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Abstract

We study a model in 2+1 dimensions composed of a Fermi surface of N f flavors of
fermions coupled to scalar fluctuations near quantum critical points (QCPs). The N f → 0
limit allows us to non-perturbatively calculate the long-range behavior of fermion cor-
relation functions. We use this to calculate charge, spin and pair susceptibilities near
different QCPs at zero and finite temperatures, with zero and finite order parameter
gaps. While fluctuations smear out the fermionic quasiparticles, we find QCPs where the
overall effect of fluctuations leads to enhanced pairing. We also find QCPs where the
fluctuations induce spin and charge density wave instabilities for a finite interval of or-
der parameter fluctuation gaps at T = 0. We restore a subset of the diagrams suppressed
in the N f → 0 limit, all diagrams with internal fermion loops with at most 2 vertices,
and find that this does not change the long-range behavior of correlators except right at
the QCPs.
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1 Introduction

Interacting fermions at finite density form a rich physical system that can be used to describe
many condensed matter phenomena. Such systems are generally governed by the Fermi liq-
uid IR fixed point but are susceptible to several symmetry breaking instabilities resulting in
states with superconductivity (SC), ferromagnetism (FM), a Fermi surface breaking rotational
symmetry, or a state with charge or spin density waves (CDW, SDW) breaking translational
symmetry.

Transitions to these states can sometimes be tuned to zero temperature in condensed mat-
ter systems by changing e.g. pressure or the concentration of different dopants. When such a
transition is second order, it is associated with strong fluctuations of the order parameter field
near the zero temperature quantum critical point (QCP). The interaction between these or-
der parameter fluctuations and the fermions is relevant in two dimensions and may thus alter
the Fermi liquid IR fixed point. More dramatically, the interaction with near-critical fluctua-
tions may themselves induce an instability to a symmetry broken state. This makes interacting
fermions in two dimensions near a QCP an even richer system to study, we refer to them as
quantum critical metals. The modified fixed points are called non-Fermi liquids (NFLs) or
strange metals. The sharp quasiparticles of the Fermi liquid are destroyed but the Fermi sur-
face remains, they are still metallic but their scaling laws are modified.

Many experimental systems of interacting fermions that do not fit into a Fermi liquid de-
scription are in fact (quasi) two-dimensional and close to QCPs. Examples are cuprate [1, 2]
and iron pnictide [3–5] superconductors showing NFL physics in the normal phase and critical
temperatures higher than what can be explained within Fermi-liquid theory. Critical fluctua-
tions can lead to NFL physics but the destruction of the quasiparticles is thought to limit pair-
ing. At the same time, certain critical fluctuations can work as a pairing glue that enhances
superconductivity. This makes it important to study quantum critical metals to understand
which of these competing effects dominates and whether the vicinity of the QCPs can explain
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the enhanced superconductivity.
A fermion-boson model [6–8] is typically employed to study quantum critical metals. The

fermions represent low-energy excitations at a Fermi surface and the boson takes the role of
the critical fluctuations of the order parameter. The symmetry broken at the QCP is reflected
in the symmetry of the boson. There is an important distinction between transitions breaking
translational symmetry where the order parameter fluctuations have a finite momentum Q
and those that do not break translational symmetry and the order parameter fluctuations are
centered around Q = 0. We only consider the Q = 0 case in this work. As mentioned, these
are strongly coupled systems in two dimensions and the fermion-boson model is thus not
amenable to perturbation theory. As a consequence, several approximation methods have
been employed. A common approach has been to extend the theory to get a new expansion
parameter that is taken to a limit where we can do calculations. The resulting system is not the
one we are ultimately interested in, but the hope is that some of the interesting physics remains.
One example of this is to not study the model in 2 dimensions, but in dc−ε dimensions [9–13].
ε is treated as a small perturbation away from the upper critical dimension dc where the theory
can be studied perturbatively.

Another approach is to change the field content of the model. This can be done in sev-
eral different ways. Instead of considering just a single fermionic field we may consider N f
flavors of fermions all coupling to the same bosonic field with a rescaled coupling constant
g = λ/

Æ

N f . This extended model has been studied in the limit of large N f [14, 15]. It was
later found that the scaling laws presented in these works do not survive when adding higher
loop corrections [16,17].

A related approach is the matrix large-N limit in which the boson is an N × N component
matrix transforming in the adjoint representation of a global SU(N) symmetry group and the
fermion an N component vector transforming in the fundamental. The coupling is scaled as
g = λ/

p
N and the theory is studied in the limit of large N . All fermion loops are suppressed in

this limit as well as all non-planar diagrams. This means that the boson receives no corrections
from the fermion and only a subset of the boson corrections to the fermion are kept. Polyno-
mially many diagrams contribute at each order as opposed to the factorially many in the full
theory. Both non-Fermi liquid physics [18–21] and the superconducting instability [22–25] of
quantum critical metals have been studied in this limit.

Finally we arrive at the small N f limit which is the approach considered in this paper. This
is set up similar to the large N f limit, but we do not rescale the coupling constant and we
bring N f to 0 instead of infinity. It may seem awkward to set N f to zero, in the large N f and
N cases above we have a sequence of physical theories with integer numbers of fields that
approach the limit under study. Here there is no such sequence of physical theories but in
practice there is no big difference. All diagrams come with an order of N f and we keep the
lowest N f order instead of the highest in N . It turns out that the N f → 0 limit keeps all of the
diagrams kept in the matrix large-N limit and it additionally keeps the crossed diagrams and
thus contains factorially many diagrams at each order. Only the fermionic loops are suppressed
by taking N f → 0. This large set of included diagrams is unique to the small N f limit among
the analytical approaches. This may allow the small N f limit to uncover non-perturbative
phenomena that are otherwise not found.

Intuitively, the small N f limit can be understood as the fermions living in a background of
a fluctuating bosonic field φ that gives the fermions corrections at all orders of the coupling
constant, but all the corrections from the fermions onto the field φ are turned off and φ
behaves as if it were free.

The momentum space retarded two-point function was calculated in the small N f limit
in [26]. Surprisingly, it was possible to obtain an (almost) closed form expression, and it
showed that the fermion dispersion becomes non-monotonic due to corrections from the criti-
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cal fluctuations. This was then extended in [27]where a framework was developed to calculate
general fermion n-point correlation functions in the small N f limit of a fermion-boson model.

In addition to keeping a superset of all diagrams of the matrix large N limit, the small N f
limit allows us to calculate explicit correlation functions, albeit in real space and for distances
longer than 1/kF . This provides a useful complement to the results that have been obtained
using other limits that are mostly in the form of scaling laws and renormalization group flows.

The small N f calculations are done in a long distance limit where we consider correlators
between local operators separated far compared to the inverse Fermi momentum. This low-
energy limit does not commute with either the matrix large-N limit nor the small N f limit.
An important effect that is missed by taking these limits before the low-energy limit is called
Landau-damping. The boson gets dressed by fermion bubbles that change the IR scaling of
the boson. There are earlier works in the small N f limit where the authors incorporated these
effects from the start by using an explicitly Landau-damped boson when calculating the real
space fermion two-point function [8,28–31]. This takes into account some of the low-energy
effects missed in taking the N f → 0 limit first. However, this was not done in a systematic
way. Landau-damping effects were included systematically (with further constraints on the
order of other limits involved in the definition of the theory) by considering the particular
limit N f → 0, kF → ∞, N f kF = constant in [32]. This limit does not go as far as taking
kF →∞ first, but it gives a regime where we get Landau damping effects, while still allowing
us to use the methods of the strict small N f limit to calculate correlation functions.

The intuition is now slightly changed, the bath the fermions live in receives some correc-
tions from the fermions such that its IR scaling is changed. However, the corrections are only
to the boson two-point function and the bosonic fluctuations remain Gaussian. The momen-
tum space fermion two-point function was calculated in this limit in [32] and it was found
that the non-monotonicity of the fermion dispersion disappeared for a non-zero N f kF .

The above works in the small N f limit studied non-Fermi liquid physics of quantum criti-
cal metals in the normal phase. The cuprates and iron pnictides additionally show enhanced
superconductivity compared to what would be expected from Fermi liquid theory and this has
not yet been studied in the small N f limit. In this paper we explore how critical fluctuations
can lead to instabilities of finite density fermions in the small N f limit. We do this by using the
framework developed in [27] to calculate spin, charge and pair correlation functions. As op-
posed to the fermion self-energy studied in earlier works, these higher order n-point functions
are sensitive to the symmetry of the fermion-boson coupling so we consider different types of
QCPs and additionally fermions coupled to a U(1) gauge field which can be described by the
same fermion-boson model. Experimental systems are always at a finite temperature, and it
has been pointed out that non-Fermi liquids may behave quite differently at finite tempera-
tures compared to at T = 0 [25,33–35]. Because of this, we go beyond earlier small N f works
by working at both T = 0 and finite T . Additionally, we depart from the critical point and also
consider gapped order parameter fluctuations to obtain a full phase diagram on the disordered
side of the QCPs.

We give a brief summary of the main results here. We show that the small-N f , long-
distance, real space correlation functions can be written as the free correlators, multiplied
by the exponential of a linear combination of two functions we call h+(τ, x) and h−(τ, x). The
former of these functions captures processes with fermions interacting with fermions within
the same Fermi surface patch and is responsible for quasiparticle smearing. The latter cap-
tures processes where fermions interact with fermions in an antipodal patch and is respon-
sible for attraction and repulsion between antipodal fermions. The coefficients of the linear
combination of h±(τ, x) in the exponents are given by the coupling function in the different
Fermi surface patches. h+(τ, x) shows up in fermion self-energy corrections whereas both
h+(τ, x) and h−(τ, x) show up in charge, spin and pair correlators. The h±(τ, x) functions
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are both obtained from an integral over the boson propagator and we find a general inequal-
ity, |h−(τ, x)| ≥ |h+(τ, x)|, meaning that the effects of fermions interacting between antipodal
patches are stronger than the intra-patch interactions, except when the inequality is saturated.
h−(τ, x) grows unboundedly in x and depending on the signs of the couplings, this can result
in diverging susceptibilities. The above inequality is saturated at finite temperatures, result-
ing in finite susceptibilities, but we find that the charge/spin susceptibilities diverge at zero
temperature up to a critical order parameter gap, for certain couplings. We interpret this as
an instability towards charge/spin density waves at zero temperature, with a new induced
QCP at the critical gap. We also find an enhanced/cured divergence of the pair-susceptibility
as temperature is lowered, again depending on the signs of couplings. We change the boson
propagator to include Landau damping as was done in [32], and find that the long-distance
behavior of correlation functions is unchanged, except right at the QCP.

The paper is organized as follows. In Section 2 we present the model we have studied
and the particular limit this is studied in. We start out with a very general model to first
explore the possible phases without restrictions. In this section we also extend the framework
in [27] to account for momentum dependent couplings and finite temperature. In Section 3 we
calculate pair, charge and spin correlation functions of the general model in search of unstable
modes. We consider the effect of Landau-damping corrections by redoing this in the double
limit of [32] in Section 4. In Section 5 we apply these results to specific physical systems that
can be described by the model that we have been exploring. We consider charge and spin
nematic transitions, ferromagnetic transition, circulating current transition and coupling to an
emergent U(1) gauge field, in different subsections. We also consider the case of fermions
coupled to multiple near-critical fluctuations. Each of these subsections are ended with a
discussion where we compare our results to earlier findings on similar models. Finally in
Section 6 we summarize our work and pose some open questions for the future.

2 Setup and calculation of fermion n-point functions in the N f → 0
limit

Similarly to [15, 23] we consider a general theory that has applications to several systems
composed of a Fermi surface coupled to Q = 0 gapless bosonic excitations. The theory contains
free parameters whose values depend on the particular application we consider. For now, we
keep the values of these parameters unspecified. In Section 5 we consider physical realizations
of this model with more concrete parameters.

We consider a Fermi surface of N f flavors of spin-1/2 fermions ψi,σ and order parameter
fluctuation fields φa:

S =

∫

dτd2 x

�

ψ†
i,σ (∂τ + ε(i∇)−µ)ψi,σ +

1
2
(∂τφa)

2 +
c2

a

2
(∇φa)

2 +
ra

2
φ2

a −φa(x)Oa(x)

�

.

(1)

i is the fermion flavor index and takes values i = 1, ..., N f , σ is the fermion spin σ =↑,↓.
The fermions transform in the fundamental representation of a global U(N f ) flavor symmetry
group. a = 1, ..., Nb enumerates the order parameters/order parameter components. ra is a
tuning parameter across the QCP where 〈φa〉 6= 0 for ra < 0 and 〈φa〉 = 0 for ra > 0. For
simplicity, we limit ourselves to the case of a circular Fermi surface ε(k) = k2/2m. We define
the bare Fermi momentum kF =

p

2mµ and bare Fermi velocity vF =
p

2µ/m. The fields φa

5

https://scipost.org
https://scipost.org/SciPostPhys.10.3.067


SciPost Phys. 10, 067 (2021)

couple to the operator:

Oa(x) =
N f
∑

i=1,σ=↑,↓

∫

d3kd3q
(2π)6

λa,σ(k)ψ
†
σ,i

�

k−
q
2

�

ψi,σ

�

k+
q
2

�

eiqx , (2)

where we use the notation kx = −ωτ+ k · x and the Fourier transformed fields:

ψ(x) =

∫

d3k
(2π)3

eikxψ(k) (3)

ψ†(x) =

∫

d3k
(2π)3

e−ikxψ†(k) . (4)

The coupling function λa,σ(k) characterizes how the fermion couples to the order parameter
fluctuations. Only the dependence on the direction of k is relevant for low energy excitations
close to the Fermi surface. A φ4 term can be consistently left out since it is not generated in
the N f = 0 theory1. We consider dynamic bosons but the static case of our results is obtained
by the definitions

φa = φ̃a/ca

λa,σ(k) = caλ̃a,σ(k)

ra = c2
a r̃a , (5)

and the limit ca→∞.
With an eye towards finding instabilities to pairing and charge/spin order we consider cor-

relation functions of pair creation/annihilation operators and charge/spin density operators:

b(x) =
N f
∑

i=1

ψi,↑(x)ψi,↓(x) (6)

b†(x) =
N f
∑

i=1

ψ†
i,↓(x)ψ

†
i,↑(x) (7)

ρc(x) = ρ↑(x) +ρ↓(x) (8)

ρs(x) = ρ↑(x)−ρ↓(x) , (9)

where

ρσ(x) =
N f
∑

i=1

ψ†
i,σ(x)ψi,σ(x) . (10)

ρσ is invariant under the global U(N f ) whereas b is not. We consider real space correlators
of these operators:

〈b†(0)b(x)〉, 〈ρc(0)ρc(x)〉, 〈ρs(0)ρs(x)〉 .

Writing the charge and spin correlators in terms of ρ↑,ρ↓ correlation functions we have:

〈ρc,s(0)ρc,s(x)〉=
∑

α

〈ρα(0)ρα(x)〉 ± 2〈ρ↑(0)ρ↓(x)〉 . (11)

1The φ4 term is relevant in the strict Nf = 0 theory but the interaction is irrelevant (at T = 0) in the more
physically interesting case of a Landau-damped boson.
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ρ(z1) ρ(z2)

(a) Small Nf leading part

ρ(z1) ρ(z2)

(b) Small Nf subleading part

Figure 1: Once the fermionic fields have been integrated out and the resulting deter-
minant set to 1 (by the small N f limit) there are two classes of diagrams contributing
to the fermion density-density correlator. (a) Shows one of the diagrams in the first
class that contributes at order N f (b) Shows a diagram in the second class that con-
tributes at order N2

f .

The above operators all contain two fermionic fields. This, together with the N f → 0 limit,
means that order by order the contributing diagrams only contain two continuous fermionic
lines, each starting and ending at the above bilinears. There is only one way of connecting
these lines in the case of the pair operators and the 〈ρ↑(0)ρ↓(x)〉 correlator but for the 〈ραρα〉
correlator these lines can be connected in two different ways. The fermionic lines attached
to the density operators can either connect back to the same operator or connect the other
insertion, see Fig. 1. We get an additional sum over fermionic flavors when the propagators
connect back to the same insertion as in Fig. 1(b). This means that those contractions are
subleading in the small N f limit. The 〈ρ↑ρ↓〉 correlator only has that type of contraction and
will always be subleading:

〈b†(0)b(x)〉=O(N f ) (12)

〈ρσ(0)ρσ(x)〉=O(N f ) (13)

〈ρ↑(0)ρ↓(x)〉=O(N2
f ) . (14)

We can thus not differentiate between charge and spin density fluctuations at leading order in
the N f → 0 limit. Let us now see how we can calculate these correlation functions. We start
off by writing a generating functional with sources Jσ,i , J†

σ,i for the fermionic fields:

Z[J†, J] =

∫

Dψ†DψDφ exp
�

− S[ψ†,ψ,φ]−
∫

d3z(Jσ,iψ
†
σ,i + J†

σ,iψσ,i)
�

. (15)

Next we integrate out the fermionic fields. To do that we write out the interaction in terms of
real space fermionic fields:
∫

d3 xφa(x)Oa(x) =
N f
∑

i=1,σ=↑,↓

∫

d3kd3 x1d3 x2

(2π)3
eik(x1−x2)λa,σ(k)ψ

†
σ,i

�

x1

�

ψσ,i

�

x2

�

φa

� x1 + x2

2

�

.

(16)

The fermionic integral is Gaussian and the generating functional is obtained as

Z[J†, J] =

∫

Dφ exp
�

− Sdet[φ]− Sb[φ]−
∫

d3zd3z′J†
σ,i(z)Gσσ′,i j[φ](z, z′)Jσ′, j(z

′)
�

. (17)
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The background field Green’s function is diagonal in spin and flavor indices and independent
of flavor so we can write it as Gσσ′,i j[φ](z, z′) = δσσ′δi jGσ[φ](z, z′). The background field
Green’s function is the solution to

�

− ∂τ1
− ε(−i∇1) +µ

�

Gσ[φ](x1, x2)+ (18)

Nb
∑

a=1

∫

d3kd3 x ′

(2π)3
eik(x1−x ′)λa,σ(k)φa

�

x1 + x ′

2

�

Gσ[φ](x
′, x2) (19)

= δ3(x1 − x2) , (20)

and

Sdet[φ] = − tr log Gσσ′,i j[φ](z, z′) = −N f

∑

σ

tr log Gσ[φ](z, z′) . (21)

In momentum space:

G(x1, x2) =

∫

d3k1d3k2

(2π)6
eik1 x1−ik2 x2 G(k1, k2) , (22)

we have

�

iω1 − ε(k) +µ
�

Gσ[φ](k1, k2)+
Nb
∑

a=1

∫

d3q
(2π)3

λa,σ

�

k1 −
q
2

�

φa (q)Gσ[φ](k1 − q, k2)

= (2π)3δ3(k1 − k2) . (23)

Following the procedure of [27] we expand around a point n̂kF on the Fermi surface. Now we
additionally expand the functions λa,σ(k) = λa,σ,n̂ +O(k− n̂kF ), and Fourier transform back
to real space:

�

− ∂τ1
+ vF (in̂ · ∇1 + kF ) +

Nb
∑

a=1

λa,σ,n̂φa,σ(x1)
�

Gσ,n̂[φ](x1, x2) = δ
3(x1 − x2) . (24)

The Euclidean time variables τ1 and τ2 are constrained to the interval (0,β) when the theory
is considered at a finite temperature. The fermionic Green’s function Gσ[φ] has antiperiodic
boundary conditions and the bosonic fields φa have periodic boundary conditions in the τ
direction. The solution to Eq. (24) with antiperiodic boundary conditions is given by

Gσ,n̂[φ](x1, x2) = f −n̂ (x1 − x2)exp
�

ikF n̂ · (x1 − x2) + Iσ,n̂[φ](x1, x2))
�

, (25)

where

Iσ,n̂[φa](x1, x2) =
Nb
∑

a=1

λa,σ,n̂

∫

d3 xφa(x)
�

f +n̂ (x − x1)− f +n̂ (x − x2)
�

, (26)

and f ±n̂ (x) are the β-periodic2 (+) and β-antiperiodic (−) (in τ) solutions of

�

− ∂τ1
+ ivF n̂ · ∇

�

f ±n̂ (x1, x2) = δ
3(x1 − x2) . (27)

2Note that in finding the solution for the fermionic background field Green’s function we make use of Eq. (28)
which is a Green’s function for the free fermion (in patch-coordinates) but with boson statistics. The method we
employ here is referred to as functional bosonization in some of the earlier works [28].
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These functions can be expressed as:

f +n̂ (x) =
T cot

�

πT
�

in̂·x
vF
−τ

��

2vF
δ(n̂× x) (28)

f −n̂ (x) =
T csc

�

πT
�

in̂·x
vF
−τ

��

2vF
δ(n̂× x) . (29)

We define the cross product as a × b = ax by − ay bx . The found solution Gσ,n̂[φ](x1, x2) is
only valid when acting on momentum modes close to kF n̂. As in [27] we project onto these
modes and integrate over different directions n̂(θ ) to obtain an operator GIR[φ](x1, x2) that
is valid as long as |x2 − x1| � k−1

F :

GIR,σ[φ](x1, x2) =

∫

d2x′
∫

dkkdθ
(2π)2

f −n̂(θ )(τ1 −τ2,x1 − x′)×

× exp
�

in̂(θ ) ·
�

kF (x1 − x′) + k(x′ − x2)
�

+ Iσ,n̂(θ )[φ](τ1,x1;τ2,x′)
�

=

∫

dη

∫

dkkdθ
(2π)2

T csc
�

πT
�

− iη
vF
+τ2 −τ1

��

2vF
×

× exp
�

i(k− kF )η+ ikn̂(θ ) · (x1 − x2) + Iσ,n̂(θ )[φ](τ1,x1;τ2,x1 +ηn̂(θ ))
�

.
(30)

Here we parametrized x′ = x1 +ηn̂(θ ) + νn̂(θ +π/2) and integrated over ν.
We consider kF � vF T, |x2− x1|−1 and a field φ without momentum components of order

kF . The η integral can be viewed as a Fourier transform to the variable k − kF . If we assume
vF |τ2 − τ1| � k−1

F then the η dependence of the rest of the integrand has no momentum
components of order kF and this Fourier transform will be small unless |k − kF | � kF . We
later comment on what happens for vF |τ2 − τ1| ∼ k−1

F . For the leading behavior we can thus
assume k is of order kF . We then see that the exponent ikn̂(θ ) · (x1−x2) makes the θ integral
oscillate rapidly except at the two points where n̂ is parallel or anti-parallel to x12 = x2 − x1.
We perform saddle-point approximations around these points:

Gsaddle point
IR,σ [φ](x1, x2) = −

∑

s=±1

∫

dηdk
(2π)3/2

T csc
�

πT
�

τ1 −τ2 +
iη
vF

��

2vF

√

√ k
|x12|

×

× exp
�

i(k− kF )η+ isπ/4− isk|x12|+ Iσ,s x̂12
[φ](τ1,x1;τ2,x1 +ηs x̂12)

�

. (31)

We proceed with the k integral. It formally diverges but comes from the Fourier transform
so we treat it as such and use

∫ ∞

0

dkeikz
p

k→
p
π

2(−iz)3/2
, (32)

for these integrals. We then have

Gsaddle point
IR,σ [φ](x1, x2) = −

∑

s=±1

∫

dηe−iηkF
T csc

�

πT
�

τ1 −τ2 +
iη
vF

��

8πvF
p

2|x12|(−i(η− s|x12|))3/2
×

× exp
�

isπ/4+ Iσ,s x̂12
[φ](τ1,x1;τ2,x1 +ηs x̂12)

�

. (33)

The η integral can be viewed as the high frequency limit of a Fourier transform to the variable
kF . For |τ2−τ1| � 1/kF , the high frequency part of the transformed function is dominated by
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the singularities at η= s|x12|. We can expand around them and perform the Fourier transform
to get the leading large kF limit:

Gsaddle point
IR,σ [φ](x1, x2) =− T

√

√ kF

2π|x12|

∑

s=±1

eisπ/4−iskF |x12|+Iσ,s x̂12
[φ](x1,x2)

2vF sin
�

πT
�

τ1 −τ2 +
is|x12|

vF

�� + subleading .

(34)

We would also like to consider equal-time correlation functions so now we consider the case
where vF |τ2 − τ1| ∼ k−1

F . Consider Eq. (30). The η integral now gets a contribution also for
|k− kF | ∼ kF since the fraction has frequencies of order kF when η∼ vF |τ2−τ1|. To calculate
this contribution we make use of

Iσ,n̂[φ](x1, x2) =O((τ2 −τ1)∂τφ) +O(|x2 − x1||∇φ|) . (35)

Since vF |τ2−τ1| ∼ k−1
F andφ contains no scales of order kF the first term can be neglected. The

second term can also be neglected since η∼ vF |τ2−τ1| for the contribution we are interested
in. We can set φ = 0 to leading order. Note that this is only true for the contribution missed
in the saddle-point approximation. We thus have

GIR[φ](x1, x2) = Gsaddle point
IR [φ](x1, x2) + GIR[0](x1, x2)− Gsaddle point

IR [0](x1, x2)+

+ subleading . (36)

Finding the free propagator in real space we find that the last two terms above cancel and the
saddle point solution actually works for small τ2 −τ1 as well.

Now we consider two-point functions of the composite operators. Differentiating the gen-
erating functional with respect to the sources and only keeping the leading contribution for
small N f we have:

〈ρσ(0)ρσ(τ,x)〉= −N f

∫

Dφ Gσ,IR[φ](0;τ,x)Gσ,IR[φ](τ,x; 0)e−SB[φ] + subleading (37)

〈b†(0)b(τ,x)〉= N f

∫

Dφ G↑,IR[φ](0;τ,x)G↓,IR[φ](0;τ,x)e−SB[φ] + subleading . (38)

The determinant action has now been omitted since it is subleading in N f . Note that the
density correlator contains one more contraction but it is also subleading in N f and can be
ommited, see Fig. 1. Note that from here on, in “subleading” we include terms that are either
subleading in the small N f limit or in the x ≡ |x| � k−1

F limit. We now integrate out the fields
φa. Expanding the background field Green’s functions and combining terms we have:

〈ρσ(0)ρσ(τ,x)〉= −
N f kF T2

8πv2
F x

∫

Dφ
∑

s1=±1
s2=±1

×

×
ei(s1−s2)(π/4−kF x)+Iσ,s1 x̂ [φ](0,0;τ,x)+Iσ,s2 x̂ [φ](τ,x;0,0)

sin
�

πT
�

−τ+ is1 x
vF

��

sin
�

πT
�

τ− is2 x
vF

�� e−SB[φ] + subleading (39)

〈b†(0)b(τ,x)〉=
N f kF T2

8πv2
F x

∫

Dφ
∑

s1=±1
s2=±1

×

×
ei(s1+s2)(π/4−kF x)+I↑,s1 x̂ [φ](0,0;τ,x)+I↓,s2 x̂ [φ](0,0;τ,x)

sin
�

πT
�

−τ+ is1 x
vF

��

sin
�

πT
�

−τ+ is2 x
vF

�� e−SB[φ] + subleading , (40)
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where x≡ x x̂ . We have redefined s2→−s2 in (39) compared to (34) so that the four different
s1, s2 contributions correspond to processes where the two fermions being exchanged between
the bilinears live in the Fermi surface patches near s1kF x̂ and s2kF x̂ , respectively. The Iσ,n̂[φ]
functions are linear in φ and should be treated as sources for φ in the path integral. We
expand the two Iσ,n̂[φ] functions and identify the sources:

Iσ,s1 x̂[φ](0, X ) + Iσ,s2 x̂[φ](X , 0) =

∫

d3X ′φ(X ′)

�

λσ,s1 x̂ f +s1 x̂(X
′)−λσ,s1 x̂ f +s1 x̂(X

′ − X )+

+λσ,s2 x̂ f +s2 x̂(X
′ − X )−λσ,s2 x̂ f +s2 x̂(X

′)

�

≡ −
∫

d3X ′Jρρs1,s2,λ,X (X
′)φ(X ′) (41)

I↑,s1 x̂[φ](0, X ) + I↓,s2 x̂[φ](0, X ) =

∫

d3X ′φ(X ′)

�

λ↑,s1 x̂ f +s1 x̂(X
′)−λ↑,s1 x̂ f +s1 n̂(X

′ − X )+

+λ↓,s2 x̂ f +s2 x̂(X
′)−λ↓,s2 x̂ f +s2 x̂(X

′ − X )

�

≡ −
∫

d3X ′J b† b
s1,s2,λ,X (X

′)φ(X ′) . (42)

Here we use X = (τ,x) to avoid confusion with x = |x|. SB[φ] is diagonal in momentum space
so we write the source terms in momentum space:

∫

d3X ′Jρρs1,s2,λ,X (X
′)φ(X ′) = T

∑

ωn

∫

d2k
(2π)2

Jρρs1,s2,λ,X (k)φ(−k) (43)

∫

d3X ′J b† b
s1,s2,λ,X (X

′)φ(X ′) = T
∑

ωn

∫

d2k
(2π)2

J b† b
s1,s2,λ,X (k)φ(−k) , (44)

where

Jρρs1,s2,λ,X (k) =
�

λσ,s1 x̂ f +s1 x̂(k)−λσ,s2 x̂ f +s2 x̂(k)
�

�

e−iX k − 1
�

(45)

J b† b
s1,s2,λ,X (k) =

�

λ↑,s1 x̂ f +s1 x̂(k) +λ↓,s2 x̂ f +s2 x̂(k)
�

�

e−iX k − 1
�

(46)

f +n̂ (k) =
1

iωn − vF n̂ · k
, (47)

and the sum is over bosonic Matsubara frequencies ωn = 2πnT . Now we perform the path
integral over φ for a general source J(k) and the bosonic action SB[φ]:

∫

Dφ exp

�

T
∑

ωn

∫

d2k
(2π)2

�

− J(k)φ(−k)−
φ(k)φ(−k)

2D(k)

�

�

=

= exp

�

T
∑

ωn

∫

d2k
(2π)2

J(k)J(−k)D(k)
2

�

, (48)
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where

D(k) =
1

ω2
n + c2k2

x + c2k2
y + r

. (49)

Now consider the exponent of the RHS of Eq. (48) with the source Jρρs1,s2,λ,X (k) and J b† b
s1,s2,λ,X (k):

Eρρs1,s2,λ(X )≡ T
∑

ωn

∫

d2k
(2π)2

Jρρs1,s2,λ,X (k)J
ρρ

s1,s2,λ,X (−k)D(k)

2

= T
∑

ωn

∫

d2k
(2π)2

�

λσ,s1 x̂ f +s1 x̂(k)−λσ,s2 x̂ f +s2 x̂(k)
�

×

×
�

λσ,s1 x̂ f +s1 x̂(−k)−λσ,s2 x̂ f +s2 x̂(−k)
�

(1− cos(X k))D(k)

= −λ2
σ,s1 x̂hs1 x̂ ,s1 x̂(X ) + 2λσ,s1 x̂λσ,s2 x̂hs1 x̂ ,s2 x̂(X )−λ2

σ,s2 x̂hs2 x̂ ,s2 x̂(X ) (50)

E b† b
s1,s2,λ(X )≡ T

∑

ωn

∫

d2k
(2π)2

J b† b
s1,s2,λ,X (k)J

b† b
s1,s2,λ,X (−k)D(k)

2

= T
∑

ωn

∫

d2k
(2π)2

�

λ↑,s1 x̂ f +s1 x̂(k) +λ↓,s2 x̂ f +s2 x̂(k)
�

×

×
�

λ↑,s1 x̂ f +s1 x̂(−k) +λ↓,s2 x̂ f +s2 x̂(−k)
�

(1− cos(X k))D(k)

= −λ2
↑,s1 x̂hs1 x̂ ,s1 x̂(X )− 2λ↑,s1 x̂λ↓,s2 x̂hs1 x̂ ,s2 x̂(X )−λ2

↓,s2 x̂hs2 x̂ ,s2 x̂(X ) , (51)

where

hn̂1,n̂2
(X )≡ T

∑

n

∫

d2k
(2π)2

(cos(X k)− 1) f +n̂1
(k) f +n̂2

(−k)D(k) . (52)

We can now use this for the path integrals in Eq. (39) and Eq. (40):

〈ρσ(0)ρσ(τ,x)〉=
N f kF T2

8πv2
F x

∑

s1=±1
s2=±1

exp
�

i(s1 − s2)(π/4− kF x) + Eρρs1,s2,λ(X )
�

sin
�

πT
�

−τ+ is1 x
vF

��

sin
�

πT
�

−τ+ is2 x
vF

�� + sub. (53)

〈b†(0)b(τ,x)〉=
N f kF T2

8πv2
F x

∑

s1=±1
s2=±1

exp
�

i(s1 + s2)(π/4− kF x) + E b† b
s1,s2,λ(X )

�

sin
�

πT
�

−τ+ is1 x
vF

��

sin
�

πT
�

−τ+ is2 x
vF

�� + sub. (54)

The Es1,s2,λ(X )-functions should be understood as capturing the interaction corrections to the
contribution to the real space fermion four-point function where one fermion is in the patch
at s1kF x̂ and the other is in the patch at s2kF x̂ .

Furthermore, these functions are composed of the hn̂1,n̂2
(X )-functions which capture the

effects of a fermion in patch n̂1kF exchanging a boson with a fermion in patch n̂2kF . Note
that the Es1,s2,λ(X ) functions contain hs1 x̂ ,s1 x̂ even when s1 6= s2. These are the self-energy
corrections, the fermions always exchange bosons with themselves and thus within the same
patch. Also note that Eρρs,s,λ,X = 0, the self-energy corrections precisely cancel with the processes
that exchange bosons between the two fermions for the 〈ρρ〉 correlator as expected from [36].
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We define

h±(τ, x) = T
∑

n

∫

dkxdky

(2π)2
cos(ωnτ− kx x)− 1

(iωn − vF kx)(−iωn ± vF kx)
D(ωn, kx , ky) , (55)

and note that

h x̂ , x̂(X ) = h+(τ, x) (56)

h− x̂ , x̂(X ) = h−(τ, x) (57)

h x̂ ,− x̂(X ) = h−(τ, x) (58)

h− x̂ ,− x̂(X ) = h+(τ,−x) . (59)

We additionally define λ±σ = λσ,± x̂ and expand the s1, s2 summations to obtain:

〈ρσ(0,0)ρσ(τ,x)〉=
N f kF T2

8πv2
F x

�

csc2
�

πT (τ−
i x
vF
)
�

+ csc2
�

πT (τ+
i x
vF
)
�

+
4sin(2kF x)exp

�

∑

a

�

2λ−σaλ
+
σah−a (τ, x)−λ−σa

2h+a (τ,−x)−λ+σa
2h+a (τ, x)

��

cosh
�

2πT x
vF

�

− cos(2πτT )

�

+ subleading (60)

〈b†(0)b(τ,x)〉=
N f kF T2

8πv2
F x

�

csc
�

πT
�

τ−
i x
vF

��

csc
�

πT
�

τ+
i x
vF

��

×
�

exp

�

−
∑

a

�

λ+↑a
2h+a (τ, x) + 2λ−↓aλ

+
↑ah−a (τ, x) +λ−↓a

2h+(τ,−x)
�

�

+ exp

�

−
∑

a

�

λ+↓a
2h+a (τ, x) + 2λ−↑aλ

+
↓ah−(τ, x) +λ−↑a

2h+a (τ,−x)
�

�

�

+ i csc2
�

πT
�

τ−
i x
vF

��

exp

�

−2ikF x −
∑

a

(λ−↓a +λ
−
↑a)

2h+a (τ,−x)

�

− i csc2
�

πT
�

τ+
i x
vF

��

exp

�

2ikF x −
∑

a

(λ+↓a +λ
+
↑a)

2h+a (τ, x)

��

+ subleading . (61)

Here we have reintroduced the a indices and the h±a (τ, x) are defined with the propagator
Da(ωn, kx , ky) for the field φa.

3 Divergences in long distance correlation functions

At the critical points T = 0, ra = 0 there is no internal scale in (55) so by dimensional analysis
we have

h±a (τ= 0, x)∼ x . (62)

For τ = 0, the h±a functions are linear in the separation x and the prefactors of x in the
exponents of Eq. (60) and Eq. (61) are quadratic forms of the different coupling constants
λ±↑,↓. It is possible to find couplings such that correlations grow exponentially in the spatial
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separation x unless these quadratic forms are negative semi-definite. An unbounded growth
is unphysical so it is interesting to investigate whether it appears for any setup.

In the introduction we mentioned that quantum critical fluctuations might induce insta-
bilities. A treatment of a theory with an instability by expansion around the naive vacuum
where the expectation values of all fields of Eq. (1) are 0 will then be incorrect. Excitations
should instead be considered from the true vacuum, which breaks some of the symmetries of
the action. We do not attempt to describe the true ground state but instead study expectation
values obtained by expansion around the naive vacuum. Although these expectation values
can not be trusted if an instability is present, they can show inconsistencies, like the above
unbounded growth, that indicate the presence of an instability. Specifically, we study how the
correlation functions we calculated in the previous section behaves at large spatial separations.
The correlators are expected to decay at a certain rate with separation and when this is not
the case, we attribute this to an instability.

With that as motivation, we study the behaviors of these exponents in the long distance
limit in this section. We do that at the QCP and away from it, both at T = 0 and T > 0. We
start out by only considering fermions coupled to one order parameter fluctuation field so we
drop the index a for now.

Before calculating the h± functions in different limits we give a physical interpretation of
them and find some of their general properties. Looking back at where these functions show
up we see that h+ captures processes where the fermion exchanges bosons with fermions
within the same patch of the Fermi surface. The fermion self-energy is obtained from this
type of process so quasi-particle smearing will be governed by the behavior of h+. h− captures
processes where a fermion exchanges bosons with a fermion in an opposite patch of the Fermi
surface. This can give rise to the attractive glue needed for e.g. pairing.

Using that D(ω, kx , ky) is positive and even in energy and momentum we have

h±(−τ,−x) = h±(τ, x) (63)

h+(−τ, x) = h+(τ, x) (64)

h−(−τ, x) = h−(τ, x) (65)

h−(τ, x)≤ 0 (66)

|h+(τ, x)| ≤ |h−(τ, x)| , (67)

where we used the triangle inequality to move the absolute value inside the integral of Eq. (55)
for the last inequality. This last identity will turn out to be important, it means that the in-
teractions between opposing patches in a sense is stronger than the effects of quasi-particle
smearing.

3.1 The quantum critical point

We now consider the theory at the quantum critical point where T = r = 0. We can write the
correlation functions as

〈ρσ(0, 0)ρσ(τ,x)〉=
N f kF

4π3 x

�

sin(2kF x)exp
�

λT
σAλσ

�

v2
Fτ

2 + x2
+

v2
Fτ

2 − x2

(v2
Fτ

2 + x2)2

�

(68)

〈b†(0)b(τ,x)〉=
N f kF

8π3 x

�

exp
�

λ+T Bλ+
�

+ exp
�

λ−T Bλ−
�

v2
Fτ

2 + x2

− i
1

(x + ivFτ)2
exp

�

−2ikF x − (λ−↓ +λ
−
↑ )

2h+(τ,−x)
�

+ i
1

(x − ivFτ)2
exp

�

2ikF x − (λ+↓ +λ
+
↑ )

2h+(τ, x)
�

�

, (69)
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where

A=

�

−h+(τ, x) h−(τ, x)
h−(τ, x) −h+(τ, x)

�

, λσ =

�

λ+σ
λ−σ

�

(70)

B =

�

−h+(τ, x) −h−(τ, x)
−h−(τ, x) −h+(τ, x)

�

, λ± =

�

λ±↑
λ∓↓

�

. (71)

We diagonalize A, B to find out whether they are positive-/negative- or indefinite. The eigen-
values of the above matrices are both are given by

A1,2 = B1,2 = ±
Æ

h−(τ, x)2 − Im(h+(τ, x))2 −Re(h+(τ, x)) . (72)

By using Eq. (67) we find that

A1 = B1 ≥ 0 (73)

A2 = B2 ≤ 0 . (74)

The exponents are thus indefinite quadratic forms of the couplings, regardless of the form of
D(ω,k). This means that it is, for both correlators, possible to find couplings λ±σ such that
the exponent is positive, regardless of the form of D(ω,k). For a scale-free D(ω,k) at the
critical point we can find the dependence of the separation by a simple scaling argument.
Instead of considering the uncorrected Green’s function of Eq. (49), we might as well consider
a generalization with critical exponent η:

D(ω, kx , ky) =
1

(ω2 + c2k2
x + c2k2

y)(3−η)/2
. (75)

By rescaling the momentum integrals we have that

h±(sτ, sx) = s2−ηh±(τ, x) . (76)

We find that there are couplings such that the exponents of Eq. (60) and Eq. (61) grow un-
boundedly in the separation for all critical exponents η < 2. This leads to unphysical correla-
tion functions that similarly grow indefinitely in the separation. In the case of the uncorrected
Green’s function for φ in our action we have η= 1. This unbounded growth of correlations is
interpreted as an instability of the theory. We discuss this in more detail in subsection 3.3 and
in section 5 where we consider a type of QCP at a time.

Now we investigate for what couplings we find instabilities. Considering only a spatial
separation, we have

|λ+σ +λ
−
σ|< R|λ+σ −λ

−
σ| =⇒ unbounded 〈ρσρσ(x)〉 growth

|λ+↑ −λ
−
↓ |< R|λ+↑ +λ

−
↓ | =⇒ unbounded 〈b† b(x)〉 growth

|λ+↓ −λ
−
↑ |< R|λ+↓ +λ

−
↑ | =⇒ unbounded 〈b† b(x)〉 growth , (77)

where

0< R≡

√

√h−(0, x) + h+(0, x)
h−(0, x)− h+(0, x)

. (78)

Note that R is independent of x at the QCP.
We have not yet considered the oscillating part of the pair-pair correlation function. To

do this we need to calculate h+σ to find its sign. We do this for a spatial separation x and find
that it is positive everywhere, see Fig. 2 (result presented in Appendix A). Since it is positive
we find that the last two terms of Eq. (69) decay for all couplings. We only considered spatial
separations here but for τ 6= 0 it is possible to obtain an h+(τ, x) that grows in τ. However,
this is harder to interpret since τ is Euclidean time. It seems likely that when continued to
real time this once again is negative but that is something left for the future to be studied.
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vF /c
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100

h+(x)/|x|
−h−(x)/|x|

Figure 2: The h±(τ= 0, x) are linear in x at the critical point using the uncorrected
φ Green’s function of Eq. (49). This figure shows the prefactor of x for different
ratios of the Fermi velocity to the φ velocity c.

3.2 Zero temperature - away from criticality

We now continue to work at T = 0 but away from the critical point. We consider D(ω,k) of
Eq. (49) with a finite gap r > 0 and once again calculate the above considered correlation
functions at large spatial separations to see whether they show signs of instabilities. We have
additional symmetry at the point where c = vF (see Chapter 5 of [37]) and we can calculate
h± explicitly there. We find

h+(0, x) =
2vF exp

�

−
p

r|x |
vF

�

(vF +
p

r|x |) + r x2 − 2v2
F

8πv2
F r3/2 x2

(79)

h−(0, x) =
Ei
�

−
p

r|x |
vF

�

− log
�p

r|x |
vF

�

− γ

4πv2
F
p

r
, (80)

where Ei is the exponential integral and γ is Euler’s constant. Although not immediately evi-
dent from these expressions, for small x this behaves as in the critical case and h± are linear
in |x |. This linear growth slows down at a separation |x | ∼ vF/

p
r and in the case of h+ it

approaches a constant while for h− it crosses over to a logarithmic growth. These asymptotic
behaviors have been calculated for a general vF/c (see Appendix B):

h+(τ, x) = finite as x →∞ (81)

h−(τ, x) =−
log

�

r
�

x2

v2
F
+τ2

��

8πc
p

rvF
+ finite as x →∞ . (82)
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λ
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(a) Unbounded growth in 〈ρσρσ〉
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λ+
↑

cvF

−5
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λ
− ↓

c
v
F

(b) Unbounded growth in 〈b† b〉

Figure 3: The colored regions indicate couplings for which the corresponding cor-
relator grows unboundedly in the separation at T = 0. The plots show this both at
the QCP (blue) and for

p
r = 0.1 (red). Note that the red regions move closer to the

origin as r → 0 and thus cover the whole quadrants in the critical limit. Here we
have used c = vF and thus R= 1/

p
2.

The h− function will thus dominate the exponents of Eq. (60) and (61) for large separations.
This gives corrections to the power-law of the free theory, x−3, at long distances:

〈ρσρσ(τ, x)〉= C1N f kF
sin(2kF x)

x

�

v2
Fτ

2 + x2
�− λ−σλ

+
σ

4πcvF
p

r−1
+

+ N f kF
v2

Fτ
2 − x2

4π3 x(v2
Fτ

2 + x2)2
+ subleading (83)

〈b† b(τ, x)〉= C2N f kF x−1
�

v2
Fτ

2 + x2
�

λ−↓ λ
+
↑

4πcvF
p

r−1
+

+ C3N f kF x−1
�

v2
Fτ

2 + x2
�

λ−↑ λ
+
↓

4πcvF
p

r−1
+

− iC4

N f kF exp(−2ikF x)

x(x + ivFτ)2
+ iC5

N f kF exp(2ikF x)

x(x − ivFτ)2
+ subleading . (84)

The prefactors Ci are given by the asymptotic value of h+ and the finite part of h− and depend
on λ±,2

σ , vF , c, r. Note that these expressions apply to any gapped boson propagator under
the constraints mentioned in Appendix B. Interestingly, the corrected exponents may become
larger than 1/2 meaning that the correlation functions grow unboundedly for large separa-
tions, just as at the QCP. The growth is now a power-law with an exponent that approaches
∞ as we approach the QCP where r = 0. The conditions for unbounded growth are:

λ−σλ
+
σ < −6πcvF

p
r =⇒ unbounded 〈ρσρσ(x)〉 growth (85)

λ−↓ λ
+
↑ or λ−↑ λ

+
↓ > 6πcvF

p
r =⇒ unbounded 〈pp(x)〉 growth . (86)

These are not the same conditions as what we had at the QCP in the limit r → 0, see Figure
3. The difference can be understood as the |x| → ∞ and r → 0 limits not commuting. The
h+ function becomes important when taking r → 0 first and affects the large |x| behavior.
However, it is neglected when considering |x| → ∞ at any finite r since h+ approaches a
constant (that diverges as r → 0).

17

https://scipost.org
https://scipost.org/SciPostPhys.10.3.067


SciPost Phys. 10, 067 (2021)

The correlation functions do not have to grow unboundedly to indicate instabilities. The
static pair and density susceptibilities can be calculated through a Fourier transform of the real
space correlation functions where we neglect small separations and only consider
x > Λ,Λ � 1/kF . The static susceptibilities give the linear respons to sources for a pair or
density operator. A diverging static susceptibility indicates a finite response without a source
and thus an instability. First let us consider the T = 0 static susceptibilites of the free theory.
Performing the τ and angular integral we have

χρ,0(q) =

∫

dτd2 xeiq·x〈ρ(0)ρ(τ,x)〉=
N f kF

2πvF

∫ ∞

Λ

dx
J0(qx) sin(2kF x)

x
+ finite (87)

χb,0(q) =

∫

dτd2 xeiq·x〈b†(0)b(τ,x)〉=
N f kF

4πvF

∫ ∞

Λ

dx
J0(qx)

x
+ finite , (88)

where J0 is the zeroth Bessel function of the first kind. The density susceptibility is finite
for all q whereas the pair susceptibility diverges at q = 0. There is an instability at T = 0
in the free theory leading to BCS superconductivity when we add any finite attractive four-
Fermi interaction. Let us now see how interactions in the N f → 0 limit change this. We only
consider the large x asymptotics of the integral to see whether it diverges in the IR so we can
use Eq. (83)–(84). We find that the density susceptibility diverges at q = 2kF when

p
r <

p

rc ≡ −
λ−σλ

+
σ

πcvF
. (89)

This means that whenever λ−σλ
+
σ < 0, there is a critical gap 0 < r < rc for the field φ where

an instability is seen in the density correlator at wavevector Q = 2kF . Considering the pair-
susceptibility, we find that the instability of the free theory is cured when both of these two
conditions are satisfied:

λ−↑ λ
+
↓ < 0 (90)

λ−↓ λ
+
↑ < 0 . (91)

We have a faster divergence in the opposite case where the left hand sides are positive and the
integral diverges algebraically instead of logarithmically in the IR.

3.3 Spontaneous symmetry breaking

In the previous subsections we found combinations of parameters where correlations of op-
erators at different points grow unboundedly in their separation, and in a broader region,
diverging static susceptibilities. We interpret the divergences as instabilities towards states
where the corresponding operators have infinite expectation values. In practice, this is cut off
by higher order terms that we have omitted in the action, but which become important for
large values of the fields. The true ground states of the physical theories we are interested
in are expected to instead be states where these operators have finite expectation values. We
can not find the exact ground states without considering these higher order terms. The typical
approach is to use mean-field theory to study the ground state. We leave that for future work
and instead make the following natural guesses:

〈b(x)〉= Aexpiθ for pairing susceptibility divergence (92)

〈ρσ(x)〉 ∼ B sin(2kF x · n̂+ θ ) for charge/spin susceptibility divergence , (93)

where 0 < A, 0 < θ < 2π. The first is a pairing state that spontaneously breaks the U(N f )
symmetry whereas the second is a charge or spin order that breaks translation symmetry. The
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form of the density fluctuation is only symbolic, we expect oscillations around the momentum
∼ 2kF but how this happens in practice depends on the angular dependence of the coupling
and what higher order terms stop the infinite growth of the correlator. We consider the ex-
pected ground states in more detail for specific systems in Section 5.

3.4 Finite temperature

The unbounded growths of correlations at T = 0 are interpreted as instabilities towards
symmetry-breaking ground state. However, spontaneous symmetry breaking of continuous
symmetries is not allowed at finite temperature in two dimensions for short range interactions
by the Hohenberg-Mermin-Wagner [38] theorem. The interactions mediated by φ are short
range for any finite r so we do not expect correlations to grow in the separation at finite tem-
peratures away from r = 0. Fluctuations in the parameter θ in Eq. (92) and Eq. (93) are
the Goldstone modes and these proliferate at finite temperature destroying any long-range
order. However, it could still be possible to find quasi-long-range order such as in the two-
dimensional XY model below the Berezinskii-Kosterlitz-Thouless transition [39]. A phase with
quasi-long-range order has correlators that decay with a power-law of the separation at finite
temperature.

Now we consider the long distance behavior of the pair and density correlation functions
at a finite temperature T to verify lack of spontaneous symmetry breaking and to see whether
they exhibit quasi-long-range order. The h± functions are calculated through a Matsubara sum
at finite temperature. It is useful to consider the zeroth Matsubara frequency (n= 0) and the
rest of the sum (n 6= 0) separately. This is also done for the self-energy in [35, 40, 41] where
these contributions are labeled NFL/quantum and thermal/classical, respectively. We define:

h±(τ, x) = h±n=0(x) + h±n6=0(τ, x) . (94)

Note that the functions h±n=0 and h±n6=0 individually satisfy the properties in Eq. (63) to (67)
and that

h+n=0(x) = −h−n=0(x) . (95)

Additionally, using

0≤
∫

dky

2π
D(ωn, kx , ky)≤

1
2c|ωn|

, (96)

we find that

|h±n6=0(τ, x)| ≤
1

24vF cT
. (97)

The n 6= 0 contributions will thus not be very important since they are finite for large x . We
can express the thermal h±n=0(x) in terms of a Meijer G-function, see Appendix C. They diverge
logarithmically for small r:

h±n=0(τ, x) = ∓
T x2

8πc2v2
F

log

�

r x2

c2

�

+ finite . (98)

This is an IR divergence. The same divergence shows up at each order in perturbation theory
and can be seen by calculating the fermion self-energy perturbatively (see Figure 4):

Σλ2(ωn, kx) =
Tλ2

2πc

∑

ωm

cos−1
�

c
vF

ikx vF+ωm+ωnp
r+ω2

m

�

q

c2(ikx vF +ωm +ωn)2 − v2
F

�

r +ω2
m

�

. (99)
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Figure 4: The single diagram contributing to the fermion self-energy at second order
in the coupling.

The ωm = 0 contribution diverges logarithmically as r → 0. Despite these IR divergences at
each order, once all perturbative corrections are summed up into the exponentials of Eq. (60)
and (61), we find that the correlation functions do not diverge in the r → 0 limit. This can be
seen by consider the matrices A, B as in Eq. (68) and (69). Using Eq. (95) and Eq. (97) we
can write

A= h+n=0(τ, x)

�

−1 −1
−1 −1

�

+ IR finite (100)

B = h+n=0(τ, x)

�

−1 1
1 −1

�

+ IR finite . (101)

Now both A and B are negative semidefinite (in the limit r → 0) so, regardless of the couplings,
the IR divergence does not make these correlators diverge but may suppresses components of
them to 0. We have thus found that correlation functions diverge as we take r → 0 at any finite
order in perturbation theory. However, as we sum up all diagrams in the N f → 0 limit, we
can safely take r → 0 and the considered correlation functions remain finite. This is similar
to what was found in [33]. They study the same model (albeit at matrix large N) but in
d = 3− ε dimensions. Similarly they find an IR divergence in the form of a diverging decay
rate of electrons, in a perturbative treatment. The matrix large N limit allows them to sum
contributions at all orders and they find that this cures the IR divergence and they obtain a
non-diverging fermion self-energy. A recent work has considered the same limit in d = 2 [41].
The IR divergence is then more severe and they find that it is not cured by summation of
rainbow diagrams. Instead they argue that aφ4 interaction that is irrelevant at T = 0 becomes
relevant at finite T and there contributes a mass to the boson that cures the IR divergences.
It is interesting that summation of rainbow diagrams did not cure the IR divergence while
the N f → 0 sum of diagrams cured it without any corrections to the boson. Their non-cured
IR-divergence manifests itself as a diverging fermion self-energy. We note that if we would
calculate the fermion Green’s function to leading order for x � k−1

F at finite T , this would
be suppressed by exp(−λ2h+) to identically 0 as r → 0 and once Fourier transformed also
result in a diverging self-energy. However, since the leading term in the large xkF expansion
is suppressed, one has to include subleading terms (which are not necessarily suppressed to
0) before Fourier transforming and calculating the self-energy. This means that whether our
fermion self-energy is finite or not depends on the Fermi surface curvature and cannot be found
in the linearized patch we have used, but which is also used in [41]. So to conclude, up to the
approximations we have both made, our results agree on a diverging Fermion self-energy, but
we expect this to simply be caused by the linearized patch in our case and it does not manifest
itself in the real space observables we consider.

Let us now depart from the critical, but finite temperature, theory and consider our cor-
relators at a finite r and T and a large separation (x � c/

p
r and x � vF/T). The denomi-

nators in Eq. (60) and (61) are given by hyperbolic functions at finite T . This gives a decay
of exp(−2πT x/vF ) at large separations but interactions may give corrections to this. The h±
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functions behave as

h±(τ, x) =±
T |x |

4cv2
F
p

r
+ finite , (102)

for large |x |. We now have

A= −
T |x |

4cv2
F
p

r

�

1 1
1 1

�

+ finite at large x (103)

B = −
T |x |

4cv2
F
p

r

�

1 −1
−1 1

�

+ finite at large x . (104)

These are once again negative semidefinite and proportional to x . This means that interac-
tions can only contribute to a shorter decay length at finite T except for the exceptional cases
of interactions in the null spaces of A and B where it is unchanged. The long distance behav-
ior of these correlators does thus always decay exponentially in the spatial separation. The
static susceptibilities are then also finite since the τ integral is over a finite interval at finite
T . No instabilities are present at finite T and since correlators decay exponentially in the
separation, they also do not show quasi-long-range order. Let us consider the static suscep-
tibilities at finite r in the T → 0 limit. The h± functions behave as at T = 0 for separations
x � min(vF , c)/T,τ � 1/T since the temperature only affects the boundary conditions of
the theory (however, we show more rigorously that the asymptotic behavior is the same as
at T = 0 up to |x | ∼ vF/T in Appendix C). The correlators are exponentially suppressed
for large spatial separations as exp(−2πx T/vF ) or faster and the time direction is periodic
with periodicity 1/T . This means that the finite temperature effectively introduces cut-offs in
the Fourier transforms of the T = 0 static susceptibilities. We consider an explicit cut-off at
q

x2/v2
F +τ2 < Λ ≡ ε/T where ε is small such that the T = 0 correlators in Eq. (83) and

Eq. (84) can be used up to this cut-off. The Fourier transform is largest at momenta where
oscillations cancel, this happens at q = 2kF in the density susceptibility case and for q = 0
in the pair susceptibility case meaning that any potential divergences show up first at these
momenta. Performing the cut-off Fourier transform at these momenta we find:

χρσ,Λ(q = 2kF )∼











finite, for λ−σλ
+
σ > −πvF c

p
r

log(Λ), for λ−σλ
+
σ = −πvF c

p
r

Λ
− λ−σλ

+
σ

2πvF c
p

r−
1
2 , for λ−σλ

+
σ < −πvF c

p
r

(105)

χb,Λ(q = 0)∼















finite, for λ−↑ λ
+
↓ < 0

log(Λ), for λ−↑ λ
+
↓ = 0

Λ

λ−↑ λ
+
↓

2πvF c
p

r , for λ−↑ λ
+
↓ > 0 .

(106)

By finite we mean terms that are bounded as T → 0. We expect the contribution from out-
side the cut-off to behave the same way since the integral is bounded in the τ direction and
exponentially decays in the spatial directions. The full susceptibilities then behave like this:

χρσ(q = 2kF )∼











finite, for λ−σλ
+
σ > −πvF c

p
r

log(T ), for λ−σλ
+
σ = −πvF c

p
r

T
λ−σλ

+
σ

2πvF c
p

r+
1
2 , for λ−σλ

+
σ < −πvF c

p
r

(107)

χb(q = 0)∼















finite, for λ−↑ λ
+
↓ < 0

log(T ), for λ−↑ λ
+
↓ = 0

T−
λ−↑ λ

+
↓

2πvF c
p

r , for λ−↑ λ
+
↓ > 0 ,

(108)
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Figure 5: These figures show the static charge (or magnetic) susceptibility against
momentum for r in the region with an instability at T = 0 (left) and outside this
region (right). The susceptibility has been calculated by a Fourier transform of (60)
where the h± functions have been obtained numerically. Here we consider the some-
what artificial case of λ+σ = −λ

−
σ ≡ λ in all directions such that we have a rotationally

symmetric density correlator. We further use kF = 5λ2/v3
F and c = vF . We see that

the susceptibility diverges upon lowering temperature for r < rc and approaches a
constant for r > rc .

for low temperatures. The susceptibilities can easily be calculated numerically as well, see
Figure 5 for the charge/spin susceptibility at different momenta.

4 Landau-damping corrections

The N f → 0 limit removes the corrections from the fermions onto the field φ such that it is
still Gaussian and can be integrated out. However, we can add some corrections to the φ two-
point function without making it non-Gaussian. These are important corrections to the IR at
finite N f so being able to add these is interesting because it gives us an indication as to how
N f corrections modify the results away from N f = 0.

In addition to the N f → 0 limit have additionally considered the limit of large separations
compared to 1/kF , which equivalently can be viewed as a large kF limit. The suppressed
fermionic loops each come with a factor of N f kF so these two limits do not commute and
we cannot remove these loops if we take the limits in the opposite order. For full generality
we may take these limits simultaneously keeping N f kF constant and thus obtaining a new
parameter. This was done in [32] and the limit was shown (with some caveats concerning
the order of other limits) to suppress all symmetrized fermionic loops with more than two
vertices, order by order in perturbation theory, and thus allowing us to still integrate out the
order parameter fluctuations. A note should be made here: this limit gives a fermion with
kx ∼ ω2/3 and when calculating non-planar diagrams that appear at order λ4 and higher, it
is then necessary to keep the Fermi surface curvature term −βk2

y in the fermion propagator

when the external energy is small ω ® β3N2
f k2

Fλ
4/v4

F c4 ≡ ωβ [42]. For our spherical Fermi
surface we have β = vF/(2kF ) and thus

ωβ ∼
N2

f λ
4

c4vF kF
. (109)

This energy scale vanishes in the double limit we consider, so while our results are valid in this
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Figure 6: A two-vertex fermion loop giving corrections to the field φ.

limit, one should note that the full theory contains more fermion loops, but also curvature cor-
rections to the non-planar diagrams below this energy scale. Note that this scale is also much
smaller than the scale set by the coupling, ωB � λ2/c2 when λ2/c2� vF kF , also for N f = 1.
The double limit thus removes corrections from fermion loops with more than 2 vertices, and
suppresses the energy scale where non-planar diagrams receive curvature corrections.

Fermion loops are also suppressed in the matrix large N limit studied in several works
mentioned in the introduction. A similar double limit reintroducing some of the effects from
fermion loops was studied in [21].

We would like to consider the same N f → 0, kF →∞, N f kF = constant limit as in [32]
but for the systems and correlation functions we are studying here. In this work we allow the
coupling function to depend on momentum and we consider finite temperatures so we need
to verify that the same suppression of fermionic loops with more than two vertices remains.
This can actually already be seen concerning corrections to the φ two-point function from
our above calculated density correlator. The field φ couples to the fermion densities so the
amputated 〈φφ〉 correlator is given by 〈ρρ〉. From Eq. (60) we see that 〈ρρ〉 is composed of
a term with small momenta (compared to kF ) and a term with momenta of order kF . Only the
former term is relevant since the low-energy φ modes have Q = 0. This term is independent
of the couplings and is thus simply what is obtained from the 2-vertex fermion loop. To verify
suppression of higher n-point φ corrections in this limit we explicitly calculate such fermion
loops in Appendix D.

Having verified this cancellation we may consider what this limit entails for the correlation
functions we are interested in. The earlier strict N f → 0 limit lets us use the free boson corre-
lation function when evaluating the h±-functions. Now we should calculate the h± functions
with aφ two-point function that is corrected be 2-vertex fermion loops, see Fig. 6. The N f → 0
limit was also used to suppress diagrams of the type in Fig. 1(b) contributing to the density-
density correlator. Those diagrams come with an extra factor of kF as opposed to Fig. 1(a)
and can seemingly not be neglected in the double limit we now consider3. The diagrams of
the type in Fig. 1(b) can not simply be found by using the background field Green’s function
since we can only calculate it for insertions separated a distance x � 1/kF and here we would
need to have two insertions at the same point. We thus need to evaluate these diagrams some
other way. Luckily, this class of diagrams turns out to be manageable. Let us first consider
such diagrams in momentum space, with a large momentum incoming to the density vertex
q ¦ kF . The momenta going through the bosons connecting the two fermion loops are now
of order4 kF . The propagators are of the form 1/(ω2+ c2q2+ r2−Π) so these diagrams get a
further kF suppression and need not be considered.

Next consider the case of a small momentum incoming to the density vertex, q � kF . In
the above we found that all loops with more than 2 vertices cancel to leading order in large
kF . This assumed all incoming momenta were small compared to kF and it is now applicable.

3I thank Chris Hooley and Andriy Nevidomskyy for a discussion where this came up.
4This is true at any finite order in perturbation theory. At large perturbative order n the large momentum is

spread among many boson exchanges and non-perturbative effects may allow such processes as is discussed in
Chapter 1.3.8 of [37]. Now we nevertheless work in the less attractive limit as in [32] where we consider kF large
before we sum all diagrams and this is not an issue.
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. . .ρ(z1) ρ(z2)

Figure 7: This figure shows a class of bubble chain diagrams that contribute in the
combined limit N f → 0, kF →∞ that is not captured by the above framework and
has to be calculated separately. The ellipsis indicate that this class of diagrams has
any number of bubbles, larger than 1.

We thus have that the only diagrams contributing to leading order are the ones with a single
boson connecting the left and right fermion loop in Fig. 1(b) such that both loops each have
two vertices. The boson being exchanged however receives corrections from further 2-vertex
fermion loops so when q � kF we must sum all diagrams of the form shown in Fig. 7. The
first and last vertices are momentum independent for the density-density correlator. All other
vertices come with a momentum dependent coupling constant λ(θ ). We write the two-vertex
fermion loop asΠ2[ f ](ω,q)where fσ(θ ) is the combined momentum and spin dependence of
the two vertices. We have that the summed contributions from diagrams of the type in Fig. 7
is given by

〈ρρ(q)〉bubbles = Π2[1](ω,q) +Π2[λ(θ )](ω,q)2
∞
∑

n=1

�

Π2[λ(θ )2](ω,q)
�n−1

(ω2 + c2q2 + r2)n
. (110)

We now need to calculate the two-vertex fermion loop Π2[ f ](ω,q) both for this additional
contribution to the density correlation function and to be able to calculate the h± functions.
Π2[ f ](ω,q) was calculated at a finite temperature in d = 3 in [33]. They found that

the result is identical to the zero temperature result and this is true also in d = 2. Only
fermions close to the Fermi surface contribute for φ momenta small compared to kF and we
can approximate (see Appendix E) this loop by the integral

Π̃2[ f ](ωn,q) = −
N f ,{↑,↓}
∑

i,σ

ikFωn

(2π)2vF

∫

dθ
fσ(θ )

iωn − vF q cos(θ )
, (111)

where θ is an angle measured from the external momentum q and fσ(θ ) is the momentum
dependence of the vertices evaluated at the Fermi surface: fσ(θ ) = fσ(kF n̂(θ )). To solve this
we expand the vertex momentum dependence in Fourier series

fσ(θ ) =
∞
∑

n=0

fσ,n cos(nθ ) +
∞
∑

n=1

f̃σ,n sin(nθ ) . (112)

Calculating the sums and integrals (see Appendix E) we have

Π̃2[ f ](ωn,q) = −2N f
kF |ωn|

2πvF

q

q2v2
F +ω2

n

∞
∑

σ,m=0

fσ,m

 

−i sgn(ωn)qvF
q

q2v2
F +ω2

n + |ωn|

!m

. (113)

Now we consider the boson self-energy and replace fσ(θ ) = λ2
σ(θ ). The self-energy dom-

inates over the ω2 in the (critical) bosonic propagator and the low-energy scaling is

ωN f kFλ
2 ∼ c2v2

F q3 . (114)
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The fraction in the power can then be replaced by −i sgn(ωn) in this limit. We then find

Π̃2(|ωn| � qvF ) = −2N f
kF |ωn|
2πv2

F q

∞
∑

σ,m=0

λ(2)σ,m (−i sgn(ωn))
m (115)

= N f
kF

πv2
F q

∑

σ

�

−|ωn|
λσ(

π
2 )

2 +λσ(−
π
2 )

2

2
+ iωn PV

∫ 2π

0

dθ
λσ(θ )2

2π cos(θ )

�

.

(116)

Assuming λσ(θ ) is parity symmetric or antisymmetric we find exactly the result of [15]: to
leading order the boson only couples to fermions with perpendicular momenta. Interestingly,
for a non-centrosymmetric theory where λσ(k)2 6= λσ(−k)2, we find that this is not the case
and there is an extra contribution from the boson coupling to fermions all around the Fermi
surface given by the principal value integral in Eq. (116). This extra contribution is odd in
both frequency and momentum (the angle θ was defined w.r.t. the incoming momentum q).
Analytically continuing this to Minkowski signature we find that it is not a damping term but
instead it contributes a singular real part to the polarization. We are not aware if this extra
term appearing in non-centrosymmetric systems has been studied before but it is outside the
scope of this paper so it is left for future studies. We only consider centrosymmetric systems
henceforth.

Now that we have calculated the boson self-energy we first use this to calculate the
〈ρρ(q)〉bubbles contribution (see Eq. (110)) to the density-density correlation function. Eq. (110)
is written in momentum space but we are interested in correlators in real space at large sepa-
rations and thus Fourier transform this. We stay away from criticality and consider distances
longer than c/

p
r. We do this in Appendix F (for a constant λ(θ ) = λ) and find:

〈ρρ(τ, x)〉bubbles =O
�

1

(x2 + v2
Fτ

2)3/2

�

, (117)

for large x and τ and this contribution does thus not affect any conclusions regarding insta-
bilities so we need not consider this more.

Now we use a corrected D when calculating h±LD:

DLD(ωn,q) =
1

ω2
n + c2q2 + r −Π2(ωn, k)

. (118)

We use the subscript LD to indicate that D and h± have been calculated with the above Landau-
damping correction. This calculation is performed in Appendix G. We calculate the long dis-
tance behavior of h±LD(τ = 0, x) to see if the instabilities found in the previous section have
changed. Away from criticality (r > 0), at both T = 0 and T > 0 we find that only the finite
part of h±LD(τ = 0, x) has changed compared to h±(τ = 0, x). The growth at long distances
is the same and the conclusions about instabilities are thus unchanged by the inclusion of re-
summed 1-loop Landau-damping corrections. However, right at the QCP where r = T = 0 we
find that the h±LD(τ = 0, x) functions no longer grow linearly in the separation but now grow
with a power-law:

h+LD(0, x) =− |x |1/3
Γ
�2

3

�

3
p

3πM2/3
D v4/3

F

+ finite (119)

h−LD(0, x) =− 3h+LD(0, x) + finite . (120)

Note that there are now two scales at the QCP: λ2 and MD so the h±LD(τ = 0, x) functions
only have this behavior asymptotically. Since the h±LD functions both have the same power-law
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growth we have to consider them both when considering instabilities. Analogously to the non-
Landau damped case we find that unbounded growth of correllators is governed by Eq. (77)
and R is now independent of all parameters and given by R= 1/

p
2.

5 Results for specific systems

In the following subsections we use the above results to study specific fermionic systems near
QCPs to obtain their N f → 0 phase diagrams. We start each subsection with a brief description
of the quantum phase transition and how its fluctuations couple to the fermions, i.e. what the
structure of λσ(θ ) is. We finally also consider another system that can be described by the
same model, fermions coupled to an emergent gauge field. While the study of these models is
motivated by experimental systems, it is not very useful to make a direct comparison with our
results since we consider very simplified models of them. Instead we focus on some earlier
theoretical results on the same and similar models when making comparisons.

5.1 Charge nematic transition

In this subsection, we consider an l = 2 charge nematic quantum critical point such as the
ones that have been observed in the Cu- [1,2] and Fe- [3–5] based SCs. These QCPs are due to
electronic instabilities towards a state where the Fermi surface shape breaks the C4 rotational
symmetry of the lattice. The resulting nematic state has a remaining C2 rotational symmetry
and symmetry under spin inversion. The order parameter is a single real scalar field that is odd
under π/2 rotations. This means that λσ(k) is independent of σ and has d-wave symmetry. In
the analysis of the previous sections we considered correlators of fermion bilinears separated
spatially in a chosen direction n̂. For a particular n̂ we then have λ+↑ = λ

+
↓ = λ

−
↑ = λ

−
↓ ≡ λn̂

where λn̂ has d-wave symmetry and thus is 0 in four different directions, the so-called cold
spots. For T = 0 and r > 0, we find from Eq. (83) that nematic fluctuations suppress the
charge and spin correlators at long distance:

〈ρα(0,0)ρα(0, x n̂)〉= C1N f kF sin(2kF x)
�

1
x

�3+
λ2

n̂
2πcvF

p
r
−

N f kF

4π3 x3
+ subleading . (121)

This is identical to what happens near a ferromagnetic QCP so we defer the discussion of this
to the next subsection. From Eq. (108) we find that the nematic fluctuations lead to enhanced
pairing fluctuations as T = 0 is approached, most strongly near the QCP:

χb(q = 0)∼ T−
λ2

n̂
2πvF c

p
r . (122)

Instead of a logarithmic growth of fluctuations, now fluctuations grow with a power-law as
T → 0 and furthermore, the exponent diverges as the QCP is approached. As noted in the
previous section, these results are unchanged by the inclusion of Landau-damping corrections.
Note that we have kept the boson gap fixed here, other works that do not simply postulate the
quantum critical action, but derive it from a model with a Pomeranchuk instability, find a
temperature dependent gap [40,43] and thus a more complex temperature dependence here.

While we have considered s-wave pairs, this result does not necessarily mean that the
ground state is an s-wave SC. We could similarly consider e.g. p and d-wave pairs that contain
spatial derivatives and different spin structures. This can be investigated within the frame-
work we have used here but due to spatial derivatives breaking rotational symmetry it will be
a longer calculation that we leave for the future. Instead, we make an educated guess of the
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result. The spin is unimportant in this case since λ↑(k) = λ↓(k). The conclusions regarding in-
stabilities come from the asymptotic behavior of the correlation functions. We have derivatives
acting on the background field Green’s function of Eq. (38) for non-s-wave pair correlators.
The derivative may hit any of the factors in Eq. (34). Hitting the exponent −iskF |x12| only
brings down a constant and the resulting term does thus have the same asymptotics as for the
s-wave case. While it is possible some cancellation occurs for e.g. p-wave, this is not expected
to be universal and happen for states of all symmetries apart from s-wave. This indicates that
whether the pairing instability we found here results in s-wave or a gap of some other symme-
try is something we cannot tell using this analysis. It seems likely several of these correlators
diverge at the same points in the phase diagram and the groundstate symmetry is determined
by the next to leading order N f and 1/kF corrections and higher order terms in the action.
Since the coupling λn̂ has a d-wave form factor and thus is 0 on four nodes at the Fermi sur-
face, there will be directions in which the instabilities are not seen. This allows for nodes or
lukewarm regions along the Fermi surface where the gap is 0 or small and thus compatible
with a d-wave state.

We have found that nematic fluctuations lead to enhanced superconductivity in the N f → 0
limit but the symmetry of the gap is not definite. This is consistent with studies of the charge
nematic transition in two dimensions in the matrix large-N limit [23] where nematic fluctu-
ations enhance SC but also there the symmetry of the SC groundstate is non-universal. The
matrix large-N limit has also been employed on the charge nematic transition in 3−ε dimen-
sions [22, 24] where ε is small. There the order of the ε → 0 and N → ∞ limits decide
whether the system is a SC or not [24]. [44] studies the same model of a nematic QCP (at
N f = 1) as us and additionally include four-fermion interactions. By considering small inter-
actions and staying a small distance away from the QCP they can integrate out the nematic
fluctuations and get a correction to the four-fermion interaction, essentially staying within a
Fermi liquid framework. They solve the gap equation and find that this correction gives an
increase in Tc compared to the BCS case as criticality is approached. Like us, they find that
nematic fluctuations increase susceptibility towards pairing of both s-wave and d-wave sym-
metry and find that the bare four-fermion interaction is what decides the symmetry of the
resulting superconducting state and not the near-critical nematic fluctuations.

The authors of [45] include one-loop self-energy corrections to both the boson and the
fermions and argue that this allows them to access the strongly coupled regime at the QCP. The
order parameter field is static in their case but they are otherwise in the same limit as we have
assumed; they consider l = λ2/vF kF a small parameter. They find that nematic fluctuations
lead to superconductivity, with a finite Tc , and they also find that the SC symmetry is non-
universal.

Finally we mention that the two-dimensional charge nematic transition has been studied
using sign-problem-free determinant quantum Monte-Carlo (DQMC). This was done by putting
fermions on a finite lattice and coupling them to pseudospin-1/2 degrees of freedom [46,47].
The spins have a nematic QCP whose fluctuations give strong corrections to the fermions. The
first work does not find any pairing instability however they find large pairing fluctuations.
In the second study the authors increase the coupling between the spins and the fermions
beyond what is physical in a microscopic interpretation of the model and they instead regard
it as an effective model. They then find a superconducting dome covering the QCP with s-wave
symmetry in the symmetric phase.

As opposed to these earlier studies, we only find a pairing instability at T = 0. However, we
believe this is expected due to the Mermin-Wagner theorem. By departing from the strictly two-
dimensional case and including four-fermion interactions at finite N f we expect an increase
in Tc compared to that of BCS theory since we find an increase in pairing susceptibility due to
nematic fluctuations. This is something we leave for future works to study.
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5.2 Ferromagnetic and spin nematic transition

Ferromagnetic and spin nematic ordering both break spin-inversion symmetry. Electrons spon-
taneously order their spins in the same direction in a ferromagnetic phase.

The spin-nematic phase is similar to the charge-nematic case, the Fermi surface sponta-
neously breaks rotational symmetry, but in perpendicular directions for spin up and down. In
fact, all of the orders considered here can be seen as coming from Pomeranchuk instabilities.
Ferromagnetic ordering is simply the Fermi surface of one spin spontaneously becoming larger
than for the opposite spin.

There will be soft fluctuations in the order parameter in the case where these transi-
tions are continuous. The fluctuations couple with opposite sign to fermions of opposite spin,
λ↑(k) = −λ↓(k), for both the ferromagnetic and the spin-nematic transition. However, λ↑(k)
has s-wave symmetry in the former case and d-wave symmetry in the latter. For a chosen
spatial direction n̂ we then have λ+↑ = λ

−
↑ = −λ

+
↓ = −λ

−
↓ ≡ λn̂ for the coupling of both ferro-

magnetic and spin-nematic fluctuations. Their effects on the fermions will thus be the same
when studied using the framework of this paper, with the caveat that in the spin-nematic case
there are four coldspots in λn̂ and none in the ferromagnetic case.

Plugging in the coupling function in Eq. (77), we do not find any instabilities at the QCP.
In fact, we find that components of the leading small N f CDW/SDW fluctuations and pairing
fluctuations receive faster power-law fall-offs at T = 0 due to interactions:

〈ρα(0,0)ρα(0, x n̂)〉=C1N f kF sin(2kF x)
�

1
x

�3+
λ2

n̂
2πcvF

p
r
−

N f kF

4π3 x3
+ subleading (123)

〈b†(0)b(0, x n̂)〉=2N f kF C2

�

1
x

�3+
λ2

n̂
2πcvF

p
r
+ 2N f kF Im

�

C4
e−i2kF x

x3

�

+ subleading . (124)

This means that the pair susceptibility is now finite at T = 0 (see Eq. (108)) and the divergence
in the free theory is cured by interactions with the ferromagnetic or spin-nematic fluctuations.
We thus have a naked QCP with strong NFL behavior but suppressed pairing and suppressed
Friedel oscillations.

At finite temperatures we find that the correlations lengths ln̂ of the above components
receiving corrected power-laws also decrease due to interactions (see Eq. 60–61):

l−1
n̂ =

T
vF

�

2π+
λ2

n̂

cvF
p

r

�

. (125)

We have been considering the leading contribution to the correlators at x � 1/kF . With these
corrections due to interactions we find a faster decay in separation x for some of the terms
above so it is possible that the subleading behaviors that we have not considered are actually
dominating these. To be perfectly consistent we should then remove these terms above and
regard them as part of the neglected terms that are subleading at long distances. The leading
long-range behavior does thus not necesarily behave as described by Eq. (123)–(125) at large
separations. The above asymptotic result should be taken with caution and conservatively
viewed as simply a cancellation of the diagrams at leading order for large x .

Fermions in 2D coupled to ferromagnetic fluctuations were studied in [48] using DQMC.
The authors consider a system with two flavors (orbitals) of spinful fermions and find spin
triplet SC tendencies. By adding an orbital index to the fermions we may also consider orbit-
singlet spin-triplet pairing instead of the spin-singlet pairing studied so far in this work. We
define the spin-triplet pair operators

bt,σ =ψ1,σ(x)ψ2,σ(x) . (126)
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We can calculate the pair correlator the same way as in the case of the spin-singlet pair, the
only difference is that we never encounter λσ(k) with mixed spins, the result is the same as
what is found for the spin-singlet pair correlator near the nematic QCP studied in the previous
subsection. This means that in a two-orbital system coupled to ferromagnetic fluctuations, we
also find a pairing instability in the spin-triplet channel in the N f → 0 limit.

5.3 Circulating current transition

The circulating current phase proposed by Simon and Varma [49] breaks lattice C4 rota-
tional symmetry and time-reversal symmetry. It requires a two component order parameter
φa = (φx ,φy) that couples to the fermions through a coupling function with p-wave symme-
try independently of spin: λa,σ(k)∝ ka [15]. As we only consider two antipodal patches in
the direction n̂ at a time we may simply consider a single φ corresponding to φa projected in
the n̂ direction. We then have λ+↑ = λ

+
↓ = −λ

−
↑ = −λ

−
↓ ≡ λn̂ and no cold-spots despite the p-

wave symmetry since we actually have a two-component order parameter. Again considering
Eq. (77), we find that fluctuations at the circulating current QCP lead to an instability. This
time in the charge/spin density channel at momentum Q = 2k f . Departing from the QCP but
still at T = 0, we find that the divergence in the charge and spin susceptibilities persists up to
a critical order parameter fluctuation gap rc , see Eq. (89):

rc =
λ4

n̂

π2c2v2
F

. (127)

Density fluctuations diverge upon approaching the T = 0, 0< r < rc interval either from finite
temperatures or larger gaps. A phase diagram is shown in Fig. 8. The interval terminates at a
new QCP where there now are large fluctuations at wave-vector Q = 2kF . These fluctuations
may give rise to important finite N f corrections, something we leave for the future to consider.

As in the above ferromagnetic case, we find that s-wave pairing is suppressed and there is
no superconducting instability at T = 0. In the ferromagnetic case this was due to the coupling
acting with different signs on the electrons with opposite spins making up a Cooper pair and
we saw that it is still possible to have triplet pairing in the ferrromagnetic case. In this case
the coupling is independent of spin, but it couples with opposite sign to fermions on opposite
sides of the Fermi surface and the coupling does not induce triplet pairing in this case.

5.4 Spin liquids: Emergent gauge field

As mentioned in the introduction, Eq. (1) can also describe fermions coupled to a U(1) gauge
field A which appears in models of spin liquids. The electric potential A0 is screened and can be
neglected [14]. By defining φa = Aa we can capture the interaction of the magnetic potential
and the fermions through our action Eq. (1) with the following choice of coupling function

λa(k) = e
ka

m
, (128)

where e is the coupling strength. The longitudinal part of Aa is set to 0 in the Coulomb gauge
(k·A= 0). Once we pick a direction n̂ and only consider patches k = ±kF n̂ we may thus neglect
An̂ and simply call the transverse component φ. We thus find that we have a similar coupling
function as in the case of a circulating current phase transition: λ+↑ = λ

+
↓ = −λ

−
↑ = −λ

−
↓ = evF .

Also in this case, there are no cold-spots since we picked the direction n̂ arbitrarily. At T = 0
we thus find that this system also has an instability towards forming charge/spin density waves
around Q = 2kF . Now r = 0 since φ is massless by gauge invariance and this instability is
present for arbitrarily weak but non-zero interaction strength e. This result is opposed to what
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Figure 8: Sketch of the N f → 0 phase diagram in the vicinity of a circulating current
(CC) QCP (red dot). The ordered phase (negative r) is not considered. Order pa-
rameter fluctuations near the CC QCP lead to an instability towards forming either
charge- or spin-density waves at T = 0. This happens for an interval (yellow) of
fluctuation gaps terminating at r = rc where there is an induced QCP (orange dot).
Approaching this interval from above leads to a diverging susceptibility indicated in
the green region.

is found in the (vector) large N f limit [14] where no antiferromagnetic instability is found at
T = 0. This model at T = 0 has also been studied at matrix large N in [18]. The authors
find that an instability at 2kF in the charge density is present at large N , but suspect that
the point of interest N = 2 may be stable. They proceed by considering a modified boson
dynamical critical exponent zb = 2 + ε (in our model zb = 3) and a combined limit where
both N →∞ and ε → 0. εN tunes the relative strength of the quasiparticle smearing that
suppresses instabilities and what they call “Amperean attraction" which enhances it. Taking
these limits, they find that whether the theory is unstable depends on the order of the two
limits. Whether the physically interesting case of N = 2, ε = 1 is unstable then depends on
what the ε–N phase diagram looks like.

Now we consider finite temperatures. The apparent IR divergence discussed in the para-
graph after Eq. (101) becomes relevant for this system since r = 0. We find that the N f → 0
spin liquid has the leading large distance pair correlator completely suppressed at finite tem-
peratures because of the divergence in the h± functions and it is entirely composed of the
subleading terms we have not considered in this work. Since the divergence is due to the
n= 0 Matsubara sum term, it is unaffected by the inclusion of Landau-damping.

The n= 0 terms in the h± functions cancel out in the charge (and spin) density correlator
exponent and it decays exponentially at long distances for all finite temperatures. Its precise
form is found by calculating the finite piece of the h± functions. However, since the correlator
grows exponentially in separation at T = 0 (or as 〈ρρ〉 ∼ exp(Ax1/3) when including Landau-
damping, see Eq. (119), (120)), we expect the charge and spin susceptibilities to diverge faster
than a power-law as T = 0 is approached and the τ, x cut-offs move to infinity as vF/T , see
end of Section 3.4.

5.5 Multiple critical points

We can easily consider a system close to multiple QCPs of different natures. Several types of
order parameter fluctuations give corrections to the fermions that have to be treated simulta-
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neously. As we see in Eq. (60) and Eq. (61), these corrections simply sum in the exponents.
We have seen interaction effects both suppress and enhance the long distance correlation func-
tions so it is possible that the instability induced at T = 0 near one QCP is cured by the vicinity
to another. Whether an instability shows up or not depends on the relative strengths of the
interactions in the long distance limit. This depends on the coupling strengths that are direc-
tion dependent so we consider a direction n̂ at a time. We find that the relevant strength of a
QCP is of the form

αa =
λ2

a,n̂

cavF
p

ra
, (129)

where a refers to the index on the corresponding order parameter field φa and λa,n̂ are the
relevant components of the interaction strength as defined in the above subsections. These
strengths are unaffected by the inclusion of Landau-damping corrections away from the QCP.
We find the following conditions for CDW/SDW and pairing instabilities:

αCC −αCN −αFM −αSN > π =⇒ CDW/SDW instability (130)

αCN −αCC −αFM −αSN > 0 =⇒ Spin-singlet pairing instability , (131)

where CN, FM, SN, CC refers to charge nematic, ferromagnetic, spin nematic and circulat-
ing current transitions, respectively. The effects of the different fluctuations are as expected
from the above subsections. α−1

a can be viewed as the effective distance to the QCP labeled
a. A three-dimensional phase diagram is shown in Fig. 9 with distances to charge nematic,
ferrromagnet and circulating current transitions on the axes.

Noting that the strengths αa, as defined, are always non-negative, we find that there is
no phase competition between the pairing state and the CDW/SDW states, only one of the
conditions above are satisfied at a time. However, we have only considered a single direction
n̂. The nematic fluctuations have cold spots and this means that we may have systems with
phase competition. I.e. they may show a CDW/SDW type instability when considering one part
of the Fermi surface and a pairing instability when considering another part and we cannot
resolve within the current framework which one is winning.

Phase non-coexistence/competition of antiferromagnetism (AF) and SC is also seen in un-
conventional SCs with AF Tc going to 0 at the point where SC Tc is optimal [5,50,51]. While
this may be indicative of AF fluctuations near an AF QCP enhancing superconductivity, we
find that another possible mechanism giving a similar result may be seen for an AF phase in
the vicinity of a nematic QCP. Pairing is most strongly enhanced right at the nematic QCP and
at the same point we find that the exponent in the power-law decay of the normal-state AF
correlator goes to −∞. It is not entirely clear how the interactions giving rise to the AF phase
would interact with the nematic fluctuations. However, if those interactions can be written
in the form of gapped CC fluctuations, then we find from the above that they are completely
outdone by the fluctuations at a nematic QCP and the AF state should disappear at or before
the nematic QCP where αCN =∞.

6 Discussion

In this paper we have investigated instabilities of fermions in two dimensions coupled to order
parameter fluctuations near different QCPs and emergent gauge fields, in the N f → 0 limit.
Taking this limit allowed us to calculate charge, spin and pair correlation functions at long
distances, x � 1/kF . First we considered a general model without specializing to a particular
system. While we were agnostic to the momentum dependence of the coupling functions, we
assumed an otherwise rotationally symmetric Fermi surface for convenience.
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Figure 9: This shows a T = 0 phase diagram for N f = 0 fermions coupled to three
different types of order parameter fluctuations. The three axes show the relative
strength of the order parameter fluctuations as defined by Eq. (129). The red region
shows an instability towards CDW/SDW and the blue region shows an instability
towards pairing. The empty region shows neither of these instabilities in the density
or pairing correlation functions. The vicinity of the CC and FM QCPs inhibit pairing
while the vicinity of the CN and FM QCPs inhibit the CDW/SDW instability.

We found expressions for correlators in terms of functions we label h±. They are responsi-
ble for interactions between fermions within a patch, and for interactions of fermions in oppo-
site patches, respectively. This means that h+ is solely responsible for quasi-particle smearing
effects while the attractive glue between fermions giving rise to pairing, CDW or SDW is gen-
erated by h−. We find an inequality, Eq. (67), that settles that the former effect is stronger.

We considered both gapped and critical fluctuations and zero and finite temperatures. We
found that an IR divergence in perturbation theory at finite temperatures for critical fluctua-
tions was cured by summing all diagrams in the small N f limit.

All considered correlation functions show exponential decays at large separations at finite
T and power-law behavior at T = 0, for finite gaps. We found that there are cases where the
powers are negative such that correlation functions show unphysical asymptotic growths at
long distances, but also milder cases with power-law decay where nonetheless static suscep-
tibilities diverge. We interpreted this as instabilities towards states where the corresponding
operator condenses at T = 0. We proceeded by calculating the behavior of susceptibilities as
T = 0 is approached from finite T .

Next we considered a modified boson propagator that includes the one-loop
Landau-damping correction. We show that also in this more general setup, as compared to
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[32], we can interpret this as the same controlled approximation in the double limit
N f → 0, N f kF = const. We find the inclusion of fermion loops with two vertices does not
change the asymptotic correlator decay lengths at finite T nor the exponent in the power-law
at T = 0. However, the long distance behavior right at the QCP was shown to be affected by
the inclusion of Landau-damping corrections and the constant prefactor and subleading terms
are affected by Landau damping.

The diverging susceptibilities are all proportional to N f which is taken to 0 here so one may
question whether the divergences indicate instabilities since we find them in the limit N f → 0.
We argue that for the purpose of studying the N f → 0 limit to get insights about the finite
N f case, these divergences should be taken seriously. Instead of defining the operators ρα
and b as sums over fermionic bilinear, we could have defined them as ψ†

0,αψ0,α and ψ0,↑ψ0,↓,
respectively, instead. Perhaps a bit awkward, but we could then consider susceptibilities of
such an operator as a function of N f and take N f → 0 to find that at least there, the suscepti-
bility diverges. This corresponds to the susceptibility in the N f = 1 case diverging, when only
summing diagrams without internal fermionic loops. We found that after adding all diagrams
with fermionic loops with only 2 vertices to this, the divergence of the susceptibilities around
(but not at) the QCP are unchanged. This hints that the region of diverging susceptibilities
might remain at finite N f . However, this is far from certain since two important effects in the
finite N f theory are missing in the N f → 0, N f kF = const limit: Firstly, internal fermion loops
with more than 2 vertices are missing. Secondly, the scaling of boson momenta obtained after
adding Landau-damping means that the curvature term in the fermion propagator becomes
relevant for non-planar diagrams below an energy scale ωβ . This energy scale is supressed
in the double limit, but is finite for finite N f and may change the long distance behavior of
correlators. However, it is possible to suppress this effect to very long distances by having
vF kF � λ2/c2.

Finally, in Section 5 we applied our findings to specific systems of fermions near QCPs to see
whether fluctuations induce instabilities in the N f → 0 limit. We considered charge nematic,
ferromagnetic, spin nematic and circulating current transitions, systems close to multiple of
these transitions and finally we also considered fermions coupled to an emergent gauge field.

One of the main reasons for studying this kind of model is the unexplained SC dome in
the vicinity of nematic transitions in the cuprates and iron pnictides. As mentioned in the
introduction, nematic fluctuations may both lead to a breakdown of quasiparticles that limit
pairing and they act as an attractive force inducing pairing. Here we found that the latter
effect wins and superconductivity is enhanced by nematic fluctuations in the small N f limit.
Furthermore we argued that the gap symmetry is non-universal, it depends on terms neglected
in the low-energy limit we are considering.

In the case of a continuous ferromagnetic or spin-nematic transition we found a naked
metallic QCP in the case with one fermion orbital. This is interesting since it admits the study
of strong NFL physics all the way to T = 0. The naked QCP is crucially single orbital and
it is thus not amenable to DQMC relying on two-orbitals to cancel the fermion sign-problem.
This makes an alternative approach like the small N f limit currently necessary to study this
naked QCP. In the case of two orbitals we find a spin-triplet SC groundstate as also develops
in DQMC as temperature is lowered [48]. The results near the rotation and time-reversal
symmetry breaking circulating current transition was maybe the most intriguing. Here we
find a phase diagram with a SDW/CDW state induced in a finite gap interval at T = 0 near
the original QCP and suppressed spin-singlet SC.

We made some comparisons to earlier studies on the same systems. Most interesting are
perhaps comparisons to DQMC results. While our results are largely consistent in what insta-
bilities we find, it is hard to make sharp comparisons at this stage. The results found here are
valid at distances� 1/kF while the sizes of systems amenable to DQMC are still quite limited.
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Additionally, the instabilities we find are only at T = 0 which is inaccessible to DQMC. One
could approach T = 0 and compare the growth of correlators but to do this we would need
to match the couplings of our field theory to the interactions in the lattice models studied us-
ing DQMC. Admittedly, the N f → 0 limit might be too far from the finite N f case to warrant
this type of comparison. However, DQMC provides an easy way to study the N f → 0 limit at
finite temperature. The acceptance-rejection probability within DQMC depends on the ratio
of fermion Green’s function determinants and by raising it to the power of N f , one can eas-
ily account for different values of N f . That way it should be possible to make contact with
the type of results we provide here and DQMC simulations. The benefit is two-fold, firstly it
provides a non-trivial way to benchmark DQMC simulations with analytical results. While the
analytic results are at N f = 0, it is still at a strongly interacting point not previously studied.
Secondly, it gives us a way to measure the effect of tuning N f that can shed light on whether
the phenomena found here are specific to N f = 0 or if they in some form extend to finite N f .

The fact that the k� kF part of the 〈ρρ〉 correlator receives no corrections from interac-
tions is an interesting result. This was also found in [52] and [36] due to cancellations upon
symmetrizing fermion loops with density vertices. We have generalized that result by allow-
ing for momentum dependent vertices and finite temperatures. This has prompted further
investigations that will be presented in [53].

When adding Landau-damping corrections to the boson with momentum dependent cou-
pling, we found that corrections from non-centrosymmmtric systems seem to disobey the ear-
lier belief [14,15] that only two patches are important. In this case we in fact find that fermions
receive relevant corrections from bosons that have relevant corrections from fermions in all
patches. This also warrants further investigation.

A surprising find is the curing of the finite temperature IR divergence in perturbation theory
since this was not found to be cured in the recent matrix large N treatment of the same model
in [41]. It would be interesting to understand whether the additional crossed diagrams cured
the divergence, or if there is some other difference between our works.

The framework developed in [27] and used here has proved to be quite convenient for
studying quantum critical metals, albeit at N f → 0. Many results can be found analytically
and the calculations are not more difficult than those in one-loop perturbation theory. In
particular we find the calculations easier than the much employed matrix large N limit that
contains a subset of the diagrams in the small N f limit. We believe it would be useful to
consider this framework further to develop an understanding similar to that of perturbation
theory. Specifically it would be interesting to systematically understand how properties of the
boson Green’s function affects the h± functions and what combinations of h± functions show
up in the exponents. For all the coupling functions we considered, and for all the fermion
bilinear correlators we considered, we did not find any quasi-long range order and we found
that the finite temperature IR divergence was cured. While not manifest, it seems likely that
these findings are more generally true, for all couplings and correlators. It would be interesting
to investigate whether this is the case, and what happens for other boson Green’s functions.
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A h± at the QCP

Calculating h± for τ= 0 at the QCP T = r = 0 we find

h+(0, x) =|x |

q

c2 − v2
F − vF cos−1

� vF
c

�

4πc(c2 − v2
F )3/2

(132)

h−(0, x) =− |x |
cos−1

� vF
c

�

4πcvF

q

c2 − v2
F

, (133)

for vF 6= c and for vF = c we have

h−(0, x) =−
|x |

4πv3
F

(134)

h+(0, x) =
|x |

12πv3
F

. (135)

Despite not manifestly so, these functions are continuous in vF at vF = c.

B Calculating h± with a gapped boson at zero temperature

Consider a gapped boson propagator D that after integrating over ky is continuous at
ω= 0, kx = 0:

∫

dky

2π
D(0,0, ky) = A<∞ , (136)

and further decays algebraically at large ω and kx .
We want to calculate the large τ, x behavior of the corresponding h±-functions at T = 0.

The h± integrals can be viewed as regularized, symmetrized Fourier transforms of the h± in-
tegrands without the numerator,

h±(τ, x) = lim
ε→0

�Fε[d±](τ,−x)
2

+
Fε[d±](−τ, x)

2
−Fε[d±](0, 0)

�

, (137)

where ε is a cutoff that regularizes the divergence at ω= kx = 0 and

d±(ω, kx) =
1

(iωn − vF kx)(−iωn ± vF kx)

∫

dky

2π
D(ω, kx , ky) . (138)

The unregularized Fourier transform diverges for all τ, x due to the singularity at ω= kx = 0
but the divergence is uniform so the subtraction of the τ = x = 0 component allows us to
remove the regulator ε. For any ε > 0, we have that d± is absolute square integrable when
using the same cutoff and so is its Fourier transform by the Plancherel theorem. This means
that the Fourier transform necessarily decays at large τ, x for any finite ε. This means that
if the h± functions were to not approach 0 at large τ, x , then the behavior at infinity can be
obtained from d±(ω, kx) for ω2 + k2

x < ε
2 for any ε > 0. We can thus use

h±(τ, x) =

∫

ω2+v2
F k2

x<ε
2

dωdkx

(2π)2
cos(ωnτ− kx x)− 1

(iωn − vF kx)(−iωn ± vF kx)
A+O

 

1
q

τ2 + x2/v2
F

!

, (139)
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to calculate the large τ, x limit for a gapped D at T = 0. We then find:

h+(τ, x) = finite (140)

h−(τ, x) = −
log(v2

Fτ
2 + x2)

4πvF
A+ finite . (141)

Here the finite part depends on how D(ω, kx , ky) behaves away from ω= kx = 0.

C Calculating h± at finite temperature

We calculate the n = 0 contribution to the h±(τ, x) functions at finite temperature for φ
propagator

D(ωn, kx , ky) =
1

ω2
n + c2k2

x + c2k2
y + r

. (142)

We find

h±n=0(x) = ∓T

∫

dkx

2π
cos(kx x)− 1

v2
F k2

x

1

2c
Æ

r + c2k2
x

= ∓T

2+ G2,1
1,3

�

r x2

4c2 |
3
2

0,1, 1
2

�

4πrv2
F

, (143)

where G is the Meijer G-function. In the large |x | limit we have

h±n=0(τ, x) =±
T

4cv2
F
p

r
|x |+ finite , (144)

and taking r → 0 we find

h±n=0(τ, x) = ∓
T x2

8πc2v2
F

log

�

r x2

c2

�

+ finite . (145)

Now we consider the double limit c/
p

r � x � vF/T . Using that the φ Green’s function
decays monotonically in |ωn| we can bound the h− Matsubara sum with T = 0 integrals on
both sides shifted by either an extra or a removed h−n=0 to obtain

|h−(τ, x)− h−T=0(τ, x)|< |h−n=0(x)| . (146)

Further we use that

0≤
∫

dky

2π
D(ωn, kx , ky)≤

1
2c
p

r
, (147)

to find

|h±n=0(x)|<
T |x |

4cv2
F
p

r
. (148)

We thus find that |h−T=0(τ, x)| in Eq. (141) is dominating this for c/
p

r � x � vF/T and
h−(τ, x)→ h−T=0(τ, x) in these limits.
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D Symmetrized loop cancellation

Here we show that to leading order in large kF , fermion loops with 3 or more vertices cancel
upon symmetrizing the vertices. We do this at a finite temperature T and allow for momentum
dependent vertices. We start off with two lemmas:

Lemma D.1. For n ∈ N, and n≥ 2 we have

n
∑

j=1

n
∏

i=1,i 6= j

1
zi − z j

= 0 , (149)

where zi ∈ C and zi 6= z j if i 6= j.

Proof. Consider a contour C at∞ that surrounds all poles:
∫

C
dz

n
∏

i=1

1
z − zi

= 2πi
n
∑

j=1

n
∏

i=1,i 6= j

1
z j − zi

. (150)

The contour integral is 0 for 2≤ n.

Definition D.1. We call a set of complex numbers Z nonexceptional if for every non-empty proper
subset Z0 ⊂ Z we have

n
∑

z∈Z0

z 6= 0 . (151)

Lemma D.2.

∑

σ∈Sn

n
∑

j=1

 

j
∑

l=1

wσ(l)

!

n
∏

i=1,i 6= j

1
∑ j

l=1 zσ(l) −
∑i

l=1 zσ(l)
= 0 , (152)

where wi , zi ∈ C, {zi} is nonexceptional and Sn is the symmetric group over the first n positive
integers.

See [54] for a proof of this identity. A simplified proof together with a generalization of
the following loop cancellation is to be published [53].

Now consider the finite termperature symmetrized fermion loop with n vertices with ex-
ternal momenta qi = (εi ,qi):

I = T
∑

σ∈Sn

∑

ωm

∫

d2k
(2π)2

n
∏

i=1

G(k+Qσi ) f (k+
Qσi−1 +Qσi

2
) , (153)

where ωm = (2m+ 1)πT are fermionic Matsubara frequencies, k = (ωm,k), and

Qσi =
i
∑

j=1

qσ( j) . (154)

By energy and momentum conservation we have Qσn = 0. The function f is the momentum
dependent coupling function and it varies between momenta of order kF . The momentum
integral is dominated by the region close to the Fermi surface. We restrict the momentum
integral to a patch P of the Fermi surface small compared to kF . The coupling function can
then be treated as a constant within this patch, with the corrections being next-to-leading
order in large kF . We then need to prove that the cancellation of the large kF leading order
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term happens after symmetrizing, but before summing up all different patches. We use patch
coordinates: kx across the Fermi surface and ky parallel to it and we linearize the Green’s
function:

GP(k) =
1

iωm − vF kx − vF k2
y/2kF

. (155)

First we integrate out kx with a contour around the upper half-plane.

IP = T
∑

σ∈Sn

∑

ωm

∫

P

dky

2π

n
∑

j=1

−iθ (ωm +Ωσj )

vF

×
n
∏

i=1,i 6= j

fP

i(Ωσi −Ω
σ
j )− vF (Kσx ,i − Kx , j)− vF ((ky + Kσy,i)

2 − (ky + Ky, j)2)/2kF

+ subleading , (156)

where θ is the Heaviside step functions. Now the ωm sum is trivial. The summand is
clearly 0 for ωm < min j(−Ω j). For ωm > max j(−Ωσj ) we find that the ωm-summand is of
the form

n
∑

j=1

n
∏

i=1,i 6= j

1
zi − z j

, (157)

and we can apply Lemma D.1 to find that it is zero there as well. We can thus restrict the ωm
sum to some upper cutoffωN >max j(−Ωσj ). The benefit is that each of the terms in the j sum
now converge and we can exchange the orders, perform the now restricted ωm sum to obtain

IP = f n
P

∑

σ∈Sn

∫

dky

n
∑

j=1

iΩσj
vF

×
n
∏

i=1,i 6= j

1
i(Ωσi −Ω

σ
j )− vF (Kσx ,i − Kσx , j)− vF ((ky + Kσy,i)

2 − (ky + Kσy, j)
2)/2kF

+ subleading . (158)

Here we have used Lemma D.1 again to get rid of the upper limit of the primitive function.
We note that this is now independent of temperature. Finally, we are interested in the large kF
limit. We cannot exchange the limit with the integral right away since the ky that are relevant
will grow with kF in the limit. We therefore make the change of variables ky → skF and we
have

IP =
ikF f n

P

vF

∑

σ∈Sn

∫

ds
n
∑

j=1

Ω j

×
n
∏

i=1,i 6= j

1

i(Ωi −Ω j)− vF (Kx ,i − Kx , j)− vF (K2
y,i − K2

y, j)/2kF − vF s(Ky,i − Ky, j)

+ subleading . (159)

Now it is safe to take the large kF limit of the integrand and we obtain an expression that it
is of the form of the sum in Lemma D.2. It thus cancels out to leading order in large kF upon
symmetrizing. Note that this happens before performing the ky integral. This argument is
made more rigorously and is further generalized in [53].
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E Calculating 1-loop boson polarization

For brevity, we consider spin- and flavorless fermions here. The one-loop boson polarization
is given by:

Π2[ f ](ωn,q) = −T
∑

ωm

∫

d2k
(2π)2

f (k+ q/2)
(iωm − ε(k) +µ)(i(ωm +ωn)− ε(k+ q) +µ)

. (160)

Performing the Matsubara sum we have

Π2[ f ](ωn,q) = −
∫

d2k
(2π)2

f (k+ q/2)
tanh

�

ε(k)−µ
2T

�

− tanh
�

ε(k+q)−µ
2T

�

2(iωn + ε(k)− ε(k+ q))
. (161)

The denominator vanishes at 2k = −q if ωn = 0 but the numerator also vanishes there so
the above integrand is finite and bounded as long as the coupling function is. We go to polar
coordinates k,θ where θ is the angle between k and q. The difference of the hyperbolic
tangent functions decays exponentially away from the Fermi surface with decay length T/vF .
We can thus linearize the dispersion, coupling function and integral measure around k = kF
for q, T/vF � kF and additionally we can extend the k integral to all of R:

Π2[ f ](ωn,q) = −
∫

dkdθ
(2π)2

f (θ )
tanh

�

vF (k−kF )
2T

�

− tanh
�

vF (k−kF+q cos(θ ))
2T

�

2(iωn − vF q cos(θ ))
+ subleading .

(162)

Performing the k integral we find

Π2[ f ](ωn,q) = −
kF q
(2π)2

∫

dθ
f (θ ) cos(θ )

iωn − vF q cos(θ )
+ subleading . (163)

We find that this is q independent and generally non-zero for ωn = 0. This means that in-
teractions generate a boson gap but we have already considered a gap r so we can simply
absorb this in a redefinition of r. We continue to work with the polarization with this constant
subtracted and define:

Π̃2[ f ](ωn,q) = −
ikFωn

(2π)2vF

∫

dθ
f (θ )

iωn − vF q cos(θ )
. (164)

We now expand the function f in Fourier series according to Eq. (112) and discard the sin(θ )
terms since they are odd under the θ integral:

Π̃2[ f ](ωn,q) =−
ikFωn

(2π)2vF

∫

dθ
1

iωn − vF q cos(θ )

∞
∑

m=0

fm cos(mθ ) . (165)

We write the fraction as a geometric series to obtain

Π̃2[ f ](ωn,q) =−
kF

(2π)2vF

∞,∞
∑

l=0,m=0

∫

dθ
�

vF q cos(θ )
iωn

�l

fm cos(mθ ) . (166)

Here we strictly have to assume vF q < |ωn|, but we later see that we can extend the result
through analyticity inωn. We expand the cosine power using the binomial theorem and finally
the θ integral is trivial.

∫

dθ cos(θ )l cos(mθ ) = 2−1−l

∫

dθ
l
∑

k=0

�

l
k

�

ei(2k−l)θ (eimθ + e−imθ ) (167)

=

¨

2−lπ
�

� l
l+m

2

�

+
� l

l−m
2

�

�

if l ≥ |m| and m≡ l mod 2

0 otherwise
. (168)
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Finally we perform the l sum to obtain:

Π̃2[ f ](ωn,q) =−
kF |ωn|

2πvF

q

ω2
n + q2v2

F

∞
∑

m=0

fm

 

−i sgn(ωn)vF q
q

ω2
n + q2v2

F + |ωn|

!m

. (169)

This is manifestly analytic in ωn away from the imaginary axis so we may use this also for
vF q > |ωn|.

F Real space resummed 1-loop boson polarization

Here we calculate the Fourier transform of the resummed bubbles of Eq. (110).

〈ρρ(x)〉bubbles =
1
λ2

∫

dωd2q
(2π)3

e−iωτ+iq·x
∞
∑

n=1

Π̃2[λ
2](ω, q)nD(ω, q)n−1 . (170)

Here Π2(ω, k) is the 2-vertex fermion loop with density vertices, see Eq. (113). Instead of
performing the geometric sum we do the Fourier transform term by term. Going to polar
coordinates for the spatial integral and performing the angular integral we have

〈ρρ(x)〉bubbles =
1
λ2

∫

dωdq
(2π)2

qJ0(qx)e−iωτ
∞
∑

n=1

 

−
λ2kF |ω|

2πvF

q

ω2 + q2v2
F

!n
1

(ω2 + c2q2 + r)n−1
,

(171)

where J0 is the zeroth Bessel function of the first kind. Considering |τ| � r−1 and x � vF r−1

we are only interested in energies and momenta k� rv−1
F and |ω| � r and we can approxi-

mate the boson propagator as 1/r2. We can then perform the k integral

〈ρρ(x)〉bubbles,LR(τ, x) =

∫

dω
2π

e−iωτ
∞
∑

n=1

2−
n
2 nm2

�

−M2
D

m2

�n �
xω
vF

�
n+2

2 K n
2−1

�

xω
vF

�

λ2 x2Γ
� n

2 + 1
� , (172)

where

M2
D =

N f kFλ
2

2πvF
. (173)

Finally we perform the ω integral and the sum in n

〈ρρ(x)〉bubbles,LR(x) =
vF r

2π3/2λ2 x2X 3

∞
∑

n=0

�

−
M2

D x

rX

�n
�

x2 − nτ2v2
F

� Γ
� n+1

2

�

Γ
� n

2

� (174)

=
r2M2

DvF

�

2x2X 2
�

M4
D − r2

�

+ r2X 4 −M4
D x4

�

2π2λ2 xX 2
�

M4
D x2 − r2X 2

�2 (175)

+
r2M4

DvF

�

r2
�

x2 − 2τ2v2
F

�

−M4
D x2

�

cos−1
�

M2
D x

rX

�

2π2λ2
�

r2X 2 −M4
D x2

�5/2
, (176)

where

X =
q

x2 + v2
Fτ

2 . (177)

This decays as (x2 + v2
Fτ

2)−3/2 at large x and τ.
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G Calculating h± with Landau-damping corrections

We want to calculate the h± functions with a corrected boson propagator

DLD(q) =
1

ω2 + c2(q2
x + q2

y) + r −Π2[λ(θ )2](q)
, (178)

with Π2[λ(θ )2](q) given by Eq. (113). For T = 0, 0 < r we can use the result of Appendix B
since D is gapped and still decays at least algebraically for large energies and momenta. We
proceed to finite temperatures. Eq. (97) still applies and we need only consider the n = 0
contribution. However, the boson self-energy is 0 forωn = 0 so there is no difference from the
non-Landau damped case apart from in the finite part.

Finally we consider the QCP. Here we use a simplified propagator

DIR(q) =
1

c2q2
y +M2

D
|ω|
qy

, (179)

motivated by the low-energy scaling in Eq. (114) to find the large x limit (y = 0 so we neglect
qx above) and verify the result using numerics and the full propagator. We find:

hLD
+ (0, x) =− |x |1/3

Γ
�2

3

�

3
p

3πM2/3
D v4/3

F

+ finite (180)

hLD
− (0, x) =− 3hLD

+ (0, x) + finite , (181)

at the QCP.
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