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Abstract

We propose a general path-integral definition of two-dimensional quantum field theories
deformed by an integrable, irrelevant vector operator constructed from the components
of the stress tensor and those of a U(1) current. The deformed theory is obtained by
coupling the original QFT to a flat dynamical gauge field and “half” a flat dynamical
vielbein. The resulting partition function is shown to satisfy a geometric flow equation,
which perfectly reproduces the flow equations for the deformed energy levels that were
previously derived in the literature. The S-matrix of the deformed QFT differs from
the original S-matrix only by an overall phase factor that depends on the charges and
momenta of the external particles, thus supporting the conjecture that such QFTs are UV
complete, although intrinsically non-local. For the special case of an integrable QFT, we
check that this phase factor precisely reproduces the change in the finite-size spectrum
via the Thermodynamic Bethe Ansatz equations.
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1 Introduction

One of the simplest ways to conceive of a UV-complete QFT is to imagine the existence of a
UV CFT fixed point, which is then deformed by a relevant operator. The deformation triggers
a renormalization group flow, at some point along which lies the QFT under study. However,
it is clear that far from all UV-complete QFTs of interest are described within this framework
- most notably theories of quantum gravity, but also, for example, non-commutative [1] and
dipole theories [2,3]. It is thus of great interest to better understand other possible ultraviolet
behaviours in QFT.

A very simple example of a UV-complete QFT that does not fall within the usual framework
is the worldsheet theory of a bosonic string in static gauge, described by the Nambu-Goto
action. The S-matrix of this theory was computed in [4,5] using integrability techniques and
is given by a simple momentum-dependent phase, which is obtained from the trivial S-matrix
by a large gauge transformation that aligns the worldsheet coordinates to the target space
ones. The ultraviolet behavior of this S-matrix is incompatible with the existence of a local UV
CFT fixed point; rather, it was argued to describe gravitational scattering on the worldsheet.
It was later shown [6] that dressing the S-matrix of any UV-complete two-dimensional QFT
with this gravitational phase turns it into a consistent S-matrix for a UV-complete theory that
lacks a conventional CFT fixed point in the UV. However, at the time, no action principle was
specified for these QFTs.

A different formulation of what turned out to be the same theories, this time based on an
action principle, was put forth in [7,8] and consists of gradually deforming any translationally-
invariant QFT by the so-called T T̄ operator [9]: a universal, irrelevant, bilinear operator con-
structed from the components of the stress tensor. The very special properties enjoyed by this
operator ensure that certain observables, such as the energy levels En of the theory in finite
volume, can be solved exactly as a function of the perturbative T T̄ coupling, µ. Moreover, if
the QFT is integrable, the S-matrix is only changed by a Castillejo-Dalitz-Dyson (CDD) phase
factor [8] that coincides with the gravitational dressing factor of [6]. Note, however, that this
definition is intrinsically perturbative, valid only at length scales much larger than the one set
by the dimensionful coupling µ, and the potential UV-completeness of the deformed theory is
completely obscured in this picture.

Soon afterwards, [10] provided a framework that unifies the exact solubility of the ir-
relevant T T̄ deformation of general QFTs with the gravitational dressing procedure of the
S-matrix. This was achieved by reformulating the deformation as coupling the original QFT
to a topological theory of gravity, in which the metric is allowed to fluctuate, but in a way that
forces it to be everywhere flat. The physical effect of this coupling is to implement a dynamical
change of coordinates that is characteristic of T T̄ deformations [11] and is the direct analogue
of the gauge transformation from conformal to static gauge on the bosonic string worldsheet.
This picture recovers both the T T̄ deformation at small coupling and the full S-matrix dressing
at arbitrary coupling.

By computing the Euclidean path integral over fluctuations about the flat metric, Cardy

2

https://scipost.org
https://scipost.org/SciPostPhys.10.4.096


SciPost Phys. 10, 096 (2021)

subsequently showed [12] that the torus partition function of T T̄ -deformed QFTs obeys a
simple flow equation

∂Ψ

∂ µ
=

1
4
εabεαβ

∂ 2Ψ

∂ La
α∂ Lb

β

, (1.1)

where the La
α parametrize the lengths of the torus, with area A, and Ψ ≡ ZT T̄/A. When ex-

pressed in terms of the energy levels En, this flow equation reproduces the previously known
results on the spectrum. The final check that the non-perturbative definition of the T T̄ defor-
mation by coupling to topological gravity does reproduce the perturbative T T̄ deformation,
was the calculation [13] of the exact torus partition function of the theory, which showed that
it satisfies precisely the equation (1.1).

The study of the T T̄ deformation has been an active field of research over the past few
years (see [14–20] for a selection of the developments). However, as shown in [7], any irrel-
evant deformation constructed from an antisymmetric combination of the components of two
conserved currents is integrable, in the same way as the T T̄ deformation. A deformation that
shares the universality properties of T T̄ is the so-called J T̄ deformation [21], constructed from
the components of a global conserved U(1) current and those of the stress tensor associated to
z̄ translations. The J T̄ deformation was originally introduced as an SL(2,R)-preserving irrel-
evant deformation of two-dimensional CFTs, destined to model the behaviour of holographic
duals to extremal black holes1 [23, 24]. The holographic dictionary for J T̄ -deformed CFTs
was worked out in [25]. A very interesting single-trace version of the deformation was pro-
posed in [26,27]. The modular properties of the partition function were studied in [28], while
correlation functions were studied in [29]. The effect of the deformation on the S-matrix of
integrable QFTs was recently studied in [30].

In this article, conformal symmetry will not play any role. Consequently, we replace T̄
by the generator Tαa of translations along any chosen direction xa. We henceforth call these
“J Ta-deformed QFTs,” and define the deformation infinitesimally via

∂ SJ Ta

∂ µa
=
ˆ

d2σ e Tαa εαβ Jβ , (1.2)

where the coupling constant µa is a vector of fixed direction, but varying amplitude. This
definition is taken to hold in both Euclidean and Lorentzian signatures, with the Euclidean
and Lorentzian couplings related via an appropriate analytic continuation. The flow equations
for the J Ta-deformed energy levels were first understood in [19], via a method based on
coupling to background fields. Similar flow equations were obtained in [20] using uniform
lightcone gauge. For large enough values of |µa|, the energies tend to become imaginary,
raising questions about the existence of these theories all the way up into the UV.2

The main goal of this article is to provide a general, non-perturbative definition of J Ta-
deformed QFTs that simultaneously makes manifest their UV completeness and correctly re-
produces the deformed spectrum, similar to what the coupling to topological gravity achieved
for T T̄ . As we already reviewed, in the T T̄ case this coupling was mainly designed to im-
plement the dynamical change of coordinates between the analogues of conformal and static
gauge. It turns out that in the case of J T̄ , the effects of the deformation are well captured
by a combination of a gauge transformation and a coordinate change that only affects half of
the components of the vielbein [25]. It is thus natural to propose a path integral definition
in which we couple the original QFT to a flat external gauge field and “half” a flat dynamical

1For the most recent developments in this direction, see [22].
2Our point of view on this issue is that the imaginary energies may be just be an artifact of (illegally) putting

the theory at finite volume, see [31] for relevant comments.
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vielbein.3

As a first check of our proposal, we compute the partition function of the deformed QFT
which, just like in T T̄ , is one-loop exact and turns out to satisfy an intrinsically geometric flow
equation

∂Ψ

∂ µa
= εαβ

∂ 2Ψ

∂ Lαa∂ νβ
, (1.3)

where Ψ = ZJ Ta
/A and the direction of µa is held fixed. Upon a proper identification of the

parameters, the resulting flow equations for the energy levels perfectly match the literature,
thus confirming that our proposal is correct.

Our general definition also allows us to compute the S-matrix dressing of J Ta-deformed
QFTs, by an analogous calculation to that performed in [10] for T T̄ . As expected, the deformed
S-matrix only differs from the original one by a phase, schematically given by

Sµa(pa
i , qi) = e−iµa

∑

i< j

�

qi p
a
j −q j p

a
i

�

S0(p
a
i , qi), (1.4)

where S0(pa
i , qi) is the S-matrix of the undeformed QFT, pa

i is the momentum vector of the
ith particle, qi is the its U(1) charge, and the incoming (outgoing) particles are (anti-)ordered
according to their rapidities. Assuming S0 describes a QFT with a CFT fixed point in the UV, the
exact expression above indicates that the deformed theory is also UV-complete, but no longer
possesses a conventional UV fixed point.

As a final check of our proposal, we show explicitly that in integrable theories, the ad-
ditional dressing factor (1.4) of the scattering matrix precisely reproduces the change in the
finite-size spectrum via the Thermodynamic Bethe Ansatz (TBA) equations. This confirms that
the two predictions that follow from our general definition of J Ta-deformed QFTs are consis-
tent with each other.

This paper is organized as follows. In section 2 we present the general definition of the J Ta
deformation in terms of coupling to topological background fields. In section 3, we evaluate
the partition function, show that it satisfies the flow equation (1.3), and compare our results
to the literature. We also reproduce the explicit solutions to this flow equation for generic µa.
In section 4 we compute the S-matrix dressing due to the J Ta deformation and, for the case
of integrable QFTs, we relate this dressing factor to the finite-size spectrum derived in section
3 via the TBA equations.

2 General definition of J Ta - deformed QFTs

We consider two-dimensional quantum field theories deformed by an irrelevant Smirnov-
Zamolodchikov [7] operator constructed from the components of a U(1) current Jα and those
of the current associated to translations in some fixed direction xa, i.e. the stress tensor Tαa.
The deformation is defined infinitesimally in (1.2), where µa is a coupling that points in a fixed
direction of our choosing.

Since the deforming operator carries spin, the deformation breaks Lorentz invariance, im-
plying that the stress tensor is not symmetric. However, it is conserved: ∇αTαa = 0. While the
deformation (1.2) is a priori defined on flat space, its generalization to curved space is sim-
ple [25]: Greek indices are promoted to spacetime indices, while Latin ones indicate tangent

3Recently, [32] studied a path integral realisation of joint J T̄ , T J̄ and T T̄ deformations, where J and J̄ are
independent currents, in terms of coupling to a full topological vielbein and two independent gauge fields. This
kernel is different from ours - roughly, it is a doubling of what we find - and it reflects the fact that in the proposal
of [32] it is impossible to turn off one of the J T̄ or T J̄ couplings in the intermediate steps of the calculations. We
comment more on the relation to our proposal in footnote 6.
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space directions. In particular, the coupling µa is a tangent space vector. The J T̄ deformation
of [21] corresponds to the particular choice of µa null.

The above definition holds in Lorentzian signature, where Hermiticity of the deforming
operator requires that µa be real. Upon moving to Euclidean signature by continuing t →−iτ,
the Euclidean time component of the deformation remains real, µτE = µ

t in our conventions
(namely, εtφ = ετφ); however, the space component must be taken to be purely imaginary,
µ
φ
E = −iµφ , in order to preserve the reality of the Euclidean action.

We would now like to present a way to define the above J Ta-deformed QFTs in a generic
fashion by coupling to background fields, following the work [13] on T T̄ , which we review
below. In the rest of this paper, we borrow the terminology suggested in the bosonic string
picture, by referring to the background spacetime of the original QFT as the ‘worldsheet,’ and
we will call the space parametrized by the X a coordinates (defined below) the ‘target space.’

2.1 Brief review of the T T̄ deformation as coupling to topological gravity

The T T̄ deformation can be non-perturbatively defined by a particular coupling of the original
quantum field theory to a special theory of topological gravity

ST T̄ =
ˆ

d2σ e
�

LQFT(ϕ, e a
α )−

1
2µ
εαβεab (∂αX a − eα

a) (∂βX b − eβ
b)
�

, (2.1)

where eα
a is a nontrivial background vielbein. The X a are a pair of auxiliary fields whose

equations of motion set ∂[αe a
β] = 0, implying that the curvature is exactly zero. This is impor-

tant for the quantum theory and is ultimately responsible for the solubility of this deformation,
as the semiclassical sum over topologies only receives a contribution from the torus, with the
higher-genus Riemann surfaces being precluded by the Gauss-Bonnet theorem.

A simple way to motivate this proposal is by following [12]. The definition of the T T̄
deformation on flat space is

∂ ST T̄

∂ µ
= −

1
2

ˆ
d2σ e εαβ ε

ab TαaTβ b . (2.2)

A standard way to deal with composite operators is to use the Hubbard-Stratonovich trick,
which in this case amounts to coupling the original QFT to a dynamical metric. However, as
shown in [12], the conservation of the stress tensor implies that the path integral reduces to
one only over flat metrics, at least infinitesimally. When passing from metrics to vielbeine, a
simple way to enforce this constraint is to introduce the auxiliary fields X a as above, whose
equations of motion impose the flatness condition.

The X a can be interpreted as a set of dynamical coordinates, which is apparent from the
equations of motion for the vielbein

∂αX a = e a
α −µεαβε

abTβb . (2.3)

If the worldsheet metric is chosen to be Minkowski, e a
α = δ

a
α , then the matter dynamics is the

same as in the absence of the coupling to ‘gravity.’ The physical effect of the T T̄ deformation
is obtained by transforming to a gauge where the worldsheet coordinates σα are aligned with
the target space ones, X a, which are, in fact, the physical coordinates of the T T̄ -deformed
QFT. The above stress-tensor dependent coordinate transformation between worldsheet and
target space is ultimately responsible for the T T̄ dressing of the S-matrix [10].

This definition of the T T̄ deformation, which holds at the full non-linear level, has passed
several non-trivial checks. In particular, the partition function obtained by evaluating the path
integral satisfies the geometric flow equation (1.1), which is equivalent to the flow equation
for the T T̄ -deformed energy levels [10].
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2.2 The J Ta deformation from a mixed gauge-vielbein coupling

The J Ta case can be treated analogously. Starting from (1.2), one follows the Hubbard-
Stratonovich procedure by coupling the U(1) current to an external gauge field aα and the
stress tensor to an external vielbein. For a treatment of the J T̄ case, see [25]. Only the viel-
bein components parallel to the deformation end up playing a role, so we can restrict the path
integral to this “half” of the vielbein. By a careful analysis, along the lines of [12], it is likely
possible to prove that the only modes that survive in the path integral are the pure gauge
modes of aα and those of the parallel vielbein. However, the strategy that we have chosen to
adopt herein is to simply guess that this will be the case and then show that the QFT so defined
satisfies all the consistency requirements expected of it.

Introducing a pair of auxiliary fields to enforce the flatness conditions, we are led to the
following proposal:

SJ Ta
=
ˆ

d2σ e
�

LQFT(ϕ, aα, e a
α ) +Λa ε

αβ(∂αX a − e a
α )(∂βΦ− aβ) +Λ

⊥
a λ

α(eα
a −δ a

α )
�

,

(2.4)
where the vectors Λa and Λ⊥a satisfy

Λaµ
a = 1 , Λ⊥a µ

a = 0 (2.5)

and λα are Lagrange multipliers. It will be useful to introduce the unit vectors na, so that
µa = µna, Λa = σµ−1na, where σ = nana = ±1 depends on whether the deformation is
timelike or spacelike. We also define

X || ≡ σ naX a = µΛaX a , eα
|| ≡ σ eα

ana = µΛaeα
a , (2.6)

where µ is the modulus of the vector. The null case can be treated separately.
In analogy with the T T̄ deformation, the Φ and X || equations of motion set aα and eα

|| to
have vanishing field strength, ∂[αaβ] = ∂[αe ||

β] = 0, whereas the λα Lagrange multiplier sets
the components of the vielbein that are perpendicular to µa to be trivial or, more generally,
fixed to some pre-specified value. The classical equations of motion for the fields Φ and X a

arise from varying the action with respect to the background fields aα and eα
|| 4

∂αΦ= aα +µ
aεαβTβa , ∂αX || = eα

|| +µεαβ

�

Jβ −
k

4π
εβγaγ

�

, (2.7)

where k is the coefficient of a potential anomaly for the U(1) symmetry, and the last term
arises from the variation of the path integral measure with respect to aα. Note that thanks
to the conservation equations for the stress tensor and the current (taking into account the
anomaly), these equations are entirely consistent with the flatness of the gauge potentials aα
and e a

α .
The interpretation of X || and Φ is again that of dynamical coordinates on physical space and

on the U(1) gauge orbit. This allows one to interpolate between the original QFT, where aα = 0
and e a

α = δ
a
α , and the J Ta-deformed one, where Φ = 0 and the worldsheet coordinates are

aligned with the target space ones, σα = X a. As we discuss in section 4.1, this coordinate
transformation is responsible for the S-matrix dressing.

3 The partition function

In this section we evaluate the Euclidean path integral over auxiliary fields of the theory defined
in (2.4). To do this, we follow the steps set out by [13] for the T T̄ deformation, and show

4Our conventions for the variations in Lorentzian signature are: δSQFT =
´

d2 x e
�

Tµaδe a
µ
− Jµδaµ

�

.
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that the J Ta-deformed partition function satisfies a geometric flow equation. We subsequently
match this flow equation to the flow of the energy levels previously obtained in the literature,
by rewriting it in terms of the physical parameters that enter the Hilbert space interpretation
of the partition function.

3.1 The path integral over auxiliary fields

We start with the Euclidean path integral of a J Ta-deformed field theory, given by the following
expression

ZJ Ta
=
ˆ

De||DaDΦDX a

VDiff||VGauge
eΛ

E
a

´
d2σ e[εαβ (∂αΦ−aα)(∂βX a−eβ

a)]Z0(aα, eα
||), (3.1)

where we have already performed the trivial integrals over the Lagrange multipliers λα and
the perpendicular vielbein eα

⊥. As explained in section 2, we must be careful to denote by
ΛE

a = (µ
a
E)
−1 the inverse Euclidean J Ta coupling.

Instead of performing the entire path integral over vielbeine and gauge fields, our goal will
be simpler: that of deriving the flow equations satisfied by the torus partition function ZJ Ta

with respect to the external parameters µa
E and the data of the physical target space torus. It

will therefore suffice to carefully evaluate the path integral over X a and Φ, while leaving the
remaining functional integrals unevaluated. Our analysis will closely follow [33], and we take
our Euclidean worldsheet coordinates to lie in σα ∈ [0,`).5

We decompose the X a and Φ in terms of a background field and a fluctuation

X a =
1
`

La
ασ

α + Y a(σ) , Φ=
1
`
νασ

α +φ(σ) , (3.2)

where the Y a(σ) and φ(σ) are periodic functions on the worldsheet. The background fields
La
α are maps from the worldsheet onto the target space torus and parametrize the lengths this

torus. As we will see, the να will be interpreted as background chemical potentials for the
U(1) current.

In terms of Y a and φ, the Euclidean action takes the form

SJ Ta
= −

1
µE

ˆ
d2σ e εαβ

�

1
`2
(να − `aα)

�

L||
β
− ` eβ

||
�

− ∂αφ eβ
|| + ∂αY || aβ

�

, (3.3)

where we remind the reader that for any quantity B, we have defined, now in Euclidean
signature, B|| = naBa = µEΛ

E
a Ba, where µE is the euclidean J Ta coupling. In (3.3) we have

dropped all total derivatives of non-winding fields, such as e εαβ ∂αφ L||
β

, whose contribution
vanishes. Integrating by parts the last two terms, one obtains a delta function setting to zero
the functions that multiply them. Concretely, if we split the field φ(σ) = φ̄ + φ′(σ) into a
constant mode φ̄ and the non-zero modes φ′, the path integral over Dφ evaluates to

ˆ
Dφ exp

�

−
1
µE

ˆ
d2σ ε̃αβ φ′ ∂αeβ

||
�

=

√

√ Ã
2π

det ′(2πµE I)δ
�

εαβ∂αeβ
||�
ˆ

dφ̄, (3.4)

where det is a functional determinant over a constant (2πµE) times an infinite-dimensional
identity matrix, I, and the prime denotes the fact that we have excluded the zero mode. The
overall normalization factor involving the area of the worldsheet torus, Ã =

´
d2σ e, can

5We collect our conventions here for transparency. We will take [σα] = [X a] = [µa] = [length],
[Jα] = [aα] = [Λa] = [length]−1, [e a

α
] = [Φ] = [να] = [length]0, and as usual [Taα] = [length]−2.
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be carefully derived following [33], but will not be needed in our analysis, since it does not
depend on the external parameters.

Now we must deal with the formally infinite functional determinant det ′ (2πµE I). The
determinant det′ with the zero mode excluded can be trivially related to the determinant over
all the modes via:

C det ′(C I) = det(C I), (3.5)

for any constant C . As explained in [33], the functional determinant of a pure constant times I
can absorbed into a shift of the (infinite) vacuum energy, for example by a simple modification
of the normalization choice for the path integral over φ. One way to see this is to note that
when dynamical gravity is turned on, the functional determinant of a constant may be dealt
with by the addition of a counterterm of the form

Sct =
ˆ

d2σ e c , (3.6)

where c is chosen to cancel the divergence. This is simply a renormalization of the world-
sheet cosmological constant. In the following, we choose c so as to cancel the infinite factor
det(2πµE I), and obtain

ˆ
Dφ exp

�

−
1
µE

ˆ
d2σ e εαβ φ′ ∂αeβ

||
�

=
1

2πµE

√

√ Ã
2π
δ
�

εαβ∂αeβ
||�
ˆ

dφ̄ . (3.7)

Since the gauge group is compact,
´

dφ̄ = 2π.
The path integral over Y a splits into a path integral over Y || and one over Y⊥. The steps in

performing the path integral over Y || follow exactly those for φ, and the end result is given by
(3.7) with the appropriate replacements, ea

||→ aα and φ̄→ Ȳ ||. The path integral over Y⊥ is
divergent, having no action functional. Howver, only the zero-modes of this functional integral
can contribute something physically relevant (i.e., which depends on the external parameters),
since the range of Ȳ⊥ is fixed by the size of the physical torus. We thus regulate it by dividing
out by the non-zero modes:

ˆ
DY⊥→

ˆ
dȲ⊥ . (3.8)

Finally, we use the fact that the integral over Y a zero modes is given by
ˆ

dȲ ||dȲ⊥ = Lττ Lφ
φ
− Lφτ Lτφ ≡A , (3.9)

where A is the area of the target space torus. Putting everything together, we obtain

ZJ Ta
=

A
4π2µ2

E

ˆ
De||Da

VDiff||VGauge
Ã e

1
µE

´
d2σ e εαβ 1

`2
(να−`aα)

�

L||
β
−` eβ

||
�

× δ
�

εαβ∂αeβ
||�δ

�

εαβ∂αaβ
�

Z0(aα, e ||
α ) . (3.10)

3.2 The flow equation

We would now like to show that the partition function above obeys a simple diffusive flow
equation, similar to the one derived for the case of T T̄ -deformed QFTs. To do so, we note that
the functional integrals in (3.10) localize over constant field configurations ēα

|| and āα of the
vielbein and gauge field, as a result of the explicit delta functions. Dropping all the terms that
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do not depend on the external parameters, we can schematically write the partition function
as

ZJ Ta
∝

A
µ2

E

ˆ
Dē||Dā e

1
µE
ε̃αβ (να−` āα)(L

||
β
−` ēβ

||)Z0(āα, ēα
||) , (3.11)

where we have performed the integral over worldsheet coordinates in the exponential and
introduced the Levi-Civita symbol ε̃αβ = e εαβ , whose components are just numbers. Defining

Ψ ≡
ZJ Ta

A
(3.12)

it is easy to verify that Ψ satisfies the following flow equation:

∂Ψ

∂ µE
= ε̃αβ

∂ 2

∂ L||α ∂ νβ
Ψ . (3.13)

The above equation can also be written in terms of the individual euclidean time and space
components of the coupling vector µa

E =
�

µτE ,µφE
�

, as

∑

a

na
�

∂µa
E
− ε̃αβ ∂La

α
∂νβ

�

Ψ = 0 . (3.14)

The flow equation (3.13), which we have derived from the path integral definition of the
theory, does not imply that each term in the sum must individually vanish. We expect, however,
that such a stronger condition holds, since the direction of µa can be chosen arbitrarily. In
other words, we have so far defined the J Ta deformation by picking a fixed direction na in
the two-dimensional space of possible J Ta couplings, and flowed a specified amount µE along
it. Because the J Ta deformations with respect to different directions commute [20], we could
have alternatively reached the same final deformed QFT by following along any curve in the
space of couplings that has the same endpoints. This freedom in choosing the path in coupling
space would be reflected in the definition (1.2) of the J Ta deformation by requiring that it
hold not only for a fixed direction of the vector µa, but rather, independently for each of
its components. This likely translates into two independent flow equations for the partition
function, which correspond to the vanishing of each individual term in (3.14).6 It is precisely
these individual equations that we will match as a flow on the energy spectrum.

Hilbert space interpretation

To gain a physical understanding of the above flow equation and to match with the flow equa-
tions for the energy spectrum that were previously derived in the literature [20] , we pass to
the Hilbert space interpretation of the torus partition function:

ZJ Ta
= Tr

�

e−βE+iθ P+iηQ
�

, (3.15)

where

E = −
ˆ R

0
dφ 〈Tττ〉 , P = i

ˆ R

0
dφ 〈Tτφ〉 , Q = i

ˆ R

0
dφ 〈Jτ〉 , (3.16)

6This suggests that the path integral proposed by [32] corresponds to choosing a contour in coupling space
where first one coupling is increased from zero to a finite value, then the orthogonal coupling is turned on. It is
clear, at least heuristically, that this procedure will produce both orthogonal components of the vielbein, with a
measure that will coincidentally appear Lorentz-invariant, and two independent gauge fields, one for each leg of
the integration contour.
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are the energy, momentum, and the conserved U(1) charge of the states we sum over, while
(β ,θ ,η) are the chemical potentials that couple to them. The momentum is quantized in units
of 1/R, where R is the size of the spatial circle of the torus, whereas Q is assumed to be integer
quantized7

P =
2πp

R
, Q, p ∈ Z . (3.17)

Since the J Ta deformation explicitly breaks Lorentz invariance, the conserved stress tensor is
not symmetric along the flow. In order to keep track of its asymmetry, [19] have proposed to
introduce a coupling to an explicit background vielbein vE that the energy levels will depend
on, so that

〈Tφτ〉=
1
R
∂ E
∂ vE

, (3.18)

where we took into account the fact that the expectation value of the stress tensor on the
torus is independent of φ and vE is an Euclidean vielbein. In a similar vein, we introduce a
background gauge field aφ that couples to the operator Jφ in the Hamiltonian, so that

〈Jφ〉=
1
R
∂ E
∂ aφ

. (3.19)

Thus, the dependence of the partition function on the deformation parameter(s) and the back-
ground fields not appearing explicitly in (3.15) is encoded in the dependence of the energy on
them, namely

E = E
�

µa
E , R, vE , aφ

�

. (3.20)

As explained above, we assume that ZJ Ta
depends independently on µτE ,µφE . As usual, we have

〈Tφφ〉= −
∂ E
∂ R

. (3.21)

We would now like to recast the flow equation (3.13) for the partition function in terms of the
“physical” parameters appearing in the Hilbert space definition (3.15).

The relationship between the parameters La
α and να appearing in our flow equation, and

the physical parameters (β , θ , η, R, vE , aφ) has a very simple geometrical origin. Recall that
the coordinates X a are maps from the woldsheet into the target space, classically given by

X a =
1
`

La
ασ

α . (3.22)

If, for the moment, we turn off the worldsheet vielbein vE , then we have the usual identification

L â
τ =

�

β

θ

�

, L â
φ =

�

0
R

�

, (3.23)

where the index â indicates that we are temporarily working with a target space metric of the
form gâ b̂ = δâ b̂ and we have aligned the worldsheet φ direction with the target space one.8

Turning on vE means that we now consider the J Ta-deformed QFT on a background metric
that is not diagonal. This corresponds to going from a vielbein ea

â = δa
â to

ea
â =

�

1 vE
0 1

�

⇒ La
α ≡ ea

â L â
α =

�

β + vEθ vER
θ R

�

. (3.24)

Notice that A= det La
α = βR.

7Note that in the case of the J T̄ deformation, the current whose charge is conserved will not be chiral [27].
8It is not clear whether we can consider other options in a Lorentz-breaking theory.
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The background chemical potentials να are defined using Φ= `−1νασ
α = `−1aaX a, where

aa are the components of a background gauge field on the physical torus. Using (3.22), we
find

να = aa La
α = aâ L â

α. (3.25)

The parameter η appearing in the partition function is, by definition, equated with βaτ̂ in the
frame where the physical metric is δâ b̂, so we have

ντ = βaτ̂ + θ aφ̂ = η+ θ aφ̂ , νφ = R aφ̂ . (3.26)

The relationship between aφ̂ and the background field aφ is given by

aa = ea
â aâ ⇒ aφ = aφ̂ = aφ̂ . (3.27)

The equations (3.24) and (3.26) specify the relationship between La
α,να and the physical pa-

rameters. The inverse relations read

R= Lφ
φ

, θ = Lφτ , β =
Lττ Lφ

φ
− Lφτ Lτ

φ

Lφ
φ

, vE =
Lτ
φ

Lφ
φ

, aφ =
νφ

Lφ
φ

, η=
ντ Lφ

φ
− νφ Lφτ

Lφ
φ

.

(3.28)
In terms of these variables, the flow equations for the reduced partition functionΨ ≡ ZJ Ta

/A
may be written as

∂Ψ

∂ µτE
=

�

∂Lττ
∂νφ − ∂Lτ

φ
∂ντ

�

Ψ =
1
R

�

∂β∂aφ − ∂η∂vE

�

Ψ , (3.29)

∂Ψ

∂ µ
φ
E

=
�

∂Lφτ
∂νφ − ∂Lφ

φ

∂ντ

�

Ψ =
�

v
R

�

∂η∂vE
− ∂β∂aφ

�

− ∂R∂η −
1
R

�

θ∂η∂θ − ∂aφ∂θ + ∂η
�

�

Ψ .

The above can also be written as a set of flow equations for the individual energy levels, En,
using (3.15) and the fact that the momentum Pn is quantized in units of 1/R

∂ En

∂ µτE
=

1
R

�

−iQn
∂ En

∂ vE
− En

∂ En

∂ aφ

�

, (3.30)

∂ En

∂ µ
φ
E

= −iQn

�

∂ En

∂ R
−

vE

R
∂ En

∂ vE

�

+
iPn + vE En

R
∂ En

∂ aφ
. (3.31)

Upon an appropriate mapping of the parameters, these are precisely9 the equations given in
(3.18) of [20]. Notice that, despite appearances, the above flow equations are real, given that
µ
φ
E and vE are purely imaginary. Letting µφE = −iµφ , µτE = µ

t and vE = iv, the manifestly
reality of the flow equations can be seen from:

∂ En

∂ µt
= −

1
R

�

Qn
∂ En

∂ v
+ En

∂ En

∂ aφ

�

,
∂ En

∂ µφ
= −Qn

�

∂ En

∂ R
−

v
R
∂ En

∂ v

�

+
Pn + vEn

R
∂ En

∂ aφ
. (3.33)

Notice the above flow equations should hold in an arbitrary QFT, since they follow from the
flow equations for the partition function, whose definition is insensitive to whether the seed
theory is a CFT or a generic QFT, even a non-relativistic one.

9Note that since [20] take derivatives with the combination P̃1 ≡ −Raφ held fixed, we must be careful to also
replace:

∂ fr
R → ∂R −

aφ

R
∂aφ , ∂P̃1 →−

1
R
∂aφ . (3.32)
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3.3 Explicit solution to the flow equations

Let us now review, following [20], how one solves the above flow equations to obtain a solution
for the deformed energies as a function of the undeformed ones and the other conserved
charges. These solutions have been previously found in the literature, but since most authors
concentrated on having many different deformations turned on at the same time, they are
rather cumbersome to write down. Thus, in this section we solve the flow equations for the
case of the pure J Ta deformation, for which we will see the solution takes a very simple form.

The first step is to notice that, as was the case for T T̄ , the general solution to equations
(3.30-3.31) is given simply by shifting the parameters according to

En(µ
a, R, v, aφ) = E(0)n

�

R−µφQn,
vR−µtQn

R−µφQn
, aφ +

µφ(Pn + vEn)−µt En

R−µφQn

�

, (3.34)

where from now on we work in terms of the Lorentzian parameters, which are manifestly real.
Notice that if we write the solution not in terms of R, v, aφ as in the previous literature, but
in terms of R, Rv and aφR which, as we saw, have a more invariant interpretation, the above
shifts simply correspond to

R→ R−µφQ , vR→ vR−µtQ , Raφ → Raφ −µt E +µφP +µφvE. (3.35)

In section 4, we will see how these simple shifts are reproduced from the TBA equations.
Thus, if we know E(0)n as a function of general background parameters, (3.34) provides us

with an algebraic equation for the deformed energy levels, En. These expressions have been
worked out explicitly in e.g. [19] for the special case of a seed CFT. A simple way to understand
it is to notice that in absence of a vielbein but in presence of an external gauge potential aφ̂ ,
the expression for the energy levels in a CFT on a circle of circumference R is given by

E(0)n =
2π∆n

R
+

kR
16π

a2
φ̂

, (3.36)

where ∆n ∈ R is the associated conformal dimension in the CFT on the plane and k is the
coefficient of the chiral anomaly. The second term represents the shift in the energy levels
due to the external gauge potential. Once we turn on a background vielbein v, the expression
becomes [19]:

E(0)n (R, v, aφ) =
1

1− v2

�

2π∆n

R
+

2πpn

R
v −Qnv aφ +

kR
16π

(aφ)2
�

, (3.37)

where we have plugged in the expression (3.17) for Pn and the third term can be understood as
a shift in aτ proportional to vaφ̂ = vaφ . We will be interested in the spectrum of the deformed

QFT with all background fields switched off, so v = aφ = 0 in (3.34) and µt = −µt ,µ
φ = µφ .

Plugging (3.37) into (3.34) yields the following quadratic equation for the energy levels:10

kµ2
t

8π
E2

n − 2
�

R−µφQn −µtµφ
kPn

8π

�

En + 2E(0)n R+
kµ2
φ

8π
P2

n + 2µt PnQn = 0, (3.38)

10More generally, k̃γ2E2
n −

�

γ(Qnv + 2k̃d) + R̄
�

1− v2
��

En + E(0)n R+ b (Rv −µtQn) + k̃d2 = 0, where

k̃ ≡
k

16π
, γ≡ µt − vµφ , R̄≡ R−µφQn , d ≡ aφ R̄+µφPn , b ≡ Pn − aφQn .
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with solution

En = −
µφ

µt
Pn +

8π

kµ2
t

�

R−µφQn −
√

√

(R−µφQn)2 −
kµt

4π

�

R
�

µt E
(0)
n +µφPn

�

− PnQn(µ2
φ
−µ2

t )
�

�

,

(3.39)
where the sign in front of the square root is fixed by the requirement that the spectrum

reduces to the undeformed one as µt,φ → 0. The spectrum of the J T̄ or J̄ T deformations is
then obtained by taking µt = ∓µφ = µ. Notice also that in the case µt = 0, the quadratic
equation reduces to a linear one.

It is interesting to note that the spectrum’s dependence on the anomaly coefficient k descen-
des entirely from the k dependence of the CFT energy (3.37) in presence of the background
fields, as the flow equation (3.13) does not contain any explicit factor of k. This is quite dif-
ferent from the flow equation for J T̄ -deformed CFTs obtained by [28], which depends on k in
a rather complicated fashion. One possible reason for the different form of the flow equation
we find is that while in [28] the partition sum was over the charge associated with the strictly
chiral current, which satisfies a non-trivial flow equation itself, our partition function sums in-
stead over an integer-quantized charge, which is associated with a possibly non-chiral current.
One way to ensure that the current is exactly chiral is to consider, as in [20], a joint J Ta and
J̃ Ta deformation with equal coefficients, where J̃ = ?J is the dual current to J . In this case, the
flow equations for the energy start depending explicitly on the anomaly coefficient [19, 20],
and likely the same is true of the flow equations for the partition function.

4 S-matrix dressing factor and the TBA

In this section, we consider the S-matrix of J Ta-deformed QFTs. In the case of the T T̄ deforma-
tion, it is now well understood [5,6,10] that the effect of the dynamical change of coordinates
(2.3) is to simply dress the S-matrix of the undeformed QFT by a particular Castillejo-Dalitz-
Dyson (CDD) phase.

Now that we have shown that the J Ta deformation can be understood as coupling the
original QFT to a dynamical vielbein and a gauge field, we expect that the J Ta deformation
should have a similar effect on the S-matrix of the undeformed QFT via a particular, and
universal, CDD dressing. In this section, we derive the dressing factor that follows from our
definition (2.4), closely following [10]. We then show, following [8], that the shifts (3.35)
in the spectra can be easily recovered by applying the Thermodynamic Bethe Ansatz (TBA)
equations [34] to the dressed S-matrix.

4.1 Derivation of the dressing factor

In order to see the effect of the J Ta deformation on the S-matrix, we need a notion of asymp-
totic states. In the asymptotic past, we can decompose our QFT fields ψ in free-field modes

ψin =
ˆ ∞
−∞

dp
Æ

4πωp

�

a†
in(p)e

ipασ
α+iq

´
a + ain(p)e

−ipασ
α−iq

´
a
�

�

�

�

�

�

p0=ωp

, (4.1)

where the subscript “in” indicates that the creation-annihilation operators above act on the
in-state vacuum and we have included a background pure gauge field aα.

The effect of deforming the original QFT by the J Ta operator is captured by the introduction
of a new set of dynamical coordinates X a, with respect to which the scattering is measured,
and of a stress-tensor dependent gauge transformation, given in (2.7). As discussed, there
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only is one nontrivial dynamical coordinate in the direction parallel to µa, denoted X || and
defined in (2.6). In the J Ta description, the same free field operator ψ can be written as

ψin =
ˆ ∞
−∞

dp
Æ

4πωp

�

A†
in(p)e

ipaX a+iqΦ + Ain(p)e
−ipaX a−iqΦ

�

�

�

�

�

�

p0=ωp

, (4.2)

where A†
in are creation operators that define the in-state in the J Ta description. Setting the

vielbein e a
α = δ

a
α in (2.7) and letting X || = σ|| + Y ||(σ), we find the following relation

A†
in(p, q) = a†

ine−ip||Y
||−iq∆Φ , (4.3)

where the additional phases come from the fact that we are now measuring scattering with
respect to the dynamical coordinates X a, and the background gauge potentials also differ by
the amount given in (2.7). The equations for Y || and ∆Φ are

∂αY || = µεαβ Jβ , ∂α∆Φ= µεαβTβ ||. (4.4)

Labeling σα = (t, x) and choosing εt x = 1, the solution for Y || and∆Φ in the asymptotic past,
t →−∞, is given by

Y ||(t →−∞, x) = const.+µ
ˆ x

−∞
d x ′Jt(x

′) ,

∆Φ(t →−∞, x) = const.+µ
ˆ x

−∞
d x ′Tt ||(x

′) . (4.5)

Up to the constant, the above formula for Y || measures the amount of U(1) charge to the left
of the point x . We may pick this constant in a parity symmetric way such that

Y ||(x →±∞) = ±
µQtot

2
, Qtot ≡

ˆ ∞
−∞

d x Jt , (4.6)

meaning const. = −µQtot/2 . Similarly, the formula for ∆Φ in the asymptotic past measures,
up to the constant, the amount of parallel momentum (to µa) that is to the left of the point x .
Again, we choose the constant such Φ(x →±∞) = ±µP tot

|| /2. To recap, the classical solution

of Y ||(t →−∞, x) and Φ(t →−∞, x) are constructed such that:

Y ||(t →−∞, x) =
µ

2
{(Total charge to left of x)− (Total charge to right of x)} ,

Φ(t →−∞, x) =
µ

2

��

Total P|| to left of x
�

−
�

Total P|| to right of x
�	

. (4.7)

Now, if we prepare an in-state using these A†
in operators, and order the particles with mo-

menta pi and charges qi by their rapidities, which corresponds to spatial ordering in the asymp-
totic past, it is not too difficult to convince oneself that each insertion of A†

in(p
k, qk) contributes

to the the overall dressing of the in-state |{pi , qi}, in〉undressed a phase11:

e−i µ2 pk
||

�

∑

j<k q j−
∑

j>k q j
�

+i µ2 qk
�

∑

j<k p j
||−
∑

j>k p j
||

�

, (4.8)

where µp|| = µapa. The cumulative effect of all these phases is to dress the total state as:

|{pi , qi}, in〉dressed =
n
∏

i

A†
in(p

i , qi)|0〉= e−iµ
∑

i< j

�

qi p j
||−q j pi

||

�

|{pi , qi}, in〉 . (4.9)

11The reason for the extra relative minus sign between the two factors in the exponent is that P|| = −
∑

i pi
||, as

can be easily checked by taking µa to point in the time direction and requiring that both sides of the equation be
positive.
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The argument for the out-states is exactly the same, except that they are anti-ordered according
to their rapidities, and the phase swaps sign because we use annihilation operators rather than
creation operators on the out-state. These two signs cancel. Denoting the dressed S-matrix as
Sµa , the incoming charges and momenta as qi , pi

a and the outgoing charges and momenta as

q̄ j , p̄ j
a, the final result for the dressed S-matrix is

Sµa

�

{pi , qi} → {p̄ j , q̄ j}
�

= e−iµa
∑

i< j

�

qi p j
a−q j pi

a

�

e−iµa
∑

i< j

�

q̄i p̄ j
a−q̄ j p̄i

a

�

S0

�

{pi , qi} → {p̄ j , q̄ j}
�

.

(4.10)
Notice that the above dressing is identical to that found in planar diagrams of noncommutative
dipole field theories [2,3] with µa identified with the dipole length.

4.2 Match with the finite-size spectrum via TBA

It is well known that in integrable theories, where scattering is elastic and the 2 → 2 S-
matrix elements take the form of a phase shift eiδ(βi ,β j), where βi are the particle rapidities,
the scattering phase can be related to the finite-size energy spectrum of the theory via the
so-called Thermodynamic Bethe Ansatz (TBA) equations [34].

The derivation of these equations proceeds in two steps. First, one considers the partition
function of the original Lorentzian QFT on a circle of circumference R and at a temperature
T = L−1. This partition function can also be evaluated via an euclidean path integral on a torus
whose sides have lengths L, R. The same path integral can be alternatively interpreted as the
partition function of an - in principle different - Lorentzian theory, called the “mirror” theory,
placed on a circle of size L and at temperature R−1. Since they share the same euclidean path
integral representation, the original and the mirror theory are related. We will label quantities
such as the free energy or Hamiltonian of the mirror theory with tildes, to distinguish them
from quantities in the original picture.

If the original QFT is relativistic, as considered in [34], then the mirror theory is identical
to the original one. If, however, the original QFT is not Lorentz invariant, as will be the case
for the J Ta - deformed QFTs, then the mirror theory is obtained via a double Wick rotation
of the original one. As nicely explained in e.g. [35], this double Wick rotation will in general
affect the dispersion relation E(p) of the asymptotic one-particle states, and the mirror one
can be obtained by the simple replacement H → i p̃, p→ iH̃ in the dispersion relation of the
original QFT.

Now consider the limit L→∞with L� R. This corresponds to the zero temperature limit
of the original theory in which the partition function is dominated by the finite-size ground
state energy, E0(R). In the mirror picture, L →∞ represents a thermodynamic limit where
the system size becomes infinite and the partition function is well approximated by the free
energy density at temperature R−1, f̃ (R). Thus,

lim
L→∞

Z(R, L)≈ e−E(R)L ≈ e−R f̃ (R)L , (4.11)

so the finite-volume ground state energy of the original QFT equals R times the free energy
density in the mirror picture.

Since the mirror theory lives in approximately infinite volume, one has a well-defined no-
tion of asymptotic states. The second step of the derivation consists in doing statistics over a
large number of (mirror) particles that scatter, and find the minimum of their free energy, sub-
ject to the constraint that the momentum of each particle, i, satisfies a quantization condition
of the form

p̃i L +
∑

j 6=i

δ(p̃i , p̃ j) = 2πni , ni ∈ Z, (4.12)
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where L is the size of the spatial circle in the mirror theory. Assuming for simplicity that all
particles have the same mass m and satisfy a relativistic dispersion relation, the energy and
momentum of each particle is given by Ẽ = m coshβ and respectively p̃ = m sinhβ . When a
large number of particles is present, it is useful to introduce the density of momentum levels
per unit rapidity, ρl(β) = dn/dβ and a particle density per unit rapidity, ρp(β). Upon taking
a derivative with respect to β , the quantization condition (4.12) becomes

2πρl(β) = mL coshβ +
ˆ

dβ ′ρp(β
′)
∂ δ(β ,β ′)
∂ β

(4.13)

and the total (mirror) energy, momentum, and charge of the state take the form

H̃ = m
ˆ

dβ ρp(β) coshβ , P̃ = m
ˆ

dβ ρp(β) sinhβ , Q̃ = e
ˆ

dβ ρp(β) , (4.14)

where e is the fundamental unit of charge. The free energy f̃ (R) is obtained by minimizing

L f̃ (ρl ,ρp)≡ H̃(ρp)−
iν̃
R

Q̃(ρp)−
iθ̃
R

P̃(ρp)−
1
R

S̃(ρl ,ρp), (4.15)

with respect to the densities ρp and ρl , subject to the constraint (4.13), where we work
in an ensemble with chemical potential ν̃ for the charge Q̃ and fugacity θ̃ for the momen-
tum. The quantity S̃(ρl ,ρp) is an entropy which counts the number of ways of distributing
np = ρp(β)∆β particles amongst Nl = ρl(β)∆β levels. Considering for concreteness bosonic
statistics, we have

S̃(ρl ,ρp) =
ˆ

dβ
�

(ρl +ρp) log(ρl +ρp)−ρl logρl −ρp logρp

�

. (4.16)

Extremizing the free energy with respect to ρp,l yields the TBA equations for the “pseudoen-
ergy” ε(β)

ε(β) = Rm coshβ − ieν̃− iθ̃m sinhβ +
1

2π

ˆ
dβ ′

∂ δ(β ′,β)
∂ β

log
�

1− e−ε(β
′)
�

, (4.17)

which is defined via the ratio
ρp

ρl
≡

1
eε − 1

. (4.18)

The free energy at the minimum turns out to only depend on this ratio, and reads

R f̃ (R) =
m
2π

ˆ
dβ coshβ log

�

1− e−ε(β)
�

. (4.19)

Using (4.11), this equals the vacuum energy E0(R) of the original theory.12 The charge in the
original model is, similarly, simply given by [30]

Q =
e

2π

ˆ
dβ log(1− e−ε(β)), (4.20)

where we chose an appropriate normalization.
Let us now consider the specific case of the J Ta deformation, where the phase shift is given

by (4.10)

δJ Ta
(β ,β ′) = meµt(coshβ − coshβ ′) +meµφ(sinhβ − sinhβ ′) . (4.21)

12While we have omitted it in the expression, it should be clear from (4.17) that ε depends on R.
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Notice δJ Ta
(β ,β ′) is antisymmetric. Assuming the original S-matrix of the integrable QFT we

deform is given by eiδ(β ,β ′), the J Ta deformation induces an additional phase shift∆δ(β ,β ′) =
δJ Ta
(β ,β ′) into the TBA equation (4.17). Plugging in, we find that the deformed pseudoenergy

obeys

ε(β) = Rm coshβ − iθ̃m sinhβ − ieν̃−
em
2π
(µφ coshβ +µt sinhβ)

ˆ
dβ ′ ln(1− e−ε(β

′)) +

+
1

2π

ˆ
dβ ′

∂ δ(β ′,β)
∂ β

log
�

1− e−ε(β
′)
�

. (4.22)

We immediately notice that the effect of the couplings µφ ,µt is to shift

R→ R−µφQ , θ̃ → θ̃ − iµtQ (4.23)

in the equation for the ground state energy. Noting that θ̃ in the mirror picture simply corre-
sponds to −vER= −ivR in the original one, this nicely reproduces the first two shifts in (3.35).
We used the fact that the mirror theory lives on a Minkowski background, so µφ = µφ and
µt = −µt .

The remaining shift in Raφ can be understood directly in the original theory, as being
due to a modification in the quantization condition for the particle momenta. As we already
discussed, the phase shift δ(β ,β ′) enters the TBA equations via its derivative with respect
to β and modifies the spectrum. However, the phase shift (4.21) also has a piece δc t that
is independent of the particle’s rapidity β , which enters the quantization condition for the
momenta in the original QFT (compactified on a circle of size R) as

piR+δc t +
∑

j 6=i

δnc(pi , p j) = 2πni , (4.24)

where δnc only contains the explicitly pi momentum-dependent pieces in the phase shift and
δc t is obtained by summing over all the other particles that the i th particle interacts with

δc t = −eµt E − eµφP, (4.25)

where E, P are the total energy and momentum in the original theory.
The shift by δc t can be interpreted as turning on a spatial gauge field −eaφR= δc t . Setting

v = 0 for simplicity and plugging in (4.25), one obtains that Raφ → Raφ +µt E +µφP. This is
the same as the shift in (3.35).

We can however go further and understand how this shift affects the TBA. As explained
at the beginning of this section, the dispersion relation in the mirror theory is obtained via a
double Wick rotation of the dispersion relation in the original QFT. Thus, if we start with the
dispersion relation for a free relativistic particle

H =
Æ

p2 +m2, (4.26)

then turning on a constant spatial gauge field as above modifies the dispersion relation to

H =
q

(p− eaφ)2 +m2. (4.27)

Going to the mirror picture, we send H → i p̃ and p→ iH̃, which results in the mirror dispersion
relation

H̃ = −ieaφ +
Æ

p̃2 +m2. (4.28)

This shift in each mirror particle’s zero point energy is exactly equivalent to introducing a
chemical potential ν̃ = aφR for the mirror charge Q̃, as in (4.15). The interpretation of this
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chemical potential is as a temporal Wilson line in the mirror theory, which maps back to a
spatial Wilson line in the original one.

Notice that in the analysis above we have only exhibited the relation between the TBA and
the shifts (3.35) for the ground state energy. However, as explained e.g. in [8], the excited
levels can be easily captured using the same method.

5 Final remarks

In this article, we have proposed a path integral definition of general J Ta-deformed QFTs by
coupling the original QFT to a flat dynamical gauge potential and “half” of a flat dynamical
vielbein. We showed that the partition function of the theory so defined satisfies a very simple
geometric flow equation, which precisely reproduces the flow equations for the J Ta-deformed
energy levels that were previously derived in the literature. Also, our definition leads to a
universal dressing of the original S-matrix by a phase factor that depends on the charges and
momenta of the external particles. For the case of integrable theories, we showed that this
dressing factor precisely matches the J Ta-induced modification of the finite size spectrum via
the TBA equations.

It would be very interesting if this formulation of the theory could be used to study corre-
lation functions. In particular, given that the dressing phase of the S-matrix precisely coincides
with that appearing in large N dipole theories [2, 3], it is important to understand whether
there exists a concrete relation between J Ta-deformed QFTs and dipole-deformed QFTs. It
would also be very fruitful to understand the relation between the simple phase factors that
appear in the S-matrix and the more complicated structure of the correlation functions in J T̄ -
deformed CFTs [29].

There exist various generalizations of the J Ta-deformed QFTs we considered that deserve
further study. In particular, we would like to understand the flow equations for the partition
function in the case where both J and its dual conserved current ?J are turned on. In this case,
the flow equations for the energy presented in [20] indicate an explicit dependence on the
anomaly coefficient k, which may translate into an explicit dependence of the flow equations
for the partition function on it. It would be interesting to see whether one can provide a path
integral realization of these models, and whether there is still an intuitive, geometric flow
equation that the partition function satisfies.
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