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Abstract

Substantial acceleration of research and more efficient utilization of resources can be
achieved in modelling investigated phenomena by identifying the limits of system’s ac-
cessible states instead of tracing the trajectory of its evolution. The proposed strategy
uses the Metropolis-Hastings Monte-Carlo sampling of the configuration space proba-
bility distribution coupled with physically-motivated prior probability distribution. We
demonstrate this general idea by presenting a high performance method of generating
configurations for lattice dynamics and other computational solid state physics calcu-
lations corresponding to non-zero temperatures. In contrast to the methods based on
molecular dynamics, where only a small fraction of obtained data is used, the proposed
scheme is distinguished by a considerably higher, reaching even 80%, acceptance ratio
and much lower amount of computation required to obtain adequate sampling of the
system in thermal equilibrium at non-zero temperature.
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1 Introduction

Every system can be successfully studied by methodical observation of its behaviour for a long
enough time. However, especially for slowly changing characteristics, this could take prover-
bial eons. On the other hand, some elementary knowledge of possible features and existing
constrains allows one to limit available states of the studied system and determine the prob-
ability distribution of these states in the configuration space. As a result, the system can be
modeled based on its probable configurations. To illustrate this idea, we present its application
to studies of vibrational properties of solids.

A number of problems in solid state physics connected with lattice dynamics can be ef-
fectively addressed with inter-atomic potential models constructed using data obtained from
quantum mechanical calculations (e.g. Density Functional Theory – DFT). Probably the sim-
plest of such models is harmonic approximation developed by Born and von Kármán at the
beginning of the 20th century [1–3]. Over the years multiple increasingly more sophisti-
cated models have been developed: Quasi-Harmonic approximation (QHA) [4], Temperature-
Dependent Effective Potential [5–7], Self-Consistent Phonons (SCPH) [8] or Parlinski’s ap-
proach [9], to name just a few. All the above mentioned schemes share common feature – they
need an appropriate set of data to build a model of inter-atomic potential which is essential
for this type of methods. The data set should correspond to the system at thermal equilibrium
or other physical state. It is usually comprised of atomic positions as well as resulting energies
and forces calculated with some quantum mechanical (e.g. DFT) or even effective potential
method.

Presently, molecular dynamics is often used to investigate systems at non-zero temperature
in thermal equilibrium. This is done either directly – by analysis of the MD trajectory – or as
a source of configurations for building the mentioned effective models of the inter-atomic po-
tential to be used in further analysis (e.g. with programs like ALAMODE [10,11] or TDEP [7]).
Both cases involve a very costly stage of running long MD calculations [12]. Since uncorrelated
configurations from different parts of the phase space are required, they are generated by ap-
propriate spacing of the sampling points over the computed trajectory or even by performing
multiple independent MD runs. At the end only a small fraction of calculated configurations
is used (typically 1− 10%). Therefore, using MD in this context is exceedingly wasteful. This
makes it not only very expensive but also useless for larger and more complicated systems (of
hundreds or more atoms), where even static, single-point DFT calculations are challenging. In
such cases running thousands of MD steps becomes prohibitively expensive and impractical.

In this work we propose a new, High Efficiency Configuration Space Sampling (HECSS)
method for modelling systems in non-zero temperature, including non-harmonic effects, with-
out using MD trajectory. We also indicate its possible application to some additional cases like
disordered systems or large, complicated systems.

2 General idea of HECSS

To reproduce the thermal equilibrium in the system, independent configurations of displace-
ments consistent with a desired non-zero temperature should be selected. Having any ini-
tial approximations for the lattice dynamics of the system (e.g. standard harmonic approach
[2,4,13]) one can estimate temperature-dependent atomic mean-square-displacements (MSD)
from a small set of force-displacement relations. Using these MSD data as a first approxima-
tion, the atomic displacements with normal distribution around equilibrium positions can be
easily generated. There is, however, a subtle issue around displacements generated this way
– they are uncorrelated between atoms, while in reality atomic displacements are correlated
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at least with their close neighbours. For example, it is easy to see that a simultaneous out-
of-phase movement of neighbouring atoms towards or away from each other will generate
larger changes in energy than a synchronous in-phase movement of the same atoms. The
former configuration should be represented with lower probability than the later, instead of
equal probability present in the above simplistic scheme. Thus, while the static configurations
generation may be a correct direction in general, such a naive approach is not sufficient. One
can see that some additional mechanism is required to adjust probability distribution of gen-
erated samples in order to accurately reproduce configurations drawn from thermodynamic
equilibrium ensemble. Classical statistical mechanics points to such a scheme for selection of
configurations representing a system in thermal equilibrium.

The general form of the equipartition theorem says that a generalized virial for any phase
space coordinate (i.e. generalized coordinate or momentum) is proportional to temperature
when it is averaged over the whole ensemble:



xm
∂ H
∂ xn

·

= δmnkB T , (1)

where: xn – generalized coordinate or momentum, H – Hamiltonian, T – temperature, kB –
Boltzmann’s constant and δmn – Kronecker’s delta. If we assume ergodicity of the system, the
ensemble average may be replaced with time average. For momenta this leads to the average
kinetic energy per degree of freedom being equal to kB T/2 and provides the kinetic definition
of temperature. However, the relation holds also for derivatives of Hamiltonian with respect
to positions. Considering relation (1) for a single atomic displacement from the equilibrium
configuration described by coordinate q, and assuming the potential energy depends only on
position, we can write position-dependent part of the Hamiltonian (i.e. the potential energy
Ep(q)) as a Taylor’s expansion with respect to the atomic displacement q from the equilibrium
configuration:

Ep(q) =
∞
∑

n=2

Cnqn , (2)

where the expansion coefficients Cn are, in general, functions of all remaining coordinates
(displacements). Note that, this is not a general, multi-dimensional, polynomial expansion –
just a single coordinate expansion required by the equipartition theorem (1), which now takes
the form:

kB T =

®

q
∞
∑

n=2

nCnqn−1

¸

=
∞
∑

n=2

nCn 〈qn〉 (3)

and if we write n as (n− 2) + 2 and divide both sides by 2 we get:




Ep(q)
�

=
kB T

2
−
∞
∑

n=3

n− 2
2

Cn 〈qn〉 , (4)

which is similar to the kinetic energy counterpart except for an additional term generated by
the anharmonic part of the potential and defined by the third and higher central moments of
the probability distribution of the displacements. If we can assume that the second term of the
Eq. 4 is small in comparison with kB T , we get a formula for the average potential energy of
the system. Note that for harmonic systems the second part vanishes. For anharmonic systems
omission of higher terms in Eq. 4 will provide first-order approximation of the mean poten-
tial energy. Considering the quality and applicability range of this approximation, one should
note that substantial higher-order terms are present only in parts of the formula connected
with strongly anharmonic modes. Furthermore, for every atom in centro-symmetric position
all odd-power moments vanish and the first non-zero moment is the fourth one. In addition,
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Figure 1: Variance of the energy distribution as a function of system size compared
with prediction of the central limit theorem (orange line). Results for different num-
bers of randomly chosen coordinates of 5 × 5 × 5 system (blue circles) were put
together with variance of both the kinetic (green squares) and potential (red trian-
gles) energies of smaller systems (defined in the text). Data extracted from MD run
at T = 300 K.

the main effect of the second term in Eq. 4 can be understood as correction to the temperature
scale of the modeled system – not the qualitative change of the energy distribution. This cor-
rection may be estimated by, for instance, deriving the Cn coefficients from the force constants
matrices determined in phonon calculation. Finally, the formula for the potential energy of
the whole system contains similar terms for all modes. Judging by extremely high efficiency
of harmonic approximation for crystal lattice dynamics, we can expect that this averaging will
make proposed approximation effective for a wide range of systems. On the other hand it is
this additional term in potential energy where all non-harmonic physics resides and it indicates
the most important limitation of the proposed method: conditions where energy variance is
divergent (i.e. phase transitions with divergent heat capacity). As long as the energy variance
is stable the non-harmonic effects should be limited to the temperature re-calibration and ad-
justment of the distribution variance. These adjustments should be considered as a next-level
corrections to the presented formulation and subject of future research.

To sum up, MD provides a representation of the system with the properly distributed ki-
netic energy. For a single particle it is a Maxwell-Boltzmann distribution. By virtue of the
central limit theorem (CLT) [14,15], if we increase the number of particles we will approach
at infinity (i.e. in the thermodynamical limit) a Gaussian distribution with the same average
(the same mean) and the variance which is scaled as inverse number of particles. As we can
see for kinetic energy the relation is very simple whereas for the potential energy we have a
quantity approximately close to temperature if the system is not too far from a harmonic one.
Nevertheless, we do not know, in general, the form of the distribution of the potential energy.
That constitutes substantial difficulty, which fortunately can be overcome by application of the
CLT to calculate distribution of potential energy.

The CLT states that for any reasonable probability distribution, the distribution of the mean
of the sample of the independent random variable drawn from it, tends to the normal distri-
bution with the same mean and variance scaled by the square root of the number of samples.
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The reasonable class is fairly broad here, including many physically interesting cases by virtue
of requiring only a finite variance and a well-defined mean. Obviously, this excludes important
case of systems close to phase transitions with divergent specific heat (i.e. divergent energy
variance, e.g. melting). Thus, for potential energy per degree of freedom we can expect the
probability distribution to asymptotically converge to the normal distribution:

p
3N

�

1
N

∑

i

Ei − 〈E〉

�

d
−→N (0,σ) . (5)

As shown above, one can approximate the 〈Ep〉 with the first term of Eq. 4 and the only
unknown parameter in this formula is the variance of the distribution. Note that above expres-
sion is independent from the particular shape of the potential energy probability distribution
for the single degree of freedom except of its mean 〈Ep〉 and variance σ. The mean is set by
Eq. 4 while variance is determined by the energy conservation and the fact that total energy
is a sum of potential and kinetic energy – thus their variances should match, as Fig. 1 clearly
illustrates.

However, we should keep in mind that the Eq. 5 is true asymptotically. And for that reason
we need to check if this relation has any practical use for finite, and preferably not too large,
N . The common wisdom in statistical community, based on Berry-Esseen theorem [16, 17],
states that for N above ≈ 50 the distribution of the average is practically indistinguishable
from the true normal distribution, and even for smaller N , if the starting distribution is not too
far from normal (e.g. Maxwell-Boltzmann, uniform in range, triangular, close to symmetric),
the convergence is usually very quick (N ≈ 15−20). The hard bound from the theorem is for
the supremum norm of the difference between the cumulative distribution of the average and
normal cumulative distribution to be less than Lp/σ

3pN , where Lp is a number proportional
(with constant ≈ 1) to the expectation value of the third moment of the absolute value of the
random variable.

3 Sampling of probability distribution

To verify if the mentioned heuristic rule holds true for the typical kinetic and potential energy
distributions, we have checked this hypothesis against actual MD data of a typical system.
This test does not require high-accuracy forces and energies but demands ability to efficiently
calculate moderately sized systems (e.g. 1000 atoms). Thus, instead of using DFT as a source
of energies/forces we have used effective potential model of the cubic 3C-SiC crystal. We have
used LAMMPS [18] implementation of the Tersoff potential with parameters derived in [19,20]
and the NVT-MD implemented in ASAP3 module of the Atomic Simulation Environment (ASE)
[21]. High performance of this implementation allowed for 5 · 104 time steps (of 1 fs length)
runs of the 5× 5× 5 supercell (1000 atoms) to be executed on a single 8-core server in just a
few hours.

The kinetic and potential energy probability distributions extracted from MD runs of sys-
tems of 2, 8 and 64 atoms (i.e. 6, 24, 192 degrees of freedom) are presented in Fig. 2. At this
stage we are interested in the speed of convergence of the probability distribution, and this ex-
periment shows that for typical distributions present in crystals (i.e. χ2, Maxwell-Boltzmann)
the convergence is indeed fairly quick. Already at the NDOF = 24 (8 atoms, central column in
Fig. 2) the deviation from the normal distribution is smaller than 0.3σ discrepancy in position
of the mode (maximum) and mean, at NDOF = 192 (i.e. 64 atoms, right column in Fig. 2)
this discrepancy drops below 0.1σ. The difference between median and mean drops below
0.1σ at 8 atoms already. The results in Fig. 2 illustrate that the approximation of probability
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Figure 2: Probability distribution for single atom kinetic (upper) and potential
(lower) energies averaged over N = 2, 8 and 64 randomly selected atoms. Solid
orange lines show fitted normal distributions while dashed green lines show χ2 dis-
tribution for 3N degrees of freedom fitted to energy histograms. Data derived from
the MD trajectory run at 300 K temperature.

distribution by normal distribution holds true equally well for distributions of the kinetic and
potential energy.

This simple example demonstrates that for our practical purposes we can expect the en-
ergy distribution in crystals to follow central limit theorem predictions above ≈ 30 degrees of
freedom, for both the kinetic and potential energies. Thus, we can apply this approach even
for very moderately sized systems of 10− 20 atoms.

The energy distributions in Fig. 2, derived from the MD runs mentioned above, show clearly
distributions close to Gaussian for both the kinetic and potential energies even for NDOF = 24
degrees of freedom. Furthermore, the variance of these distributions plotted against the sys-
tem’s size (Fig. 1) follows closely CLT prediction of Eq. 5 for parts of a larger system (blue
circles in Fig. 1) as well as for the whole smaller crystals (squares and triangles in Fig. 1). The
dispersion of small systems’ data in Fig. 1 is due to large temperature fluctuations in small sets
of particles.

Thus, we have checked that, at least in our test case, the convergence to thermodynamic
and CLT limits required by the Eqs 4 and 5 is quick enough to be useful in practical calculations
for systems of just tens of atoms. The main problem now is that there is no direct access to po-
tential energy and there is no way to invert relation from positions to potential energy – even
in principle – since the relation is many-to-one. Our goal here is to reproduce the potential
energy distribution described by Eq. 5 and present in MD data by intelligently sampling the
configuration space of the system – since this is the only input we can directly specify. Fortu-
nately, computational statistics provides multiple algorithms dedicated to the task of sampling
of indirectly specified probability distributions. In particular, the Metropolis-Hastings Monte-
Carlo [22, 23] seems well suited to our purposes. To use it effectively we need to generate a
prior distribution which covers the domain and, preferably, is fairly close to the target distri-
bution. Obviously, we are unable to generate configurations corresponding to the distribution
from Eq. 5 but we can use physically motivated approximation. We propose to approximate
displacements of atoms in the system by Gaussian probability distribution with variance tuned
to the temperature and to the resulting energy. Our HECSS software package provides the
Metropolis-Hastings implementation together with a tuned prior probability distribution gen-
erator. The tuning algorithm adjusts the variance of the atomic displacement distribution in
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Figure 3: Prior energy probability distribution (orange filling) versus target distri-
bution (blue filling). The lines indicate target distribution (red dashed line) and
Gaussian distribution fitted to generated sample (green solid line). The data was
generated for temperatures T = 300, 600 and 2000 K with δ = 0.1 in HECSS proce-
dure (see description in the text).

each step: σn+1 = (1+ s(Ep(xn)))σn, according to the modified logistic sigmoid function:

s(Ep) = δ ·
�

2

1+ e−(Ep−E0)/(w·σEp )
− 1

�

, (6)

where σEp
= kB T

p

3/2N is the variance of the target potential energy distribution (5) and
δ ≈ 0.005−0.02 is a small tuning parameter controlling the speed of the variance adjustment,
while w≈ 3 controls the width of the prior distribution. Both parameters have substantial prac-
tical importance – they influence the effectiveness of the procedure – but play no fundamental
role in the algorithm. Changing these parameters to the unsuitable values leads only to slower
convergence of the procedure, since the Metropolis-Hastings algorithm produces asymptoti-
cally the target distribution from any prior distribution non-vanishing over the domain [23].
The prior distribution we are proposing here is already of similar shape to the target one and
it includes a parameter self-tuning algorithm. Thus, it needs only several additional samples
at the start of the procedure to properly tune the width parameter – if it was not set correctly.
Our selection of the prior distribution means getting higher than 50% (in practice even above
80%) acceptance ratio instead of a few percent or even less if the prior distribution was very
far from the target. The typical good relationship between prior and target distribution as
well as the sampling produced by the proposed algorithm is illustrated in Fig. 3. The data in
this figure has been generated with the artificially large δ parameter (0.1 instead of typical
0.005−0.02) – to make the difference between prior and posterior distribution more obvious.
Such a large δ makes no difference in the posterior distribution but substantially lowers the
acceptance ratio (usually below 50%). All remaining data has been generated with typical
δ = 0.01.

The near-independent drawing of each step in the algorithm means that each sample from
the produced set is potentially usable. Therefore, the burn-in period may be reduced to just
a few samples required for tuning of the prior distribution parameters. The only source of
possible correlations between samples in consecutive steps is the change in variance of the
prior distribution, which is tuned after each step according to the sigmoid function (defined
by Eq. 6). This is a very weak correlation since the variance is not supposed to change by more
than δ ≈ 0.5− 2%. What is more, these parameters seem to be independent from the size of
the system and their values appear not critical, judging from our experience. This property
stems from the fact that the interatomic forces are only slightly modified by the transition
from the small to large supercell while the average displacement is determined mostly by the
overall shape of the interatomic potential. The variance of the prior distribution, which is
self-tuning, should be estimated within 20% accuracy to limit the required burn-in period to
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Figure 4: Probability distribution of potential energy per atom generated with HECSS
scheme (blue shape) versus distribution extracted from the MD trajectory (orange
contour). The dashed line indicates normal distribution fitted to MD sample. The
data corresponds to the temperatures T = 300, 600 and 2000 K (as labeled in sub-
figures).

just one or two samples. Thus, the initial tuning may be performed using a small supercell or
even a primitive unit cell – depending on the system – by just recording the self-tuning trajec-
tory of the algorithm and using final tuned parameters as their initial values in the production
run. The possible correlations introduced in the HECSS generated data result only from the
fact that if the n-th sample leads to exceptionally small or large energy, the next sample is
drawn from the positional distribution with variance increased or reduced, respectively, by a
small amount (no more than (1+ δ) times in extreme cases). Thus, the probability of larger
energy following the exceptionally small energy in the sampling chain (or a smaller sample
following an exceptionally large one) is slightly increased. Note, however, that this does not
introduce any correlations in any particular coordinate. On the other hand, in the MD tra-
jectory the correlations arise from the non-random character of the particle trajectory. The
output of proposed algorithm is a series of samples (i.e. configurations) which reproduce ex-
pected probability distribution (5) of potential energy for the system in thermal equilibrium at
the target temperature. The comparison between the potential energy probability distribution
in the samples generated by HECSS and extracted from the MD run is depicted in Fig. 4.

4 Convergence of derived quantities

The results presented above demonstrate that it is possible to effectively generate samples with
potential energy distributions consistent with the data from the MD trajectories. The remain-
ing, much more difficult, question is whether these samplings indeed provide an appropriate
representation of the system in thermal equilibrium at a given temperature. This issue may be
tested in various ways. In this work we propose to check if the potential model built basing
on the HECSS-generated displacement-force data provides phonon frequencies and lifetimes
consistent with those derived from the MD trajectory data.

Therefore, we have compared the results of both methods (i.e. MD and HECSS) obtained
from the calculations of 3C-SiC crystal with LAMMPS potential used in the previous section.
The samples generated by both methods have been used to build force constants matrices
for the material with ALAMODE program. The calculations were performed using 5 × 5 × 5
supercell and the reciprocal space integrations required for phonon lifetimes were executed
over 20× 20× 20 grid in the reciprocal space. The model used second- and third-order force
constants determined by fitting displacement-force relationship to the data sets containing
varying number of samples.

The resulting phonon frequencies derived from harmonic components and lifetimes ex-
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Figure 5: Consistency and convergence of phonon frequencies in 3C-SiC crystal de-
termined with harmonic model derived from MD (solid lines) and HECSS (dashed
lines) data. The plots correspond to the temperatures T = 300, 600 and 2000 K. The
rows illustrate convergence of the result with number of samples (8, 32 and 128).

tracted from third order coefficients of the same model are presented in Fig. 5 and Fig. 6,
respectively. These findings demonstrate not only high-level of consistency between both data
sets and models, but also similar convergence characteristics between both methods. The Figs
5 and 6 show the results calculated at three temperatures (300, 600 and 2000 K for phonon
frequencies and 100, 300 and 600 K for phonon lifetimes) and several sizes of the data set
(8, 32 and 128 for frequencies, 16 and 128 for lifetimes). Both figures clearly demonstrate
that the agreement and convergence of the results derived from both methods is very good
for low and moderate temperatures (up to 600 K for frequencies and 300 K for lifetimes) and
remains reasonably good for higher temperatures (even 2000 K for frequencies – Fig. 5). The
RMS difference between frequencies obtained from the 128 samples (lower row in Fig. 5) are:
2.8 cm−1 for T = 300 K, 4.5 cm−1 for T = 600 K and 22.5 cm−1 for T = 2000 K. It should
be noted that for higher temperatures the size of the data set needs to be substantially in-
creased (2− 4 times) comparing to the size sufficient for convergence at low temperatures. It
is worth noting that the last column in Fig. 5 (T = 2000 K) shows no significant difference in
convergence characteristics between data obtained from MD and HECSS procedures.

The higher order properties are more difficult to derive at high temperatures (600 K, Fig. 6)
– which can be expected. This may be an intrinsic property of the proposed procedure or may
be caused by insufficient accuracy of the LAMMPS potential used – which is not optimized for
this type of calculation, especially at high temperatures. It should be noted that derivation of
phonon lifetimes is very sensitive to the accuracy of the interaction model. This issue should
be investigated in the future research, preferably using high-accuracy DFT-based calculation
for energy and force determination. Nevertheless, the data presented in Fig. 6 demonstrates
remarkable agreement between phonon lifetimes calculated with both methods for small and
moderate temperatures (100 and 300 K). The agreement which holds over four orders of
magnitude. Furthermore, the data for T = 600 K (right column in Fig. 6) illustrates that
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Figure 6: Consistency and convergence of 3C-SiC phonon lifetimes derived with third
order model based on MD (blue) and HECSS (orange and red) generated data. The
data corresponds to three temperatures T = 100, 300 and 600 K. Two sample sizes
used are: 16 – enough to obtain well-converged phonon frequencies (see Fig. 5)
and 128 – selected after convergence testing of the obtained lifetimes. The red dots
indicate lifetimes obtained by lowering the temperature in HECSS procedure by 90 K.

even at higher temperatures most of the accuracy can be recovered by simple temperature
scaling mentioned in Section 2. The red points in lower panel (T = 600 K, 128 samples) are
obtained from the HECSS procedure executed at the temperature lowered by 90 K. Their better
agreement with MD-derived results (blue dots) indicates that this “temperature calibration”
effect may indeed be a leading next-order correction to the proposed procedure. The derivation
of more sophisticated, higher order corrections for the high temperature regime is a promising
direction of future research in this area.

It is important to note that HECSS-generated data sets consist of first N drawn samples
(after initial burn-in period of 3 samples), not the N samples selected from the larger set, as it is
done with MD trajectory. Obviously, if one was forced to run as many steps of HECSS algorithm
as time steps of the MD trajectory the whole effort would be pointless. The experience gained
during the development of the algorithm indicates that a set of N configurations based on DFT
energy calculation can be generated in time equivalent to approximately 2∗(N+10) time steps
of MD – which is not enough to generate even single well-thermalized sample for N < 500.
It is evident that the results of both approaches are very similar, despite a large difference in
necessary computational effort – which provides a clear justification for future application of
the presented method to the much more expensive DFT-based variant of the potential energy
calculation.

5 Conclusions

We have introduced a new high efficiency configuration space sampling (HECSS) scheme as
an alternative for application of Molecular Dynamics as a source of configurations represent-
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ing systems at non-zero temperatures. The results presented above demonstrate potential of
the proposed HECSS method to generate faithful configuration samplings for systems in ther-
mal equilibrium, which can be used to investigate anharmonic effects present in crystalline
solids. It is worth noting that this method is not limited to crystals or to only geometric de-
grees of freedom. In principle, it is possible to extend its applicability to magnetic degrees of
freedom or disordered systems. Furthermore, due to its inherent ability to provide 3×number-
of-atoms force-displacement data points per configuration, it reduces number of energy/force
calculations required for simple harmonic model determination. This reduction is much more
pronounced in higher-order models, where number of independent variables is usually large.
It should also be emphasized that the generated samples are drawn from the physically mean-
ingful distribution and not from the non-physical, single axis displacements. This difference
may become important if there is any substantial anharmonicity in the system, which couples
degrees of freedom. While the proposed approach is demonstrated above on lattice dynamics
calculation its potential applicability is not limited to this field – it may be used in other cases
where the set of configurations corresponding to thermal equilibrium is required.
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