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Abstract

We propose a method to improve the computational and memory efficiency of numerical
solvers for the nonequilibrium Dyson equation in the Keldysh formalism. It is based on
the empirical observation that the nonequilibrium Green’s functions and self energies
arising in many problems of physical interest, discretized as matrices, have low rank
off-diagonal blocks, and can therefore be compressed using a hierarchical low rank data
structure. We describe an efficient algorithm to build this compressed representation
on the fly during the course of time stepping, and use the representation to reduce the
cost of computing history integrals, which is the main computational bottleneck. For
systems with the hierarchical low rank property, our method reduces the computational
complexity of solving the nonequilibrium Dyson equation from cubic to near quadratic,
and the memory complexity from quadratic to near linear. We demonstrate the full solver
for the Falicov-Kimball model exposed to a rapid ramp and Floquet driving of system
parameters, and are able to increase feasible propagation times substantially. We present
examples with 262 144 time steps, which would require approximately five months of
computing time and 2.2 TB of memory using the direct time stepping method, but can
be completed in just over a day on a laptop with less than 4 GB of memory using our
method. We also confirm the hierarchical low rank property for the driven Hubbard
model in the weak coupling regime within the GW approximation, and in the strong
coupling regime within dynamical mean-field theory.
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1 Introduction

The numerical solution of the quantum many-body problem out of equilibrium is an outstand-
ing challenge in modern physics, required to simulate the effect of strong radiation fields on
atoms and molecules [1,2], quantum materials [3–5], nuclear physics [6–8], ultracold atomic
gases [9–11], and many other systems. Various theoretical frameworks for equilibrium prob-
lems have been extended to the nonequilibrium situation, including density functional the-
ory [12], the density matrix renormalization group (DMRG) [13], and field theory approaches
based on the Keldysh formalism [14–17]. A typical limitation is the restriction to rather short
propagation times. This inherent difficulty manifests itself in various forms; for example, in
bond dimension growth in DMRG [13], the dynamical sign problem in Monte Carlo meth-
ods [18–20], and memory effects in the Keldysh formalism [15,17,21,22]. Extending propa-
gation times would allow for the investigation of new phenomena, such as the stabilization of
metastable states [23–26], which take place on time scales that are orders of magnitude larger
than those currently reachable by state-of-the-art techniques.

The Keldysh formalism is a particularly versatile approach, as it is not limited by the dimen-
sion of the problem (like DMRG), and can be efficiently adjusted to realistic setups. Several
recent studies have used these techniques in direct comparisons with experiments, including
those involving transport properties [27] and periodic driving [11] in ultra-cold atomic sys-
tems, and pump-probe experiments in correlated solids [5,28–32]. Many have already reached
the level of first-principles description [33–37]. The essential task is to evaluate the two-time
Green’s function either with a numerically exact method [38–40] or with a high-order approx-
imation scheme adjusted for the problem being studied [17,30,41–49].

Unfortunately, because of the necessity of computing full history integrals, the solution
of the underlying Dyson equation by standard algorithms has a computational complexity of
O
�

N3
�

and a memory complexity of O
�

N2
�

with respect to the number N of time steps [15].
Numerous proposals have been made to improve efficiency, including memory truncation [50,
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Figure 1: (a) Wall clock time and (b) memory used by the direct method and our
method for the Falicov-Kimball model with a rapid ramp of the interaction parameter,
showing the improved scalings. The time step ∆t is fixed, and the number of time
steps is increased from N = 256 to 262144, corresponding to an increase of the
propagation time from T = 4 to 4096. The direct method is impractical for large N ,
so we show extrapolated timings.

51], high-order time stepping and quadrature rules [22], parallelization [49, 52], and di-
rect Monte Carlo sampling at long times [38, 40]. Of these, only the memory truncation
methods succeed in systematically reducing the asymptotic cost and memory complexity, but
these are restricted to specific parameter regimes in which the Green’s functions are numer-
ically sparse [50, 51]. Another alternative is to approximate the full propagation scheme
with quantum kinetic equations or their generalizations, like the generalized Kadanoff-Baym
ansatz (GKBA) [53–55]. These techniques are sufficiently accurate to explore long-time pro-
cesses in several setups [22,56–58]. However, they rely on an approximation for the equations
of motion which is not always justified [59,60]. Moreover, they lose their advantageous scaling
for higher-order expansions.

There is still a demand, therefore, for a versatile propagation scheme with reduced com-
putational and memory complexity which is compatible with recently developed nonpertur-
bative techniques, like time-dependent dynamical mean-field theory (DMFT) [17,41] and nu-
merically exact Monte-Carlo approaches [18–20, 38–40]. In this work, we propose a method
which, for systems whose Green’s functions and self energies have the so-called hierarchical
off-diagonal low rank (HODLR) property, reduces the computational complexity from O

�

N3
�

toO
�

N2 log N
�

and the memory complexity fromO
�

N2
�

toO (N log N). The HODLR structure
allows us to build a compressed representation of Green’s functions and self energies on the fly
using the truncated singular value decomposition, and we use this representation to accelerate
the evaluation of history integrals. We have confirmed the HODLR property in several systems
of physical interest, and present results for the Falicov-Kimball model and the Hubbard model
excited by a rapid ramp or a periodic driving. Our numerical examples show simulations with
unprecendented propagation times, and computational cost and memory reductions of orders
of magnitude. Scaling results for an example using the Falicov-Kimball model are shown in
Fig. 1.

Our method may be integrated into existing time stepping schemes, including high-order
discretizations, with user-controllable accuracy. That is, the additional error is set by a user-
defined parameter ε, and the cost and memory requirements increase slowly as ε is decreased
for HODLR systems. Efficiency is achieved not by making additional modeling assumptions,
but by exploiting an existing compressibility structure. Notably, the algorithm discovers the
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ranks in the HODLR representation automatically, and if a system fails to obey the HODLR
property to some degree, the algorithm will simply slow down accordingly in order to guar-
antee ε accuracy, rather than give an incorrect result.

This article is organized as follows. In Sec. 2, we describe the Kadanoff-Baym form of the
nonequilibrium Dyson equation and review the standard method of solving it. In Sec. 3, we in-
troduce the HODLR compression structure, show how to build it on the fly, and describe a fast
algorithm for the evaluation of history integrals. In Sec. 4, we demonstrate a full implementa-
tion for the Falicov-Kimball model, and study the HODLR compressibility of Green’s functions
for the Hubbard model excited by a rapid ramp and by periodic driving of system parameters.
In Sec. 5, we summarize our results and discuss several future directions of research.

2 The Kadanoff-Baym equations

The Keldysh formalism describes the single particle two-time Green’s functions

G jk(t, t ′) = −i〈TC ĉ j(t)ĉ
†
k(t
′)〉 , (1)

where ĉ†
j (ĉ j) denotes the fermionic or bosonic creation (annihilation) operator with respect

to the jth single particle state, and TC is the contour order operator; see Refs. [15, 22]. The
construction of the Green’s functions is typically carried out by first evaluating the self energy
diagrams defining whichever approximation is employed, and then solving the Dyson equa-
tion, which resums those diagrams up to infinite order. In this work, we focus on the second
step, and consider situations in which the solution of the Dyson equation is the computational
bottleneck, although our method may still yield a significant reduction in memory usage in
other cases.

The nonequilibrium Dyson equation in the integro-differential form is given by

(i∂t − h(t))G(t, t ′)−
∫

C
d t̄Σ(t, t̄)G( t̄, t ′) = δC(t, t ′), (2)

where h is the single particle Hamiltonian and Σ is the self energy. Here, for simplicity, we
consider the scalar case j = k = 1, but the extension to the multidimensional case is straightfor-
ward. Σ in general depends nonlinearly on G. The Green’s function is typically parametrized
in terms of Keldysh components, and for the solution of the Dyson equation, it is particularly
useful to employ a set of physical components: the Matsubara component GM , the retarded
component GR, the left-mixing component Ge, and the lesser component G<. The equations
of motion for these components lead to the Kadanoff-Baym equations, a set of causal coupled
nonlinear Volterra integro-differential equations (VIDEs) given by [8,15,17,21]

(−∂τ − h(0))GM(τ)−
∫ β

0

dτ̄ΣM(τ− τ̄)GM(τ̄) = 0 (3)

�

−i∂t ′ − h(t ′)
�

GR(t, t ′)−
∫ t

t ′
d t̄ GR(t, t̄)ΣR( t̄, t ′) = 0 (4)

(i∂t − h(t))Ge(t,τ)−
∫ t

0

d t̄ΣR(t, t̄)Ge( t̄,τ) =

∫ β

0

dτ̄Σe(t, τ̄)GM (τ̄−τ) (5)

(i∂t − h(t))G<(t, t ′)−
∫ t

0

d t̄ΣR(t, t̄)G<( t̄, t ′)

=

∫ t ′

0

d t̄Σ<(t, t̄)GA( t̄, t ′)− i

∫ β

0

dτ̄Σe(t, τ̄)Gd1(τ̄, t ′)

(6)
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along with the conditions

GM(−τ) = ξGM(β −τ) (7)

GR(t, t) = −i (8)

Ge(0,τ) = iGM(−τ) = iξGM(β −τ) (9)

G<(0, t ′) = −Ge(t ′, 0) (10)

and the relations

Gd(τ, t) = −ξGe(t,β −τ) (11)

GA(t, t ′) = GR(t ′, t) (12)

G<(t, t ′) = −G<(t ′, t). (13)

Here ξ= ±1 for the bosonic and fermionic cases, respectively, · denotes complex conjugation,
β is the given inverse temperature, and τ is an imaginary time variable. We note that we have
used the conjugate equation for the retarded component in (4). For a detailed derivation of
the Kadanoff-Baym equations, we refer the reader to Ref. [15].

2.1 Direct solution of the Kadanoff-Baym equations

Our method is built on top of the direct time stepping procedure which has traditionally been
used to solve the Kadanoff-Baym equations. We now briefly review that procedure. For details
about discretization, initialization procedures for high-order methods, nonlinear iteration, and
the evaluation of self energies, we refer the reader to Refs. [15,22].

We assume a discretization of the variables t and t ′ on a uniform grid tn = n∆t with
n = 0, 1, . . . , N , and of the variable τ on a uniform grid τk = k∆τ with k = 0, 1, . . . , M . The
final time is given by T = N∆t, and the inverse temperature by β = M∆τ. The Green’s
functions are sampled on the appropriate products of these grids to form matrices, except for
the Matsubara component, which is only a function of τ. The retarded Green’s function is
represented by a lower triangular matrix, and because of its Hermitian antisymmetry (13),
the lesser Green’s function is determined by its lower or upper triangular part [22].

First, Eqns. (3) and (7) for the Matsubara component may be solved independently of
the other components. Several efficient numerical methods exist [22, 61, 62], and we do not
consider this topic here.

The entries for each of the other Green’s functions are computed in the following order:

• The lower triangular matrix GR(tm, tn) is filled in with m proceeding from 0 to N in an
outer iteration, and with n proceeding from m to 0 in an inner iteration.

• The rectangular matrix Ge(tm,τk) is filled in with m proceeding from 0 to N and for
each k in parallel.

• The upper-triangular matrix G<(tn, tm) is filled in with m proceeding from 0 to N in an
outer iteration, and with n proceeding from 0 to m in an inner iteration.

More specifically, suppose we have reached the outer time step tm′ = m′∆t, so that GR(tm, tn),
Ge(tm,τk), and G<(tn, tm) are known for m= 0,1, . . . , m′−1, n= 0,1, . . . , m, and k = 0, 1, . . . ,
M . We can then fill in the matrix entries corresponding to m = m′, n = 0, 1, . . . , m′, and
k = 0,1, . . . , M . Since the self energies depend in general on the values of the Green’s func-
tions at these points, we must carry out a self-consistent iteration on the new entries of the
Green’s functions. At the beginning of each iterate, the new entries of the self energies are first
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computed based on some combination of extrapolation from previous time steps and previous
iterates of the current time step. Then, assuming fixed self energies, the new entries of the
Green’s functions for a given iterate are computed by the following procedure:

1. The equation (4) for the retarded component is a linear VIDE in t ′ for fixed t = tm′ . It is
solved by a time stepping procedure, starting at t ′ = tm′ = t, where we use the condition
(8), backwards to t ′ = t0 = 0. The result is the new row {GR(tm′ , tn)}m

′

n=0.

2. The equation (5) for the left-mixing component is a system of coupled linear VIDEs
indexed by τ = τk. It is solved for the new row {Ge(tm′ ,τk)}Mk=0. Note that at the first
time step, we use the initial condition (9).

3. The equation (6) for the lesser component is a linear VIDE in t for fixed t ′ = tm′ . It is
solved starting at t = t0 = 0, where we have the now known condition (10), forwards to
t = tm′ = t ′. The result is the new column {G<(tn, tm′)}m

′

n=0. Note that as a consequence
of the Hermitian antisymmetry (13) of G< and the definitions (11) and (12), the right
hand side of (6) is entirely known.

The most expensive step in the solution of each VIDE is the evaluation of the various inte-
grals at each time step. We refer to these as history integrals, or history sums when discretized,
since they involve summation over previously computed quantities. To understand the cost,
we first consider the history integral in the VIDE for the retarded component corresponding to
the outer time step t = tm and inner time step t = tn, discretized by the trapezoidal rule as

IR,1
m,n =∆t

m
∑′

j=n

GR(tm, t j)Σ
R(t j , tn). (14)

Here, the primed sum symbol indicates that the first and last terms of the sum are weighted by
1/2. The specific discretization used is unimportant for our discussion, and we have chosen
the trapezoidal rule for simplicity. For each m = 0, . . . , N , we must compute this sum for
n = 0, . . . , m, so that the cost of computing all such sums scales as O

�

N3
�

. By contrast, the
cost of time stepping for all outer time steps tm and inner time steps tn, ignoring the history
sums, scales as O

�

N2
�

. Furthermore, computing these sums requires storing ΣR(tm, tn) in its
entirety, an O

�

N2
�

memory cost.
In Table 1, we list the six history sums, obtained by discretizing the corresponding integrals

in Eqns. (4)–(6), along with the total cost of computing them directly. Each history sum is
slightly different, but for each Keldysh component, the cost of computing the history sums is
dominant. Furthermore, in order to compute the sums, one must store all of the computed
Green’s functions and/or the corresponding self energies. Our main objective is to reduce
these bottlenecks.

Before discussing our approach, it will be useful to understand the history sums in terms
of matrix algebra. We again use the retarded component as an example. At each outer time
step tm, the collection of sums {IR,1

m,n}
m
n=0 may be viewed as the product of a 1×m row vector

{GR(tm, t j)}mj=0 with an m×m lower triangular matrix {ΣR(t j , tn)}mj=0
j
n=0, properly modified

to take the trapezoidal rule weights into account. The cost of computing each such product
is O

�

m2
�

, so that the cost of computing all such products is O
�

N3
�

. Of course, we cannot
compute all sums simultaneously by such a matrix-vector product, since {GR(tm, t j)}mj=0 is
itself built during the course of time stepping. Rather, this product is computed one step at a
time; at the time step tn, we compute the product of the row vector with the nth column of
the lower triangular matrix.
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Table 1: History sums and the total cost of computing them for all index values by
direct summation and by our method. The sums are trapezoidal rule discretizations
of the underlying integrals. k is a bound on the ranks of all blocks in the compressed
representations. The total cost of building these representations by on the fly TSVD
updates is O

�

k2
�

N2 + N M
��

.

History sum
Direct

summation
cost

Fast summation cost

IR,1
m,n =∆t

m
∑′

j=n

GR(tm, t j)ΣR(t j , tn) O
�

N 3
�

O
�

kN 2 log N + k2N 2
�

I e,1m,k =∆t
m
∑′

j=0

ΣR(tm, t j)Ge(t j ,τk) O
�

N 2M
�

O
�

kN 2 + kN M + k2N
�

I e,2m,k =∆τ
M
∑′

l=0

Σe(tm,τl)GM (τl −τk) O
�

N M2
�

O (N M log M)

I<,1
n,m =∆t

n
∑′

j=0

ΣR(tn, t j)G<(t j , tm) O
�

N 3
�

O
�

kN 2 log N + k2N 2
�

I<,2
n,m =∆t

m
∑′

j=0

Σ<(tn, t j)GA(t j , tm) O
�

N 3
�

O
�

kN 2 log N + k2N 2
�

I<,3
n,m =∆τ

M
∑′

l=0

Σe(tn,τl)Gd(τl , tm) O
�

N 2M
�

O
�

kN 2 + kN M + k2N
�

3 A fast, memory-efficient method based on hierarchical low rank
compression

To reduce the bottlenecks associated with history storage and summation, we might first hope
that the Green’s functions and self energies display some sort of sparsity. For example, if the
retarded Green’s function decays rapidly in the off-diagonal direction, we do not need to store
its entries with moduli smaller than some threshold, and we can ignore them in the history
sums. Though this is sometimes the case [50, 51], decay in the Green’s functions and self
energies depends strongly on the parameter regime. On the other hand, we have found that the
Green’s functions and self energies for many systems of physical interest display a smoothness
property which leads to data sparsity; they have numerically low rank off-diagonal blocks.
This can be systematically exploited to achieve highly compressed representations which admit
simple algorithms for fast matrix-vector multiplication.

We will first discuss the compressed storage format for the Green’s functions and self ener-
gies. Then we will describe how to build these compressed representations on the fly, as new
matrix entries are filled in. Finally, we will show that the compressed format leads naturally
to a fast algorithm to compute the history sums.

3.1 Hierarchical low rank compression of Green’s functions

Consider first the retarded Green’s function, which is discretized as a lower triangular matrix.
We partition the matrix into blocks by recursive subdivision, as in Figure 2. Each block may
be described by its level; we say that the largest block is in level one, the two second largest
blocks are in level two, and so on, with L levels in total. We choose L ∼ log2 N so that each
of the triangular blocks near the diagonal contains a small, constant number of entries. All
blocks are square, and the blocks in a given level have dimensions approximately half of those
in the previous level.

A matrix is said to have the hierarchical off-diagonal low rank (HODLR) property with ε-
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Figure 2: Hierarchical off-diagonal partioning of a lower triangular N×N matrix. The
matrix is HODLR if the blocks in the recursive partitioning above, continued towards
the diagonal until the smallest blocks are of a small constant size, have ε-rank k� N .

rank k if each of the blocks in this partitioning are rank k to a threshold ε – that is, their
(k+1)th singular values are less than ε [63]. Using the truncated singular value decomposition
(TSVD), obtained from the SVD by setting all singular values less than ε to zero and deleting the
corresponding left and right singular vectors, an n×n block with ε-rank k may be stored using
k(2n+1) rather than n2 numbers, and recovered with error at most ε in the spectral norm. The
TSVD is the best rank k approximation in this norm, with error given by the (k+1)th singular
value [63, Sec. 2, Thm. 2]. Since each of the 2l−1 blocks in level l has dimensions n ≈ N/2l ,
all blocks in a HODLR matrix may be stored with arbitrary accuracy ε using approximately

k
L
∑

l=1

2l−1(N/2l−1 + 1) =O
�

kN log2 N
�

rather than O
�

N2
�

numbers. The entries in the triangular blocks near the diagonal may be
stored directly, and since we choose L ∼ log2 N , there are only O (N) of them.

We are primarily interested in the behavior of the family of matrices obtained by fixing
∆t and increasing N to reach longer propagation times. It may be that in this family, the ε-
rank bound k itself increases with N . If k grows linearly with N , then there is no asymptotic
advantage to storing the matrix in the compressed format described above. If k does not grow
with N at all – the ideal case – then the total cost of storage in the compressed format grows
only as O (N log N). We have examined the ε-rank behavior of retarded Green’s functions and
self energies in the compressed format for a variety of physical systems. Our crucial empirical
observations are, first, that for fixed N, the maximum ε-rank k of any block is often much less
than N, and second, that in these cases k grows only weakly with N, so that storage costs are close
to O (N log N) with a small scaling constant.

The matrices of the lesser Green’s function and self energy are Hermitian antisymmetric,
so we need only store their lower triangular parts. We have observed that they have similar
ε-rank structures to the retarded components. The left-mixing Green’s function is represented
by a full N × M matrix, and our observation is that this matrix is often simply of low ε-rank.
Using the TSVD, then, we can store it using k(N + M + 1) rather than N M numbers, where
here and going forward we use k to denote an ε-rank bound for all Keldysh components.

We note that if T is fixed and N is increased in order to achieve higher resolution – the
∆t → 0 regime – the ε-ranks cannot increase asymptotically with N , and we are guaranteed
O (N log N) scaling of the memory usage. In this case, the size of the constant k in the scaling
entirely determines the efficiency of the method.
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The rank properties, and consequently the compressibility, of the Green’s functions and self
energies vary from system to system. We give numerical evidence of significant compressibility
for several systems of physical interest in Sec. 4.

3.2 Building the compressed representation on the fly

If we are required to construct each block in its entirety before compressing it, the peak mem-
ory usage will still scale as O

�

N2
�

. Therefore, we must build the Green’s functions and self
energies in the compressed format on the fly. During the course of time stepping, new rows
of the retarded Green’s function matrix are filled in one at a time, according to the procedure
described in Sec. 2.1. Each new row may be divided among the blocks in the HODLR parti-
tion containing a part of it. The new entries in the triangular blocks are stored directly. For
the other blocks, we must compute the TSVD of the concatenation of a block known in TSVD
representation with a new row. We carry out this process, called an SVD update, using the
method described in Ref. [64, Secs. 2-3], which we outline below.

Suppose we have a matrix B′ given by the first m′ rows of an m× n block B, with rank k′

TSVD B′ = U ′S′V ′∗. Given a new row b∗ of B, we wish to construct the ε-rank TSVD of the
matrix

B+ =

�

B′

b∗

�

in an efficient manner – in particular, we cannot simply expand B′ from its TSVD, append b∗,
and compute the TSVD of B+ directly, since this would lead to O

�

N2
�

peak memory usage. If
m′ = 0, B′ is empty, and the TSVD is simply given by B+ = U+S+V+∗ with U+ = 1, S+ = 1,
and V+ = b. Otherwise, we begin by writing

B+ =

�

U ′ 0
0 1

��

S′ 0
0 1

��

V ′∗

b∗

�

.

We first orthogonalize the new row against the current row space of B, which is given by
the span of the columns of V ′. In particular, define the normalized orthogonal complement
q = (b−V ′V ′∗b)/β with β =



b− V ′V ′∗b


. V ′∗b and q may be computed at a cost of O
�

nk′
�

using the modified Gram-Schmidt algorithm [65, Sec. 5.2.8]. We then have

�

V ′ b
�

=
�

V ′ q
�

�

I V ′∗b
0 β

�

and therefore

B+ =

�

U ′ 0
0 1

��

S′ 0
b∗V ′ β

��

V ′∗

q∗

�

. (15)

The middle matrix is a k′ + 1 × k′ + 1 half-arrowhead matrix, and we can compute its SVD
USV ∗ in O

�

k′2
�

time [66]. The rank k′ + 1 TSVD of B+ is then given by B+ = U+S+V+∗,

with U+ =

�

U ′ 0
0 1

�

U , S+ = S, and V+ =
�

V ′ q
�

V . The cost of forming U+ and V+ by

matrix-matrix multiplication is O
�

k′2(m′ + n)
�

, and is the asymptotically dominant cost in the
update. If S+k′+1,k′+1 < ε, then B+ has ε-rank k′, and we remove the last column of U+, the last
row of V+, and the last row and column of S+.

The cost of building a full m×n block of rank at most k one row at a time in this manner is
O
�

k2m(m+ n)
�

. For the retarded and lesser Green’s functions and self energies, in each block
we have m≈ n, with 2l−1 blocks at level l of dimensions n≈ N/2l , so the total update cost is
of the order

k2
L
∑

l=1

2l−1
�

N2/22l
�

=O
�

k2N2
�

.
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8

Figure 3: The portion of compressed representation depicted in Fig. 2 which has
been constructed by the outer time step t = tm for the retarded Green’s function and
self energy. The block numbering indicates the order in which blocks are applied
when computing the history sums IR,1

n,m.

The left-mixing Green’s function and self energy are N ×M matrices with rows filled in one by
one, so we can use the update procedure for a single block, at a total cost of O

�

k2
�

N2 + N M
��

.

3.3 Fast evaluation of history sums for the retarded component

Fig. 3 depicts the portion of the compressed representation of the retarded Green’s function
and self energy that has been built by the time we have reached the outer time step t = tm.
For the self energy, this is the compressed representation of the integral kernel appearing in
the VIDE (4) corresponding to t = tm. We describe in this section how to use this compressed
representation to efficiently compute the history sums IR,1

n,m defined in (14), for n= 0, . . . , m.
On the left side of Fig. 3, we show a division of the interval [0, tm] into panels with

endpoints 0, tm1
, tm2

, . . . , tm10
, tm. m1, m2, . . . , m10 are the first row indices of the 10 blocks,

ordered from top to bottom. As described in Sec. 2.1, when solving the VIDE corresponding
to t = tm by time stepping, the row vector {GR(tm, t j)}mj=0 is filled in from right to left; we

start with GR(tm, tm) = −i, then we fill in GR(tm, tm−1), and so on, until we reach GR(tm, 0).
As shown in Eq. (14), the history sum IR,1

m,n corresponding to time step t ′ = tn is given by the
weighted product of the row vector {GR(tm, t j)}mj=n with the column vector {ΣR(t j , tn)}mj=n.

From time steps tm until tm10
, the portion of the kernel matrix contributing to the history

sums is the lower right triangular block, and we compute the sums directly. However, once we
fill in GR(tm, tm10

), we can apply the block labeled by 1 to the row vector {GR(tm, t j)}mj=m10
,

yielding a partial contribution to the history sums IR,1
m,n with n indexing the columns of that

block. These contributions are stored. Once we have filled in GR(tm, tm9
), we can apply the

block labeled by 2 to the row vector {GR(tm, t j)}
m10
j=m9

, yielding partial contributions to the
history sums corresponding to its columns, which are added to the previous contributions and
stored. Once we have filled in GR(tm, tm8

), we can apply the block labeled by 3 to the row
vector {GR(tm, t j)}mj=m8

, again obtaining part of the corresponding history sums. We proceed

in this manner, applying blocks as soon as all entries of {GR(tm, t j)}mj=0 corresponding to the
block row indices become available, and adding the result to the history sums corresponding
to the block column indices.

By the time we reach some time step tn, we will have already computed IR,1
m,n, except for the

local part of the sum; that is, the product of the part of the nth column contained in a triangular
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block with the corresponding part of {GR(tm, t j)}mj=0, which contains the most recently added
entries. We compute this small dot product directly and add it in to obtain the full history sum
IR,1
m,n.

So far, we have not described a fast algorithm, only a way of reorganizing the computation
of the history sums into a collection of matrix-vector products and small dot products. To
obtain a fast algorithm, we recall that each block B is stored as a TSVD B = USV ∗, with the ε-
rank bound k. If B is m×n, then it can be applied with a cost scaling as O (k(m+ n+ k)) rather
than O (mn) by applying the factors of the TSVD one at a time. Suppose then that the blocks,
including partial blocks, in the compressed representation of the kernel at the current outer
time step t = tm are in levels at least l ′. Since there are ∼ 2l m/N blocks each of dimensions
N/2l at level l, the cost of applying all blocks at that time step is bounded asymptotically by

k
L
∑

l ′

m
N

2l
�

N/2l + k
�

= km(L − l ′ + 1) +
2mk2

N

�

2L+1 − 2l ′
�

.

Since there are approximately N/2l ′−1 time steps tm for which the blocks are in levels at least
l ′, and m≤ N/2l ′−1 for such a time step, the total cost of applying all blocks at every time step
is therefore

k
L
∑

l ′=1

N
2l ′−1

�

N
2l ′−1

(L − l ′ + 1) +
2k
N

N
2l ′−1

�

2L+1 − 2l ′
�

�

=O
�

kN2 log2 N + k2N2
�

.

The total cost of computing the local sums is only O
�

N2
�

.

3.4 Fast evaluation of history sums for the other components

Each of the history sums defined in Table 1 is evaluated by a slightly different algorithm, but
using similar ideas.

3.4.1 The sum I e,1m,k

At the outer time step tm, we compute the product of the row vector {ΣR(tm, t j)}mj=0 with the

rectangular matrix {Ge(t j ,τk)}mj=0
M
k=0, which is stored as a TSVD, to obtain I e,1m,k for k = 0, . . . , M .

Applying the factors of the TSVD one by one, we can carry out this product inO (k(m+M + k))
operations, which gives a total cost for all sums scaling as O

�

kN2 + kN M + k2N
�

.

3.4.2 The sum I e,2m,k

We compute the product of the row vector {Σe(tm,τl)}Ml=0 with the square matrix

{GM (τl −τk)}Ml=0
M
k=0 to obtain I e,2m,k for k = 0, . . . , M . Here, we make use of a different sort

of fast algorithm. {GM (τl −τk)}Ml=0
M
k=0 is an M × M Toeplitz matrix, and therefore can be

applied inO (M log M) time using the fast Fourier transform (FFT) [65, Sec. 4.7.7]. Briefly, this
algorithm works by embedding the Toeplitz matrix in a larger circulant matrix, zero-padding
the input vector, conjugating the circulant matrix by the discrete Fourier transform (DFT),
which diagonalizes it, and applying the DFT and its inverse using the FFT. Using this algorithm
gives a total cost of O (N M log M) for all the sums.

3.4.3 The sum I<,1
n,m

The sums I<,1
n,m for n = 0,1, . . . , m are given by the product of the lower triangular matrix

{ΣR(tn, t j)}mn=0
n
j=0, stored in the compressed representation, with the column vector
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{G<(t j , tm)}nj=0. As for the retarded case, this column vector is filled in one entry at a time
during the course of time stepping, from j = 0 to j = m. The algorithm to compute these sums
on the fly is then analogous to that for the retarded case, except that the blocks are applied in
order of increasing column index rather than decreasing row index as depicted in Fig. 3. The
asymptotic cost is the same as for IR,1

n,m.

3.4.4 The sum I<,2
n,m

We compute the product of the square matrix {Σ<(tn, t j)}mn=0
m
j=0 with the column vector

{GA(t j , tm)}mj=0 to obtain I<,2
n,m for n = 0, . . . , m. We have {GA(t j , tm)}mj=0 = {GR(tm, t j)}mj=0,

which is known, and {Σ<(tn, t j)}mn=0
m
j=0 is Hermitian antisymmetric, and therefore also fully

known in the compressed representation. The same procedure as in Sec. 3.4.3 can be used
to apply each block of the lower triangular part, and the upper triangular part can be applied
simultaneously using the anti-conjugate transposes of the TSVDs of each block. The total
asymptotic cost is therefore again the same as for IR,1

n,m.

3.4.5 The sum I<,3
n,m

We compute the product of the matrix {Σe(tn,τl)}mn=0
M
l=0 with the column vector

{Gd(τl , tm)}Ml=0 to obtain I<,3
n,m for n= 0, . . . , m. We perform the matrix-vector product using the

TSVD of {Σe(tn,τl)}mn=0
M
l=0, at a cost of O (k(m+M + k)), giving a total cost of

O
�

kN2 + kN M + k2N
�

for all sums.

3.5 Summary of the time stepping algorithm

The tools we have described can be integrated into the direct solution method discussed in
Sec. 2.1 with only a couple of modifications:

• At the end of self-consistent iteration for each outer time step, the TSVD update algo-
rithm described in Sec. 3.2 must be used to add the new rows of all Green’s functions
and self energies to their compressed representations.

• The fast procedures described in Secs. 3.3 and 3.4 must be used to compute all history
sums.

By the end of the procedure, we will have computed compressed representations of each
of the Green’s functions and self energies. Operations may be carried out by working directly
with the compressed representations, as in Secs. 3.3 and 3.4. An entry of a matrix stored in
compressed format may be recovered in O (k) operations.

The costs associated with computing the history sums and updating the compressed rep-
resentations are summarized in Table 1 and its caption. The storage costs scale as
O (k (N log N +M)).

4 Numerical results

In this section, we demonstrate a full implementation of our method for a driven Falicov-
Kimball model in the DMFT limit, using two nonequilibrium protocols: a fast ramp and peri-
odic driving. We also test the efficiency of HODLR compression offline for the weak and strong
coupling regimes of the Hubbard model. The weak coupling regime is described within the
time-dependent GW approximation for a one dimensional system. The strong coupling (Mott
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insulating) regime is described within the DMFT approximation on the Bethe lattice with a
non-crossing approximation (NCA) as the impurity solver.

4.1 Full implementation for the Falicov-Kimball model

The Falicov-Kimball problem [67,68] describes a lattice consisting of itinerant c electrons and
immobile f electrons which interact via a repulsive Coulomb potential with strength U. The
Hamiltonian is given by

H = −J
∑

〈i, j〉

c†
i c j + ε

∑

i

f †
i fi + U

∑

i

f †
i fic

†
i ci , (16)

where we measure energies in the units of the hopping parameter J and ε is the on-site energy.
In the DMFT limit, the equilibrium phase diagram includes metallic, insulating, and charge
density wave phases [69]. The effective local action for the itinerant electrons is quadratic and
the problem can be solved numerically exactly [70,71], so the main computational bottleneck
is the solution of the Dyson equation [72,73].

For simplicity, we will assume the Bethe lattice at half-filling, for which we obtain a pair of
coupled equations of the form (3)–(13) for Green’s functions G1 and G2, with

h1(t) = U(t)/2, h2(t) = −U(t)/2,

and Σ replaced by
∆(t, t ′) =

�

G1(t, t ′) + G2(t, t ′)
�

/2

for each Keldysh component of G. ∆ is the hybridization function which enters the solution
of the Kadanoff-Baym equations by replacing Σ, but is not equal to the self energy for the
Falicov-Kimball system in DMFT. The Green’s functions G1 and G2 correspond to the full or
empty f states after integrating out the f electrons. In the Falicov-Kimball model on the Bethe
lattice, the self consistency for the hybridization function ∆ is simply a linear combination of
G1 and G2, so no nonlinear iteration is required in its numerical solution. This is a convenient
simplification, but does not materially affect our algorithm.

In the first example, we consider a rapid ramp of the interaction parameter U(t), given by

U(t) =
U0 + U1

2
+

U1 − U0

2
erf (5.922(2t − 1)) . (17)

U starts in the metallic phase U0 = 1 at inverse temperature β = 5, and smoothly increases
deep into the insulator transition U1 = 8. Experiments for various choices of U0 and U1 confirm
that the significant compressibility of the solution which we will demonstrate for this case is
typical.

In the second example, which we refer to as the Floquet example, we consider a periodic
driving of system parameters. Such protocols have been studied extensively in the setting
of Floquet engineering [74–77], Floquet prethermalization [45, 78–80], and high-harmonic
generation [11,81,82]. In particular, we simulate periodic driving of the Coulomb interaction,

U(t) = Ueq + Udr sin(ωt), (18)

where Ueq is the equilibrium interaction, Udr is the driving strength, and ω is the driving
frequency. We start in the insulating phase Ueq = 8 at the inverse temperature β = 5 and
choose a resonant excitation ω = Ueq with strength Udr = 2. As in the ramp example, our
experiments show that other parameter choices yield similar compressibility results. Plots of
GR

1 (t, t ′) for the two examples with propagation time T = 8 are shown in Fig. 4.
We march the integro-differential equations in time using the implicit trapezoidal rule, with

history sums also discretized using the trapezoidal rule as in Sec. 2.1. It is not our intention
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Figure 4: Plots of GR
1 (t, t ′) for the (a) ramp and (b) Floquet examples of the Falicov-

Kimball model, with propagation time T = 8. Note that the t axis has been reversed
to reflect the matrix representation which we work with in the previous sections.

here to obtain high accuracy calculations, and we use a low-order discretization for simplicity,
but extension to high-order time stepping methods and quadrature rules for history summa-
tion is straightforward [22]. GM is computed in advance to near machine precision using a
Legendre polynomial–based spectral method with fixed point iteration, and then evaluated
on the equispaced τ grid [61, 62]. Codes were written in Fortan using OpenBLAS for matrix
operations and linear algebra, including the evaluation of history sums in the direct method,
and FFTW was used for the FFTs in the fast evaluation of the sums I e,2m,k [83–85]. All numerical
experiments were performed on a laptop with an Intel Xeon E-2176M 2.7GHz processor.

In the following experiments, errors are always computed as the maximum entrywise dif-
ference between a computed solution and a reference. We note that this is not the norm in
which the TSVD guarantees accuracy ε, but that is a minor technical issue and does not pre-
vent effective error control. When we present ε-ranks associated with GR or G<, we always
maximize the rank over all blocks in the HODLR partition, and simply refer to this as the rank
of the compressed representation. In all cases presented, for GR and G<, this coincides with
the ε-rank of the largest block in the partition. The number L of levels can be adjusted to
balance computational cost and memory usage, but for all experiments, we simply choose it
so that the smallest blocks in the HODLR partition are approximately 16× 16.

We first examine the behavior of our method as the SVD truncation tolerance ε is varied,
using both examples with the propagation time T = 64, corresponding to N = 4096 time steps,
and M = 128 Matsubara time steps. Errors compared with the direct method, maximized over
all Keldysh components of the Green’s function, are given for several values of ε in Table 2.
For each experiment, the error is less than ε. In Fig. 5a, we plot the singular values of the
largest blocks in the HODLR partitions of GR

1 and G<1 , and of Ge1, for the ramp example. The
singular values decay approximately exponentially, and as a result, the ε-ranks of these blocks
increase only as approximately log (1/ε), as shown in Fig. 5b. The wall clock time required
to compute each component of G, shown in Fig. 5c, increases slightly more slowly than the
expected asymptotic k ∼ log (1/ε) rate for these parameters. The memory required to store
each component of G1 is shown in Fig. 5d, and reflects the variation in ranks seen in Fig. 5b.
The results for G2 are similar. Fig. 6 contains analogous results for the Floquet example. Here,
the decay of the singular values, while still rapid, is slightly slower than exponential, and this
is reflected in the ranks, timings, and memory usage.

We next fix T = 8 and ε = 10−4, and measure errors and ranks for ∆t corresponding
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Table 2: Error of the Green’s functions compared with the direct method, maximized
over all Keldysh components, for different ε. For both examples, T = 64, N = 4096,
and M = 128.

ε 10−2 10−4 10−6 10−8 10−10

Error
Ramp 6× 10−3 6× 10−5 6× 10−7 5× 10−9 5× 10−11

Floquet 8× 10−3 6× 10−5 8× 10−7 7× 10−9 6× 10−11

to N = 64,128, . . . , 8192 time steps. M is taken to be sufficiently large to eliminate it as
a dominant source of error. The errors are measured against a well-resolved solution. The
results are given in Table 3. We observe the expected second-order convergence with ∆t,
until the SVD truncation error is reached. We also find that the ranks are nearly constant as N
is increased. Indeed, once the solution is resolved by the grid, the block ranks cannot increase
significantly as ∆t is further refined. In the regime of fixed T and increasing N , therefore, we
are guaranteed O

�

N2 log N
�

scaling of the computational cost and O (N log N) scaling of the
memory usage.

The more challenging regime is that of increasing T and N with fixed time step∆t. We take
∆t = 1/64, and doubling values of the propagation time T = 4,8, . . . , 4096, corresponding to
N = 256, 512,1024, . . . , 262144 time steps. We note that in our experiments, the maximum
error for fixed ∆t is observed to be approximately constant as N and T are increased, so ac-
cording to Table 3 these simulations have approximately three-digit accuracy. We fix M = 128,
which is sufficient to eliminate it as a dominant source of error, and ε = 10−4.

Table 3: Errors and ranks with a varying time step ∆t and fixed propagation time
T = 8, for the ramp (top) and Floquet (bottom) examples. Errors and ranks for each
component are maximized over G1 and G2.

∆t
Errors Ranks

GR Ge G< GR Ge G<

1/8 1.01× 10−1 5.06× 10−2 8.83× 10−2 9 7 8
1/16 2.50× 10−2 1.32× 10−2 2.25× 10−2 9 7 9
1/32 6.25× 10−3 3.32× 10−3 5.65× 10−3 9 7 9
1/64 1.56× 10−3 8.29× 10−4 1.42× 10−3 9 7 9
1/128 3.90× 10−4 2.05× 10−4 3.51× 10−4 10 7 9
1/256 9.78× 10−5 4.95× 10−5 8.56× 10−5 10 7 9
1/512 3.31× 10−5 4.79× 10−5 6.03× 10−5 10 7 9

1/1024 3.61× 10−5 4.79× 10−5 5.09× 10−5 11 7 10

∆t
Errors Ranks

GR Ge G< GR Ge G<

1/8 1.09× 10−1 1.07× 10−1 1.07× 10−1 9 6 8
1/16 2.81× 10−2 2.79× 10−2 2.79× 10−2 9 6 7
1/32 7.08× 10−3 7.02× 10−3 7.03× 10−3 9 6 8
1/64 1.78× 10−3 1.76× 10−3 1.77× 10−3 10 6 9

1/128 4.50× 10−4 4.40× 10−4 4.45× 10−4 10 6 9
1/256 1.22× 10−4 1.11× 10−4 1.20× 10−4 10 6 9
1/512 3.74× 10−5 5.65× 10−5 5.65× 10−5 10 6 9
1/1024 3.56× 10−5 5.94× 10−5 5.94× 10−5 11 6 9
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Figure 5: Varying the SVD truncation tolerance ε for the ramp example with prop-
agation time T = 64, corresponding to N = 4096 time steps. We plot (a) singular
values of the largest block in the hierarchical partition for GR

1 and G<1 , and of Ge1, (b)
the ranks of the compressed representations for G1, (c) the time to compute each
component of G, and (d) the memory required to store each component of G1 in
compressed form.

Fig. 1 shows the time and memory required for each simulation for the ramp example, us-
ing our algorithm and the direct method. For sufficiently large values of N , the direct method
becomes impractical, and we obtain timings by extrapolation. We observe the expected scal-
ings. For the largest simulation, which has T = 4096 and N = 262144, our algorithm takes
approximately 26.5 hours and uses 3.8 GB of memory to store the Green’s functions, whereas
the direct method would take approximately 5 months and use 2.2 TB of memory. This im-
plies a speedup factor of approximately 135, and a compression factor of approximately 580.
A simulation which would take the direct method 24 hours, at N ≈ 49250, using 78 GB of
memory, would take our method approximately 42 minutes and use 512 MB of memory. Our
method is faster whenever N > 1200, and it uses less memory for all values of N . The results
for the Floquet example, given in Fig. 7, are nearly identical.

Rank information for the two examples is given in Figs. 8a and 8c, respectively. The crucial
empirical observation enabling our complexity gains is that the maximum ranks grow at most
logarithmically with N .

4.2 Hierarchical low rank compression in other systems

We have demonstrated an implementation specialized for the Falicov-Kimball problem for sim-
plicity, but our method will be efficient for any system in which the Green’s functions and self
energies are HODLR compressible. This property can be tested offline, for a solution which
has already been computed, by simply measuring the ε-ranks of the blocks in the compressed
representations. In this way, we can determine whether or not our algorithm will be effective
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Figure 6: Varying the SVD truncation tolerance ε for the Floquet example with prop-
agation time T = 64, corresponding to N = 4096 time steps.The plots are analogous
to those shown for the ramp example in Fig. 5.

when applied to other systems of interest.
Let us first verify for the Falicov-Kimball model that an offline measurement gives similar

ε-ranks to those computed online using our SVD update algorithm. This will show that the
update algorithm is yielding accurate results without requiring ranks which are larger than
necessary, and therefore that measuring ε-ranks offline is sufficient to understand online per-
formance. For both the ramp and Floquet examples, we take the same parameters as in the
previous experiment, with T = 4, 8, . . . , 128 and N = 256, 512, . . . , 8192, and compute G1 by
the direct method. Then, for ε = 10−4, we measure directly the same ε-ranks which were
computed on the fly and are shown in Figs. 8a and 8c; that is, we simply compute the SVD of
the blocks and count the number of singular values above ε. The results are given in Figs. 8b
and 8d.

Comparing the online and offline results shows that our on the fly procedure in fact obtains
smaller ranks than those computed offline from the full solution. This observation merits some
comment. One would not expect the online and offline ε-ranks to be identical, since the history
sums used in the online algorithm contain an error of magnitude ε. Our only concern would
be if the smaller online ε-ranks were accompanied by an error of magnitude much larger than
the expected ε, and this is not the case for any of the examples treated in Figs. 8b and 8d.
More generally, a difference in the ε-ranks of two matrices does not imply a large difference
between the matrices themselves, measured in some norm; for example, the n × n diagonal
matrices A = diag (1, 1.5ε, · · · , 1.5ε) and B = diag (1,0.5ε, · · · , 0.5ε) have ε-ranks n and 1,
respectively, and ‖A− B‖2/‖A‖2 = ε. In our examples, compared with the size of the matrices
which have been compressed, the observed discrepancy in the ranks is in practice negligible.

We can now estimate the effectiveness of our method for other systems by this offline
procedure. As an example, we use the Hubbard model, a paradigmatic problem in the theory of
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Figure 7: Increasing the propagation time T with N fixed time steps of size ∆t and
SVD truncation tolerance ε = 10−4, for the Floquet example. The plots are analogous
to those shown for the ramp example in Fig. 1.

strongly correlated systems which demonstrates a variety of phenomena, including the metal-
insulator transition and magnetic phases [86–89]. The Hamiltonian,

H(t) = −J
∑

〈i, j〉,σ

exp−iφ(t) c†
iσc jσ + U

∑

i

(ni↑ − 1/2)(ni↓ − 1/2), (19)

describes the competition between the kinetic energy and the on-site Coulomb interaction.
Here, ciσ is the annihilation operator at site i for spin σ, niσ is the corresponding density
operator, J is the hopping parameter, and U is the Coulomb strength. Coupling to an external
electric field E(t) is introduced via the Peierls substitution and enters as a time-dependent
phase of the hopping parameter φ(t) = −lA(t), where l is the lattice constant. The vector
potential A is obtained from the electric field by A(t) = −

∫ t
0 d t̄E( t̄). We consider two charac-

teristic cases at half-filling: the weak coupling regime, in which the bandwidth W is larger the
Coulomb interaction, W > U , and the system is metallic, and the strong coupling regime, in
which the Coulomb interaction dominates, U >W , and the system is a Mott insulator.

Correlated metal within GW In the weak coupling regime, we consider the GW approx-
imation for the self energy. This approximation has been used extensively for the realistic
modeling of molecules, weakly correlated extended systems, coupling with bosonic excita-
tions, and screening [32–36,42,43,90,91]. In combination with DMFT, it was used in and out
of equilibrium to study plasmonic physics in correlated systems [30,44,92–95]. We consider a
one dimensional setup with translational invariance and a paramagnetic phase; see Ref. [22]
for a detailed description. In this case, the single particle energy includes the coupling to the
external vector potential as ε(k− A) = −2J cos(k− A).

We examine two excitation protocols. The first involves a short electric field pulse, as
typically used in pump-probe experiments, parametrized by

E(t) = E0 sin (ω(t − t0))exp
�

−4.2(t − t0)/t2
0

�

, (20)

where the delay t0 = 2π/ω is chosen so that the pulse contains one cycle. We use a pump
strength E0 = 5 and base frequency ω = 4. The second is a Floquet driving of the electric
field,

E(t) = EF
0 sin (ωF t) , (21)
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Figure 8: Ranks of the compressed representations for G1 with increasing propaga-
tion times T corresponding to N time steps of fixed size ∆t, and SVD truncation
tolerance ε = 10−4, for the ramp (first row, (a) & (b)), and Floquet (second row, (c)
& (d)) examples. The first column ((a) & (c)) contains ranks computed on the fly,
and the second ((b) & (d)) contains ranks computed offline for the smaller values of
N .

with driving strength EF
0 = 1 and frequencyωF = 2. In both cases we fix the Coulomb strength

U = 2, and at equilibrium the inverse temperature β = 20.
The time evolution of the kinetic energy Ekin(t) =

1
N

∑

k ε(k)〈c
†
kck〉(t) is shown for the pulse

excitation and the periodic driving in Figs. 9d and 9e, respectively. In the pulse excitation, the
kinetic energy is transiently enhanced during the pulse and then quickly approaches the long-
time limit which, as we are considering a closed system, is higher than the equilibrium kinetic
energy. In the periodically driven case, the kinetic energy gradually grows toward the expected
infinite temperature state Ekin = 0 as the system heats up. We note that for readability, Ekin(t)
is plotted on a much shorter time interval than that of our longer simulations.

We use the NESSi library [22] to solve the time-dependent GW equations for these sys-
tems. We fix the time step ∆t = 0.01 and the Matsubara time step ∆τ = 0.04, and compute
solutions Gk(t, t ′) for T = 3.75,7.5, . . . , 60, corresponding to N = 250,500, . . . , 4000, for both
the pulse and Floquet examples. We then measure the ε-ranks of all blocks in the compressed
representation for ε = 10−4, and use these values, along with the number of directly stored
matrix entries, to compute the total memory required to store each Green’s function in the
compressed representation. The results are shown in Fig. 9. The ranks grow slowly with N .
Even for N = 4000, we observe a compression factor of over 30 for the pulse example and
20 for the Floquet example; this can be compared with a compression factor of approximately
25 for the Falicov-Kimball examples with N = 4096. Of course, because of the near linear
scaling of the memory usage, the compression factors will increase nearly linearly with N . As
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Figure 9: Ranks and memory usage for the GW examples with increasing propagation
times T corresponding to N time steps of fixed size ∆t, computed offline from solu-
tions obtained using the NESSi library. Panels (a) and (b) give ε-ranks for the pulse
and ramp examples, respectively, with ε = 10−4. Panel (c) gives the total memory
usage in each case using compressed and direct storage. Panels (d) and (e) show the
time evolution of the kinetic energy for the pump and Floquet examples, respectively.

the two excitations represent very different physical regimes, this experiment gives evidence
of the broad applicability of the HODLR compression technique.

Mott insulator within DMFT We next treat a strongly correlated Mott insulator. The descrip-
tion of the Mott insulating phase of the Hubbard model requires a nonperturbative approach,
and we use the time-dependent DMFT description [17]. For simplicity, we consider the Bethe
lattice self-consistency condition

∆(t, t ′) = J(t)Gloc(t, t ′)J(t ′). (22)

Here we have introduced the hybridization function∆ and the local Green’s function Gloc = Gii .
In the DMFT description, the lattice problem is mapped to an effective impurity problem,
and we use the strong coupling expansion NCA as the impurity solver; see Ref. [41] for de-
tails. To describe the electric field on the Bethe lattice, we have followed the prescription in
Refs. [96–98].

As in the weak coupling case, the first excitation protocol is a short electric field pulse of
the form (20) with a single cycle. We use E0 = 5 and ω = 5. The second is a periodic driving
of the form (21), with EF

0 = 1 and ωF = 5. In both cases we set U = 6 and β = 20.
The kinetic energy in the DMFT description is given by Ekin(t) = −2i (∆ ∗ Gloc)

< (t, t).
During the pulse the kinetic energy, shown in Fig. 10d, increases and then quickly relaxes
to the long time limit. Despite the rather fast relaxation to a nearly constant value of the
kinetic energy, computing this result is far from trivial as it requires integration over several
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Figure 10: Ranks and memory usage for the DMFT examples with increasing propa-
gation times T corresponding to N time steps of fixed size∆t, computed offline from
solutions obtained using the NESSi library. The plots are analogous to those shown
for the GW examples in Fig. 9.

highly oscillatory auxiliary functions, often called pseudo-particle propagators; see Ref. [41]
for details. In the Floquet example, the kinetic energy approaches the infinite temperature
state Ekin = 0 in the long-time limit. While the initial dynamics show strong oscillations, these
are rapidly damped in the resonant regime; see Refs. [45,46,78].

We fix the time step ∆t = 0.02 and the Matsubara time step ∆τ = 0.04, and compute
solutions Gk(t, t ′) for T = 7.5,15, . . . , 120, corresponding to N = 375, 750, . . . , 6000, for both
the pulse and Floquet examples. We then measure ε-ranks for ε = 10−4 and memory usage
as in the GW examples. The results are given in Fig. 10. The ranks remain constant as N
increases, and the memory scaling is consequently ideal. For N = 6000, we obtain compression
factors of over 30 for both examples. Moreover, we have confirmed that a similar degree of
compression may be obtained for the auxiliary pseudo-particle propagators. We note that in
these examples, the Green’s functions and self energies exhibit rapid decay in the off-diagonal
direction, consistent with the observed rank behavior, so both our method and methods based
on sparsity are applicable [50, 51]. This demonstrates, in addition, that matrices with rapid
off-diagonal decay are in particular HODLR compressible.

5 Conclusion

We have presented a numerical method to reduce the computational and memory complexity
of solving the nonequilibrium Dyson equation by taking advantage of the HODLR structures of
Green’s functions and self energies observed in many physical systems. The method works by
building TSVD-based compressed representations of these functions on the fly, and using them
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to reduce the cost of evaluating history integrals. We have confirmed significant compressibility
for various models of interest, including instances of the Falicov-Kimball and Hubbard models
in different diagrammatic approximations. The accuracy of our method, compared with direct
time stepping methods, is controlled by the user, and in particular does not involve any new
modeling assumptions. Selection of compression parameters is automatic, so our method may
be used as a black box on new systems with unknown structure.

This work suggests many important topics for future algorithms research, of which we
mention a few.

• Our method is compatible with more sophisticated discretization techniques, like high-
order time stepping [22]. While these do not by themselves change the computational
and memory complexity of the solver, they yield a significant reduction in the constant
associated with the scaling, and should be used in implementations. Also, in the equi-
librium case, spectral methods and specialized basis representations have been used
to represent Green’s functions with excellent efficiency, and their applicability in the
nonequilibrium case has not yet been explored [61,99–102].

• A distinction must be made between automatic compression methods, like the one we
have described, and adaptive discretizations, which adjust grids to increase resolution in
certain regions of the solution. Though significant technical challenges remain, combin-
ing compression and high-order discretizations with automatically adaptive time step-
ping would enable the simulation of much more sophisticated systems at longer propa-
gation times, and we envision such methods becoming the standard in the long term.

• For systems amenable to HODLR compression, it remains to determine whether this
structure can be used to reduce other bottlenecks. In particular, the evaluation of high-
order self energy diagrams involves a sequence of nested convolutions with potentially
structured operators.

• The effectiveness of HODLR compression in solving the nonequilibrium Dyson equation
is unsurprising, as various forms of hiearchical low rank compression are commonly used
in scientific computing to compress integral operators with kernels that are smooth in
the far field. However, since the equations are nonlinear, the degree of compressibility
is difficult to analyze, and it remains to determine the limits of our approach. If HODLR
compression is not applicable to some systems, it may still be possible to use similar
ideas with other compression techniques from the numerical linear algebra and applied
mathematics literature. Indeed, significant progress has been made over the last several
decades on exploiting various types of data sparsity, especially in the context of partial
differential equations and associated integral equations, and an opportunity remains to
apply these techniques to Green’s function methods.

A full implementation of our algorithm in the high-order time stepping code NESSI [22] is
forthcoming, and will be reported on at a later date.
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[53] P. Lipavský, V. Špička and B. Velický, Generalized Kadanoff-Baym ansatz for deriving quan-
tum transport equations, Phys. Rev. B 34, 6933 (1986), doi:10.1103/physrevb.34.6933.
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