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Abstract

We give a general description of the interplay that can occur between local and global
anomalies, in terms of (co)bordism. Mathematically, such an interplay is encoded in
the non-canonical splitting of short exact sequences known to classify invertible field
theories. We study various examples of the phenomenon in 2, 4, and 6 dimensions. We
also describe how this understanding of anomaly interplay provides a rigorous bordism-
based version of an old method for calculating global anomalies (starting from local
anomalies in a related theory) due to Elitzur and Nair.
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1 Introduction

Anomaly inflow relates fermionic anomalies to quantum field theories in one dimension higher.
In the perturbative case the anomaly theory has a lagrangian description via Chern–Simons
terms, while the non-perturbative generalization involves the exponentiated η-invariant [1–3]
of Atiyah, Patodi, and Singer [4–6]. This idea forms the root of a more general understanding
that any anomalous theory can be described by a relative field theory [7] between an extended
field theory in one dimension higher, called the anomaly theory, and the trivial extended field
theory [8–11]. The anomaly theory is typically a rather special type of quantum field theory,
namely an invertible one.1

In many cases the anomaly theory will also be topological. Then the anomaly theory corre-
sponds to a map of spectra. It was proven in [11] that deformation classes of such invertible,
topological theories are classified by the torsion subgroup of homotopy classes of such maps.2

Unfortunately, perturbative anomalies due to massless chiral fermions are not of this type be-
cause the Chern–Simons anomaly theory is not strictly topological, having a mild dependence
on the background metric [15]. Nonetheless, it is conjectured [11] that a broader class of phys-
ically sensible invertible theories (i.e. the reflection positive ones), not necessarily topological,
are still classified up to deformation by the homotopy classes of maps between spectra – only
now non-torsion elements should be included. Such non-torsion elements are required to de-
scribe perturbative fermionic anomalies, whose coefficients are in general arbitrary integers.
In the case of fermionic anomalies, the torsion elements capture global anomalies (which, in
the absence of local anomalies, are described by genuinely topological anomaly theories).

This formal classification of invertible field theories, and thus of anomaly theories, natu-
rally encodes a possible interplay between global and local anomalies, which is the subject of
this paper. While it has become well known that global anomalies in d spacetime dimensions
are detected by the torsion subgroup of a bordism group in degree d + 1, it is perhaps less
widely appreciated that the local anomalies are also detected by bordism invariants, albeit in
one degree higher still. The two parts are naturally combined into a dual ‘cobordism group’3

via a short exact sequence, which coincides precisely with the group of homotopy classes of
maps of spectra appearing in the classifications of Freed and Hopkins [11].

1In fact, invertibility is not a strict requirement for an anomaly theory, at least for a certain mathematical
definition of anomalies in terms of relative quantum field theory. An example of a non-invertible anomaly theory
is provided by the six-dimensional N = (2,0) superconformal field theory [9,12]. However, in such examples the
partition function of the original theory is ill-defined even when the background fields that couple to the anomalous
symmetry are turned off, and so they do not chime with the usual physics definition of an anomaly. We are content
to exclude such examples, and assume invertibility of the anomaly theory in this paper.

2Classifying such topological and invertible field theories therefore reduces to computations in stable homotopy
theory (see e.g. [13,14] for examples).

3We will clarify our usage of the word cobordism, as opposed to bordism, in Section 2.
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Like the universal coefficient theorem in ordinary cohomology, these short exact sequences
defining the cobordism groups split, meaning the most general anomaly ‘factors’ into its global
and local parts, although crucially this splitting is not canonical. This last property allows for
an interplay between the global and local anomalies of theories with different symmetries (for
example between two gauge theories whose gauge groups are related by some obvious map,
such as inclusion of a subgroup). Specifically, local anomalies in one theory can pullback to
global anomalies in the other. (The converse is not possible.) Physically, such a pair of theories
might be related to each other along an RG flow. This includes, but is not restricted to, the
familiar situation whereby only a subgroup of the microscopic symmetries are linearly realised
at low energies due to spontaneous symmetry breaking.

Two examples of this interplay were recently observed in U(2) vs. SU(2) × U(1) gauge
theories in four dimensions [16], defined with or without spin structures. In the spin case, a
bordism computation reveals that the U(2) theory cannot suffer from global anomalies,4 but
nonetheless a U(2) theory with a perturbative anomaly can pullback to an SU(2) theory with
a global anomaly. We emphasize that the idea of such an interplay is, however, far from new.
For an early example of its use, Elitzur and Nair [17], following Witten [18], showed how
the global 4d SU(2) anomaly [19] can be derived from a perturbative anomaly in SU(3) and
extended the method to anomalies in higher dimensions. For another well-known example,
Ibañez and Ross derived anomalies in discrete Z/k gauge symmetries, which are necessarily
global anomalies, from local anomalies in U(1) [20,21]. It is the recent progress in classifying
invertible field theories that allows one to make a precise algebraic statement of such interplay
in terms of cobordism, and to see that it is a generic property of the space of anomaly field
theories. One application of this formalism is therefore to provide a proper bordism-based
version of Elitzur and Nair’s suggestion that global anomalies can be precisely derived from
perturbative anomalies in some larger group.

In §2 we explain how anomaly interplay is encoded in the non-canonical splitting of a short
exact sequence that classifies invertible field theories. As a corollary we describe a method for
computing global anomalies (or anomalies in subgroups) using this idea. In the rest of the
paper we discuss a number of examples exhibiting the phenomenon of anomaly interplay,
ascending the ladder of increasing dimension. We begin by analyzing the interplay between
anomalies in U(1) and Z/2 gauge theories in two dimensions, followed by the examples of
U(2) gauge theories in four dimensions that were recently analyzed in [16]. We close just as
we begin, with an example of anomaly interplay between U(1) and Z/2 gauge theories, but
this time in six dimensions. Other examples from recent [22, 23] and not-so-recent [17, 20]
references are also discussed from the point of view of our formalism.

2 The generalities of anomaly interplay

We are concerned in this paper with anomalies that arise from integrating over massless chiral
fermions in d spacetime dimensions, assuming Euclidean signature. The anomaly theory A

is in this case a reflection positive invertible field theory in d + 1 dimensions, but not neces-
sarily a topological one. Specifically, its partition function is the exponentiated η-invariant
associated to an appropriate (d + 1)-dimensional extension of the Dirac operator, where the
η-invariant is a regularised sum of the signs of the eigenvalues λk of the Dirac operator. A
possible regularization is

ηX = limε→0+

∑

k

e−ε|λk|sign(λk)/2 . (2.1)

4Note that π4(U(2)) ∼= Z/2 implies there are homotopically non-trivial large gauge transformations in U(2);
but the bordism computation means this cannot lead to a global anomaly.
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When evaluated on an open (d + 1)-manifold X , the phase exp 2πiηX equals the phase of
the anomalous partition function living on the d-dimensional boundary ∂ X [3]. If exp2πiη
equals unity on all closed d+1 manifolds to which the necessary structures are extended, then
there is no anomaly. In the case where there are only global anomalies, the anomaly theory is
strictly topological; in fact exp2πiη becomes bordism invariant under these conditions, which
is stronger than topological invariance.

Such invertible field theories in n := d + 1 dimensions fit inside a formal classification in
terms of maps of spectra, conjectured by Freed and Hopkins in Ref. [11]. Before we discuss
the physics of anomaly interplay, we must first recap some technicalities of their conjecture.
The classification of invertible field theories depends on two pieces of data; the spacetime
dimension n and the symmetries of the theory. Following [11], the symmetry type (Hn,ρn) of
an Euclidean quantum field theory consists of a compact Lie group Hn and a homomorphism

ρn : Hn→ O(n) , (2.2)

whose image (either O(n) or SO(n) ⊂ O(n)) constitutes the Wick-rotated spacetime symme-
tries, and whose kernel K defines the internal symmetries of the theory.5 Given a fixed sym-
metry type (Hn,ρn), the deformation classes [·]def of reflection positive, invertible extended
field theories in n spacetime dimensions are classified by homotopy classes of maps of spec-
tra [11, Conjecture 8.37],

[A]def ∈ [M T H,Σn+1 IZ] . (2.3)

Here, the source spectrum M T H is the Madsen–Tillman spectrum associated to a stabilization
H of the symmetry type Hn. This stabilization is a dimension-independent way of describing
the symmetry type of the theory, which is technically defined to be the colimit of a sequence
of compact Lie groups Hm (for all m > n) that fit inside a commutative diagram of group
homomorphisms,

Hn
in−−−−−→ Hn+1

in+1−−−−−→ Hn+2
in+2−−−−−→ . . .

ρn





y

ρn+1





y

ρn+2





y

O(n) −−−−−→ O(n+ 1) −−−−−→ O(n+ 2) −−−−−→ . . . ,

(2.4)

where all the horizontal arrows denote injections, and the squares are pullbacks. This sequence
of symmetry groups can be used to construct a sequence of Madsen–Tillman spectra M T Hn
whose colimit is the spectrum M T H that appears in (2.3). For the mathematical definitions of
all these objects, we are content to refer the reader to [11]. For our purposes, it is important
to emphasize that the object M T H encodes the specific information about the symmetries of
the theory.

The target spectrum Σn+1 IZ that appears in (2.3), on the other hand, is a universal object,
in particular a suspension shift of the Anderson dual IZ of the sphere spectrum. Reflection
positivity is required for the corresponding Lorentzian field theory to be unitary.

The massless chiral fermion anomaly theories that we are interested in fit inside this clas-
sification, with n = d + 1 and symmetry H – although we should stress that not every such
deformation class in [M T H,Σd+2 IZ] can be realised as the anomaly theory from free chiral
fermions.6 In other words, if we cut a (d+1)-dimensional bulk theory with such an invertible
phase, then we are not guaranteed a boundary theory of free chiral fermions in d dimensions.

5The assumption of compactness means that this formalism cannot account for non-compact internal symme-
tries or supersymmetries. Nor does the symmetry type take into account higher-form symmetries.

6In particular [11, Conjecture 9.70], the free fermion anomalies correspond to a subset of maps of spectra from
M T H to Σn+1 IZ, namely those that factor through a sequence of KO-theory groups.

4

https://scipost.org
https://scipost.org/SciPostPhys.10.3.074


SciPost Phys. 10, 074 (2021)

Exact sequences of anomaly theories

The universal target spectrum IZ represents a particular generalized cohomology theory, call it
H•IZ. In cohomological language, a deformation class of anomaly theory, for symmetry type H
and original spacetime dimension d (of the anomalous fermionic theory), is then a degree d+2
class in the H•IZ cohomology of the spectrum M T H. As described in [10,11], this generalized
cohomology group sits inside a short exact sequence, analogous to the universal coefficient
theorem for ordinary cohomology,

0→ Ext1(πd+1(M T H),Z) −→ Hd+2
IZ (M T H) −→ Hom(πd+2(M T H),Z)→ 0 , (2.5)

where πk denotes stable homotopy groups. This exact sequence will be central to our discus-
sion, since it determines how a general anomaly is built out of both global and local parts. The
exact sequence splits, though not canonically (as we discuss soon).

Let us unpack this short exact sequence in a special case of particular interest, namely
where fermions are defined using a spin structure and charged under gauge group G.7 In this
case, a suitable stabilization of the symmetry type is

H = Spin× G , (2.6)

where Spin= colimn→∞Spin(n), and the stable homotopy groups that appear in (2.5) coincide
with bordism groups,

πk(M T H)∼= ΩSpin
k (BG) . (2.7)

For this reason it makes sense to refer to the generalized cohomology theory H•IZ as a cobordism
theory. In this paper we therefore reserve the word ‘cobordism’ to refer only to the (Anderson)
dual of bordism, a terminology which is not standard in the mathematical literature (wherein
the generalized homology theory that we exclusively refer to as ‘bordism’ was originally intro-
duced under the name ‘cobordism’).

Now, the left factor of the exact sequence (2.5) can here be written as

Hom(TorΩSpin
d+1(BG),R/Z) . (2.8)

This group detects global anomalies because, as previously mentioned, the exponentiated η-
invariant that appears as the phase of the fermionic partition function [3] becomes a bordism
invariant when perturbative anomalies vanish [1–3,24,25], and the global anomalies will be
of finite order.

To understand how local anomalies are captured by the cobordism group in (2.5), consider
now the case where ΩSpin

d+1(BG) vanishes (which means there is no possible global anomaly).
The anomaly theory can then be computed on any closed (d+1)-manifold X using the Atiyah–
Patodi–Singer (APS) index theorem [4–6] on a (d + 2)-manifold Y whose boundary is X , and
to which the Spin×G structure extends. We have exp2πiη(X ) = exp 2πi

∫

Y Φd+2, where Φd+2
is the anomaly polynomial (which coincides, locally, with the exterior derivative of the Chern–
Simons form in degree d + 1). This corresponds to the image of the deformation class of this
anomaly theory in the group

Hom(ΩSpin
d+2(BG),Z) , (2.9)

which appears as the right factor of the exact sequence (2.5) defining the cobordism group
Hd+2

IZ (M T (Spin× G)). (Note that
∫

Y Φd+2 is constant on bordism classes simply by virtue of

Stokes’ theorem, and so does provide a well-defined map out of ΩSpin
d+2(BG).) Exactness of the

7The examples in §§4, 5.1, 6, 7.1, and 8 fall within this class. The examples in §§5.2 and 7.2 do not, however
the generalization of the corresponding bordism groups is straightforward.
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sequence in the middle means that, when the local anomalies vanish, there may still be non-
trivial global anomalies and that these correspond precisely to the image of the (injective) map
from the left factor into Hd+2

IZ (M T H).
Before continuing, it is important to remark that the generalized cohomology groups

Hd+2
IZ (M T H) classify only the deformation classes of anomaly theories, not (isomorphism

classes of) anomaly theories themselves. Said more prosaically, the right factor of the exact
sequence (2.5) can only measure rather coarse information about the local anomaly, namely
the anomaly coefficients, and not the differential form Φd+2 itself. Recall that the fermionic
anomaly theory exp 2πiη is a section of the inverse determinant line bundle associated to
the Dirac operator [2]. The perturbative anomaly can be calculated by taking a holonomy of
the determinant line bundle around a contractible loop in the parameter space (see e.g. [26]
for one account of this perspective). The fully non-perturbative factor of exp2πiη arises
more generally from the holonomy around any given loop over the parameter space, and
so can capture both global and local anomalies. The complete information describing the
anomaly theory is thus encoded in the holonomies of a principal line bundle over the pa-
rameter space, equivalently in a principal line bundle with connection (up to isomorphism).
Therefore one really needs to use a differential cohomology theory, specifically a differential
refinement of H•IZ(M T H),8 to describe the local anomalies properly. Nonetheless, for the
purpose of analysing the interplay between global and local anomalies, we find that the ‘topo-
logical’ theory H•IZ(M T H) will suffice.

Anomaly interplay as non-canonical splitting

We have seen that the short exact sequence (2.5) tells us how a general fermionic anomaly
is put together out of global and local pieces, each of which are classified (up to deformation
class) using bordism data. We now discuss the interplay between local and global anomalies
in related theories.

To do so, we must first explain what exactly we mean by ‘related’ theories. We have seen
that deformation classes of anomalies are essentially determined by two inputs, a spectrum
M T H (given a stabilization H of the symmetry type) and a spacetime dimension. It is there-
fore natural to introduce “morphisms” between theories of the same dimension by specifying
appropriate maps between two underlying symmetry types H and H ′. Now, maps of spectra
constitute the usual notion of morphisms in the category of spectra, which is the appropriate
domain for the cohomology functor H•IZ. So an appropriate morphism between theories ought
to correspond to a map of spectra π : M T H → M T H ′. One way to construct such a map of
spectra is to provide a sequence of group homomorphisms πn : Hn → H ′n on the underlying
symmetry types, which commute with the homomorphisms (in,ρn) of Eq. (2.4). This induces
maps between the spaces of the Madsen–Tillman spectra that commute with the structure
maps, thus giving a function between spectra ergo a map of spectra.

In special cases such as (2.6) where the symmetry type factors into a product of a space-
time symmetry and an internal symmetry that is independent of the dimension n, and where
H and H ′ share the same spacetime symmetry, one can replace the set of homomorphisms πn
by a single homomorphism π between the internal symmetry groups. This suggests a con-
venient abuse of notation, in which we frequently use the shorthand π : H → H ′ to denote
the set of homomorphisms on the underlying H-structures that give rise to the map of spectra
π : M T H → M T H ′.

Continuing, given a pair of symmetry types H and H ′ and such a π : H → H ′, there is
a pullback π∗ : H•IZ(M T H ′) → H•IZ(M T H) between anomaly theories. Indeed, there is a

8This differential refinement could be constructed using the tools set out in [27].
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pullback diagram for the whole short exact sequence (2.5),

0 −−−−−→ Ext1(πd+1(M T H),Z) −−−−−→ Hd+2
IZ (M T H) −−−−−→ Hom(πd+2(M T H),Z) −−−−−→ 0

π∗

x



 π∗

x



 π∗

x





0 −−−−−→ Ext1(πd+1(M T H ′),Z) −−−−−→ Hd+2
IZ (M T H ′) −−−−−→ Hom(πd+2(M T H ′),Z) −−−−−→ 0 ,

(2.10)

which is a commutative diagram. Like the universal coefficient theorem in ordinary cohomol-
ogy, the short exact sequence for H•IZ splits, but the splitting is not canonical. This means
that, while there exist splitting maps for each row of (2.10), i.e. homomorphisms going hor-
izontally from right to left, these splitting maps do not give rise to commutative squares. We
remark that the same pullback diagram (2.10) was recently used in [28] to study gauged
Wess–Zumino–Witten terms from a bordism perspective.

In many of the ensuing examples, we will be interested in the special case of (2.10) where
both symmetry types H and H ′ involve a spin structure, as in (2.6). Then the anomaly interplay
diagram can be written in terms of spin bordism groups as

0 −−−−−→ Hom(TorΩSpin
d+1(BG),R/Z) −−−−−→ Hd+2

IZ (M T H) −−−−−→ Hom(ΩSpin
d+2(BG),Z) −−−−−→ 0

π∗

x



 π∗

x



 π∗

x





0 −−−−−→ Hom(TorΩSpin
d+1(BG′),R/Z) −−−−−→ Hd+2

IZ (M T H ′) −−−−−→ Hom(ΩSpin
d+2(BG′),Z) −−−−−→ 0,

(2.11)

where the various bordism groups can often be straightforwardly computed using, say, the
Atiyah–Hirzebruch or the Adams spectral sequence.

To illustrate how this non-canonical splitting might manifest itself, we will frequently en-
counter scenarios where the pullback of exact sequences takes the following form

0 −−−−→ Global −−−−→ Hd+2
IZ (M T H) −−−−→ 0 −−−−→ 0

x



 π∗

x





x





0 −−−−→ 0 −−−−→ Hd+2
IZ (M T H ′) −−−−→ Local′ −−−−→ 0

(2.12)

in which a non-zero element in Local′, corresponding to a local anomaly in the second theory,
can pullback to a non-zero element in Hd+2

IZ (M T H) (by first following the splitting map to
the left, then pulling back the anomaly theory along π∗ in the middle column), which must
correspond to a global anomaly in the first theory.9 We will study many examples of this
scenario in this paper, for example in §5 in which H = Spin× SU(2) (which has only global
anomalies for d = 4) and H ′ = Spin×U(2) (which has only local anomalies), with π : H → H ′

defining the usual embedding of SU(2) as a subgroup of U(2).
Importantly, the ‘reverse’ situation in which a global anomaly pulls back to a local anomaly

is not possible. Suppose the theory H ′ theory has only global anomalies, and the H theory has
only local anomalies, where again π : H → H ′ denotes a group homomorphism. There is a
commutative diagram

0 −−−−→ 0 −−−−→ Hd+2
IZ (M T H) −−−−→ Local −−−−→ 0

x



 π∗

x





x





0 −−−−→ Global′ −−−−→ Hd+2
IZ (M T H ′) −−−−→ 0 −−−−→ 0.

(2.13)

9We emphasize that, were the splitting canonical, the right-hand square of (2.12) with its horizontal arrows
reversed would be commutative, which would imply the composite map just described were the zero map. Thus
if the split were canonical there would be no possibility of anomaly interplay.
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Here the anomaly pullback map π∗ must be the zero map, forbidding any anomaly interplay,
because π∗ is a homomorphism from a finite abelian group into a free one, and thus zero. For
a physics example, consider embedding H = Spin× U(1), which has only local anomalies, as
the Cartan of H ′ = Spin × SU(2), which has only global anomalies. Any SU(2) theory with
a global anomaly necessarily pulls back to a U(1) theory that is free of local anomalies; an
SU(2) doublet, say, decomposes to a pair of opposite charged particles under the Cartan U(1)
subgroup.

Thus, completely generally, the possibilities for pulling back a local or global anomaly are

Local anomalies
pullback
−−−−→ Local and/or global anomalies,

Global anomalies
pullback
−−−−→ Global anomalies only.

The first option corresponds to what we call ‘anomaly interplay’.
A crucial step in this analysis of anomalies is the pulling back of a particular anomaly theory,

which corresponds to finding the pullback map π∗ : H•IZ(M T H ′) → H•IZ(M T H). Precisely
because of anomaly interplay, this cannot simply be achieved by pulling back the local and
global anomalies separately and then combining the two via a Cartesian product. Alas, we
will not in this paper give a general ‘formula’ for this pullback map for any pair of symmetry
types. However, in specific cases we often find that it can be computed using simple arguments.

Finding the anomaly pullback map turns out to be especially simple in a rather important
special case, namely where

1. H is a subgroup of H ′, with π : H → H ′ the embedding,

2. the H ′ theory has only local anomalies and the H theory has only
global anomalies, as indicated by Eq. (2.12), and

3. the dimension d of the original anomalous theory is even.

(2.14)

Most of the examples we examine in this paper fall into this class (see §§ 5, 6, and 7).
Computing the pullback map between anomaly theories is simple under these conditions

in large part because it becomes straightforward (in either theory) to explicitly evaluate the
anomaly theory on an arbitrary closed (d + 1)-manifold (with appropriate H-structure). For
the theory with only local anomalies, the vanishing of Hom(TorΩH ′

d+1,R/Z) implies ΩH ′
d+1 = 0

because, in odd degrees, such spin bordism groups are pure torsion. Therefore, the APS in-
dex theorem can be used to evaluate exp2πiηX = exp 2πi

∫

Y Φd+2 for any closed (d + 1)-
manifold X = ∂ Y , for any potentially-anomalous fermion representation R′ of H ′. To pull-
back this anomaly theory,10 it suffices to decompose into representations of the subgroup, viz.
R′ →

⊕

αRα, and then evaluate exp 2πiηX on all closed (d + 1)-manifolds with H structure
for the representations Rα. This is in principle straightforward given the assumption that H is
free of local anomalies, because in that case exp 2πiηX is constant on bordism classes, and so
we need only evaluate exp 2πiηX on each generator of the (finitely-generated) bordism group
ΩH

d+1, for each Rα. This last step is often easier said than done; however, in the particular
examples in §§ 5, 6, and 7, we will for the most part get away with using known results.

10The observant reader will quite rightly object that we have not strictly pulled back the anomaly theory just by
evaluating it on closed top manifolds – indeed we also need to evaluate the theory on manifolds of codimension
1, codimension 2, and so on, to fully specify the extended field theory.
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3 Physics applications

3.1 Deriving global anomalies

The procedure just described for pulling back the anomaly theory can be turned around to
give a new method for computing global anomalies, and the conditions for their cancellation,
starting from purely local anomalies in a ‘π-related’ theory. We envisage this as being an
important application of our rather formal treatment of anomaly interplay.

The general idea is as follows. Suppose we identify a symmetry type H for which the
bordism group ΩH

d+1 is non-vanishing torsion, giving the possibility of a global anomaly. To
compute the global anomaly one must evaluate the η-invariant on each generator of ΩH

d+1,
which is likely a hard task. But suppose one can embed H as a subgroup of some H ′, and
for simplicity let us assume that the set of conditions (2.14) hold. This induces an injection
π∗ : MH

d+1→MH ′
d+1 from a set of closed (d + 1)-manifolds with H structure MH

d+1 to a set of

closed (d+1)-manifolds with H ′ structure MH ′
d+1 . Let X ∈MH

d+1 be a representative of a gen-
erator of ΩH

d+1. By assumption (2.14), π∗X , whose H structure is viewed as an H ′ structure,
is nullbordant, i.e. the boundary of a (d + 2)-manifold Y to which the H ′ structure extends.
One can then evaluate on π∗X the anomaly theory for a representation R′, which we pick to
correspond to a generator of the group Hom(ΩH ′

d+2,Z) classifying local anomalies, using the
APS index theorem, viz. exp 2πiη(π∗X ,R′) = exp2πi

∫

Y Φd+2[R′]. Since we can view η as a

function (on its first argument) from MH ′
d+1 to R, its pullback π∗η, which is the eta-invariant

for the H theory, is defined as π∗η = η ◦ π∗. Therefore, exp2πi
∫

Y Φd+2[R′] must equal
exp (2πi(π∗η)(X ,

⊕

αRα)) =
∏

α exp (2πi(π∗η)(X ,Rα)). Thus, if the phase
exp

�

2πi
∫

Y Φd+2[R′]
�

= exp 2πi/k 6= 1, then there is a global anomaly in the original H
theory for the set of representations Rα. Moreover, if the phase exp 2πi/k is of maximal order
in ΩH

d+1 then we have identified a generator of the global anomaly, and can derive the general
conditions for cancelling the global anomaly.

Although described abstractly here, we will put to work this method for deriving global
anomalies in §§4–8. For example, we will see how the general condition for cancelling the 4d
SU(2) global anomaly can be derived by computing only local anomalies in either U(2) (§5) or
SU(3) (§6). In the 2d example of §4 we will use this method to evaluate the exponentiated η-
invariant on a generator of the bordism group ΩSpin

3 (BZ/2)∼= Z/8 from scratch, by embedding
Z/2 inside U(1) and thence using only perturbative anomalies.

The idea to derive global anomalies from perturbative anomalies in larger groups was first
proposed as a method for analyzing global anomalies by Elitzur and Nair in [17],11 following
Witten [18]. However, that paper preceded the modern popularization of the use of bordism
invariants to study anomalies,12 and certainly preceded widespread knowledge of the exact
sequence (2.5) used to classify reflection positive invertible field theories which is crucial to
our arguments here. Instead, the main algebraic tool used in [17] was an exact sequence of
homotopy groups (with spacetime accordingly assumed to have spherical topology13). This
was applied, for example, to derive the 4d SU(2) global anomaly for an SU(2) doublet, eval-
uated on a spacetime M ∼= S4, from the perturbative anomaly for the triplet representation of
SU(3). In §6 we recast this analysis using the bordism-based version of anomaly interplay set
out in this paper. This bordism-based method, which results in a condition on the anomaly

11The homotopy-based method of [17] has also been applied more recently to analyze global anomalies in
d = 8 [29].

12It is worth emphasizing that the crucial observations regarding bordism are not so modern, going back almost
as far as Elitzur and Nair’s homotopy-based work, to Ref. [1].

13No such requirement is made in the bordism version which, in accordance with locality, allows for arbitrary
spacetime topology.
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polynomial reduced mod 2 (via the APS index theorem), is powerful enough to derive the full
condition for cancelling the SU(2) anomaly on any manifold, and given arbitrary fermion con-
tent. (The condition is that the total number of SU(2) multiplets with isospins j ∈ 2Z≥0+1/2
should be even.) Moreover, the method is arguably more straightforward, with no need to
consider homotopy classes of specific gauge field configurations.

From this perspective, one purpose of the present paper is to give a rigorous bordism-based
version of Elitzur and Nair’s method for computing global anomalies, or more generally for
computing any anomalies in subgroups.

We also want to stress that, despite giving the correct results in various examples, com-
puting homotopy groups does not offer a direct way to detect global anomalies, which are
correctly detected by bordism (in one degree higher). Thus, it is perhaps not surprising that
homotopical methods have been erroneously applied to postulate various 6d global anoma-
lies, for G = SU(2), SU(3), and G2.14 (A quick bordism calculation reveals that none of these
theories can in fact suffer global anomalies.)

3.2 Anomaly matching

We have described one use of anomaly interplay as a technical method for computing global
anomalies from anomaly polynomials, in which the larger gauge group H ′ is a mathematical
device. From a physics perspective, the maps π∗ which we use to pullback anomaly theories
can often be interpreted in terms of renormalization group (RG) flows. This will be the case
in several of the examples we consider in the rest of this paper. When a quantum field theory
flows under RG there are various ways in which the symmetry type can change. The most
well-known is that some symmetries may become spontaneously broken at low energies, typ-
ically leading to massless Goldstone bosons if the broken symmetry were global, and gauge
bosons acquiring mass in the case of spontaneously broken gauge symmetries. There are,
however, more exotic possibilities; for example, certain theories feature a global symmetry
enhancement at high energies (famously this occurs in 5d supersymmetric gauge theories, as
originally conjectured in [33]). The changing symmetry type could also involve the spacetime
symmetry structures; for example, coupling a Spin-SU(2) theory to certain Higgs fields can
trigger an RG flow that dynamically generates a spin structure in the IR [34].

In the case of spontaneous symmetry breaking, the IR will exhibit a subgroup GIR ⊂ GUV
of the UV symmetries. There is always an injective homomorphism π : GIR → GUV defining
the embedding of a subgroup, which can be used to analyze anomalies (and their interplay)
along this RG flow.15 The pull-back maps π∗ in (2.10) then go in the other direction, and
so determine a homomorphism from the full anomaly in GUV to the anomalies in the sub-
group GIR. By the arguments above, this generically involves an interplay between local and
global anomalies. In the case that (2.10) describes ’t Hooft anomalies in global symmetries,
in which the RG flow is between consistent quantum field theories, the constraint of anomaly
matching then means that any residual anomalies must be matched by the bosonic degrees of
freedom that emerge in the IR, via Wess–Zumino–Witten terms. The non-perturbative version
of this mechanism, which is needed in the present context to include any global anomalies,
was discussed in [35].

14The absence of these 6d anomalies is discussed in Refs. [30,31], building on [32]. More generally, the role of
homotopy groups in detecting global anomalies has been re-examined in [30].

15In rare cases there might also exist a group homomorphism going the other way, viz. π : GUV → GIR. For
example, if GUV is a finite abelian group, then any subgroup of IR symmetries can be realised as the image of a
homomorphism. Given the pullbacks π∗ go in the opposite direction, this could in principle allow one to determine
a finite UV anomaly from the finite anomaly in the IR. If G is a simple group, however, then the image of any
homomorphism out of G is either zero or all of G.
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4 2d anomalies in U(1) vs. Z/2

For our first concrete example, we discuss the anomaly interplay between Z/2 and U(1) gauge
theories in two dimensions, each defined using a spin structure. Let the map π : Z/2→ U(1)
denote the usual embedding of Z/2 ⊂ U(1) which maps the non-trivial element of Z/2 to eiπ.
This naturally induces the map π : H = Spin× Z/2→ H ′ = Spin× U(1) between symmetry
types.

Bordism account of the anomalies

To compute the short exact sequences (2.5) that capture all possible anomalies for these the-
ories in two dimensions, we need to compute the torsion subgroup of Ω3 and the free part of
Ω4 for each symmetry type. The relevant bordism groups for the H theory are16

Ω
Spin
3 (BZ/2)∼= Z/8, Ω

Spin
4 (BZ/2)∼= Z , (4.1)

leading to anomalies classified by the short exact sequence

0→ Z/8→ Z/8×Z→ Z→ 0 . (4.2)

Unlike many of the examples of anomaly interplay that will be discussed later on, the cobor-
dism group here detects both a global and a local anomaly. However, this particular local
anomaly is already present in a fermionic system without any internal symmetry. This can be
seen from the fact that there is a canonical splitting ΩSpin

4 (BZ/2) ∼= ΩSpin
4 (pt)⊕ Ω̃Spin

4 (BZ/2),
where the second direct summand is the reduced bordism group, and ΩSpin

4 (pt) ∼= Z, a gener-
ator for which is the K3 surface. The dual factor of Z appearing in (4.2) is therefore a pure
gravitational anomaly. Indeed, we know that without any extra symmetry the 4th anomaly
polynomial Φ4 does not vanish, but is given by −p1/24, where p1 is the first Pontryagin class
of the tangent bundle. One may identify the anomaly theory with the 3d gravitational Chern–
Simons term.

On the other hand, the relevant bordism groups for H ′ are

Ω
Spin
3 (BU(1)) = 0, Ω

Spin
4 (BU(1))∼= Z×Z . (4.3)

A general local anomaly is thus classified by two integers, which in this case one can take to be
just the U(1) anomaly coefficient Agauge and the pure gravitational anomaly coefficient Agrav.
Consider an arbitrary spectrum of charged fermions, consisting of a set of NL left-moving Weyl
fermions with charges q1, . . . , qNL

together with NR right-moving Weyls with charges r1, . . . , rNR
.

The anomaly coefficients are given by

Agauge =
NL
∑

i=1

q2
i −

NR
∑

i=1

r2
i ,

Agrav = NL − NR .

(4.4)

Note that in 2 dimensions, unlike in 4, conjugating a complex fermion does not flip its chirality;
hence we cannot now take all the Weyls to be left-moving without loss of generality.

16We remark that this Z/8-valued global anomaly, for a 2d theory with unitary Z/2 symmetry, is related to a
parity anomaly for (0+1)-dimensional Majorana fermions [36]. This can be understood in terms of the Smith
isomorphism ΩSpin

3 (BZ/2)∼= ΩPin−

2
∼= Z/8 [37] (see also [38]).
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The anomaly interplay

We now study the anomaly interplay between Z/2 and U(1) gauge theories in 2d. As usual,
the subgroup embedding π : Z/2→ U(1) induces a map of spectra π : M T H → M T H ′ as well
as a pullback diagram for the anomaly theories,

0 −−−−→ Z/8 −−−−→ Z/8×Z −−−−→ Z −−−−→ 0
x



 π∗

x





x





0 −−−−→ 0 −−−−→ Z×Z −−−−→ Z×Z −−−−→ 0,

(4.5)

which encodes an anomaly interplay between a U(1) local anomaly and a global anomaly
in the Z/2 theory through the pullback π∗. The gravitational anomaly, corresponding to the
second factor in ΩSpin

4 (BU(1))∼= Z×Z, maps to itself under π∗, playing no role in the interplay.
This will always be the case for pure gravitational anomalies whenever we consider a pair H
and H ′ of symmetry types that differ only in their internal symmetry groups.

To work out how the pullback acts on the first factor, we consider the generic fermion
spectrum coupled to a 2d U(1) gauge field described above, and begin by making some simple
arithmetic observations. To wit, let the NL left-moving Weyl fermions split into N e

L fermions
with even charges 2ki , i = 1, . . . , N e

L and N o
L fermions with odd charges 2li + 1, i = 1, . . . , N o

L .
Similarly, let the NR right-moving Weyl fermions divide into N e

R fermions with even charges
2k′i , i = 1, . . . , N e

R , and N o
R fermions with odd charges 2l ′i + 1, i = 1, . . . , N o

R . The gravitational
anomaly cancellation condition requires that the index NL − NR vanishes. In terms of our
variables, this reads

(N e
L − N e

R) + (N
o
L − N o

R ) = 0 . (4.6)

The U(1) gauge anomaly cancels when Agauge = 0, which in these variables translates to the
condition

4





N e
L

∑

i=1

k2
i −

N e
R

∑

i=1

k′2i +
N o

L
∑

i=1

li(li + 1)−
N o

R
∑

i=1

l ′i(l
′
i + 1)



+ N o
L − N o

R = 0 . (4.7)

The second condition immediately implies that the index for the oddly-charged Weyl fermions
must be a multiple of 4, viz.

N o
L − N o

R ∈ 4Z . (4.8)

Now consider a Z/2 subgroup of this U(1) gauge group. It acts on a fermion with charge
q as (−1)q. In other words, fermions with even U(1) charges decouple from this Z/2 gauge
field, and only the oddly-charged fermions can contribute to the Z/8 global anomaly encoded
in (4.2). Since the anomaly pullback map π∗ is a homomorphism it maps zero to zero, and
thus maps any anomaly-free spectrum to another. So if a single left-moving, Z/2-charged Weyl
fermion contributes an anomaly equal to ν mod 8, then our considerations in the previous
paragraph imply that 4ν = 0 mod 8. Thus, the elementary algebra above tells us that either
ν = 0, 2 or 4 mod 8. To see which of these maps is the correct one, we should evaluate the
η-invariant on a generator of the appropriate bordism group for a single Z/2-charged Weyl
fermion. The novelty here is that, by exploiting the interplay with U(1) anomalies, we can
do so simply by integrating an anomaly polynomial, following the arguments set out in §3.1.
We thereby derive the conditions for global anomaly cancellation in the Z/2 theory from local
anomaly cancellation in U(1). We now turn to this calculation.
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Computing the η-invariant via anomaly interplay

One choice for the generator of ΩSpin
3 (BZ/2) ∼= Z/8 is the manifold RP3 equipped with the

nontrivial Z/2 bundle (for which the Z/2-valued holonomy equals −1 for the non-trivial ho-
motopy class of loop in RP3 ∼= SO(3)). However, there is another choice of generator for
this bordism group that is more convenient to work with in the current context, which can be
constructed as a mapping torus for the original 2d theory as follows.17 Consider first a 2-torus
T2 for which θ ∼ θ + 2π and χ ∼ χ + 2π are local ‘coordinates’, with the spin structure
corresponding to antiperiodic boundary conditions chosen in both directions, and where T2

is equipped with a nontrivial Z/2 background gauge field with holonomy minus one around
cycles that wrap the θ coordinate, and holonomy zero otherwise.18 Now consider a cylinder
T2 × [0, 1], with t a coordinate on the unit interval, and glue together its two ends to form a
three-dimensional mapping torus M3 by identifying

(θ ,χ, 1)∼ (θ − 2χ,χ, 0) , (4.9)

as well as imposing the anti-periodic spin structure along the new cycle parametrized by t.19

One cannot realise this mapping torus as the boundary of a 4-manifold with both theZ/2 gauge
bundle and the spin structure extended; in other words, this mapping torus is in a nontrivial
bordism class of ΩSpin

3 (BZ/2)∼= Z/8. In fact, it may be taken as a generator of the Z/8.
If one embeds the Z/2 background inside a flat U(1) connection, then one must be able to

extend all structures to a 4-manifold bounded by the mapping torus M3 because
Ω

Spin
3 (BU(1)) = 0. Moreover, computing the exponentiated η-invariant associated with such

a U(1) connection must equal that for the original Z/2 background, by pullback. This will
ultimately allow us to derive the Z/8-valued global anomaly in the discrete gauge theory from
the local U(1) anomaly, which can be evaluated using the APS index theorem (and hence by
simply integrating differential forms over the bounding 4-manifold).20

Our task is thus to embed the Z/2 connection inside U(1), and extend both the U(1)
connection and the spin structure from the mapping torus described above to a 4-manifold
that it bounds. An appropriate flat U(1) connection on M3 with nontrivial holonomy (equal
to −1) only along cycles that wrap the θ direction is simply

A(θ ,χ, t) =
1
2

dθ . (4.10)

We now extend the mapping torus to a 4-manifold X4 by filling in a 2-disk D2, with radial
coordinate r ∈ [0,1], that is bounded by the cycle wrapping the θ coordinate. A suitable
extension of the U(1) connection to X4 is then

A(r,θ ,χ, t) =
1
2

rdθ + (1− r)tdχ. (4.11)

Note that one cannot simply extend the connection as A(r,θ ,χ, t) = rdθ/2 to the whole of X4
because it is incompatible with the construction of the mapping torus, since

17We thank Philip Boyle Smith for a helpful discussion concerning the construction of this mapping torus.
18Equivalently, we consider a “Z/2 defect” along cycles which wrap the χ coordinate.
19This mapping torus is not homeomorphic to a 3-torus, as can be seen by computing the homology groups

H1(M3;Z)∼= Z2 ×Z/2 and H2(M3;Z)∼= Z2. We thank Philip Boyle Smith for sharing this computation with us.
20If we had instead chosen the manifold RP3 with non-trivial Z/2 bundle to represent the generator of

Ω
Spin
3 (BZ/2) ∼= Z/8, one must be able to extend all structures to a 4-manifold it bounds in a similar fashion by

embedding Z/2 ⊂ U(1). Indeed, the construction of such a nullbordism is here known, with RP3 being the asymp-
totic infinity of the simplest type of asymptotically locally Eucliden (ALE) space [39–41], which is topologically a
disk bundle over S2. The integral of the anomaly polynomial on this 4-manifold was computed in Ref. [42], and
agrees with our computation of the exponentiated η-invariant on the ‘mapping torus’ M3 (see Eq. (4.12)), as it
must by bordism invariance. We thank the anonymous journal referee for bringing these results to our attention.

13

https://scipost.org
https://scipost.org/SciPostPhys.10.3.074


SciPost Phys. 10, 074 (2021)

A(r,θ ,χ, 1) = rdθ/2 is not gauge equivalent (in the bulk) to A(r,θ−2χ,χ, 0) = (r/2)dθ−rdχ.
(Using Eq. (4.11), we have A(r,θ ,χ, 1) = r(dθ/2− dχ) + dχ ∼ A(r,θ − 2χ,χ, 0), which does
respect the gluing condition.)

With this U(1) connection on X4 in hand, which reduces to the desired connection on the
M3 boundary, we are now in a position to evaluate the exponentiatedη-invariant exp 2πiη(M3).
Firstly, it is straightforward to show that

1
8π2

∫

X4

F ∧ F =
1

8π2

∫

X4

(1− r)dr ∧ dθ ∧ dt ∧ dχ =
1
4

. (4.12)

Choosing a single Weyl fermion with odd charge under U(1), corresponding to a fermion
charged under the originalZ/2 (we assume an uncharged fermion of opposite handedness can-
cels the gravitational anomaly discussed above), the anomaly polynomial is Φ4 = F ∧ F/8π2.
The APS index theorem therefore gives

exp (2πiη(M3)) = exp

�

2πi
1

8π2

∫

X4

F ∧ F

�

= exp
�

2πi
4

�

, (4.13)

and so the originalZ/2-charged single Weyl fermion is associated with a mod 4 global anomaly.
Going back to our anomaly pullback map π∗, we learn that the Z/2-charged Weyl fermion

has an anomaly
νWeyl = 2 mod 8 , (4.14)

and so the anomaly pullback map π∗ is given by

π∗ : H4
IZ (M T (Spin× U(1)))∼= Z×Z→ H4

IZ (M T (Spin×Z/2))∼= Z/8×Z :
�

Agauge,Agrav

�

7→
�

2Agauge mod 8,Agrav

�

.
(4.15)

In contrast to all the other examples we discuss below, the pullback is not surjective. This is
simply because a single Z/2-charged Majorana–Weyl fermion, which is known to generate the
mod 8 anomaly, cannot be embedded as a representation of Spin(2)× U(1); rather, we need
at least of pair of such Majorana–Weyls to compose a fundamental Weyl fermion of the U(1)
gauge theory. Viewing the anomaly interplay as a tool for calculating the global anomaly in the
Z/2 gauge theory, we therefore only learn from our computation that a single Majorana–Weyl
fermion contributes an anomaly of

νMaj = 1 or 5 mod 8 , (4.16)

and there is no way to decide between these two answers using this particular anomaly inter-
play.21 Nonetheless, the conditions for cancelling the global anomaly can still be inferred from
this computation, because we learn (in either case) that the anomaly for a single Majorana–
Weyl is order 8. Therefore 8 such fermions (of the same chirality) are needed to cancel the
anomaly. More generally, the mod 8 anomaly counts the number of left-moving Majorana–
Weyl fermions minus the right-moving ones.

This conclusion, which we have derived from a purely local U(1) anomaly using the inter-
play diagram (4.5), agrees with other examples of Z/8 anomalies in fermionic system with a
unitary Z/2 symmetry [43, 45, 46], where a Majorana–Weyl fermion that couples to the Z/2
symmetry contributes the finest anomaly of 1 mod 8.

21The answer, which corresponds to evaluating the η-invariant for a single Majorana–Weyl on the mapping torus
M3 described above (alternatively, on RP3 with non-trivial Z/2 bundle, to which M3 is bordant), is νMaj = 1 mod 8.
This can be computed by other means [43], for example by a CFT calculation [44].
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5 4d anomalies in U(2) vs. SU(2)

5.1 The spin case

For our next example, we move up two dimensions and revisit the anomaly interplay be-
tween U(2) and SU(2) gauge theories in d = 4, each defined using a spin structure [16] (see
also [47]). The map π : SU(2)→ U(2) will denote the usual embedding of SU(2) ⊂ U(2) as
the subgroup of 2-by-2 unitary matrices that have determinant one.

Bordism account of the anomalies

Similar to before, we need to compute the torsion subgroup of Ω5 and the free part of Ω6,
for each G, in order to compute the short exact sequences (2.5). Computations using spectral
sequences (see Refs. [23,47,48]) yield

Ω
Spin
5 (BSU(2))∼= Z/2, Ω

Spin
6 (BSU(2))∼= Z/2 , (5.1)

for SU(2), and
Ω

Spin
5 (BU(2)) = 0, Ω

Spin
6 (BU(2))∼= Z3 , (5.2)

for U(2). The short exact sequences are thus, with SU(2) along the top row and U(2) along
the bottom row, simply

0 −−−−→ Z/2 −−−−→ Z/2 −−−−→ 0 −−−−→ 0
x



 π∗

x





x





0 −−−−→ 0 −−−−→ Z3 −−−−→ Z3 −−−−→ 0.

(5.3)

For SU(2) the vanishing of the right factor accords with there being no local anomaly, but there
is the Z/2-valued global anomaly discovered by Witten [19]. This global anomaly cancels if
and only if there is an even number of fermions with SU(2) isospins in the set 2Z≥0 + 1/2.

For G = U(2), the vanishing of Ω5 means that there is no global anomaly, even though
π4(U(2)) = Z/2, associated with a homotopically non-trivial large gauge transformation in
the SU(2) subgroup.22 However, there are local anomalies when G = U(2), and we next
describe explicitly how these are also detected (up to deformation class) by bordism, only
now it is the free part of the bordism group in degree d + 2= 6.

The local anomaly for G = U(2) is classified by three integers which are linear combi-
nations of the three anomaly coefficients: (i) the cubic U(1) anomaly Acub, (ii) the mixed
U(1) × SU(2)2 anomaly Amix, and (iii) the U(1)-gravitational anomaly Agrav. Supposing
there are N j fermions transforming in isospin- j representations of U(2), with U(1) charges
{q j,α} ≡ 2 j (mod 2)23 for α = 1, . . . , N j , denoted symbolically by a general U(2) representa-

tion ρ =
⊕

j
⊕N j

α=1(2j+1, q j,α), these anomaly coefficients can be written

Acub =
∑

j

(2 j + 1)
∑

α

(q j,α)
3,

Amix =
∑

j

T ( j)
∑

α

q j,α,

Agrav =
∑

j

(2 j + 1)
∑

α

q j,α ,

(5.4)

22This is another example that shows how naïve homotopy-based reasoning can swiftly lead to incorrect conclu-
sions regarding global anomalies [30].

23This ‘isospin-charge relation’ that links the U(1) charge to the SU(2) isospin is a consequence of the Z/2
quotient in the definition of U(2)≡ (SU(2)× U(1))/Z/2.
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where T ( j) = 2
3 j( j + 1)(2 j + 1) is the SU(2) Dynkin index.

To find a basis of linear combinations of these three anomaly coefficients that can be used
as labels for the U(2) local anomaly, we need to find a basis for Hom(ΩSpin

6 (BU(2)),Z) dual

to the bordism group ΩSpin
6 (BU(2)). In terms of the first Pontryagin class p1 of the tangent

bundle and the Chern classes c1, c2 of the U(2) bundle, we can choose our basis to be

α1 = c3
1, α2 = −

1
2

c1c2, α3 =
1
6

�

c3
1 −

1
4

p1c1

�

. (5.5)

To see this, first note that Hom(ΩSpin
6 (BU(2)),Z)⊗Q is isomorphic to H6(BSpin× BU(2);Q),

which is generated by p1∪ch1 (henceforth just p1ch1), ch1∪ch1∪ch1 (henceforth just ch3
1), and

ch3, where p1 is the first Pontryagin class and ch1, ch3 are the first and third Chern characters
of the U(2) bundle. So a basis for Hom(ΩSpin

6 (BU(2)),Z) must consist of three independent
rational linear combinations of p1ch1, ch3

1, and ch3 that are integral. They can be found by
evaluating the anomaly polynomial, which is integral by virtue of the Atiyah–Singer index
theorem, on various U(2) representations. Our choice of basis above arises from considering
the anomaly polynomial with representations (1, 2), (1, 4) and (2, 1), and expressing the Chern
characters in terms of Chern classes.

One set of generators of the bordism group ΩSpin
6 (BU(2)) that are dual to the basis

{α1,α2,α3} are as follows. Firstly, a manifold dual to α1 is (CP3, c), the complex projective
3-space equipped with a U(2) bundle whose first Chern class c1 is given by the canonical gen-
erator c ∈ H2(CP3;Z), and whose second Chern class c2 = 0. (This corresponds to embedding
the canonical complex line bundle over CP3 inside a U(2) bundle.) Secondly, a manifold dual
to α2 is the direct product manifold HP1×CP1 ∼= S4×S2, equipped with a U(2) bundle corre-
sponding to a 1-instanton on the S4 and a 2-monopole on the S2. More precisely, the bundle
has c2[S4] = −1 and c1[S2] = 2. We denote this generator by S4

1 × S2
2 . Lastly, a manifold dual

to α3 is CP1 × CP1 × CP1 ∼= S2 × S2 × S2, equipped with a U(2) bundle corresponding to a
1-monopole on each factor, that is, the first Chern class is given by c1 = a1 + a2 + a3 where
ai ∈ H2(CP1;Z) is the canonical generator of the second integral cohomology group of each
2-sphere factor. We denote this generator by S2

1 × S2
1 × S2

1 . The dual pairing between these
three generators and α1,α2,α3 is given by

α1[(CP3, c)] = 1, α1[S
4
1 × S2

2] = 0, α1[S
2
1 × S2

1 × S2
1] = 6 ,

α2[(CP3, c)] = 0, α2[S
4
1 × S2

2] = 1, α2[S
2
1 × S2

1 × S2
1] = 0 ,

α3[(CP3, c)] = 0, α3[S
4
1 × S2

2] = 0, α3[S
2
1 × S2

1 × S2
1] = 1 .

(5.6)

A general element of the group Hom(ΩSpin
6 (BU(2)),Z) can then be recast in terms of

the more familiar anomaly coefficients (5.4) by integrating the (appropriately normalized)
anomaly polynomial Φ6 = Âtrρ exp(F/2π)|6, where Â is the Dirac genus of the tangent bun-
dle, F is the U(2) field strength, and ρ is the representation specified above. By expanding F
in terms of the U(1) field strength f and SU(2) field strength F via24

F = f
2

12 + F , (5.7)

and expanding Â in terms of the first Pontryagin class p1, we can express the anomaly polyno-
mial as

Φ6 =
1
3!

trρ

� F
2π

�3

−
1

24
p1trρ

F
2π
=Acub

1
48

�

f
2π

�3

+
Amix

4
f

2π
tr
�

F
2π

�2

−
Agrav

48
p1

f
2π

, (5.8)

24We use the convention that f /2π represents the first Chern class c1 of U(2).
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where the anomaly coefficients are given in Eq. (5.4). By writing f /2π = c1 and
tr (F/2π)2 = −2c2 + c2

1/2, the anomaly polynomial for the representation ρ can be expressed
in terms of the basis {α1,α2,α3} as

Φ6 =
Acub − 4Agrav + 6Amix

48
α1 +Amixα2 +

Agrav

2
α3 . (5.9)

Thus, Hom(ΩSpin
6 (BU(2)),Z) should be identified with

Zα1 ⊕Zα2 ⊕Zα3 ,

an element of which is labelled by the following three linear combinations of the anomaly
coefficients,

(r, s, t) =
�

1
48

�

Acub − 4Agrav + 6Amix

�

,Amix,
1
2
Agrav

�

. (5.10)

For example, a fermion transforming under U(2) as an SU(2) singlet with U(1) charge q = 2
corresponds to a local anomaly in the deformation class (0,0, 1) ∈ H6

IZ(M T (Spin×U(2)))∼= Z3.

Deducing the anomaly interplay maps

The commutative diagram (5.3) will encode a non-trivial anomaly interplay ifπ∗ is not the zero
map, meaning that a local U(2) anomaly can pullback to a global anomaly in SU(2). To see
that this is the case, it suffices to consider a fermionψ transforming in the U(2) representation

ψ∼ (2, q), q ∈ 2Z+ 1 , (5.11)

i.e. as a doublet under the SU(2) subgroup. The vanishing of ΩSpin
5 (BU(2)) implies that any

closed 5-manifold X equipped with spin structure and a U(2) gauge bundle is the boundary
of a 6-manifold Y to which these structures extend. Hence on X = ∂ Y the anomaly theory for
this representation evaluates to exp

�

2πi
∫

Y Φ6

�

by the APS index theorem.
The U(2) representation (5.11) is associated with a trio of local anomalies, correspond-

ing to the element ((q3 − q)/24, q, q) ∈ Hom(ΩSpin
6 (BU(2)),Z) ∼= H6

IZ(M T (Spin× U(2))). To
pullback this element to H6

IZ(M T (Spin× SU(2)))∼= Z/2 along π∗, we decompose (5.11) into
representations of the subgroup, here simply (2, q)→ 2, and evaluate the anomaly theory for
a single SU(2) doublet on an arbitrary closed 5-manifold. Because the free part of the 6th

bordism group of SU(2) vanishes (i.e. because there are no local anomalies), it is sufficient to
evaluate the exponentiated η-invariant on the generator of the bordism group ΩSpin

5 (BSU(2)).
We know that a suitable generator of ΩSpin

5 (BSU(2)) is a mapping torus S4×g S1 that is glued
together using a homotopically non-trivial gauge transformation g(x) ∈ π4(SU(2)), on which
exp

�

2πiηS4×gS1

�

= −1 for the doublet representation. (This equals the phase accrued by
the fermionic partition function under this gauge transformation, as originally computed by
Witten using spectral flow [19].) Thus, we know that the pullback map π∗ between anomaly
theories is such that Z3 3 ((q3 − q)/24, q, q) 7→ 1 ∈ Z/2, which already tells us that π∗ is a
surjection. Performing a similar calculation for an arbitrary U(2) fermion representation, one
can deduce that the anomaly pullback map is

π∗ : H6
IZ (M T (Spin× U(2)))∼= Z3→ H6

IZ (M T (Spin× SU(2)))∼= Z/2 :
�

1
48

�

Acub − 4Agrav + 6Amix

�

,Amix,
1
2
Agrav

�

7→Amix mod 2 .
(5.12)

As a result, the splitting maps in (5.3) do not give rise to commuting squares, on either the
left or right, which is the mathematical statement of this anomaly interplay.
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Reversing the logic: using interplay to derive the SU(2) anomaly

In the account just given, we deduced what the anomaly pullback map was by first decom-
posing representations of the locally-anomalous theory into representations of SU(2), then
invoking a known result for exp2πiη evaluated on a 5-manifold in the non-trivial bordism
class of ΩSpin

5 (BSU(2)) ∼= Z/2. Now, as demonstrated in §4 for a 2d example, one can in fact
turn the argument around to derive the conditions for global anomaly cancellation in the SU(2)
theory from local anomaly cancellation in U(2).

The first step is to view a representative of the generator of ΩSpin
5 (BSU(2)) ∼= Z/2 as a

manifold with a Spin× U(2) structure by embedding the SU(2) connection inside U(2). The
result must be nullbordant as a U(2) bundle because ΩSpin

5 (BU(2)) = 0. One may choose this
representative to be the original mapping torus S4 ×g S1 of Witten, described above. But due
to bordism invariance, we are free to make alternative, simpler choices of representative in the
same bordism class. In particular, we consider a mapping torus X = S4 × S1, equipped with
an SU(2)-connection Ainst with instanton number one through the S4 factor, and a periodic
spin structure along S1 [34]. This choice of spin structure corresponds to implementing a
transformation by (−1)F , or equivalently a constant gauge transformation by −1 ∈ SU(2),
upon going once round the mapping torus. To appreciate why this manifold is not nullbordant,
it is perhaps enlightening to at least explain why naïve extensions, in which we fill in either
the S1 or the S4 with a 2- or 5-disk, do not succeed; the former cannot be done because the
periodic spin structure corresponds to the non-trivial class in ΩSpin

1 (pt)∼= Z/2, while the latter
cannot be done due to the non-zero instanton number threading the S4.25

This discussion also makes it clear why, when considered as a U(2) bundle, both the gauge
bundle and spin structure can be extended straightforwardly to a 6-manifold bounded by this
mapping torus. To see this, we first observe that the twist by (−1)F can be encoded in the U(2)
connection, via

Aφ =
1
2

dφ12 + Ainst , (5.13)

where the coordinate φ ∈ [0, 2π) parametrizes the S1 direction, and Ainst denotes the SU(2)
1-instanton field configuration on S4. Crucially, this allows us to take the anti-periodic spin
structure around the S1 factor, corresponding now to the trivial class in ΩSpin

1 (pt). Moreover,
the U(2) gauge bundle can also be extended to a six-manifold Y = S4×D2, where D2 denotes
a hemisphere bounded by the S1 factor in X (so that ∂ Y = S4 × S1), by taking the U(1)
component f of the U(2) field strength as defined in (5.7) to be that of a magnetic monopole
with charge g = 2 placed at the centre of the hemisphere (see Fig. 1 for a cartoon illustration).
More precisely, we take D2 to be one half of a 2-sphere S2 with c1[S2] =

∫

S2 f /(2π) = 2.
This completes the construction of an explicit nullbordism for the SU(2) mapping torus by
embedding SU(2) ⊂ U(2).

With a suitable nullbordism Y in hand, we can then evaluate the anomaly theory for the
(2, q) representation using the APS index theorem, by which our task reduces to the integration
of a differential form,

exp
�

2πiη(M × S1)
�

= exp

�

2πiq

∫

D2

1
2

f
2π

∫

M

1
8π2

tr F ∧ F

�

= exp (iπq) = −1 , (5.14)

where we used the fact that the monopole is spherically symmetric to write
∫

D2 f /(2π) = c1[S2]/2 in the penultimate step, and that q is necessarily odd in the last step.

25These particular ‘obstructions’ are encoded in the second page of the Atiyah–Hirzebruch spectral sequence
used to compute ΩSpin

d (BSU(2)); the stabilisation of this spectral sequence indeed reveals that it is impossible to
construct any nullbordism for this mapping torus.
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Figure 1: Schematic illustration of the extension of the mapping torus S4 × S1 to the 6-
manifold S4 × D2, made possible by embedding SU(2) as a subgroup of U(2).

By pullback, this must equal the evaluation of the SU(2) anomaly theory for the doublet rep-
resentation on the original mapping torus, which therefore suffers from a Z/2-valued global
anomaly. By repeating the exercise for other representations, one learns that in general the
anomaly pullback map π∗ is given by (5.12). Hence, the SU(2) anomaly vanishes if and only
if

Amix =
∑

j

T ( j)
∑

α

q j,α = 0 mod 2 , (5.15)

for the U(2) local anomaly. Now, T ( j) is odd if and only j ∈ 2Z≥0 + 1/2, and for these half-
integral isospins q must be odd, so this equation becomes [16]

∑

j∈2Z≥0+1/2

1= 0 mod 2 , (5.16)

which, upon decomposing to irreps of SU(2), is precisely the condition for SU(2) anomaly
cancellation. This amounts to a rigorous derivation of the SU(2) anomaly constraint using the
APS index theorem for nullbordant manifolds in U(2), which is arguably easier than computing
η on non-trivial bordism classes in the original theory. Because the most general anomaly in
the SU(2) theory is classified by H6

IZ(M T (Spin × SU(2))) ∼= Z/2, there can be no further
conditions for SU(2) anomaly cancellation.

5.2 Non-spin generalization: the ‘w2w3 anomaly’

In Ref. [34] it was shown that if one instead defines a 4d SU(2) gauge theory by extending
the spacetime symmetry group Spin(4) non-trivially by SU(2), then there is a new Z/2-valued
global anomaly for fermions in the isospin representations 4r + 3/2, r ∈ Z≥0. In particular,
the symmetry structure is

H =
Spin× SU(2)
Z/2

,

in which the Z/2 quotient identifies the central element−1 ∈ SU(2)with (−1)F in Spin, which
we abbreviate to H = Spin-SU(2).

The relevant bordism group capturing global anomalies (there are no local anomalies) is

Ω
Spin-SU(2)
5

∼= Z/2×Z/2 . (5.17)

A suitable generator for the firstZ/2 factor is given by the Dold manifold D = (CP2×S1)/(Z/2)
(where the Z/2 quotient identifies complex conjugation on CP2 with the antipodal map on
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the circle), equipped with a certain Spin-SU(2) structure. This provides a mapping torus
on which one can detect the ‘new SU(2) anomaly’ of Ref. [34], where the mapping torus is
glued using a combined diffeomorphism and gauge transformation. A bordism invariant that
evaluates to 1 mod 2 on the Dold manifold D is provided by w2∪w3 (henceforth just denoted
w2w3), the cup product of the second and third Stiefel–Whitney classes of the tangent bundle,
sometimes referred to as the ‘de Rham invariant’. This bordism invariant can be obtained as
the exponentiated η-invariant for a single fermion in the isospin j representation of SU(2) for
any j ∈ 4Z≥0 + 3/2.

The second Z/2 factor in the bordism group (5.17), which is generated by the mapping
torus X = S4×S1 with SU(2) instanton number one through the S4 factor, captures the original
SU(2) anomaly of Witten. As we have seen above, a bordism invariant that evaluates to 1 mod
2 on X is the exponentiated η-invariant for a fermion in the doublet representation of SU(2).

In analogy with the anomaly interplay between Spin× SU(2) and Spin× U(2) studied in
the previous Section, we here embed the symmetry type H = Spin-SU(2) in the symmetry type
H ′ = Spin-U(2), whose relevant bordism groups are given by

Ω
Spin-U(2)
5

∼= Z/2, Ω
Spin-U(2)
6

∼= Z×Z×Z . (5.18)

(See Appendix A.2 for the computation of the sixth bordism group here.) The Z/2 factor in
Ω

Spin-U(2)
5 is again generated by the Dold manifold D, now with a certain Spin-U(2) structure.

The embedding H → H ′ induces the anomaly interplay diagram

0 −−−−→ Z/2×Z/2 −−−−→ Z/2×Z/2 −−−−→ 0 −−−−→ 0
x



 π∗

x





x





0 −−−−→ Z/2 −−−−→ Z/2×Z3 −−−−→ Z3 −−−−→ 0.

(5.19)

The pullback π∗ maps the local anomaly factor Z3 into the second Z/2 factor of ΩSpin-SU(2)
5

exactly as in the interplay between SU(2) and U(2).
The role of the first Z/2 factor is in a sense more subtle, but in another sense rather trivial.

While the same Dold manifold described above can be taken as a generator of the Z/2 factor
in the bordism group, the corresponding element in the cobordism group can in fact never be
realised as a fermionic global anomaly in the Spin-U(2) theory. This can be seen from the fact
that the conditions for local anomaly cancellation (including only spin-1/2 fermions) in the
Spin-U(2) theory preclude a non-vanishing ‘new SU(2) anomaly’, as shown in Ref. [16]. In
other words, evaluating the exponentiated η-invariant for any set of chiral spin-1/2 fermions
coupled to the Spin-U(2) connection can never give a non-trivial phase on D when the local
anomalies cancel. This is the first concrete example we have seen of a non-trivial invertible
phase that appears in the cobordism group, but which cannot be realised as an anomaly due
to spin-1/2 chiral fermions.

Despite this, it is possible to couple the Spin-U(2) theory directly to a topological quan-
tum field theory (TQFT) whose partition function is given by (−1)w2w3 on closed 5-manifolds,
thereby generating an invertible phase in the non-trivial element of
Z/2 ⊂ H6

IZ(M T (Spin-U(2))) which reproduces the same anomaly. (In a sense this is a ‘pure-
gravitational’ anomaly, being computed from characteristic classes of the tangent bundle.) The
anomaly pullback map π∗ acts as the identity map on the first Z/2 factor, mapping the coho-
mology class w2w3 to itself. The crucial difference is that in the Spin-SU(2) theory (unlike for
Spin-U(2)), the anomaly theory (−1)w2w3 can be reproduced by the exponentiated η-invariant,
say for a single isospin-3/2 fermion coupled to a particular Spin-SU(2) connection.
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5.3 A remark concerning the 5d SU(2) anomaly

The fact that ΩSpin
6 (BSU(2)) ∼= Z/2 corresponds to a Z/2-valued global anomaly in SU(2)

gauge theory in 5d, which is generated by a ‘symplectic Majorana fermion’ multiplet [49].
The bordism group Ω6(BU(2)), however, is torsion-free, ruling out a global anomaly in the
U(2) version. In analogy with the 4d case, one might again wonder what has become of
the 5d SU(2) global anomaly when SU(2) is embedded as a subgroup in U(2), and whether
there is a similar interplay with local anomalies. The story here is in fact much more mundane;
Ω7(BU(2)) vanishes, so there are no anomalies whatsoever in a 5d U(2) gauge theory. The res-
olution to this little puzzle is simply that one cannot embed the symplectic Majorana multiplet,
responsible for the 5d SU(2) global anomaly, into representations of U(2); the isospin-charge
relation in U(2) means any SU(2) doublet must have non-zero U(1) charge, and so cannot be
Majorana.

6 4d SU(2) anomaly from SU(3)

Elitzur and Nair, inspired by the emergence of the SU(2) global anomaly from the SU(3)WZW
term in the chiral lagrangian [18], showed how the SU(2) global anomaly associated with the
doublet representation can be computed from a local anomaly not in U(2), but in SU(3) [17].
To our knowledge, this was the first instance in which a local anomaly was essentially ‘pulled
back’ to derive a global anomaly, implicitly exploiting the possible interplay between the two.
Their method was based on the homotopy groups of SU(2) and SU(3), which fit inside a long
exact sequence together with the homotopy groups of SU(3)/SU(2) ∼= S5, and embedding
SU(2) gauge field configurations inside SU(3).

The bordism-based formalism which we use here is significantly more powerful. Because
SU(2) has no local anomalies in 4d, bordism invariance allows one to analyse the most general
possible global anomaly theory by performing only a handful of computations, accounting
for all possible SU(2) bundles over all possible mapping tori. Moreover because the local
anomaly for SU(3) has a single generator, we will in fact only need to do a single computation,
namely ‘pushing forward’ the SU(2) single instanton mapping torus and then evaluating the
SU(3) local anomaly for the triplet using the APS index theorem. This will be enough to
recover complete information about the SU(2) global anomaly for arbitrary representations
on arbitrary closed manifolds.

To deduce the anomaly interplay map for the subgroup embedding π : SU(2)→ SU(3) (in
which SU(2) is embedded in, say, the upper-left 2-by-2 block of SU(3)), we need the bordism
groups for BSU(2) which were already given above (5.1), and we need

Ω
Spin
5 (BSU(3)) = 0, Ω

Spin
6 (BSU(3))∼= Z , (6.1)

for SU(3). We then have the following pair of short exact sequences

0 −−−−→ Z/2 −−−−→ Z/2 −−−−→ 0 −−−−→ 0
x



 π∗

x





x





0 −−−−→ 0 −−−−→ Z −−−−→ Z −−−−→ 0 .

(6.2)

The top line encodes the Z/2-valued global anomaly in SU(2), and the bottom line encodes
the SU(3) perturbative anomaly, a generator for which is a single fermion in the fundamental
3 representation.

In general, the SU(3) anomaly coefficientASU(3) is obtained by summing over the contribu-
tions from some number n(a1, a2) of left-handed fermion multiplets in each SU(3) irreducible
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representation, indicated by the Dynkin labels (a1, a2), viz.

ASU(3) =
∑

a1,a2∈N
n (a1, a2)A (a1, a2) , (6.3)

where the individual anomaly coefficients are (c.f. page 72 of [50])

A (a1, a2) =
1

120
(a1 − a2)(2a1 + a2 + 3)(a1 + 2a2 + 3)(a1 + 1)(a2 + 1)(a1 + a2 + 2) . (6.4)

(One can verify that, with this normalization, the anomaly coefficient for the fundamental
representation (1, 0) equals one.) We now ask whether there is an anomaly interplay, in other
words can local anomalies in SU(3) pullback to the non-trivial SU(2) anomaly? To answer this
question, it is sufficient to decompose the triplet representation 3→ 2⊕1 into representations
of SU(2) and compute the anomaly theory. Since there is an unpaired SU(2) doublet (and an
irrelevant SU(2) singlet) this theory has a global SU(2) anomaly. This is enough to completely
fix the anomaly pullback map π∗ to be the non-trivial homomorphism from Z to Z/2, thus

π∗ : H6
IZ (M T (Spin× SU(3)))∼= Z→ H6

IZ (M T (Spin× SU(2)))∼= Z/2 :

ASU(3) 7→ASU(3) mod 2 .
(6.5)

Now, we can once again turn this argument on its head, pretending for a moment that we
do not know the conditions for anomaly cancellation in SU(2), and we can derive them from
the perturbative SU(3) anomaly. The argument would be as follows. Firstly, to compute a
global anomaly for the SU(2) doublet representation, one views the mapping torus equipped
with a single SU(2) instanton as a manifold with a Spin × SU(3) structure by embedding
the SU(2) connection inside SU(3). This is exactly as in the previous section. This mapping
torus, which is nullbordant in ΩSpin

5 (BSU(3)) = 0, can be extended to a bounding 6-manifold
Y with SU(3) connection (in fact using precisely the same U(2) connection of the previous
section and embedding U(2) in SU(3)). Thus, for any SU(3) representation we can evaluate
exp 2πiη on the pushed forward mapping torus by integrating the SU(3) anomaly polynomial
on Y . When we do this for the triplet we compute exp2πiηM×S1 = −1, and because 3→ 2⊕1
under SU(3) → SU(2) this must coincide with the anomaly theory for the SU(2) doublet
representation evaluated on the original mapping torus, by pullback (the singlet appearing
in the decomposition does not couple to the SU(2) connection, and so plays no role here).
So we learn that the SU(2) doublet has a Z/2-valued global anomaly, thus providing us with
a suitable generator of the anomaly group H6

IZ(M T (Spin × SU(2))), and moreover that the
pullback map from the local SU(3) anomaly must be (6.5).

One can then deduce the more general condition for SU(2) anomaly cancellation, by study-
ing the equivalent condition for anomaly cancellation in the SU(3) theory,

ASU(3) = 0 mod 2 . (6.6)

Now, the irreducible representation (n, 0) of SU(3) decomposes into irreducible representa-
tions of SU(2) as

(n, 0)→ 1⊕ 2⊕ . . .⊕ n⊕ (n+ 1) . (6.7)

When we decompose an SU(3) representation R := (n−1,0)⊕(0, n−2), the SU(2) irreducible
representations 1,2, . . . ,n− 1 (here labelled by their dimensions) thus appear in pairs, and so
cannot contribute to a mod 2 global anomaly once the anomaly is pulled back to SU(2); only
the irreducible representation n remains unpaired and so possibly contributes to the SU(2)
anomaly. Using the anomaly interplay map (6.5), a left-handed fermion in the representation
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n of SU(2) therefore contributes to the global SU(2) anomaly if and only if the SU(3) anomaly
coefficient for the representation R is odd. Using (6.4), this anomaly coefficient is

A(R) :=A (n− 1,0) +A (0, n− 2) =
1

12
n2(n2 − 1) , (6.8)

which is odd if and only if the dimension of the SU(2) representation n ≡ 2 mod 4. Equiva-
lently, in terms of isospin j = (n− 1)/2, a left-handed fermion in the isospin j representation
of SU(2) contributes nontrivially to the global anomaly if and only if j ∈ 2Z≥0+1/2. We thus
reproduce the general condition for SU(2) anomaly cancellation by evaluating a single local
anomaly in SU(3) using the APS index theorem (for the triplet representation), supplemented
by basic representation theory arguments.

7 4d discrete gauge anomalies

For our next examples we turn to anomalies in 4d theories with discrete internal symmetries.
This story goes back to pioneering work by Ibañez and Ross [20,21] on the (necessarily global)
anomalies that can afflict a discrete Z/k gauge theory, which they derived by embedding Z/k
in U(1). Much more recently, these discrete gauge anomalies were rigorously derived by com-
puting η-invariants by Hsieh [22], providing an intrinsic description of the global anomaly
that does not rely on any microscopic completion in a U(1) gauge symmetry.

In the context of the present paper, the version of this story as told by Ibañez and Ross
can be understood as an instance of anomaly interplay. In this Section we recast the relation
between the local U(1) anomalies and the global Z/k anomalies from the bordism perspective,
by using the calculations of Hsieh [22] to write down the precise pullback map between the
anomaly theories. This pullback map from U(1) anomalies to Z/k anomalies turn out to be
surjective, meaning that one can derive necessary and sufficient conditions for cancelling the
discrete gauge anomalies starting from the local U(1) anomalies. In this sense, we suggest
that an anomaly interplay reminiscent of Ibañez and Ross’s original method does in fact give
both necessary and sufficient conditions for a discrete gauge symmetry to be anomaly-free.26

Assuming a fermionic theory without time-reversal symmetry, an internal discrete sym-
metry group K ≡ kerρn = Z/k accommodates two possible symmetry types (Hn,ρn) when
k = 2m is even. These are

Hn = Spin(n)×Z/2m , (7.1)

or

Hn =
Spin(n)×Z/2m
Z/2

, (7.2)

where the Z/2 quotient identifies the central element (−1)F ∈ Spin(n)with the order-2 central
element in Z/2m (that is, the element m ·q where q is a generator for Z/2m). We will consider
global anomalies for both these symmetry types, as was analyzed in [22]. In the former case
we will study the interplay with local anomalies in a Spin× U(1) theory, while for the latter
we consider the interplay with local anomalies in a theory with Spinc structure.

We are content to restrict to the case where k = 2m = 2n is a power of two with n ≥ 2,
thereby streamlining the algebra somewhat, because it is for these cases that the story with
the ‘twisted’ symmetry type (7.2) is most interesting. For an exhaustive treatment of the Z/k
global anomalies applicable for any integer k, we refer the reader to §2 of [22].

26The original method of Refs. [20,21] involve more ingredients, allowing for Yukawa couplings that give masses
to some of the fermions (which may be chiral with respect to the U(1) symmetry) but which nonetheless respect
the Z/k symmetry. The perspective in this paper is a little different; we consider a completely general anomaly (up
to deformation) in the U(1) theory and pull that back to derive a correspondingly general anomaly in a discrete
subgroup, without any additional physical constraints on the fermion spectrum.
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7.1 Spin×Z/2n

Consider embedding H = Spin×Z/2n inside H ′ = Spin× U(1). The relevant bordism groups
for H are

Ω
Spin
5 (B(Z/2n))∼= Z/2n ×Z/2n−2, Ω

Spin
6 (B(Z/2n)) = 0 , (7.3)

with the latter condition precluding any local anomalies as we expect given there are no gauge
transformations connected to the identity (and there are no pure gravitational anomalies). We
compute these bordism groups using the Adams sequence in Appendix A.3, noting that Ω5 was
computed by other means in [22,51] and partial results appear also in [52]. For U(1) on the
other hand, we have the bordism groups

Ω
Spin
5 (BU(1)) = 0, Ω

Spin
6 (BU(1))∼= Z×Z . (7.4)

(see e.g. Section 3.3 of [23] for Ω5, and e.g. §3.1.5 of [53] for Ω6.) The two factors of
Z appearing in Hom(ΩSpin

6 (BU(1)),Z) correspond to the cubic U(1) anomaly Acub and the
combination (Acub −Agrav)/6 between the mixed U(1)-gravitational anomaly and the cubic
U(1) anomaly.

The reasoning is similar to that used in §5 for the U(2) local anomalies, as follows. An
element of Hom(ΩSpin

6 (BU(1)),Z) is the 6th degree anomaly polynomial

Φ6 =
Acub

3!

�

f
2π

�3

−
Agrav

24
p1

f
2π
=

1
6

�

Acub −Agrav

�

α1 +Agravα2 , (7.5)

where α1 = ( f /2π)3 = c3
1 and we now choose α2 =

1
6(c

3
1 − p1c1/4). Again, α1 and α2 are

basis elements of Hom(ΩSpin
6 (BU(1)),Z) dual to (CP3, c), the complex projective 3-space with

a U(1) bundle given by c1 = c, and S2
1 ×S2

1 ×S2
1 , the product of three 2-spheres with charge-1

monopoles on each factor, respectively. We should therefore identify
Z×Z∼= Hom(ΩSpin

6 (BU(1)),Z) with
Zα1 ⊕Zα2 ,

an element of which is labelled by the following pair of independent integers,

(r, s) =
�

1
6

�

Acub −Agrav

�

,Agrav

�

. (7.6)

For example, a single left-handed Weyl fermion with unit charge corresponds to a local anomaly
in the deformation class (0,1).

As usual, we abuse notation and define the embedding
π : Z/2n → U(1) : q mod 2n 7→ exp(2πiq/2n). This gives rise to a map of spectra
π : M T H → M T H ′ and thus a pullback diagram for the anomaly theories pertaining to the
case d = 4,

0 −−−−→ Z/2n ×Z/2n−2 −−−−→ Z/2n ×Z/2n−2 −−−−→ 0 −−−−→ 0
x



 π∗

x





x





0 −−−−→ 0 −−−−→ Z×Z −−−−→ Z×Z −−−−→ 0 .

(7.7)

As long as the map π∗ is non-zero, this diagram encodes a non-trivial anomaly interplay. We
will in fact see that π∗ is surjective, allowing the complete conditions for global anomaly
cancellation in the Z/2n theory to be derived from local anomalies in U(1), à la Ibañez and
Ross.

To study this interplay, first consider a single Weyl fermion in a general representation of
U(1), specified by an integer charge Q ∈ Z. The anomaly theory corresponds to the element
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((Q3 −Q)/6,Q) ∈ Z × Z ∼= Hom(ΩSpin
6 (BU(1)),Z). To pull this back, decompose into repre-

sentations of the discrete subgroup Z/2n, simply Q 7→ q = Q mod 2n, and evaluate the global
anomaly for this representation by computing the exponentiated η-invariant on generators of
the bordism group ΩSpin

5 (B(Z/2n))∼= Z/2n×Z/2n−2. Using the results of [22], the evaluations
of the exponentiated η-invariant for the charge q representation of Z/2n on two independent
generators X and Y of ΩSpin

5 (B(Z/2n)) are given by

exp(2πiη(q, X )) = exp

�

2πi
k

�

k2 + 3k+ 2
6

q3

��

:= exp

�

2πi
k
νk

�

q3 − q
6

, q

��

,

(7.8)

and

exp(2πiη(q, Y )) = exp

�

2πi
k/4

�

q
2
+

k2 + 3k+ 2
12

q3

��

:= exp

�

2πi
k/4

νk/4

�

q3 − q
6

, q

��

,

(7.9)

where it is convenient to write these and the following formulae in terms of k = 2n, and where
we define the functions

νk (r, s) :=
1
6
(k+ 1)(k+ 2)(6r + s),

νk/4 (r, s) :=
1
2
(νk(r, s) + s) .

(7.10)

It is easy to see that both νk((Q3 −Q)/6,Q) and νk/4((Q3 −Q)/6,Q) are integers whenever
k = 2n > 2 and Q ∈ Z. Moreover, for two U(1) charges Q1 and Q2 that are congruent modulo
k, the corresponding νk are congruent modulo k, while the corresponding νk/4 are congruent

modulo k/4. Therefore mapping the element ((Q3−Q)/6,Q) ∈ Z×Z∼= Hom(ΩSpin
6 (BU(1)),Z)

to the element (νk((Q3 −Q)/6,Q) mod 2n,νk/4((Q3 −Q)/6,Q) mod 2n−2) ∈ Z/2n ×Z/2n−2 is
well-defined. By linearity, we deduce that the general pullback of the anomaly theory is given
by

π∗ : H6
IZ (M T (Spin× U(1)))∼= Z2→ H6

IZ (M T (Spin×Z/2n))∼= Z/2n ×Z/2n−2 :

(r, s) 7→
�

νk(r, s) mod 2n, νk/4(r, s) mod 2n−2
�

,
(7.11)

which is clearly surjective. Consequently, for an arbitrary set of Z/k charges qi , the pair of
equations

νk(r̃, s̃) = 0 mod 2n,

νk/4(r̃, s̃) = 0 mod 2n−2 ,
(7.12)

are necessary and sufficient for global anomaly cancellation, where r̃ :=
∑

(q3
i − qi)/6 and

s̃ :=
∑

qi , reproducing the conditions derived in [22].

7.2 (Spin×Z/2n)/(Z/2)

We now consider the non-trivial extension of the discrete symmetry Z/2n by Spin, resulting
in the stable structure group H = (Spin × Z/2n)/(Z/2) as defined in (7.2), and which we
henceforth abbreviate by Spin-Z/2n. The relevant bordism groups for H are

Ω
Spin-Z/2n

5
∼= Z/2n+2 ×Z/2n−2, Ω

Spin-Z/2n

6 = 0 . (7.13)
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Again, the latter condition precludes any local anomalies as expected since there are no gauge
transformations connected to the identity, and no purely gravitational anomalies in 4d. We
compute these bordism groups using the Adams sequence in Appendix A.4, noting that Ω5
was computed by other means in [22].

On the other hand, the corresponding non-trivial extension of U(1) by Spin results in the
structure group H ′ = Spinc , with the relevant bordism groups [54]

Ω
Spinc
5 = 0, Ω

Spinc
6
∼= Z×Z . (7.14)

Similar to the case of the trivial extension above, the deformation classes of local anomalies
in the 4d Spinc theory are classified by a pair of independent integers, this time27

(r, s) =

�Acub −Agrav

24
,Agrav

�

∈ Hom
�

Ω
Spinc
6 ,Z

�

∼= Z×Z . (7.15)

The different factor of 24 instead of 6 relative to Eq. (7.6) comes from the fact that fermions
can only carry odd charges.

As before, the embedding π : Z/2n→ U(1) : q mod k 7→ exp(2πiq/2n) gives rise to a map
of spectra π : M T H → M T H ′ and thus a pullback diagram for the anomaly theories pertaining
to the case d = 4,

0 −−−−→ Z/2n+2 ×Z/2n−2 −−−−→ Z/2n+2 ×Z/2n−2 −−−−→ 0 −−−−→ 0
x



 π∗

x





x





0 −−−−→ 0 −−−−→ Z×Z −−−−→ Z×Z −−−−→ 0 .

(7.16)

This diagram encodes a non-trivial anomaly interplay if the map π∗ is non-zero. Again this will
be the case. Indeed π∗ will again be a surjection. This means that the most general conditions
for global anomaly cancellation in the Spin-Z/2n theory can be derived by pulling back a local
anomaly in Spinc .

To study this interplay, first consider a single Weyl fermion in a general representation of
U(1), specified by a charge Q ∈ 2Z+1 which now must be an odd integer. The anomaly theory
corresponds to the element ((Q3 −Q)/24,Q) ∈ Z×Z ∼= Hom(ΩSpinc

6 ,Z). To pull this back, de-
compose into representations of the discrete subgroup Z/2n, here simply Q 7→ q = Q mod 2n,
and evaluate the global anomaly for this representation by computing the exponentiated η-
invariant on generators of the bordism group ΩSpin-Z/2n

5
∼= Z/2n+2 ×Z/2n−2. Using the results

of [22], the evaluations of the exponentiated η-invariant for the charge q representation of
Z/2n on two independent generators X̃ and Ỹ of ΩSpin-Z/2n

5 are given by

exp(2πiη(q, X̃ )) = exp
�

2πi
4k

1
12

�

(k2 + k+ 2)q3 − (k+ 6)q
�

�

:= exp

�

2πi
4k
µ4k

�

q3 − q
24

, q

��

,
(7.17)

27The particular dual basis chosen here is given by α1 = c3
1/2 and α2 = (c3

1− p1c1)/48, where c1 is the first Chern
class of the line bundle that determines the Spinc structure, such that c1 = w2 mod 2. Now consider the following
pair of Spinc 6-manifolds, X1 and X2. Firstly, define X1 to be the disjoint union CP3 t

�

CP2 ×CP1
�

, equipped with
a line bundle whose first Chern class is c1 = 2c on CP3 and c1 = c′ − 2a on CP2 × CP1, where c, c′, and a are
the canonical generators of the second integral cohomology groups of CP3, CP2, and CP1 respectively. Secondly,
we choose X2 to be CP1 ×CP1 ×CP1 equipped with a line bundle whose first Chern class is c1 = 2a1 + 2a2 + 2a3

where ai ∈ H2(CP1;Z) is the canonical generator of the second integral cohomology group of each CP1 factor.
The minimal pairing is then given by α1[X1] = 1,α2[X1] = 0,α1[X2] = 24,α2[X2] = 1.
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and

exp(2πiη(q, Ỹ )) = exp
�

2πi
k/4

�

k+ 2
16

�

�

(1+ k)q3 − q
�

�

:= exp

�

2πi
k/4

µk/4

�

q3 − q
24

, q

��

,
(7.18)

where again it is convenient to use k = 2n, and we define

µ4k (r, s) := 2(k2 + k+ 2)r +
1

12
(k− 2)(k+ 2)s,

µk/4 (r, s) :=
k+ 2
16

(24r(1+ k) + sk) .
(7.19)

It is easy to see that both µ4k((Q3−Q)/24,Q) and µk/4((Q3−Q)/24,Q) are integers whenever
k = 2n > 4 and Q ∈ 2Z+ 1. Moreover, for two Spinc charges Q1 and Q2 that are congruent
modulo k, the corresponding µ4k are congruent modulo 4k, while the corresponding µk/4 are
congruent modulo k/4.

Therefore, a general deformation class of Spinc local anomaly
((Q3 −Q)/24,Q) ∈ Z× Z ∼= Hom(ΩSpin-Z/2n

6 ,Z) is pulled back to the pair of Spin-Z/2n global
anomalies (µ4k((Q3−Q)/24,Q)mod 2n+2,µk/4((Q3−Q)/24,Q)mod 2n−2) ∈ Z/2n+2×Z/2n−2.
Thence, by linearity, the general pullback is given by

π∗ : H6
IZ

�

M TSpinc

�∼= Z2→ H6
IZ (M T (Spin-Z/2n))∼= Z/2n+2 ×Z/2n−2 :

(r, s) 7→
�

µ4k(r, s) mod 2n+2, µk/4(r, s) mod 2n−2
�

,
(7.20)

which is again a surjection. Consequently, for a set of arbitrary Spin-Z/2n charges qi , the
necessary and sufficient conditions for global anomaly cancellation are

µ4k(r̃, s̃) = 0 mod 2n+2,

µk/4(r̃, s̃) = 0 mod 2n−2 ,
(7.21)

where r̃ :=
∑

(q3
i − qi)/24 and s̃ :=

∑

qi , equivalent to the conditions derived in [22].

Example: Standard Model and the topological superconductor

A particularly interesting special case of the Spin-Z/2n anomaly interplay occurs when n= 2.
This case is most straightforward to analyse because there is only one independent global
anomaly corresponding to28

Ω
Spin-Z/4
5

∼= Z/16 , (7.22)

which is generated by µ16(r̃, s̃) = 22r̃ + s̃ (with r̃ and s̃ as defined above). Any fermion cou-
pled to a Spin-Z/4 structure must have charge qi equal to ±1 mod 4 and thus q3

i − qi = 0,
contributing 0 to r̃ and ±1 to s̃. Thus the global anomaly in fact reduces to µ16(r̃, s̃) = s̃, which
vanishes if and only if

µ16 = n+ − n− = 0 mod 16 , (7.23)

where n± denotes the number of Weyl fermions with charge ±1 mod 4.
This Z/16-valued global anomaly was studied in Ref. [23, 37] due to a connection with

the Standard Model (SM) of particle physics. The key observation was that there is a lin-
ear combination of SM global U(1) symmetries under which every SM fermion has a charge

28This bordism group can also be given a lower-dimensional interpretation thanks to a Smith isomorphism
Ω

Spin-Z/4
5

∼= ΩPin+

4 [37]. From the physics perspective, one can relate each 4d Weyl fermion with Spin-Z/4 charge to
a 3d Pin+ Majorana fermion on a domain wall, offering an alternative way to understand this 4d global anomaly
in terms of a 3d ‘topological superconductor’.
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equal to 1 mod 4, which if gauged could be used to define the SM using a Spin-Z/4 structure.
Specifically, the U(1) charges correspond to the linear combination X = −2Y +5(B− L), where
B−L denotes the difference between baryon number and lepton number, and Y denotes global
hypercharge.

When the SM is augmented by a trio of right-handed neutrinos (which offers the sim-
plest route to explaining the origin of neutrino oscillation data) there are n+ = 16 Weyl
fermions within each generation, meaning that condition (7.23) is satisfied and there is no
global anomaly.29 As a consequence, the SM fermions can be gapped in groups of 16 by
including relevant operators that preserve the Spin-Z/4 symmetry [56], at least in specific
supersymmetric extensions for which the low-energy dynamics is explicitly calculable. This
example of ‘symmetric mass generation’ in 4d is analogous to the Fidkowski–Kitaev mecha-
nism for gapping 1d Majorana fermions in multiples of 8 [36].

7.3 Going between discrete groups

We have seen above how the pullback property of the anomaly interplay map can be used to
determine the global anomaly in a theory with Spin-Z/2n structure, using a local anomaly cal-
culation in a theory with Spinc structure. A simpler exercise is to deduce how global anomalies
map to themselves between theories with different discrete gauge symmetries, which can be
used to put constraints on global anomalies. Similar ideas were discussed in §3 of Ref. [22].

As an example, consider the interplay between a 4d theory with symmetry structure
H = Spin-Z/4, as just discussed in §7.2, and a 4d theory with symmetry structure
H ′ = Spin-Z/8. In the latter, there is a unitary symmetry operator U obeying U4 = (−1)F .
We embed H as a subgroup of H ′ as π : H → H ′ : V 7→ U2, where V is the order-4 element
in the Z/4 factor of H that squares to (−1)F . Given this embedding, a fermion with charge
1 mod 8 with respect to H ′ has charge 1 mod 4 with respect to H. Suppose that we wish to
calculate the global anomaly in the Spin-Z/8 theory, and that we already know that a charge
1 mod 4 fermion in the Spin-Z/4 theory with structure contributes a global anomaly equal to
1 mod 16 (either by direct calculation, e.g. as above, or by exploiting the Smith isomorphism
Ω

Spin-Z/4
5

∼= ΩPin+
4
∼= Z/16 and knowing that a 3d Pin+ Majorana fermion has a mod 16 parity

anomaly). The embedding π therefore gives rise to the interplay diagram

0 −−−−→ Z/16 −−−−→ Z/16 −−−−→ 0 −−−−→ 0
x



 π∗

x





x





0 −−−−→ Ω
Spin-Z/8
5 −−−−→ Ω

Spin-Z/8
5 −−−−→ 0 −−−−→ 0 .

(7.24)

Without any direct calculation, one can immediately deduce that the most refined global
anomaly in the H ′ theory must be of order p = 16m with m a positive integer. If it were not
so, one could have a set of fewer than 16 fermions each with charge 1 mod 8 that is anomaly-
free with respect to the Spin-Z/8 structure, but that is known to have non-vanishing mod 16
anomaly with respect to H. This is a contradiction because the pullbackπ∗ is a homomorphism
and must map anomaly-free Spin-Z/8 fermion content to anomaly-free Spin-Z/4 content. In-
deed, we have seen earlier that ΩSpin-Z/8

5
∼= Z/32 × Z/2 and the most refined anomaly is of

order 32 which is a multiple of 16.

29There are other ways to saturate this global anomaly without introducing three right-handed neutrinos; for
example, any of the (right-handed-neutrino-less) generations of SM fermions can be made anomaly free by coupling
the 15 Weyl fermions to topological degrees of freedom [55].
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8 6d anomalies in U(1) vs. Z/2

For our final example we turn to six spacetime dimensions and consider a similar setup to the
2d example discussed in §4, in which a theory defined with a spin structure and a unitary
Z/2 symmetry is embedded inside one with a U(1) symmetry. As before, the internal sym-
metries do not intertwine with the spacetime symmetry, so the symmetry types are given by
H = Spin×Z/2 and H ′ = Spin×U(1). The analysis bears similarities with the 2d example but
differs in important details.

In six dimensions, the relevant bordism groups that appear in the short exact sequence
classifying anomalies for the H theory are30

Ω
Spin
7 (BZ/2)∼= Z/16, Ω

Spin
8 (BZ/2)∼= Z×Z , (8.1)

leading to anomalies classified by the short exact sequence

0→ Z/16→ Z/16×Z2→ Z2→ 0 . (8.2)

As we saw in the 2d example (and in contrast with the 4d examples of §7), there are local
anomalies even though the gauge group is discrete. They must be purely gravitational since
Ω

Spin
8 (pt) ∼= Z × Z implies that they appear even in the absence of any gauge bundle. The

group Hom(ΩSpin
8 (pt),Z) ∼= Z × Z that detects local anomalies is generated by two integer-

valued bordism invariants, which we can take to be the degree 8 anomaly polynomial

Φ8 =
1

5760
(7p2

1 − 4p2) , (8.3)

and the signature

σ =
1
45
(7p2 − p2

1) ,

where p1 and p2 are the first and second Pontryagin classes of the tangent bundle, respec-
tively. However, since local anomalies due to spin-1/2 chiral fermions are captured by the
anomaly polynomial Φ8 alone, the gravitational anomaly due to spin-1/2 fermions is classified
by one integer only. The second integer, corresponding to the signature, is the level k of a 7d
gravitational Chern–Simons contribution to the effective action, exp(2πikσ).31

On the other hand, the relevant bordism groups for H ′ are

Ω
Spin
7 (BU(1)) = 0, Ω

Spin
8 (BU(1))∼= Z4 , (8.4)

where the latter can be deduced from the Atiyah–Hirzebruch spectral sequence. As above, one
of theZ factors in Hom(ΩSpin

8 (BU(1)),Z) is generated by the signature, which is not realised via
chiral fermion anomalies. A general local anomaly due to free chiral fermions is classified by
the other three integers, which we can take to be linear combinations of (i) the U(1) anomaly
coefficient Agauge, (ii) the mixed U(1)-gravitational anomaly coefficient Amix, and (iii) the
pure gravitational anomaly coefficient Agrav. For an arbitrary fermion content with NL left-
handed Weyl fermions of charges q1, . . . , qNL

and NR right-handed Weyl fermions of charges

30We remark that the Z/16-valued global anomaly that we here discuss, for 6d Weyl fermions with a unitary Z/2
symmetry, ought to be related to a parity anomaly in 4+1 dimensions, as suggested by the existence of a Smith
isomorphism ΩSpin

7 (BZ/2)∼= ΩPin−

6
∼= Z/16 [37].

31Since the signature can be written in terms of the anomaly polynomial for a gravitino, via σ = Φgravitino+21Φ8,
the Chern–Simons level k should also be included if we were to incorporate fermions of higher spins, but it will
play no role in our story.

29

https://scipost.org
https://scipost.org/SciPostPhys.10.3.074


SciPost Phys. 10, 074 (2021)

r1, . . . , rNR
, these anomaly coefficients are given by

Agauge =
NL
∑

i=1

q4
i −

NR
∑

i=1

r4
i ,

Amix =
NL
∑

i=1

q2
i −

NR
∑

i=1

r2
i ,

Agrav = NL − NR .

(8.5)

Again, we cannot take all the Weyl fermions to be left-handed because in 6 dimensions, as in
2 dimensions, conjugating a complex fermion does not flip its chirality. By a similar analysis
to those in §§5 and 7, we can choose the three linear combinations to be

r =
Agauge −Amix

12
, s =Amix, t =Agrav . (8.6)

We now study the anomaly interplay between Z/2 and U(1) gauge theories in 6d. As
usual, the subgroup embedding π : Z/2 → U(1) : 1 mod 2 7→ eiπ induces a map of spectra
π : M T H → M T H ′ as well as a pullback diagram for the anomaly theories,

0 −−−−→ Z/16 −−−−→ Z/16×Z2 −−−−→ Z2 −−−−→ 0
x



 π∗

x





x





0 −−−−→ 0 −−−−→ Z4 −−−−→ Z4 −−−−→ 0,

(8.7)

which encodes an anomaly interplay between a U(1) local anomaly and a global anomaly in
the Z/2 theory through the pullback π∗. Since the difference between the pair of symmetry
types H and H ′ does not involve spacetime symmetry, the pure gravitational anomalies maps
to themselves under π∗, playing no role in the interplay.

To see how the pullback acts on the remaining two factors of Z in H8
IZ(M T (Spin×U(1))),

we consider a generic fermion spectrum coupled to a 6d U(1) gauge field, the charges of which
we parametrize as in §4. The gravitational anomaly and the mixed U(1)-gravitational anomaly
cancellation conditions, Agrav = Amix = 0, are given by Eqns. (4.6) and (4.7), respectively.
In addition to these two conditions (which are of the same form as in the 2d case), we also
require that the quartic U(1) anomaly vanishes, Agauge = 0, which implies

16

 N e
L

∑

i=1

k4
i −

N e
R

∑

i=1

k′4i

!

+ 16
N o

L
∑

i=1

1
2

li(li + 1)(2l2
i + 2li + 1)

− 16
N o

R
∑

i=1

1
2

l ′i(l
′
i + 1)(2l ′2i + 2l ′i + 1) + N o

L − N o
R = 0 ,

(8.8)

and hence that the index for the oddly-charged Weyl fermions must be a multiple of 16, viz.

N o
L − N o

R ∈ 16Z . (8.9)

The Z/2 subgroup of this U(1) gauge group only acts non-trivially on fermions with odd
charge. Only these odd-charged fermions contribute to both the Z/16 global anomaly encoded
in (8.2) and the gravitational anomaly, while the even-charged fermions can be used to soak
up the gravitational anomaly. Sinceπ∗ is a homomorphism it maps zero to zero, and thus maps
any anomaly-free spectrum to another. So if a single left-handed, Z/2-charged Weyl fermion
contributes an anomaly equal to ν mod 16, then our considerations in the previous paragraph
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imply that 16ν= 0 mod 16. Thus, it is permissible on the ground of anomaly interplay that a
single left-handed odd Weyl fermion contributes the most refined anomaly of ν= 1 mod 16.

This is indeed the case, as can be seen by explicit computation of the exponentiated η-
invariant on a generator of the bordism group ΩSpin

7 (BZ/2). To wit, for a left-handed odd-
charged Weyl fermion together with a right-handed even-charged Weyl fermion (thus can-
celling any local anomaly, making the exponentiated η-invariant a bordism invariant), one
finds exp(2πiηX ) = exp(2πi/16) where X is RP7 equipped with a Z/2 gauge bundle whose
first Stiefel–Whitney class equals the generator of H1(RP7;Z/2), which is a generator of
Ω

Spin
7 (BZ/2) (c.f. §3.6 of Ref. [37]).32

To conclude our analysis of 6d anomalies, the anomaly pullback map π∗ is here given by

π∗ : H8
IZ (M T (Spin× U(1)))∼= Z4→ H8

IZ (M T (Spin×Z/2))∼= Z/16×Z2 :

(r, s, t, k) 7→ ((12r + s) mod 16, t, k) .
(8.10)

Note that, unlike in the 2d case, the pullback map π∗ is surjective. This is permissible be-
cause in 6 dimensions there is no chiral basis for the gamma matrices where all elements are
real. Hence, a Weyl fermion cannot be divided further into two real chiral fermions as in 2
dimensions.
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A Some bordism calculations

In this Appendix, we sketch how bordism groups are calculated using the Adams spectral
sequence [57, 58], and then present the calculations of some bordism groups mentioned in
the main text. For a more detailed introduction to practical calculations using the Adams
spectral sequence, we recommend Ref. [14]. All cohomology rings have coefficients in Z/2
unless otherwise stated.

A.1 Using the Adams spectral sequence

We will use the Adams spectral sequence to obtain the 2-completion
�

ΩH
t−s

�∧
2 of a given bordism

group ΩH
t−s that we wish to calculate. Recall that the 2-completion of the group of integers Z is

the 2-adic group Z2, the 2-completion of the cyclic group Z/2n is Z/2n, while the 2-completion
of Z/m when m is odd is the trivial group. Therefore, if there is no odd torsion involved, the
whole bordism group can be obtained from its 2-completion.

The second page of the Adams sequence then has entries

Es,t
2 = Exts,t

A2
(H•(M T H),Z/2)⇒

�

ΩH
t−s

�∧
2 , (A.1)

32In principle, it must be possible to derive this expression for exp(2πiηX ) (and thence the Z/16-valued global
anomaly) by embedding the Z/2 connection inside a U(1) connection, which can be extended to an 8-manifold
bounding RP7 because ΩSpin

7 (BU(1)) = 0. Having performed a similar analysis in the analogous 3d setting in §4,
we are content to omit an explicit calculation here.
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where A2 is the Steenrod algebra and M T H is the Madsen–Tillmann spectrum of a stable
tangential structure group H. If the spectrum M T H can moreover be written as MSpin∧ XH ,
the Anderson–Brown–Peterson theorem means that (A.1) simplifies to

Es,t
2 = Exts,t

A(1) (H
•(XH),Z/2)⇒

�

ΩH
t−s

�∧
2 , (A.2)

for t − s < 8, where A(1) is the subalgebra of A2 generated by the Steenrod squares Sq1 and
Sq2. Fortunately, this simplification occurs in all of the examples we consider in this Appendix.

For example, when H = Spin×G is a product of the stable spin group and an internal symmetry
group G, we have M T H = MSpin ∧ BG+, where + denotes a disjoint basepoint. In this case
ΩH

t−s is the (t − s)th spin bordism group of BG, often denoted by ΩSpin
t−s (BG).

The next step is to compute the A(1)-module structure of H•(XH), and plot the correspond-
ing graded extension in an Adams chart. The Adams chart for H•(XH) is a visual representation
of Exts,t

A(1)(H
•(XH),Z/2) on the (t − s, s)-plane, in which a dot represents a generator of Z/2.

There can be some non-trivial relations between generators of Es,t
2 . The ones that we will en-

counter in the sequel are a) multiplication33 by an element
h0 ∈ Ext1,1

A(1)(Z/2,Z/2), which is represented by a vertical line segment, and b) multiplica-

tion by an element h1 ∈ Ext1,2
A(1)(Z/2,Z/2), which is represented by a line segment of slope 1.

Being a spectral sequence, each page Er is a bi-graded complex of abelian groups, equipped
with group homomorphisms or ‘differentials’

dr : Es,t
r → Es+r,t+r−1

r , dr ◦ dr = 0 .

Pictorially, in the Adams chart each of these differentials is represented by an arrow that goes
back one column to the left, and up by r rows. These differentials commute with multiplication
by h0. Turning to the next page of the Adams sequence, an element Es,t

r+1 is obtained by taking
the homology of the complex Er at Es,t

r . As one continues to turn the pages, the elements of
the Adams charts stabilise to what we will denote by Es,t

∞.
The existence of the Adams spectral sequence means that there is a filtration of

�

ΩH
t

�∧
2

given by
�

ΩH
t

�∧
2 = F0,t

∞ ⊇ F1,t+1
∞ ⊇ F2,t+2

∞ ⊇ . . . (A.3)

The last page E∞ of the Adams chart encodes this filtration as follows. The quotient F0,t
∞
�

F s,t+s
∞

of
�

ΩH
t

�∧
2 by its filtered sets can be found inductively by solving the group extension problem

0 −→ Es,t+s
∞ −→ F0,t

∞

�

F s+1,t+s+1
∞ −→ F0,t

∞

�

F s,t+s
∞ −→ 0 . (A.4)

This information can be formally assembled to obtain
�

ΩH
t

�∧
2 , namely by taking the inverse

limit
�

ΩH
t

�∧
2
∼= lim←−

s

F0,t
∞

�

F s,t+s
∞ . (A.5)

Finally, it is worth remarking that the extension problem just described can sometimes be
non-trivial in a controlled way, determined by the module structure on the E2 page of the
Adams chart. For example, a multiplication by h0 on the E2 page records multiplication by 2
between F s,t

∞ and F s+1,t+1
∞ . Thus, an infinite h0-tower in the t column implies F0,t

∞
�

F s,t+s
∞

∼= Z/2s

for all s, which gives F0,t
∞
∼= Z2. Similarly, if there is a truncated h0-tower of length m, we

get F0,t
∞
�

F s,t+s
∞

∼= Z/2s for s ≤ m and remains Z/2m when s > m; it can be easily seen that
F0,t
∞ = Z/2m in this case. In most cases considered here, these are all the non-trivial extensions

33By ‘multiplication’ we here refer to the Yoneda product Exts,t
A(1)(M ,Z/2) ⊗Z/2 Exts′ ,t′

A(1)(Z/2,Z/2) →

Exts+s′ ,t+t′

A(1) (M ,Z/2) for an A(1)-module M .
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that appear. So when the bordism groups can be fully calculated at the 2-completion we can
read off the results from the Adams chart directly, whence an infinite h0-tower gives the free
Abelian group Z, and a truncated h0-tower of length m gives the torsion group Z/2m. There
can also be non-trivial extensions that do not arise from the structure of the E2 page. These
are called exotic extensions.

A.2 Calculation of ΩSpin-U(2)
6

It was calculated in Ref. [16] that the associated Madsen–Tillmann spectrum for the symmetry
type H = Spin-U(2) is M T H = MSpin∧Σ−5MSO(3)∧MU(1). The second page of the Adams
spectral sequence is then given by

Es,t
2 = Exts,t

A(1)

�

Σ−5H• (MSO(3)∧MSO(2)) ,Z/2
�

. (A.6)

The cohomology ring here is

H• (MSO(3)∧MSO(2))∼= Z/2[w′2, w′3, w′′2] UV ,

where w′i ∈ H i(BSO(3)) are the universal Stiefel–Whitney classes for SO(3) while
w′′2 ∈ H2(BSO(2)) is the second universal Stiefel–Whitney class for SO(2). Here
U ∈ H3(MSO(3)) and V ∈ H2(MSO(2)) are the Thom classes for MSO(3) and MSO(2),
respectively.

The A(1)-module structure of this ring, up to degree 10, was also calculated in Ref. [16].
This module structure is represented by Fig. 2. This was computed by applying the ‘Wu for-
mula’

Sqiw j =
i
∑

k=0

�

j − i + k− 1
k

�

wi−k w j+k , (A.7)

for the action of the Steenrod squares on Stiefel–Whitney classes, together with the relations
Sq2U = w′2U , Sq2V = w′′2 , and Sq1U = Sq1V = 0. Since there are only 5 generators in
H11 (MSO(3)∧MSO(2)) and 3 generators in H12 (MSO(3)∧MSO(2)), the diagram in Fig. 2
in fact represents the module H• (MSO(3)∧MSO(2)) up to degree 12, so it can be used to
calculate the Adams chart (and thence the bordism groups) up to degree t − s = 7, which
is reproduced in Fig. 3. The 6th bordism group can then be read off directly from the chart,
giving

Ω
Spin-U(2)
6

∼= Z×Z×Z . (A.8)

A.3 Calculation of ΩSpin
d (BZ/2m) for m> 1

To compute the bordism groups for the symmetry type Spin× BZ/2m, our first task is to work
out the A(1)-module structure of H•(BZ/2m). It is known that

H•(BZ/2m)∼= H•(K(Z/2m, 1))∼= Z/2[a, b]/(a2) , (A.9)

where the generator a is in degree 1, and the generator b is in degree 2 [59] (see also Theorem
6.19 of [60]). The generator b can be defined as follows. The short exact sequence

0 −→ Z/2 −→ Z/2m+1 −→ Z/2m −→ 0 , (A.10)

of coefficient groups induces the long exact sequence in cohomology

. . .→ H i(X ;Z/2)→ H i(X ;Z/2m+1)→ H i(X ;Z/2m)
βm−→ H i+1(X ;Z/2)→ . . . , (A.11)
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UV

w′′2 UV

w′′22 UV w′22 UV

w′2w′3UV

Figure 2: The A1-module structure for Z/2[w′2, w′3, w′′2]{UV}, up to degree 12.

t− s

s

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

Figure 3: The Adams chart for Σ−5H•(MSO(3)∧MSO(2)) with t − s ≤ 7.

for any topological space X (here we temporarily restore the explicit Z/2 coefficients for em-
phasis). The connecting homomorphism βm is the mth power Bockstein homomorphism. One
can then define b = βm(a′), where a′ ∈ H1(BZ/2m;Z/2m) is a canonical choice of generator.

The A(1)-module structure of H•(BZ/2m) is then given in Fig. 6, where the dashed lines
represent the mth power Bockstein βm. Hence, as an A(1)-module, we can write H•(BZ/2m)
as

H•(BZ/2m) = Z/2⊕ΣZ/2⊕Σ2M⊕Σ3M⊕Σ6M⊕Σ7M . . . , (A.12)

where the A(1)-module M together with its corresponding Adams chart, and the Adams chart
for the A(1)-module Z/2, are shown in Figs. 4 and 5, respectively. We can then combine these
to construct the Adams chart for H•(BZ/2m), shown in Fig. 7 for m= 3 as an example. By the
May–Milgram Theorem [61], the only non-trivial differentials are those denoted by dm, which
are induced by the Bockstein homomorphism on the classes with even t − s. From the Adams
chart it is clear that ΩSpin

6 (BZ/2m) = 0. The resulting spin bordism groups in degrees d ≤ 6 are
given in Table 1. Note that there are non-trivial extensions in degree 5, whose corresponding
bordism group has been calculated by other means in Refs. [22,51].
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(a) The A(1)-module
structure.

t− s
s

0 1 2 3 4 5 6

0

1

2

3

4

5

6

(b) Adams chart

Figure 4: The A(1)-module M.

t− s

s

0 1 2 3 4 5

0

1

2

3

4

5

Figure 5: The Adams chart for Z/2.

Table 1: The spin bordism groups for BZ/2m in degrees d ≤ 6 for m> 1.

d 0 1 2 3 4 5 6

Ω
Spin
d (BZ/2m) Z Z/2×Z/2m Z/2×Z/2 Z/2×Z/2m+1 Z Z/2m ×Z/2m−2 0

a
b

Figure 6: The ring H•(BZ/2m) as an A(1)-module.
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E3

t− s

s

0 1 2 3 4 5 6

0

1

2

3

4

5

6

E∞

t− s

s

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 7: The Adams chart for H•(BZ/23).

A.4 Calculation of ΩSpin-Z/2m+1

d for m> 1

Finally, when the stable symmetry type is H = Spin-Z/2m+1, the Madsen–Tillman spectrum
M T H is [13]

M T H = MSpin∧ (B(Z/2m))2ξ , (A.13)

where 2ξ is twice the sign representation and (B(Z/2m))2ξ is the Thom space of the bundle
2ξ. Now, we have to work out the A(1)-module structure of H•(B(Z/2m))2ξ), which turns
out to be the same as that of H•(BZ/2m) but with the two bottom cells removed, as shown in
Fig. 8. Hence, as an A(1)-module we can write

Figure 8: The ring H•((BZ/2m)2ξ) as an A(1)-module.

H•(B(Z/2m))2ξ) =M⊕ΣM⊕Σ4M⊕Σ5M⊕Σ8M⊕Σ9M . . . , (A.14)

where the A(1)-module M is defined as before (see Figure 4a). Using the Adams charts for
M given in Fig. 4b, we can see that the second page of the Adams chart for H•(B(Z/2m))2ξ)
must be given by Fig. 9.

As in the previous case of H•(BZ/2m), the only non-trivial differentials are dm on the mth

page, which are induced from the mth power Bockstein homomorphism [13,61]. So the non-
trivial differentials act only on the even t − s columns. As an example, these are shown for
m = 2 in Fig. 10. This can be easily generalised to m ≥ 2, with results shown in Table 2. The
5th bordism group was calculated by a different method in Ref. [22].
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t− s

s

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 9: The Adams chart for H•(B(Z/2m))2ξ).

E2

t− s

s

0 1 2 3 4 5 6

0

1

2

3

4

5

6

E∞

t− s

s

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 10: The E2 and E∞ pages of the Adams chart for H•(B(Z/22))2ξ).

Table 2: The bordism groups with Spin-Z/2m+1 structure in degrees d ≤ 6 for m> 1.

d 0 1 2 3 4 5 6

Ω
Spin-Z/2m+1

d Z Z/2m+1 0 Z/2m−1 Z Z/2m−1 ×Z/2m+3 0
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