relatively well studied.
Of these, the J T̄ deformation of two-dimensional CFTs is the simplest, as the non-locality
of the deformed QFT is concentrated exclusively to the right-moving side, and the theory
stays local and conformal on the left. The effect of performing several of these deformations
simultaneously has been studied in e.g. [17,18].

It is interesting to better understand the structure of the Smirnov-Zamolodchikov deforma-
tions from a quantum-field-theoretical point of view. It has been recently shown [19] that at
least at the classical level, T T̄ , J T̄ and J Ta - deformed CFTs all posses an infinite-dimensional
set of field-dependent symmetries, whose algebra consists of two commuting copies of the Witt
or the Witt-Kac-Moody algebra, if U(1) currents are present. This structure was suggested by
the previous holographic analyses of [20] for T T̄ and [21] for J T̄ . These analyses also al-
lowed for the computation of the central extension of the symmetry algebra, which becomes
Virasoro-Kac-Moody. If these symmetries survive quantization, then we would conclude that
T T̄ , J T̄ and J Ta - deformed CFTs correspond to a non-local version of two-dimensional CFTs,
with a similarly rigid structure that would highly deserve further exploration.

There is, however, a problem, which can be seen already at the semiclassical level. The
symmetry analysis of [19] is valid on both the plane and the cylinder. In the latter case,
one immediately encounters a tension between the equally-spaced energies of the Virasoro
descendants predicted by the symmetry analysis and the energies of the deformed eigenstates
in T T̄ , J T̄ and J Ta - deformed CFTs, which take a square root form. In this note, we address
this issue for the simplest case of the J T̄ deformation, where the locality of the left-moving
side provides a useful guiding principle for finding its resolution.

To state the problem explicitly, we start with a review of the relevant facts. The finite-
size energy spectrum of J T̄ - deformed CFTs placed on a cylinder of circumference R is given
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by [14,21]

ER ≡
E − P

2
=

2
λ2

�

R−λJ0 −
Ç

(R−λJ0)2 −λ2E(0)R R
�

, EL = ER + P, (1.1)

where λ is the deformation parameter (with dimensions of length), J0 is the left-moving charge
in the undeformed CFT, P is the quantized momentum, E(0)R is the undeformed right-moving
energy and the chiral anomaly coefficient has been set to 2π. Note that while in the unde-
formed CFT, the energies of the right-moving (Virasoro and Kac-Moody) descendats of a pri-
mary state are equally-spaced, those of the corresponding J T̄ -deformed descendants are not.
The energies of the left-moving descendants do have equal spacing, since they are obtained
by raising EL = ER + P with E(0)R and J0 held fixed.

We note in passing that the relation between the undeformed and deformed energies can
be suggestively written as spectral flow [22], with a parameter λER proportional to the right-
moving energy

ELR= E(0)L R+λJ0ER +
λ2

4
E2

R , ER(R−λw) = E(0)R R+λJ̄0ER +
λ2

4
E2

R. (1.2)

Here, J̄0 is the right-moving U(1) charge in the undeformed CFT, and w= J0− J̄0 is the winding
charge. This observation will be quite useful later. It has already been used in deriving the
spectrum in presence of a chiral anomaly [14] and for organising the conformal dimensions
of J T̄ -deformed CFTs on the plane [23].

The symmetries of J T̄ - deformed CFTs consist of, first, an infinite set of left-moving confor-
mal and U(1) gauge symmetries that enhance the SL(2,R)L ×U(1)L global symmetries of the
theory. These symmetries are parametrized by two arbitrary functions of the left-moving coor-
dinate, U = σ+ t. In the general Hamiltonian framework for J T̄ - deformed CFTs developed
in [19], they are generated by

Q f =

∫

dσ f (U/R)HL , Pη =

∫

dση(U/R) (J+ +
λ

2
HR), (1.3)

where, in order for the argument of the functions to have periodicity one, the coordinate U has
been divided by the circumference of the circle. HL =HR +P is the left-moving Hamiltonian
density, where the right-moving Hamiltonian density HR is given in terms of its undeformed
counterpart H(0)R by a formula entirely analogous to (1.1), with J0 replaced by J+, the left-
moving current density. The commutation relations of the deformed generators are then fixed
by those of the undeformed currents, and one can show that the left-moving charge algebra is
precisely Witt-Kac-Moody

{Q f ,Qg}=
1
R

Q f g ′− f ′g , {Q f , Pη}=
1
R

Pf η′ , {Pη, Pχ}=
1
2

∫

dσχ∂ση. (1.4)

The factor of R can be absorbed into a rescaling of the pseudoconformal charges Q̄ f̄ .
The second set of infinite-dimensional symmetries of J T̄ - deformed CFTs are field-dependent,

and are generated by functions of the field-dependent coordinate

v = σ− t −λφ, (1.5)

where φ is related to the current J via J = ?dφ. The conserved pseudo-conformal and U(1)
charges are given by

Q̄ f̄ =

∫

dσ f̄
�

v
Rv

�

HR , P̄KM
η̄ =

∫

dση̄
�

v
Rv

�

(J− +
λ

2
HR), (1.6)
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where Rv = R− λw is the field-dependent radius of the field-depedent coordinate v, and the
particular combination P̄KM of the right-moving currents is singled out by its simple commu-
tation relations. Remarkably, these charges entirely commute with the left-moving ones, and
the charge algebra is still a functional Witt-Kac-Moody algebra

{Q̄ f̄ , Q̄ ḡ}=
1
Rv

Q̄ f̄ ′ ḡ− f̄ ḡ ′ , {Q̄ f̄ , P̄KM
η̄ }= −

1
Rv

P̄KM
f̄ η̄′

, {P̄KM
χ̄ , P̄KM

η̄ }= −
1
2

∫

dσχ̄∂ση̄. (1.7)

The word ‘functional’ above refers to the fact that the factors of Rv can be absorbed into a
redefinition of the ′ to mean ‘derivative with respect to v’, rather than to the full rescaled
argument of the functions f̄ , η̄, as used above. In any case, when labeling the charges in
terms of the Fourier modes of f̄ , η̄, etc., the field-dependent radius will explicitly appear in the
algebra1. While this algebra is not exactly Witt-Kac-Moody, it still predicts, upon quantization,
an equally-spaced spectrum of descendants, which is incompatible with the energy formula
(1.1).

It is in fact not hard to notice already from their classical Poisson brackets, that the right-
moving charges (1.6) will not have a proper action on the semiclassical phase space of the
theory, where the charges associated to the global U(1) symmetry and the momentum are
quantized. Concretely, the problem appears to lie in the commutators of the right-moving
generators with the U(1) charges

{Q̄ f̄ , J0}=
1
Rv

∫ R

0

dσ f̄ ′
�

v
Rv

�

HR(σ){v(σ), J0}= −
λ

2Rv
Q̄ f̄ ′ = {Q̄ f̄ , J̄0}, (1.8)

and the analogous commutators of the right-moving U(1) generators P̄η̄ with J0 and J̄0. What
this means is that J0 + J̄0, which represents the global U(1) charge of the configuration and
which should be quantized, is changed by a non-integer amount (more precisely, 2πλn/Rv ,
with n ∈ Z) by the action of the semiclassically quantized right-moving generators on a state
in the deformed theory. A similar statement holds for the momentum, which from (1.7) can
be shown to satisfy

{Q̄ f̄ , P}= −
1
Rv

Q̄ f̄ ′ , {P̄η̄, P}= −
1
Rv

P̄η̄′ , (1.9)

i.e. it is changed by units of 2π/Rv , instead of 2π/R. These observations imply that the
action of the right-moving generators (with the exception of the global right-moving energy
and charge) on a field configuration is in tension with semiclassical quantization. Hence, the
naive quantum versions of the charges (1.6) do not act properly on the Hilbert space of J T̄ -
deformed CFTs on a cylinder.

While having an infinite set of symmetry generators that do not properly act on the Hilbert
space of the system is not very useful, an interesting question is whether these generators can
be modified in such a way that their algebra is preserved, but their action on the Hilbert space is
rectified. In this note, we show that this is indeed possible, by explicitly constructing an infinite
set of charges that, upon quantization, would act on the deformed finite-size Hilbert space in
a way consistent with charge and momentum quantization. These charges can therefore be
used to organise the spectrum of the deformed CFT.

To find them, we study the flow equation with respect to the deformation parameter λ of
the various energy eigenstates and compare it to the flow of the symmetry generators (1.3)
and (1.6). Introducing a new set of operators that relate deformed descendant states to the
deformed primaries, we find that they are related to the previously discussed symmetry gen-
erators by a type of energy-dependent spectral flow transformation. The new symmetry gen-
erators are conserved and satisfy a Witt-Kac-Moody algebra with a field-independent radius.

1In the J T̄ case, we can simply rescale the generators by Rv to obtain a usual Witt-Kac-Moody algebra.
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Their commutation relations with the energy and momentum are non-trivial though, as the
latter two operators belong to the unflowed sector. This resolves the apparent tension between
the symmetry algebra and the spectrum of J T̄ - deformed CFTs. We should note that while our
analysis is mostly classical - i.e., at the level of Poisson brackets - the quantum generalization
of these generators now appears to be straightforward.

This paper is organised as follows. In section 2, we derive the flow equation satisfied by the
energy eigenstates in a J T̄ - deformed CFT, by adapting the method used in [11] to study the
flow of states under the T T̄ deformation. We subsequently compare this to the flow equations
satisfied by the symmetry generators, and argue that the two sets of generators must be related
by a similarity transformation that we denote as “spectral flow”. In section 3, we proceed to
finding the flowed operators, first perturbatively and then by making an all-orders proposal,
whose consistency we then check. The technical details of the very many Poisson brackets we
need are collected in the appendices.

2. Flow of the eigenstates versus the symmetry generators

2.1. The flow of energy eigenstates

Let |nλ〉 be an energy (and momentum, and charge) eigenstate in the theory deformed by an
amount λ. As λ is infinitesimally changed, the change in the eigenstate is given by first-order
quantum-mechanical perturbation theory

∂λ|nλ〉=
∑

m 6=n

〈mλ|∂λH|nλ〉
Eλn − Eλm

|mλ〉, (2.1)

where ∂λH is the change in the Hamiltonian. For convenience, we take the deforming operator
to be J̃ T̄ , rather than J T̄ , where J̃ = ?dφ is a topologically conserved current. Its components
are

J̃t = φ
′ , J̃σ = ∂πH, (2.2)

where π is the canonical momentum conjugate to φ. One can easily check, using the method
developed in [19], that the J̃ T̄ deformation leads to the same deformed Hamiltonian density
as J T̄ . Consequently, the change in the Hamiltonian is given by2

∂λH(λ) = −
∫

dσOJ̃ T̄ = −
∫

dσεαβ J̃α(σ)TβV (σ). (2.3)

To find the general solution for the deformed eigenstates, we will use the technique proposed
by [11]. On an equal-time slice, we write

∫

dσOJ̃ T̄ =

∫

dσdσ̃ εαβ J̃α(σ)δ(σ− σ̃)TβV (σ̃). (2.4)

It is useful to introduce the Green’s function on the cylinder of circumference R

G(σ) =
1

2πi

∑

m 6=0

1
m

e2πimσ/R =
1
2

sgn(σ)−
σ

R
, (2.5)

which is single-valued and satisfies

∂σG(σ− σ̃) = δ(σ− σ̃)−
1
R

. (2.6)

2We are using the conventions of [19] throughout this article.
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Then, we can rewrite the deforming operator as
∫

dσOJ̃ T̄ =

∫

dσdσ̃
h

J̃σ(σ)
�

1
R
+ ∂σG(σ− σ̃)

�

TtV (σ̃)− J̃t(σ)
�

1
R
− ∂σ̃G(σ− σ̃)

�

TσV (σ̃)
i

=
1
R
εαβ J̃0

α T0
βV −

∫

dσdσ̃G(σ− σ̃)(∂σ J̃σ(σ)TtV (σ̃) + J̃t(σ)∂σ̃TσV (σ̃))

=
1
R
εαβ J̃0

α T0
βV − ∂t

∫

dσdσ̃G(σ− σ̃)J̃t(σ)TtV (σ̃), (2.7)

where we introduced the notation

J̃0
α ≡

∫

dσ J̃α , T0
βV ≡

∫

dσ TβV . (2.8)

Naturally, the integral of the time components of the currents above will yield the associated
conserved charges, i.e. the winding, w, and respectively (minus) the right-moving energy,
−ER. We further use the manipulations of [11] to rewrite the regulated denominator of (2.1)
as an integral, in terms of which the flow equation for the states becomes

∂λ|nλ〉 = −i
∑

m 6=n

∫ 0

−∞
d t etε |mλ〉〈mλ|∂λHλ(t)|nλ〉

= i
∑

m 6=n

|mλ〉〈mλ

�

�

�

�

�

1
R

∫ 0

−∞
d t etεεαβ J̃0

α T0
βV −

∫

dσdσ̃G(σ− σ̃)J̃t(σ)TtV (σ̃)

�

�

�

�

�

nλ〉 . (2.9)

Here, ε > 0 is an infinitesimal regulator used to make the integral converge, and the second
term is evaluated on the t = 0 slice. Since we are working on the cylinder, the first term cannot
be ignored. To evaluate it, we need the explicit form of the spatial components of J̃ and the
right-moving translation generator, which can be worked out using the formulae given in [19]

J̃σ = ∂πH = φ′ + 2∂πHR = φ
′ + 2

J− +λHR/2
p (2.10)

and

TσV = 2TV V −HR = 2
HR
p −HR, (2.11)

where the somewhat unusual notation p is a shorthand for
Ç

(1−λJ+)2 −λ2H(0)R .
Therefore,

εαβ J̃0
αT0
βV = −2w

∫

dσ
HR
p − 2ER

∫

dσ
J− +λHR/2

p . (2.12)

In order to perform the time integral in (2.9), we would like to rewrite the above operator
as a time derivative, i.e. as a commutator with the Hamiltonian. This can be achieved by
introducing the zero modes

φ0 ≡
∫ R

0

dσφ(σ) , χ0 ≡
∫ R

0

dσχ(σ), (2.13)

where the auxiliary non-local field χ is defined via

∂σχ ≡HR. (2.14)

Such fields also made their appearance in the analysis of the charge algebra for T T̄ - deformed
CFTs in [19], though they were not given an explicit name.
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The Poisson brackets of the fields φ and χ (and, consequently, of their zero modes φ0
and χ0) are fixed by the Poisson brackets of the corresponding currents J±,HR,P , up to some
possible integration functions. While the choice of these functions is straightforward for the
φ commutators, as φ is a local field, it is however somewhat subtle for the case of the χ
commutators, because χ is non-local. In appendix B, we perform a rather detailed analysis of
the Jacobi identities that constrain these integration functions, with the result

{χ0, H}= −2

∫ R

0

dσ
HR
p + ER +

ERR
Rv

, {φ0, H}= 2

∫ R

0

dσ
J− +λ/2HR

p +w, (2.15)

where ER =
∫

dσHR is the right-moving energy operator. Consequently, we can write

εαβ J̃0
αT0
βV = −{H, wχ0 − ERφ0} −wER

R
Rv
=

d
d t
(wχ0 − ERφ0)−w

ERR
Rv

. (2.16)

Plugging this into (2.9), the last term drops out, as it is evaluated between two different
energy-momentum eigenstates. The integral of the first term over the half line yields, in the
limit ε→ 0

∂λ|nλ〉= i
∑

m 6=n

|mλ〉〈mλ

�

�

�

�

wχ0 − ERφ0

R
+

∫

dσdσ̃G(σ− σ̃)φ′(σ)HR(σ̃)

�

�

�

�

nλ〉. (2.17)

We will be denoting these two contributions as ∆O and respectively Ô, defined as

∆O ≡
wχ0 − ERφ0

R
, Ô ≡

∫

dσdσ̃G(σ− σ̃)φ′(σ)HR(σ̃), (2.18)

and their sum will be denoted as Otot =∆O+ Ô. If we make use of the identity
∫

dσ̃φ′(σ̃)G(σ̃−σ) = φ(σ̃)G(σ̃−σ)|R0 −φ(σ) +φ0 = −φ̂(σ) +φ0, (2.19)

where φ̂(σ) = φ(σ)−wσ/R is the scalar field with its winding mode removed (which is thus
single-valued on the circle), then an alternate expression for Otot is

Otot =
wχ0

R
−
∫

dσφ̂(σ)HR, (2.20)

which is rather useful in computing its Poisson brackets.
As a final step of our manipulations, we use the assumed completeness of the set of states

to rewrite the flow equation for the energy eigenstates as

∂λ|nλ〉= iOtot |nλ〉 − i|nλ〉〈nλ|Otot |nλ〉. (2.21)

Introducing an operator, D, which is diagonal in the energy eigenbasis and whose matrix
elements are defined as 〈nλ|D|nλ〉 = 〈nλ|Otot |nλ〉, we can rewrite the flow equation for the
eigenstates in its final form

∂λ|nλ〉= i(Otot − D)|nλ〉 . (2.22)

Thus, to understand the flow of the states, we need to understand also which parts of Otot
have non-zero expectation values in the energy eigenstates. This is a quite non-trivial task
for arbitrary values of the flow parameter. We can nevertheless attempt to understand this
problem perturbatively. For example, at λ= 0, we can use (2.5) to evaluate

iÔ =
∑

m 6=0

1
m

: J̃m L̄m : + . . . , (2.23)
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where J̃m = Jm − J̄−m and L̄m are the Fourier modes of φ′ and respectively HR in the unde-
formed CFT, and the colons denote normal ordering. Since the sum is strictly over non- zero
modes, it is clear that the expectation value of this operator in any energy eigenstate of the
undeformed CFT is zero. Thus, Ô does not contribute to D, at least at λ = 0. On the other
hand, the expectation value of ∆O vanishes between any two different energy eigenstates at
λ= 0, as one can see by evaluating

〈m|[H,∆O]|n〉= (Em − En)〈m|∆O|n〉= i〈m|(J0 + J̄0)ER|n〉= 0, (2.24)

which implies that3 〈m|∆O|n〉= 0 , ∀m 6= n. Thus, we find that at λ= 0, D =∆O.
At higher orders in perturbation theory, ∆O may start having non-zero matrix elements

between different eigenstates, which would therefore not contribute to D. To understand what
happens, we should study the change with λ of the matrix elements 〈m|∆O|n〉

∂λ〈m|∆O|n〉= 〈m|∂λ∆O−i[Otot−D,∆O]|n〉= 〈m|D̂λ∆O|n〉+i(Dm−Dn)〈m|∆O|n〉, (2.25)

where the flow operator D̂λ is defined as

D̂λ ≡ ∂λ − i[Otot , · ]. (2.26)

Using the explicit expression, (3.3), for Dλ∆O computed in the next section, we see that at
λ = 0, the only contribution to 〈n|Dλ∆O|n〉 comes from the terms proportional to the zero
modes of the fields φ and χ. The λ dependence of the diagonal matrix elements of Ô can be
studied by plugging in the known expression for HR(λ). At first order in λ, it also does not
look like this operator has non-zero diagonal matrix elements in the energy eigenbasis4, and
thus it will not contribute to D.

To summarize, up to first order in λ, we expect that

D =∆O−λ(Dλ∆O)no z.m. +O(λ2), (2.27)

i.e. we are subtracting all the off-diagonal contributions to∆O up to this order. Performing this
analysis to higher order looks increasingly cumbersome, and we may need a better method.

The discussion so far holds for states defined on the t = 0 slice. It is interesting to also
consider the flow equation for states defined at a time t instead of t = 0. Our derivation of
the flow operator (2.17) still holds, except that it should now be evaluated at time t, rather
than t = 0. Since the states at t are related to the states at t = 0 by a λ - dependent energy
factor, the flow equation is best written as

∂λ|nλ(t)〉= i(Otot(t)− ∂λEn t − D(t))|nλ(t)〉 , ∂λE = 2
ERQK

R−λQK
, (2.28)

where QK ≡ J0 + λER/2, and the expression for ∂λE is obtained from (1.1). The matrix ele-
ments of the operator D(t) are defined as the expectation values of Otot(t) in energy eigen-
states.

2.2. Flow of the symmetry generators

Having understood the flow of the energy eigenstates with respect to λ, we would now like to
discuss the corresponding flow of the symmetry generators Q f , Pη, Q̄ f̄ and P̄η̄. It is useful to
compute the action of the operator Dλ defined above on these generators. Our analysis will

3For degenerate eigenstates, one can repeat the argument for the commutator with other globally conserved
charges.

4Using the formulae in appendix C, it can be shown that Ô satisfies the very simple flow equationDλÔ = w Ô/Rv

(for a = −1), which can be used to evaluate its contribution, if any, at higher orders in λ.
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be classical, and thus we will be using the Poisson bracket counterpart of this flow operator,
i.e

Dλ ≡ ∂λ + {Otot , · }, (2.29)

obtained by the usual replacement [ , ]→ i{ , }. To compute the action of Dλ, we will need the
Poisson brackets of the various currents in the J T̄ -deformed CFT, which were derived in [19]
and are collected for convenience in appendix A. We will also need the Poisson brackets of the
various symmetry currents with the zero modes of χ and φ.

The commutators of the zero mode ofφ are obtained by simply integrating the correspond-
ing commutators of the field φ(σ), and we obtain

{φ0,HR(σ)}=
J− + λ

2HR
Ç

(1−λJ+)2 −λ2H(0)R

, {φ0,P(σ)}= φ′(σ) , {φ0,J±}=
1
2

. (2.30)

Note that in the CFT limit, {φ0,HL} = J+ and {φ0,HR} = J−, so the exponential of this
operator is precisely what generates spectral flow for the left- and the right-movers.

The Poisson brackets of the zero mode χ0 are significantly more involved, due to the fact
that the ancillary field χ is non-local, being defined as the integral of the local current HR.
Consequently, its Poisson brackets are defined only up to certain integration functions, whose
form is non-trivially constrained by various Jacobi identities. These constraints are analysed
in detail in appendix B, and the end result for the various commutators of χ0 is

{χ0,J+} = −
λR
2
∂σ

�

HR
p

�

1+ a−
λφ̂

Rv

��

−
λR
2Rv

HR, (2.31)

{χ0,J−} = R∂σ

�

J−
p

�

1+ a−
λφ̂

Rv

��

−
λR
2Rv

HR, (2.32)

{χ0,HR} = −
HR
p +

R
Rv

HR + R∂σ

�

HR
p

�

1+ a−
λφ̂

Rv

��

, (2.33)

{χ0,P} = HR −
R
Rv

HR − R∂σ

�

HR
p

�

1+ a−
λφ̂

Rv

��

, (2.34)

{χ0,φ} = −
J− +λHR/2

p R

�

1+ a−
λφ̂

Rv

�

, (2.35)

where, as before, φ̂ = φ − wσ/R equals φ with its winding mode removed. The terms pro-
portional to the constant a are allowed by all the Jacobi identities we have studied5. Since
its value does not seem to be fixed and, moreover, it drops out from most of our subsequent
computations, we will henceforth fix it to the convenient value a = −1.

Using these, one can compute the flow equations for the various currents, which are spelled
out for convenience in appendix C, and from them derive the flow of the conserved charges.
One finds that the left-moving charges are simply constant with respect to Dλ

DλQ f =DλPη = 0, (2.36)

while the right-moving ones satisfy

DλQ̄ f̄ =
w
Rv

Q̄ f̄ −
wt
R2

v
Q̄ f̄ ′ , Dλ P̄KM

η̄ = −
wt
R2

v
P̄KM
η̄′ . (2.37)

5This does not mean that there cannot exist other Jacobi identities that constrain the value of a, or that require
the introduction of new terms in the commutators above. Our analysis is thus valid up to this caveat.
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Note that the first term on the right-hand side of the Q̄ f̄ flow is necessary in order for the flow
equation to be compatible with the charge algebra (1.7), as the latter contains an explicit factor
of 1/Rv , whose λ derivative does not vanish. If we consider instead the rescaled dimensionless
charges RvQ̄ f̄ , they satisfy a flow equation analogous to that of P̄KM . Their algebra is also the
standard Witt-Kac-Moody algebra.

The explicit time dependence appearing on the right-hand side of (2.37) can be understood
by computing the time derivative of e.g. P̄KM , where as usual d

d t = ∂t −{H, · }. One finds that
d
d t P̄KM = {DλH, P̄η̄} 6= 0 because, as a result of the first equation, DλH =ωER/Rv .

Given the above form of the flow equations, it is convenient to define

D′λ =Dλ −
wER t

Rv
, (2.38)

which annihilates all of the (rescaled) conserved charges.

2.3. Relating the two

To summarize, we found that the quantum version of the rescaled conserved charges Q f , Pη,
RvQ̄ f̄ and P̄KM

η̄ , which we will collectively denote as L, are annihilated by the operator (2.29)

D̂λL= ∂λL− i[Otot ,L] = 0, (2.39)

(or D̂′
λ
L = 0 if we work at t 6= 0). On the other hand, the states satisfy the flow equation

(2.22), which involves an additional diagonal operator D, which can be rather complicated.
We now consider two energy eigenstates, |n0〉 and |n′0〉, that in the undeformed CFT are

related by the action of a symmetry generator, |n′0〉 = L(λ=0)|n0〉, which can be any of the
Virasoro or Kac-Moody generators. Our goal is to find a new operator, eL, that relates the
corresponding flowed states in the deformed CFT, i.e. |n′

λ
〉= eL |nλ〉. The flow equation (2.22)

for the states then implies that the flow equation for the corresponding operators is

∂λ eL− i[Otot − D, eL] = 0. (2.40)

The solutions to the two flow equations are related by eL= eXLe−X where X must satisfy

[ eL, (∂λeX − i[Otot , eX ])e−X − D] = 0 (2.41)

for any eL. This implies that the second argument either vanishes, or it is proportional to the
identity or some other operator that commutes with all the eL. Assuming for simplicity that it
vanishes, we can write

D = (∂λeX − i[Otot , eX ]) e−X . (2.42)

Noting that

(∂λeX ) e−X = ∂λX +
1
2
[X ,∂λX ] +

1
3!
[X , [X ,∂λX ]] + . . . (2.43)

eXOtot e
−X =Otot + [X ,Otot] +

1
2
[X , [X ,Otot]] + . . . , (2.44)

the above equation can be written as

D = D̂λX +
1
2
[X , D̂λX ] +

1
3!
[X , [X , D̂λX ]] + . . . , D̂λX ≡ ∂λX − i[Otot , X ]. (2.45)

This result gives us a way to construct X , and therefore eL, if we know L and D. If we
work at t 6= 0, then Dλ should be replaced by D′

λ
, Otot by Otot(t) − wER t/Rv and D by

Dtot(t)≡ D(t) + ∂λE t, as follows from (2.28).
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As we already explained, finding D to all orders is a rather difficult task, but we can cer-
tainly attempt this exercise perturbatively. Since at λ= 0, D =∆O = (wχ0− ERφ0)/R, where
φ0 is known to implement spectral flow in a CFT, we will henceforth denote the eL as the “spec-
trally flowed” operators, in this case by an energy-dependent amount. This connection will be
made significantly more precise in the next section.

3. The spectrally flowed generators

3.1. Perturbative construction of the spectrally flowed generators

In this section, we attempt to solve the equation (2.45) for X perturbatively, for D given in
(2.27), and use the solution to find the first few terms in the λ expansion of the flowed gen-
erators. This can be done by assuming X has an expansion of the form

X = λO1 +λ
2O2 + . . . ⇒ DλX =O1 +λDλO1 + 2λO2 +λ

2DλO2 + . . . , (3.1)

where the On are in general non-linear functions of λ. We would moreover like to work at
t 6= 0 so, according to our previous discussion, Dλ should be replaced by D′

λ
and

Dtot(t)≡ D(t) + ∂λE t = D0 −λ(D′λD0)no z.m. +O(λ2) +
2QK ER

R−λQK
t, (3.2)

where D0 = ∆O − wER t/Rv . Since we know Dtot to first order in λ, we can thus find X , and
consequently eL, to second order. Evaluating

D′λD0 =
w
Rv
(∆O−wER

t
Rv
)−

w
R

∫

dσ
HR
p

wt + Rφ̂(σ)
Rv

−
ER

R

∫

dσ
J− +λHR/2

p
wt + Rφ̂(σ)

Rv
(3.3)

gives us

D(t) =
wχ0 − ERφ0

R
−wER

t
Rv
+
λw
Rv

∫

dσ
HR
p
�

φ̂ −
φ0

R

�

+
λER

Rv

∫

dσ
J− +λHR/2

p
�

φ̂ −
φ0

R

�

+ . . .

(3.4)
It is extremely useful to note that to this order, D(t) can be written as

D(t)≈
weχ0 − ER

eφ0

R
−wER

t
Rv
−
λφ0ERQK

R2
+O(λ2) , (3.5)

where the “improved” zero modes eφ0 and eχ0 are defined as

eφ0 ≡ φ0 −
λR
Rv

∫

dσ(J− +λHR/2)φ̂ , eχ0 ≡ χ0 +
λR
Rv

∫

dσHRφ̂. (3.6)

The usefulness of introducing these quantities stems from the extremely simple Poisson brack-
ets they satisfy, to all orders in λ. The Poisson brackets of eφ0 with the left-movers are

�

eφ0, KU

	

=
1
2

,
�

eφ0,HL

	

= KU , (3.7)

and with the right-movers

{ eφ0, Q̄ f̄ }=
R
Rv

P̄KM
f̄

, { eφ0, P̄KM
η̄ }=

R
2Rv

∫

dση̄(1−λφ′), (3.8)
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which implies that eφ0 is the corrected operator implementing spectral flow in the J T̄ - de-
formed CFT. The field eχ0 commutes with KU ,HL , ER, J̄0 and, for our particular choice of the
constant a in the Poisson brackets, with everything else6.

It is also interesting to check the flow equations that eφ0 and eχ0 satisfy7

D′λ eχ0 =
w
Rv
eχ0 , D′λ eφ0 =

wtR
R2

v
Q̄K̄ . (3.12)

Given the rewriting (3.5) of D(t), it is best to consider a different identification of what is
considered ‘zeroth’ versus ‘first’ order in its expansion with respect to λ, namely

eD0 =
weχ0 − ER

eφ0

R
−wER

t
Rv
+O(λ2) , eD1 = −

φ0ERQK

R2
+O(λ). (3.13)

Then, the coefficients of the perturbative expansion (3.1) of X , obtained using (2.45), are
given by

O1 =
weχ0 − ER

eφ0

R
−wER

t
Rv
+

2QK ER t
R

, D′λO1 =
w
Rv

weχ0 − ER
eφ0

R
+

2QK wER t
R2

−
wtER(QK +ω)

R2
,

(3.14)
which implies that, to zeroth order in λ

R2O2 = −
1
2
φ0ERQK −

w(weχ0 − ER
eφ0)

2
−QK wER t +Q2

K ER t +
1
2

wtER(QK +ω)

≈ −
1
2
φ0ERQ̄K̄ −

ω2

2
χ0 + ERQKQ̄K̄ t +

1
2

wtER(QK +ω). (3.15)

The above expressions for O1,2 give us the classical limit of the operator X entering the simi-
larity transformation, up to O(λ3).

We would now like to check the effect of the similarity transformation on the various
conserved charges. To pass from the quantum commutators to Poisson brackets, we note that
the operator X should have a factor of ~−1 in front, which cancels against the ~ factors in the
commutators to yield the classical result

eL= eXLe−X ↔ eLcls = L+λ{O1,L}+λ2{O1,L}+ λ
2

2
{O1, {O1,L}}+O(λ3). (3.16)

Let us first work out the effect of this transformation on KU . Using

{O1, KU}= −
ER

2R
, {O2, KU}= −

ERQ̄K̄

2R2
{φ0, KU}= −

ERQ̄K̄

4R2
, {O1, ER}= −

ERQ̄K̄

R
,

(3.17)

6For a 6= −1, its non-zero commutators are

{eχ0,HR}= (1+ a)R∂σ
HR
p , {eχ0,J−}= (1+ a)R∂σ

J−
p , {eχ0,φ}= −(1+ a)R

J− +λ/2HR
p , (3.9)

which implies

{eχ0, Q̄ f̄ }= −
R
Rv

Q̄ f̄ ′ (1+ a) , {eχ0, P̄KM
η̄
}= −

P̄KM
η̄′ R

Rv
(1+ a) , { eφ0, eχ0}=

R2Q̄ K̄

Rv
(1+ a). (3.10)

7More generally,

Dλ eχ0 =D′
λ
eχ0 =

w
Rv
eχ0 +

wR
Rv

ER(1+ a) , Dλ eφ0 = −
RQ̄ K̄

Rv
w(1+ a) , D′

λ
eφ0 =

wtR
R2

v

Q̄ K̄ . (3.11)
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we can readily show that

eKU = KU −
λER

2R
+O(λ3) . (3.18)

Note in particular that the zero mode of eKU is just J0. This implies that the spectrally flowed
generators will commute with J0, since the commutator [J0, eX Q̄ f̄ e−X ] = eX [e−X J0eX , Q̄ f̄ ]e

−X =
eX [QK , Q̄ f̄ ]e

−X = 0.
Next, we would like to check what happens to the left-moving energy current HL . We

evaluate

{O1,HL}= −
ERKU

R
, {O2,HL}= −

ERQ̄K̄

2R2
{φ0,HL}= −

ERQ̄K̄

2R2
KU , (3.19)

{O1,−ERKU}=
E2

R

2R
+

ERKUQ̄K̄

R
, (3.20)

which in turn implies that

eHL =HL −
λERKU

R
+
λ2E2

R

4R2
+O(λ3) . (3.21)

Note that the transformation of KU and that of HL correspond precisely to a spectral flow
transformation with parameter λER. The zero mode of eHL equals the left-moving energy E(0)L
in the undeformed CFT.

Let us now turn to the right-movers, starting with the Kac-Moody generators P̄KM
η̄ in (1.6).

Using (3.8), we compute

{O1, P̄KM
η̄ }= −

ER

2Rv

∫

dση̄(1−λφ′) +
1
Rv

�

eφ0 − 2QK t
R

+
wt
Rv

�

P̄KM
η̄′ , (3.22)

{O2, P̄KM
η̄ } ≈ −

ERQ̄K̄

4RvR

∫

dση̄(1−λφ′) +
Q̄K̄

2R2
( eφ0 − 2QK t)P̄KM

η̄′ ,−
wt
2R3
(QK +ω)P̄

KM
η̄′ . (3.23)

It is useful to treat separately the case in which η= I (the identity), for which

˜̄PKM
I =

�

J̄0 +
λER

2

�

−
λER

2
−
λ2

4R
ERQ̄K̄ +

λ2

2
{O1,−ER/2}= J̄0 +O(λ3), (3.24)

as expected from spectral flow. For η̄ 6= I , we compute

R2{O1, {O1, P̄KM
η̄ }}=

�

φ0 − 2QK t
R

+
wt
Rv

�

Q̄K̄ P̄KM
η̄′ +

�

φ0 − 2QK t
R

+
wt
Rv

�2

P̄KM
η̄′′ . (3.25)

The transformed P̄KM
η̄ is then, for η̄ 6= I

˜̄PKM
η̄ = P̄KM

η̄ +
λ

Rv

�

eφ0 − 2QK t
R

+
wt
Rv

�

P̄KM
η̄′ +

λ2

2R2

�

eφ0 − 2QK t
R

+
wt
Rv

�2

P̄KM
η̄′′ (3.26)

+
λ2

R3

�

Q̄K̄(φ0 − 2QK t)−ω2 t
�

P̄KM
η̄′ +O(λ3)

≈ P̄KM
η̄ + λ̂(1+ λ̂QK)

�

eφ0 − 2QK t +ωt − λ̂ωQ̄K̄ t
R

�

P̄KM
η̄′ (3.27)

+
λ̂2

2

�

eφ0 − 2QK t +ωt
R

�2

P̄KM
η̄′′ +O(λ3) , (3.28)
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where we have introduced the dimensionless J T̄ coupling λ̂ = λ/R. It is not hard to check
that this expression is conserved to the given order in λ, using

{H, eφ0}= −QK −
Q̄K̄R
Rv

. (3.29)

Using {P, eφ0} = −QK +
Q̄K̄ R
Rv
≈ −w(1 − λ̂Q̄K̄) and the approximate expansion above, we also

find

{P, ˜̄PKM
η̄ }=

1
R

˜̄PKM
η̄′ +O(λ3), (3.30)

i.e. acting with the spectrally flowed right-moving generator preserves the quantization of the
momentum.

Finally, moving on to the right-moving pseudoconformal generators, we find

{O1, Q̄ f̄ }= −
ER P̄KM

f̄

Rv
+

1
Rv

�

eφ0 − 2QK t
R

+
wt
Rv

�

Q̄ f̄ ′ (3.31)

{O2, Q̄ f̄ }= −
ERQ̄K̄

2RvR
P̄KM

f̄
+

Q̄K̄

2RvR2
( eφ0 − 2QK t)Q̄ f̄ ′ −

wt(QK +ω)
2R3

Q̄ f̄ ′ (3.32)

{O1, {O1, Q̄ f̄ }}= −
ER

Rv
{O1, P̄KM

f̄
}+

ERQ̄K̄

RvR
P̄KM

f̄
+
φ0−2QK t

R + wt
Rv

Rv
(Q̄K̄Q̄ f̄ ′ − ER P̄KM

f̄ ′
) +
(φ0−2QK t

R + wt
Rv
)2

R2
v

Q̄ f̄ ′′ .

(3.33)
Let us first check the case f = const. Remembering that the orginal right-moving pseudocon-
formal generator that satisfies D′

λ
L = 0 is Q̄ f̄ Rv , applying the similarity transformation to it

yields

eER R= ERRv −λER J̄0 −
λ2

4
E2

R +O(λ3), (3.34)

in perfect agreement with our expectation, RE(0)R . The factor of R on the left-hand side has
been included for dimensional reasons. For general f , we find

eQ̄ f̄ R = Q̄ f̄ Rv −λER P̄KM
f̄
+
λ2E2

R

4
δ f=I +λ

�

eφ0 − 2QK t
R

+
wt
Rv

�

Q̄ f̄ ′

+
λ2

2R2
(φ0 − 2QK t)(2Q̄K̄Q̄ f̄ ′ − 2ER P̄KM

f̄ ′
) +
λ2

2R

�

φ0 − 2QK t
R

+
wt
Rv

�2

Q̄ f̄ ′′

−
λ2ωt
2R2

(QK +ω)Q̄ f̄ ′ +
λ2ωt
2R2

(Q̄K̄Q̄ f̄ ′ − 2ER P̄KM
f̄ ′
). (3.35)

As before, this can be organised as the following perturbative expansion

eQ̄ f̄ R = Rv

�

Q̄ f̄ + λ̂(1+ λ̂QK)
eφ0 − 2QK t +ωt(1− λ̂Q̄K̄)

R
Q̄ f̄ ′ +

λ̂2

2R2
(φ0 − 2QK t +ωt)2Q̄ f̄ ′′

�

−λER

�

P̄KM
f̄
+
λ(φ0 − 2QK t +ωt)

R2
P̄KM

f̄ ′

�

+
λ2E2

R

4
δ f=I +O(λ3). (3.36)

This has precisely the correct form to yield a conserved charge and an integer-quantized mo-
mentum, as one can check by computing its Poisson brackets with H and P.
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3.2. An all-orders proposal

The result of the perturbative analysis we have just performed is that the symmetry generators
that act properly on the eigenstates of the system are given by a kind of energy-dependent
spectral flow. While the form of the resulting left-moving generators, eKU and eHL in (3.18) and
(3.21), matches precisely to what we expect from spectral flow with parameter λER, the form
of the right-moving generators (3.28) and (3.36) is significantly more involved. In particular,
while it is nothing but natural that (3.18) and (3.21) should represent the full expressions for
the left-moving flowed generators to all orders in λ, it is also clear that the λ expansion of the
right-moving generators will contain an infinite number of terms.

In this section, we will make a proposal for an all-orders (formal) expression for the right-
moving generators, starting from the assumption that (3.18) and (3.21) are the correct ex-
pression for the flowed left-moving currents to all orders in λ. Our main tool will be the fact
that the charge algebra is preserved by the flow (2.40), and therefore the spectrally flowed
left and right generators should commute to all orders in λ.

Our analysis will proceed in two steps. First, we will construct combinations of the right-
moving conserved charges that commute with the left-moving spectrally flowed currents, and
show that these building blocks satisfy the correct Poisson brackets with the energy, momen-
tum and the global U(1) charges to have, upon quantization, a consistent action on the Hilbert
space. Then, we find linear combinations of these blocks that satisfy the expected flow equa-
tion, with an operator D we will similarly derive.

Let us start by analysing the building block, eP̄ η̄, for the right-moving U(1) generator. The
requirement that it commute with all the left-moving charges (or, alternatively, the currents),
reads

{KU −
λ

2R
ER, eP̄ η̄}= 0 , {HL −

λERKU

R
+
λ2

4R2
E2

R, eP̄ η̄}= 0, (3.37)

where P̄η̄ can in fact be any right-moving current. Note the second equation follows from the
first if

{HL , eP̄ η̄}= 2KU{KU , eP̄ η̄}, (3.38)

which can a posteriori be checked to be the case. Remembering that

{ eφ0, KU}=
1
2

, { eφ0, ER}=
Q̄K̄R
Rv

, {ER, P̄η̄}= −
1
Rv

P̄η̄′ , (3.39)

a natural Ansatz for eP̄ η̄ (for η 6= I) is

eP̄ η̄ = P̄η̄ + λ̂a1
eφ0 P̄η̄′ +

λ̂2a2

2
eφ2

0 P̄η̄′′ + . . . (3.40)

Plugging into (3.37), we find the recursion relation

an+1 =
an

R−λQK
, a0 = 1, (3.41)

which implies that the solution is simply

eP̄ η̄ = P̄η̄ +
λ̂ eφ0

R−λQK
P̄η̄′ +

λ̂2
eφ2

0

2(R−λQK)2
P̄η̄′ + . . . (3.42)

Note that in the case of the Kac-Moody current PKM
η̄ , the first three terms agree precisely with

the result (3.28) of the perturbative analysis of the previous section, at t = 0. One can also
check that (3.38) holds, using (3.7), (A.13) and the commutators of φ with HL and KU .
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Note the above is a formal expression in thatφ0, and thus eφ0, is not a well-defined operator.
However, its exponential is expected to be. Using the eφ0 Poisson brackets

{ eφ0, J0}= { eφ0, J̄0}= R
R−λQK

2Rv
, (3.43)

with QK ≡ J0 + λER/2 and Q̄K̄ ≡ J̄0 + λER/2 that we presented earlier, we can easily check
that the charges of this combination are as expected, namely

{J0, eP̄ η̄}= {J̄0, eP̄ η̄}=
λ

2Rv

eP̄ η̄′ −
(R−λQK)

2Rv

λ

R−λQK

eP̄ η̄′ = 0. (3.44)

The Poisson bracket with the right-moving energy is

{ER, eP̄ η̄}= −
λ

R−λQK

Q̄K̄

Rv

eP̄ η̄′ −
1
Rv

eP̄ η̄′ = −
1

R−λQK

eP̄ η̄′ , (3.45)

while the commutator with HL is given by

{HL , eP̄ η̄}=
λKU

R
{ER, eP̄ η̄}= −

λKU

R(R−λQK)
eP̄ η̄′ . (3.46)

These together imply that the Poisson bracket with the total momentum is

{P, eP̄ η̄}= {EL − ER, eP̄ η̄}= −
1
R
eP̄ η̄′ , (3.47)

and thus the action of eP̄ η̄ in the Fourier basis increases the momentum by an integer amount in
units of the radius, which is now consistent with semiclassical quantization. The total energy
is given by

{EL + ER, eP̄ η̄}= −
R+λQK

R−λQK

eP̄ η̄′
R

. (3.48)

To ensure conservation of the charges, one should, for t 6= 0, replace eφ0 by the block

eφ0 −
�

QK +
Q̄K̄R

R−λw

�

t, (3.49)

which is conserved by itself. This agrees precisely with what happened in our previous pertur-
bative analysis, and makes it manifest that each term in the sum (3.42) is separately conserved.

It is also interesting to note that (3.45) implies that the spectrally flowed right-moving
energy E(0)R is also changed by an integer amount

¦

E(0)R , eP̄ η̄
©

=

�

ER −
λJ0ER

R
−
λ2E2

R

4R2
, eP̄ η̄

�

=
¦

ER, eP̄ η̄
©

�

1−
λQK

R

�

= −
1
R
eP̄ η̄′ , (3.50)

as expected from the fact that it is the global mode (eL̄0) of the spectrally flowed algebra.
An identical analysis for the case of the pseudoconformal generators shows that they must

appear in the combination

eQ̄ f̄ = Q̄ f̄ +
λ̂ eφ0

R−λQK
Q̄ f̄ ′ +

λ̂2
eφ2

0

2(R−λQK)2
Q̄ f̄ ′′ + . . . , (3.51)

and their commutation relations are exactly analogous with those of eP̄ η̄.
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As already explained, the formal expressions eP̄ η̄ and eQ̄ f̄ are not exactly the spectrally

flowed eL generators, as the commutation requirement (3.37) is a weaker condition than the
flow equation (2.40). Instead, they represent the building blocks of the spectrally flowed
generators. To find which linear combination of them represents the eL, we now turn to the
flow equation they satisfy.

It turns out that the flow operator D can also be fixed by its commutation relations with KU
and HL , upon choosing a judicious Ansatz. Assuming that the spectrally flowed left-moving
generators are given precisely by (3.18) and (3.21), the flow equation (2.40) they are expected
to satisfy and the fact (C.2) that they are annihilated by Dλ fix the commutation relations of
D to to all orders to

{D, KU −
λ

2R
ER}=Dλ(KU −

λ

2R
ER) = −

1
2Rv

ER , {D,HL −
λERKU

R
+
λ2E2

R

4R2
}= −

ER

Rv
(KU −

λER

2R
).

(3.52)
We make the following Ansatz for D

D = a(λ) eφ0 + b(λ)eχ0 + c(λ), (3.53)

where the operators a, b, c commute with both KU and ER. The first equation implies that

a−
λ

R
{D, ER}= −

ER

Rv
, where {D, ER}=

aQ̄K̄R
R−λw

, (3.54)

thus yielding

a = −
ER

R−λQK
, (3.55)

in perfect agreement with our perturbative solution (3.5). While the coefficient b is not fixed,
this is not very important, since with our choice of χ0 Poisson brackets, eχ0 commutes with all
operators. We will set b = w/R to match with the perturbative answer, and c = 0, at least on
the t = 0 slice.

We would now like to show that

eP̄
KM

η̄ ≡ eP̄ η̄ +
λ

2
eQ̄η̄ −

λER

2
δη̄=I (3.56)

and

R eQ̄ f̄ ≡ Rv
eQ̄ f̄ −λER

eP̄
KM

f̄ −
λ2E2

R

4
δ f̄=I (3.57)

precisely satisfy the flow equation (2.40) for the above choice of D. We compute, for η 6= I
and at t = 0

DλeP̄
KM

η̄ =Dλ

�

λ̂ eφ0

R−λQK

�

eP̄
KM

η̄′ =
eφ0

(R−λQK)2
eP̄

KM

η̄′ =

�

weχ0

R
−

ER
eφ0

R−λQK
, eP̄

KM

η̄

�

. (3.58)

The case η = I , for which eP̄
KM

Ī = J̄0 needs to be worked out separately, and it is easy to check
that

Dλ J̄0 = {D, J̄0}, (3.59)

which justifies the constant shift by −λER/2. As far as the pseudoconformal charges are con-
cerned, we find that, for η̄ 6= I

D′λ
eQ̄η̄ −

�

weχ0

R
−

ER
eφ0

R−λQK
, eQ̄η̄

�

=
ω

Rv

eQ̄η̄ +
R ER

Rv(R−λQK)
eP̄

KM

η̄ . (3.60)
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We can now easily show that the linear combination (3.57) is exactly annihilated by Dλ − D.
The constant shift follows from the fact that {Dλ − D, ER} = ERQK/(R− λQK), which implies
in particular that

�

Dλ − D, ERRv −λER J̄0 −
λ2

4
E2

R

�

= 0. (3.61)

The equations (3.56) and (3.57) encode the effect of the spectral flow by an amount propor-
tional to the right-moving energy on the right-moving charges. Due to the flow equation they
obey, the spectrally flowed generators satisfy the same algebra as at λ = 0, i.e. two commut-
ing copies of the Witt-Kac-Moody algebra. The charges, defined at t 6= 0 via the replacement
(3.49), are conserved. The generators of the global part of the algebra are given by

eQ f=I = E(0)L , eQ̄ f̄=I = E(0)R , (3.62)

whose sum does not correspond to the energy operator; rather, it is non-linearly related to it
via (1.2). This implies that while the Fourier modes of eQ̄ and eP̄ are integer-spaced with respect
to E(0)L and E(0)R (as follows from the algebra), they have nontrivial commutation relations with
EL and ER, of the form (3.45), (3.46). This resolves the tension mentioned at the beginning
of this article, between the integer spacing of the Virasoro descendants and the non-linear
dependence (1.1) of the J T̄ - deformed energy spectrum on the initial energy.

4. Discussion

In this article, we have constructed a new, infinite set of symmetry generators in J T̄ - deformed
CFTs. Compared to the conserved charges found in [19], these generators still form two com-
muting copies of the Witt-Kac-Moody algebra, but now their Poisson brackets with the global
U(1) charge and the momentum are consistent with semiclassical quantization. It is therefore
expected that in the quantum J T̄ - deformed CFT on a cylinder, these generators will be acting
properly on the Hilbert space of the theory, and thus the spectrum will organise into Virasoro
- Kac-Moody representations.

The new symmetry generators are related to those of [19] by a type of energy-dependent
spectral flow transformation, whose action on the various generators is given in (3.18), (3.21),
(3.56) and (3.57). The expressions (3.42) and (3.51) for the building blocks are somewhat
formal and should be resummed in order to make sense. While the descendants obtained via
the action of these symmetry generators will have integer-spaced spectrally flowed energies
E(0)L,R, there is no tension with the known formula (1.1) for the deformed energies, as the latter
are measured with respect to the non-flowed generators.

As is clear from (1.1), at large initial right-moving energy, the finite-size spectrum of J T̄
- deformed CFTs will become complex. While this is only a problem for the theory on the
cylinder, and not on the plane [23], it is interesting to remark that even on the cylinder, this
problem is invisible at the level of the algebra and the spectrum of the flowed generators,
which simply coincide with those of the undeformed CFT. Rather, the complex energies arise
solely as a result of the expression (A.1) for the Hamiltonian, and signal the breakdown of this
square root formula. This suggests that the states of the deformed CFT on a cylinder may be
well-behaved, and the only problem is with the operator we use to measure the energy (which,
however, is also the one used to evolve the system).

There are several interesting future directions. First, one should be able to pass from
the classical construction of the symmetry generators to the quantum one by including the
appropriate normal ordering prescriptions and check, at least perturbatively, whether their
quantum commutators work out as expected. A particularly interesting issue is that of the
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central extension, given that the classical Witt algebra is naturally expected to become Virasoro
at the quantum level. The holographic analysis of [21] indicates a field-dependent central
extension of the form c(R/Rv)2 for the generators defined in [19], where c is the central charge
of the original CFT. Given that the spectrally flowed generators are rescaled by a factor of Rv
with respect to the original ones suggests that the central extension in the flowed sector has
a chance of being identical to that of the original CFT, in agreement with the fact that the J T̄
deformation does not change the number of states. It would be very interesting verify this, at
least perturbatively.

Other relevant questions are to understand the physical meaning of the spectrally flowed
generators, and whether there is a geometric symmetry that they implement. It would also
be interesting to see whether the new symmetry generators may have applications also in the
deformed CFT on the plane, e.g. in the construction of more complicated observables such
as correlation functions. Finally, it would be interesting to understand the role and physical
interpretation of the improved zero mode eχ0, whose action on the Hilbert space is surprisingly
minimal.
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A. Summary of Poisson brackets in J T̄ - deformed CFTs

In this appendix, we collect the results of [19] on the Poisson brackets of the various currents
in the J T̄ - deformed CFTs. These were computed using the expression they derived by solving
the flow equation for the deformed right-moving Hamiltonian density HR

HR =
2
λ2

�

1−λJ+ −
Ç

(1−λJ+)2 −λ2H(0)R

�

, (A.1)

in terms of the undeformed one, H(0)R , together with the commutation relations of the unde-

formed currents, H(0)R ,J± and P . The currents J± represent the time components of the linear
combinations (Jα ± J̃α)/2, where J is represented as a U(1) shift current for a scalar field φ,
and J̃ = ?dφ is the corresponding topologically conserved current. In Hamiltonian language

J± =
π±φ′

2
, (A.2)

where π is the momentum conjugate to φ. Note the expression for HR is symmetric under
π↔ φ′, since it only depends on J+. From this, we conclude that the J T̄ and J̃ T̄ deforma-
tions, which differ by precisely this exchange, lead to the same deformed theory, at least at the
classical level.

The commutation relations derived in [19] are

{HR(σ),HR(σ̃)}= −





HR(σ)
Ç

(1−λJ+(σ))2 −λ2H(0)R (σ)
+

HR(σ̃)
Ç

(1−λJ+(σ̃))2 −λ2H(0)R (σ̃)



∂σδ(σ− σ̃) , (A.3)

{P(σ),HR(σ̃)}=



HR(σ) +
HR(σ̃)

Ç

(1−λJ+(σ̃))2 −λ2H(0)R (σ̃)



∂σδ(σ− σ̃), (A.4)
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{HR(σ),J+(σ̃)}=
λHR(σ)

2
Ç

(1−λJ+(σ))2 −λ2H(0)R

∂σδ(σ− σ̃), (A.5)

{HR(σ),J−(σ̃)}= −
J−(σ)

Ç

(1−λJ+(σ))2 −λ2H(0)R (σ)
∂σδ(σ− σ̃). (A.6)

Using the fact that J+−J− = φ′ and that the right-hand side of the last two commutators are
total σ̃ derivatives, we can deduce the commutator of HR with φ

{HR(σ),φ(σ̃)}=
−J−(σ)−λHR(σ)/2

Ç

(1−λJ+(σ))2 −λ2H(0)R (σ)
δ(σ− σ̃). (A.7)

Since this commutator is obtained by integration, in principle we could add an integration
function of σ to the right-hand side; however, such an addition would be quite unnatural,
given that the commutator is local (i.e., proportional to a δ function).

The commutators of the momentum and the currents are the same as in the undeformed
CFT

{P(σ),P(σ̃)}= (P(σ) +P(σ̃))∂σδ(σ− σ̃) , {J±(σ),J±(σ̃)}= ±
1
2
∂σδ(σ− σ̃), (A.8)

{P(σ),J+(σ̃)}= J+(σ)∂σδ(σ− σ̃) . (A.9)

From here, one can deduce that

{P(σ),φ(σ̃)}= −φ′(σ)δ(σ− σ̃) , {J±(σ),φ(σ̃)}= −
1
2
δ(σ− σ̃). (A.10)

We note that the zero modes J0 =
∫

dσJ+, J̄0 =
∫

dσJ− commute with all the other currents
in the theory, and their only non-zero commutator is with φ. The winding charge w= J0− J̄0
also commutes with φ. This implies in particular that the field-dependent radius Rv commutes
with all the operators we consider.

Finally, one can work out the commutators of the chiral current KU = J+ + λ
2HR and of

the left-moving Hamiltonian HL =HR +P , which take the very simple form

{KU(σ), KU(σ̃)}=
1
2
∂σδ(σ− σ̃) , {HL(σ), KU(σ̃)}= KU(σ)∂σδ(σ− σ̃), (A.11)

{HL(σ),HL(σ̃)}= (HL(σ) +HL(σ̃))∂σδ(σ− σ̃), (A.12)

and their commutators with HR are

{HR(σ), KU(σ̃)}= −
λH̃R

2
p

˜
δ′ , {HR(σ),HL(σ̃)}=

�

H̃R −
H̃Rp

˜

�

δ′, (A.13)

which are total σ derivatives. In particular, this implies that {ER, KU}= {ER,HL}= 0.

B. Poisson brackets of the non-local field χ

In this appendix, we derive the commutators of the non-local fieldχ, defined through ∂σχ =HR,
with the various other fields in the theory.
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The Poisson brackets of χ are obtained by integrating the corresponding commutators of
HR. Two of these Poisson brackets, namely

{χ(σ), KU(σ̃)}= −
λH̃R

2
p

˜
δ , {χ(σ),HL(σ̃)}=

�

H̃R −
H̃Rp

˜

�

δ (B.1)

are local, being proportional to δ functions, and thus we do not include an integration function.
Other commutators, however, are significantly more involved, and require working out the
consistency conditions imposed by the various Jacobi identities that they satisfy.

In the following, we will frequently use the notation p =
Ç

(1−λJ+(σ))2 −λ2H(0)R (σ) and
p

˜=
Ç

(1−λJ+(σ̃))2 −λ2H(0)R (σ̃), as well as the abbreviations Ã= A(σ̃) and δ′ = ∂σδ(σ− σ̃).

B.1. Poisson bracket of χ with HR

The {χ, H̃R} Poisson bracket is given by integrating the {HR, H̃R} commutator

{χ(σ),HR(σ̃)}= −
2HR
p δ(σ− σ̃) + ∂σ̃

H̃Rp
˜
Θ(σ− σ̃) + A(σ̃), (B.2)

where A(σ̃) is an integration function. This function needs to have winding, in order to cancel
the dependence on the starting point in

{χ(σ), HR}= −
HR
p −

HR(0)
p

(0)
+

∫ R

0

dσ̃A(σ̃)≡ −
HR
p +

∫ R

0

dσ̃Ap(σ̃), (B.3)

where ER =
∫

HRdσ is the total right-moving energy. This equation defines Ap, the periodic
part of A, with the winding subtracted. To fix this function, we need to analyse the constraints
coming from the various Jacobi identities that the Poisson bracket (B.2) satisfies.

Constraints from time evolution

A first constraint on A comes from analysing the time dependence of the above commutator

d
d t
{χ(σ),HR(σ̃)}= ∂tA(σ̃)− {H, {χ(σ),HR(σ̃)}}= −{{H,χ}, H̃R} − {χ, {H, H̃R}}, (B.4)

where H = EL + ER is the total Hamiltonian. Making use of

{H,HR}= ∂σ(2HR/
p−HR) , {H,J+}= −∂σ(J+ +λHR/

p) , (B.5)

{H,HR/
p}=

1+λKU

1−λKU
∂σ(HR/

p), (B.6)

it can be easily shown that the terms proportional to Θ,δ′ and δ functions cancel, and the
constraint that we obtain on the function A is

∂tA− {H, A}=
∫ R

0

dσ̃{Ap(σ̃),HR} − ∂σ
�

1+λKU

1−λKU
A
�

, (B.7)

where Ap represents the part of A without the winding contribution. If we choose A such that
this term is absent, we find several qualitatively different solutions to the remaining equation.
For example,

RA≡ ∂σ

�

σ
HR
p

�

+ R∂σÂ= σ∂σ
HR
p +

HR
p + Ra ∂σ

HR
p (B.8)
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solves the equations for an arbitrary constant a. Another solution can be obtained by noting
that the field-dependent coordinate v = σ− t −λφ satisfies

dv
d t
= −1− {H, v}= −

1+λKU

1−λKU
v′, (B.9)

and thus a general solution to the equation with Ap = 0 and the correct winding is

A= ∂σ

�

v
Rv

HR
p

�

+ a ∂σ
HR
p , (B.10)

where the total derivative is necessary in order to ensure that Ap = 0 above.

Constraints from the Jacobi identity with KU

To distinguish between the two solutions, we can check the Jacobi identity for {KU , {χ0, H̃R}}.
Using the expression for the {χ, K̃U} commutator, we obtain

{KU , (R− σ̃)∂σ̃
H̃Rp

˜
+ RÃ}+

λδ′

2p

�

(R−σ)∂σ
HR
p + RA

�

=
λ

2p
∂σ

HR
p δ(σ− σ̃). (B.11)

Taking into account the fact that8

{KU ,
H̃Rp

˜
}=

λ

2p
∂σ

HR
p δ(σ− σ̃), (B.12)

we can reduce this to the following simple constraint on A

{KU , Ã}+
λ

2p
Aδ′ = 0. (B.13)

It is easy to check, using (B.12), that the first Ansatz, (B.8), does not satisfy the consistency
requirement (B.13). On the other hand, using the commutator

{KU , ṽ
H̃Rp

˜
}= −λ

H̃Rp
˜
{KU , φ̃}+ ṽ{KU ,

H̃Rp
˜
}=

λ

2p
∂σ(vHR/

p)δ, (B.14)

we can show that the second Ansatz does identically satisfy the consistency condition9. One
can also check that the term a∂σHR/

p also satisfies it, so this does not fix a.

Constraints from the Jacobi identity with HR

We now look at the {χ0,HR} Jacobi identity

{HR, {χ0, H̃R}} − {H̃R, {χ0,HR}}+ {χ0, {H̃R,HR}}= 0. (B.16)

We will also need

{HR,
H̃Rp

˜
}= −

2H(0)R
p3

δ′(σ− σ̃) +

�

1
p∂σ

HR
p − 2∂σ

H(0)R
p3

�

δ(σ− σ̃), (B.17)

8This is most simply computed by usingp= 1−λKU and the equivalence of distributions spelled out in footnote
10.

9Making use (or not) of the relation

{KU , ˜̂
φ
H̃Rp

˜
}=

λδ(σ− σ̃)
2p

∂σ

�

φ̂
HR
p

�

−
RvHRδ

2R(p)2
(B.15)
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where, from (A.1), H(0)R =HR(1−λJ+ − λ2

4 HR). Plugging in the expression for

{χ0,HR}= −2HR/
p+ (R−σ)∂σ(HR/

p) + RA, (B.18)

we find the intermediate equation

R

�

{HR, Ã} − {H̃R, A}+
Aδ′
p +

Ãδ′
p
e

�

+ (R− σ̃){HR,∂σ̃
H̃Rp

˜
} − (R−σ){H̃R,∂σ

HR
p }

+

�

R−σ
p ∂σ

HR
p +

2H(0)R
p3

+ (σ→ σ̃)

�

δ′ = 0. (B.19)

The difference

(R− σ̃){HR,∂σ̃
H̃Rp

˜
} − (R−σ){H̃R,∂σ

HR
p } (B.20)

can be manipulated using the criteria for when two distributions of the form E(σ, σ̃)δ′′ +
F(σ, σ̃)δ′+G(σ)δ are equivalent10. At the end of the day, we find the very simple constraint

{HR, Ã} − {H̃R, A}+
Aδ′
p +

Ãδ′
p
e

= 0. (B.23)

Let us now write A= A0 + Â, where A0 ≡ ∂σ
�

v
Rv

HRp
�

. Evaluating

Rv

�

{HR, A0}+
A0δ

′

p

�

=
2vH(0)R
p3

δ′′ +
HR
p δ

′ + 2∂σ

�

v
H(0)R
p3

�

δ′, (B.24)

the constraint we obtain on Â is then simply

{HR, ˜̂A} − {H̃R, Â}+
Âδ′
p +

˜̂Aδ′
p
e

= −
1
Rv

�

HR
p +

H̃Rp
˜

�

δ′. (B.25)

This is solved by Â = HR/Rv + . . ., where the . . . are periodic solutions to the homogenous
equation, such as the a∂σHR/

p term.
Note however that for this value of Â, we need to revisit the conservation equation (B.7),

which receives a new contribution from
∫

dσ̃{Ap(σ̃,HR(σ)}=
1
Rv
{ER,HR}=

1
Rv
∂σ

HR
p . (B.26)

This contribution is very easy to cancel by including an explicit time-dependent term, t/Rv
∂σHR/

p. This term is also consistent with the KU and HR Jacobi identities. Therefore, the
final solution we find for the integration function A is

A= ∂σ

�

�

v
Rv
+ a

�HR
p

�

+
1
Rv

�

HR + t∂σ
HR
p

�

= ∂σ

�

�

v + t
Rv
+ a

�HR
p

�

+
HR

Rv
, (B.27)

which has the nice feature of not being explicitly time-dependent, since v + t = σ−λφ.

10These crieria are obtained by integrating against a test function g(σ̃), with the result

g ′′E + g ′(2∂σ̃E + F) + g(∂ 2
σ̃

E + ∂σ̃F + G), (B.21)

and respectively f (σ), for which

f ′′E + f ′(2∂σE − F) + f (∂ 2
σ

E − ∂σF + G). (B.22)

Two distributions are equivalent if the terms multiplying f , g and their various derivatives are the same .
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B.2. Poisson bracket of χ with J−
Another commutator that requires special attention is that of χ with J−. Integrating the
{HR, J̃−} commutator we obtain

{χ, J̃−}= −
J−
p δ(σ− σ̃) + ∂σ̃

J̃−p
˜
Θ(σ− σ̃) + B(σ̃). (B.28)

In order for the commutator with J̄0 to be independent of the starting point of the interval,
we need the winding of B to equal J−(0)/p(0). B should also satisfy all the relevant Jacobi
identities.

As before, we first look at the time derivative of this commutator, and try to fix B by
requiring that the Jacobi identity hold. We make use of

{H,J−/
p}=

1+λKU

1−λKU
∂σ

J−
p (B.29)

and find that B satisfies

∂t B − {H, B}= −∂σ
�

1+λKU

1−λKU
B
�

+
1
Rv
∂σ

J−
p . (B.30)

There are several solutions to this equation that have the correct winding, such as

B(σ) = ∂σ

�

σ

R
J−
p

�

+ b ∂σ
J−
p +

t
Rv
∂σ

J−
p (B.31)

or

B(σ) = ∂σ

�

v
Rv

J−
p

�

+ b ∂σ
J−
p +

t
Rv
∂σ

J−
p , (B.32)

for some constant b. To find which solution is correct, we need to analyse some further Jacobi
identities.

Constraint from the commutator with KU

We first check the Jacobi identity for {KU , {χ0, J̃−}}. The consistency condition we obtain is

{KU , (R− σ̃)∂σ̃
J̃−p

˜
+ RB̃}+

λδ′

2p

�

(R−σ)∂σ
J−
p + RB

�

=
λ

2p
∂σ

J−
p δ(σ− σ̃). (B.33)

Using the fact that

{KU ,
J̃−p

˜
}=

λ

2p
∂σ

J−
p δ(σ− σ̃) (B.34)

and the criterion for the equivalence of two distributions, we can reduce the above equation
to

{KU , B̃}+
λδ′

2p
B = 0. (B.35)

It is easy to see that the terms proportional to ∂σJ−/p simply drop out of this equation. We
then check that the first Ansatz does not solve this equation, whereas the second one does.
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Constraint from the HR commutator

The Jacobi identity reads

{HR, {χ0, J̃−}}+ {{χ0,HR}, J̃−} − {χ0, {HR, J̃−}}= 0, (B.36)

and from its form it is easy to see it will relate the two integration functions A and B. To
simplify the constraint, we use

{HR,
J̃−p

˜
}= −

J−(1−λJ+)
p3

δ′ +

�

1
p∂σ

J−
p − ∂σ

J−(1−λJ+)
p3

�

δ(σ− σ̃), (B.37)

{
HR
p , J̃−}= −

J−(1−λJ+)
p3

δ′, (B.38)

and find that A and B must satisfy the simple relation

{HR, B̃}+ {A, J̃−}+
B
pδ

′ = 0. (B.39)

Letting A= A0 + Â, B = B0 + B̂ with A0 = ∂σ(vHR/Rv
p) and B0 = ∂σ(vJ−/Rv

p), we find the
following constraint

{HR, ˜̂B}+ {Â, J̃−}+
B̂
pδ

′ =
λ

2Rv

H̃Rp
˜
δ′ −

1
Rv

J−
p δ

′. (B.40)

The already known HR/Rv contribution to Â accounts for the last term on the right-hand side.
However, we need a new term in B̂ to account for the first term. It is clear that

B̂ = −
λHR

2Rv
(B.41)

does the job, and one can check that it is also consistent with the previous consistency condi-
tions.

Finally, it is not hard to check that any term in B proportional to ∂σJ−/p and in A with
∂σHR/

p (with the same proportionality coefficient) automatically satisfies this equation. This
sets a = b. We can also check the time dependence matches exactly.

To summarize, the solution that we have found for B that is consistent with all the Jacobi
identities we have checked is

B(σ) = ∂σ

�

�

v + t
Rv
+ a

� J−
p

�

−
λHR

2Rv
(B.42)

for the same arbitrary constant a as in (B.27).

B.3. Other commutators

The Poisson brackets of χ with all the remaining fields, such as J+ or P , are determined by its
commutators with HR and J− (i.e., the functions A, B) and its commutators with HL =HR+P
and KU = J+ +λHR/2, which are local. We thus find

{P , χ̃}= −
�

HR +
HR
p

�

δ(σ− σ̃) + ∂σ
HR
p Θ(σ̃−σ) + A(σ), (B.43)
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{χ, J̃+}=
λHR

2p
δ(σ− σ̃)−

λ

2
∂σ̃

H̃Rp
˜
Θ(σ− σ̃)−

λ

2
A(σ̃). (B.44)

Combining the latter with the {χ, J̃−} commutator and integrating, we find the {χ, φ̃} com-
mutator

{χ, φ̃}= −
J̃− +λH̃R/2p

˜

�

Θ(σ− σ̃) +
ṽ + t̃
Rv
+ a

�

+ C(σ). (B.45)

The {HR, φ̃} commutator requires that C ′(σ) = 0, so C = c, a constant, which we will set to
zero.

C. Flow equations for the currents and the charges

Let Dλ = ∂λ + {Otot , ·}, where for the purposes of computing commutators, the expression

Otot =
wχ0

R
−
∫

dσHRφ̂ (C.1)

is significantly easier to use. Using the commutators with the zero modes, we find that at
classical level, the currents satisfy the following flow equations

DλKU =DλHL = 0. (C.2)

The equation for HR is

DλHR =
w
Rv

HR + ∂σ

�

HR
p

�

w(1+ a)−
Rφ̂
Rv

��

, (C.3)

which implies the following flow equation for χ

Dλχ =
HR
p

�

w(1+ a)−
Rφ̂
Rv

�

+
w
Rv
χ. (C.4)

The flow equation for J− is given by

DλJ− = −
1
2
HR −

wλ
2Rv

HR + ∂σ

�

J−
p

�

w(1+ a)−
Rφ̂
Rv

��

, (C.5)

which, together with (C.3), implies that

Dλ(J− +
λ

2
HR) = ∂σ

�

J− +λHR/2
p

�

w(1+ a)−
Rφ̂
Rv

��

. (C.6)

Finally, the flow equation for φ is

Dλφ(σ) = −
J− +λHR/2

p

�

w(1+ a)−
Rφ̂
Rv

�

. (C.7)

We subsequently use these flow equations to compute the flow of the conserved charges. We
trivially have DλQ f =DλPη = 0. As for the right-moving charges, we obtain

DλQ̄ f̄ =
w
Rv

Q̄ f̄ −
w
Rv

�

a+ 1+
t

Rv

�

Q̄ f̄ ′ , Dλ P̄KM
η̄ = −

w
Rv

�

a+ 1+
t

Rv

�

P̄KM
η̄′ . (C.8)

26

https://scipost.org
https://scipost.org/SciPostPhys.10.3.065


SciPost Phys. 10, 065 (2021)

References

[1] J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J.
Theor. Phys. 38, 1113 (1999), doi:10.1023/A:1026654312961.

[2] W. Li and T. Takayanagi, Holography and entanglement in flat spacetime, Phys. Rev. Lett.
106, 141301 (2011), doi:10.1103/PhysRevLett.106.141301.

[3] S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, J. High
Energ. Phys. 12, 009 (2012), doi:10.1007/JHEP12(2012)009.

[4] F. A. Smirnov and A. B. Zamolodchikov, On space of integrable quantum field theories,
Nucl. Phys. B 915, 363 (2017), doi:10.1016/j.nuclphysb.2016.12.014.

[5] A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, T T̄ -deformed 2D quantum field the-
ories, J. High Energ. Phys. 10, 112 (2016), doi:10.1007/JHEP10(2016)112.

[6] S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity,
J. High Energ. Phys. 09, 133 (2012), doi:10.1007/JHEP09(2012)133.

[7] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Natural tuning: towards a proof of concept,
J. High Energ. Phys. 09, 045 (2013), doi:10.1007/JHEP09(2013)045.

[8] J. Cardy, The T T deformation of quantum field theory as random geometry, J. High Energ.
Phys. 10, 186 (2018), doi:10.1007/JHEP10(2018)186.

[9] S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, T T partition function from topolog-
ical gravity, J. High Energ. Phys. 09, 158 (2018), doi:10.1007/JHEP09(2018)158.

[10] J. Cardy, T T̄ deformation of correlation functions, J. High Energ. Phys. 12, 160 (2019),
doi:10.1007/JHEP12(2019)160.

[11] J. Kruthoff and O. Parrikar, On the flow of states under T T (2020), arXiv:2006.03054.

[12] A. Giveon, N. Itzhaki and D. Kutasov, T T and LST, J. High Energ. Phys. 07, 122 (2017),
doi:10.1007/JHEP07(2017)122.

[13] L. Apolo and W. Song, Strings on warped AdS3 via T J̄ deformations, J. High Energ. Phys.
10, 165 (2018), doi:10.1007/JHEP10(2018)165.

[14] S. Chakraborty, A. Giveon and D. Kutasov, J T deformed CFT2 and string theory, J. High
Energ. Phys. 10, 057 (2018), doi:10.1007/JHEP10(2018)057.

[15] M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost
Phys. 5, 048 (2018), doi:10.21468/SciPostPhys.5.5.048.

[16] T. Anous and M. Guica, A general definition of J Ta – deformed QFTs (2019),
arXiv:1911.02031.

[17] S. Frolov, T T, eJJ, J T and eJ T deformations, J. Phys. A: Math. Theor. 53, 025401 (2019),
doi:10.1088/1751-8121/ab581b.

[18] B. Le Floch and M. Mezei, Solving a family of T T̄ -like theories (2019), arXiv:1903.07606.

[19] M. Guica and R. Monten, Infinite pseudo-conformal symmetries of classical T T̄ , J T̄ and
J Ta - deformed CFTs (2020), arXiv:2011.05445.

27

https://scipost.org
https://scipost.org/SciPostPhys.10.3.065
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1103/PhysRevLett.106.141301
https://doi.org/10.1007/JHEP12(2012)009
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1007/JHEP10(2016)112
https://doi.org/10.1007/JHEP09(2012)133
https://doi.org/10.1007/JHEP09(2013)045
https://doi.org/10.1007/JHEP10(2018)186
https://doi.org/10.1007/JHEP09(2018)158
https://doi.org/10.1007/JHEP12(2019)160
https://arxiv.org/abs/2006.03054
https://doi.org/10.1007/JHEP07(2017)122
https://doi.org/10.1007/JHEP10(2018)165
https://doi.org/10.1007/JHEP10(2018)057
https://doi.org/10.21468/SciPostPhys.5.5.048
https://arxiv.org/abs/1911.02031
https://doi.org/10.1088/1751-8121/ab581b
https://arxiv.org/abs/1903.07606
https://arxiv.org/abs/2011.05445


SciPost Phys. 10, 065 (2021)

[20] M. Guica and R. Monten, T T̄ and the mirage of a bulk cutoff, SciPost Phys. 10, 024 (2021),
doi:10.21468/SciPostPhys.10.2.024.

[21] A. Bzowski and M. Guica, The holographic interpretation of J T̄ -deformed CFTs, J. High
Energ. Phys. 01, 198 (2019), doi:10.1007/JHEP01(2019)198.

[22] A. Schwimmer and N. Seiberg, Comments on the N = 2,3,4 superconformal algebras in
two dimensions, Phys. Lett. B 184, 191 (1987), doi:10.1016/0370-2693(87)90566-1.

[23] M. Guica, On correlation functions in J T̄ -deformed CFTs, J. Phys. A: Math. Theor. 52,
184003 (2019), doi:10.1088/1751-8121/ab0ef3.

28

https://scipost.org
https://scipost.org/SciPostPhys.10.3.065
https://doi.org/10.21468/SciPostPhys.10.2.024
https://doi.org/10.1007/JHEP01(2019)198
https://doi.org/10.1016/0370-2693(87)90566-1
https://doi.org/10.1088/1751-8121/ab0ef3

	Introduction and statement of the problem
	Flow of the eigenstates versus the symmetry generators 
	The flow of energy eigenstates
	Flow of the symmetry generators
	Relating the two

	The spectrally flowed generators 
	Perturbative construction of the spectrally flowed generators
	An all-orders proposal

	Discussion
	Summary of Poisson brackets in J - deformed CFTs 
	Poisson brackets of the non-local field  
	Poisson bracket of  with HR
	Poisson bracket of  with J-
	Other commutators

	Flow equations for the currents and the charges 
	References

