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Abstract

We study marginal deformations of a class of three-dimensional N = 2 SCFTs that ad-
mit a holographic dual description in massive type IIA supergravity. We compute the
dimension of the conformal manifold in these SCFTs and identify a special submani-
fold with enhanced flavor symmetry. We show how to apply the TsT transformation of
Lunin-Maldacena to construct explicit supersymmetric AdS4 solutions of massive type
IIA supergravity with non-trivial internal fluxes that are the holographic dual of these
marginal deformations. Finally, we also briefly comment on a class of RG flows between
some of these SCFTs that also admit a holographic realization.

Copyright N. Bobev et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 18-03-2021
Accepted 07-06-2021
Published 10-06-2021

Check for
updates

doi:10.21468/SciPostPhys.10.6.140

Contents

1 Introduction 2

2 Field theory 3
2.1 Examples 4
2.2 Comments on RG flows 10
2.3 A digression on ABJM 10

2.3.1 k > 2 11
2.3.2 k = 1,2 11
2.3.3 mABJM 12

3 Supergravity 13
3.1 Seed solutions 14
3.2 TsT 15
3.3 Quantization and free energy 17

4 Discussion 19

1

https://scipost.org
https://scipost.org/SciPostPhys.10.6.140
mailto:pieter.bomans@pd.infn.it
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.10.6.140&amp;domain=pdf&amp;date_stamp=2021-06-10
https://doi.org/10.21468/SciPostPhys.10.6.140


SciPost Phys. 10, 140 (2021)

A Supergravity conventions 22

B Potentials in the democratic formalism 22

C TsT transformation 23

References 24

1 Introduction

Generic CFTs in more than two dimensions do not possess exactly marginal operators and
are therefore isolated. The existence of exactly marginal operators seems to require some
“fine-tuning” and is expected to be associated with an underlying symmetry, see [1–3] for a
recent discussion. Indeed, all examples of CFTs with a finite number of degrees of freedom
that have exactly marginal operators arise in 3d and 4d theories invariant under at least four
supercharges. This special status of exactly marginal operators calls for a more systematic
understanding of their properties. The geometry of the space of exactly marginal couplings,
known as the conformal manifold, is particularly interesting and in general challenging to ex-
plore quantitatively. In 4d SCFTs with at least N = 1 supersymmetry one can engineer many
examples of theories with exactly marginal operators. In many of these examples, the existence
of the marginal operators is related to the fact that the Yang-Mills coupling in a non-Abelian
gauge theory is classically marginal and quantum corrections to its anomalous dimension may
cancel due to supersymmetry [4]. This leads to the favorable situation in which the confor-
mal manifold has a weakly coupled region which can be accessed by employing perturbation
theory, see for example [5] for a recent discussion and [6] for some explicit examples. In
general, however, conformal manifolds can be compact, i.e. there may not be any weakly
coupled regime accessible by perturbation theory. This situation is bound to arise in 3d SCFTs
with N = 2 supersymmetry since the Yang-Mills coupling is irrelevant while Chern-Simons
couplings for the gauge fields are quantized. Indeed, there are very few explicit results for the
physics of conformal manifolds in 3d N = 2 Chern-Simons-matter theory, see [7–9] for some
examples. Our goal here is to study conformal manifolds in a class of examples arising from
D2-branes in massive IIA string theory by utilizing their dual supergravity description.

Using supergravity and holography to understand the conformal manifold of SCFTs aris-
ing from string theory is a subject with a long history, see for instance [10–12]. However,
even for the well-known 4d N = 4 SYM theory there are many open questions. This theory
has a three-dimensional complex conformal manifold along which N = 1 supersymmetry is
preserved. Two of the directions on this manifold are parameterized by superpotential defor-
mations and one direction is given by the complexified gauge coupling. On a generic point of
this conformal manifold, the theory has only U(1)R R-symmetry and no continuous flavor sym-
metry. The family of AdS5 string theory backgrounds corresponding to this three-dimensional
conformal manifold is not known and is expected to be difficult to construct explicitly since
the SO(6) isometry of the internal S5 will be broken to U(1). In [11] Lunin and Maldacena
made headway on this problem by focusing on the so-called β-deformation of the superpo-
tential of N = 4 SYM which preserves U(1)×U(1) flavor symmetry in addition to the U(1)R.
Using a series of duality transformations of string theory, known as the TsT transformation,
they deformed the well-known AdS5×S5 solution into a one-parameter family of explicit AdS5
supergravity backgrounds with internal fluxes that are dual to a submanifold of the SCFT con-
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formal manifold. The main focus of this note is to generalize this procedure to AdS4 solutions
in massive IIA supergravity dual to 3d N = 2 Chern-Simons-matter SCFTs.

The class of SCFTs we study is given by 3d N = 2 Chern-Simons theories with multiple
SU(N) (or U(N)) gauge groups coupled to bifundamental and adjoint chiral multiplets. We
assume that the sum of the Chern-Simons couplings for all gauge groups does not vanish.
These theories, therefore, break parity and in the large N limit are candidate holographic
duals to supersymmetric AdS4 solutions in massive IIA supergravity [13,14]. Indeed, explicit
AdS4 backgrounds of this class were constructed in [15] and [16]. Convincing evidence for
the validity of the holographic duality was presented in [15, 16] by using supersymmetric
localization results for the S3 free energy which, in the large N limit, precisely agree with the
supergravity on-shell action. A notable feature of these models is that the S3 free energy scales
as n1/3N5/3, where n is the sum of the Chern-Simons levels. Moreover, it was argued in [16]
that each of these 3d N = 2 Chern-Simons quiver gauge theories can be thought of as arising
from a “parent” 4d N = 1 gauge theory with the same matter content and superpotential.
If the 4d N = 1 SCFT admits an AdS5 × Y 5 supergravity dual, then one can use the details
of the Sasaki-Einstein manifold Y 5 to construct the explicit massive IIA AdS4 supergravity
solution dual to the 3d N = 2 SCFT. Guided by these results we study several examples of
these models given by “necklace quivers” which have supergravity dual solutions controlled
by Y 5 = S5, Y 5 = T1,1 and orbifolds thereof. Using the explicit superpotential of these theories
and their global symmetries we apply the results in [17–19] to compute the dimension of their
conformal manifold. We then identify a subspace of this manifold along which the exactly
marginal couplings preserve U(1)×U(1) flavor symmetry. We then turn on to the supergravity
side where we use the supergravity solutions in [15,16] as a starting point on which to apply
the Lunin-Maldacena TsT transformation. The result is a one-parameter family of supergravity
solutions which should be dual to the exactly marginal deformation in the dual SCFT. We
provide some evidence for this claim by showing that the flux quantization of the supergravity
solution, as well as the holographic calculation of the S3 free energy, are not modified by the
TsT transformation despite the very non-trivial changes in the metric and internal fluxes.

We start in the next section by introducing the type of 3d SCFTs under consideration and
discuss in detail several examples with a particular focus on their exactly marginal deforma-
tions. In Section 3 we start by introducing a set of seed AdS4 supergravity solutions dual to the
undeformed SCFTs and then describe the result of the TsT transformation to these solutions
and its relation to the SCFT marginal deformations. In Section 4, we conclude with a discus-
sion of several interesting open problems and possible generalizations. The three appendices
contain our supergravity conventions as well as some of the technical details related to the TsT
transformation.

2 Field theory

We are interested in 3d N = 2 Chern-Simons-matter of quiver theories with adjoint and bi-
fundamental chiral multiplets. We will focus on theories that have non-vanishing sum of the
Chern-Simons levels for the gauge groups and thus they break parity. It turns out that this
class of theories can be engineered in string theory by considering D2-branes in the presence
of non-trivial Romans mass, i.e. D8-brane flux. Moreover as pointed out in [15, 16] these
SCFTs bare close resemblance to a large class of 4d N = 1 quiver gauge theories that arise on
the worldvolume of a stack of D3-branes probing a Calabi-Yau singularity X . This connection
can be understood qualitatively by considering the brane setup in more detail (see [20, 21]).
Indeed, let us start with a system of N D3-branes on the background R1,3 × X , where X is a
local Calabi-Yau three-fold singularity. The low energy effective theory living on this system
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of branes probing the Calabi-Yau singularity is expected to be given by a four-dimensional
N = 1 quiver gauge theory. For example when X is a toric Calabi-Yau singularity, admitting
a (crepant) resolution eX , the low energy theory is given by a U(N)χ(eX ) quiver gauge theory,
where χ(eX ) is the Euler characteristic of eX , with a particular superpotential. Performing a
T-duality transforms the D3-brane system into a system of D2-branes probing R × X , whose
worldvolume theory is given by a 3d N = 2 quiver gauge theory. This 3d theory has exactly the
same quiver representation and superpotential as the four-dimensional one. In the following,
we will refer to the 4d theory as the “parent” and the 3d one as the “daughter” theory. The
freedom to add Chern-Simons couplings for the gauge groups in the quiver gauge theory is
left unaccounted for in this duality transformation. In the class of models studied in [15, 16]
all Chern-Simons levels are equal, ka = k. As explained in [14], in massive type IIA string
theory, this corresponds to adding a Romans mass F0 =

n
2π`s

, where `s is the string length and

n = χ(eX )k is the sum of Chern-Simons levels. Here we will be interested in the properties of
these SCFTs in the large N limit with a particular focus on their exactly marginal deformations.
We will describe several illustrative examples of such quiver SCFTs below in preparation for
Section 3 where we discuss their supergravity dual.

2.1 Examples

One-node quiver

Using this brane intuition, various examples of such three-dimensional SCFTs were studied
in [15,16]. Here we will highlight some particular examples and discuss their conformal man-
ifold and various RG flows relating them. As a first example, consider the three-dimensional
daughter theory associated to four-dimensional N = 4 SYM [15]. This is a Chern-Simons-
matter theory with gauge group SU(N) at level k coupled to three chiral superfields, X i , in the
adjoint representation of the gauge group, see Figure 1. The superpotential of this theory is
given by

W = Tr (X1[X2, X3]) . (1)

The theory has SU(3)F × U(1)R global symmetry, where SU(3)F is a flavor symmetry which
rotates the three chiral superfields X i and U(1)R is the superconformal R-symmetry. The three
chiral superfields have R-charge qR = 2/3 and dimension ∆X i

= 2/3.1

Figure 1: The quiver of 4d N = 4 SYM (left) interpreted as a 3d N = 2 quiver with
Chern-Simons level k.

In order to study the conformal manifold, we start by listing the candidate marginal opera-
tors of the theory. These are given by cubic gauge invariant operators of the form hi jkTr(X iX jXk)
which have R-charge 2 and thus conformal dimension∆= 2. Each of these is a chiral primary
operator which is the lowest component of a multiplet containing an operator of dimension
∆ = 3. After taking into account the chiral ring relations, there are 10 independent cubic
chiral operators which can be decomposed as the 8 ⊕ 1 ⊕ 1 representation of SU(3)F .2 As

1As usual we specify the R-charge of the complex scalar in the chiral superfield.
2This counting agrees with the recent calculation of the perturbative KK spectrum around the AdS4 solution of

type IIA supergravity dual to this SCFT [22].
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emphasized in [17–19] not all of these operators are exactly marginal. To compute the num-
ber of exactly marginal operators, i.e. the dimension of the conformal manifold, we employ
the formalism of [17–19]. It was shown there that one should subtract the dimension of the
continuous flavor group from the naive number of marginal operators to arrive at the final
number of exactly marginal operators. Applying this to the example at hand we conclude that
the complex dimension of the conformal manifold, Mc , of this three-dimensional N = 2 SCFT
is3

dimC(Mc) = 10− dim(SU(3)F ) = 2 . (2)

Our main interest in this note is a particular one-dimensional subspace of this two-dimensional
conformal manifold. Namely, the unique exactly marginal deformation preserving a U(1)2

subgroup of SU(3)F . This deformation can be parameterized by a complex number β which
deforms the superpotential in (1) to

W = Tr
�

eiπβX1X2X3 − e−iπβX1X3X2

�

. (3)

The other exactly marginal deformation, parameterized by the complex coupling λ, which
breaks the U(1)2 flavor symmetry can be thought of as arising from the following superpoten-
tial deformation

δW = λTr
�

X 3
1 + X 3

2 + X 3
3

�

. (4)

Note that these exactly marginal deformation are very similar to the ones of four-dimensional
N = 4 SYM [4,10,11]. A notable difference is that in four dimensions there is one additional
exactly marginal deformation given by the complexified gauge coupling which is clearly not a
marginal coupling in a three-dimensional gauge theory.

In general, it is extremely hard to compute physical observables in this strongly coupled
SCFT. However, supersymmetric localization allows the exact evaluation of some BPS observ-
ables. For example, the free energy on S3 of the SCFT at hand can be computed using the
results in [23,24]. In the large N limit, the real part of the free energy is scheme independent
and is given by [15]

ReFN=4 =
21/331/6

5
π k1/3N5/3 . (5)

Superpotential marginal deformations are Q-exact with respect to the localization supercharge
and therefore the free energy remains constant on the entire conformal manifold and takes
the value in (5).

We can obtain another SCFT from this setup by deforming the theory discussed above by a
relevant deformation. This is analogous to the four-dimensional Leigh-Strassler (LS) RG flow
discussed in [4] and the relevant deformation is given by adding Tr

�

X 2
1

�

to the superpotential
in (1). The quiver for this model is obtained from Figure 1 by erasing one of the lines. In the
IR one obtains a strongly coupled theory with a quartic superpotential for the two chiral su-
perfields X2,3. Naively this theory has an SU(2)F flavor symmetry under which X2,3 transform
as a doublet and a U(1)R symmetry under which X2,3 have charge 1/2. A more careful analysis
using both QFT and holography methods suggests that this SCFT enjoys an enhancement of
supersymmetry to N = 3 [8, 15, 25, 26]. Therefore the U(1)R symmetry is actually enhanced
to SO(3)R. The marginal operators in this SCFT are given by supersymmetric descendants
of holomorphic quartic operators built out of X2,3. There are in total 5 such operators that
transform in the 3⊕ 1⊕ 1 of the SU(2)F .4 The number of exactly marginal operators, i.e. the

3Alternatively, one could use the method of [4] to compute the dimension of the conformal manifold. However,
since the three-dimensional theory at hand is not weakly coupled the computation of the β-functions is non-trivial.

4Again, this counting is in harmony with the KK spectroscopy for the AdS4 solution of type IIA supergravity dual
to this SCFT [22].
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complex dimension of the conformal manifold, can again be computed as we did above

dimC(Mc) = 5− dim(SU(2)F ) = 2 . (6)

This result was also obtained in [8]where this model was studied in some detail. We therefore
conclude that the UV and IR SCFTs have conformal manifolds of equal dimensions. We note
that the N = 3 supersymmetry is broken to N = 2 on a generic point of this conformal
manifold. The continuous flavor symmetry is generically broken, however, there is a one-
dimensional complex submanifold of the conformal manifold along which U(1)F ⊂ SU(2)F is
preserved. The superpotential on this one-dimensional submanifold of Mc can be written as

W = Tr
�

eiπβX2X3X2X3 − e−iπβX2X3X3X2

�

. (7)

The S3 free energy of this IR theory, which we denote by LS, is given by [27]

ReFLS =
9× 31/6

40
π k1/3N5/3 , (8)

and is again the same on the whole conformal manifold. We note that the S3 free energy of
the IR and UV SCFTs are related as

ReFLS

ReFN=4
=
�

27
32

�2/3

. (9)

We comment further on this in Section 2.2 below.

Two-node quiver

The second example we would like to study is a quiver with two nodes which is identical to
the quiver corresponding to the Z2 orbifold of the N = 4 SYM theory. This model preserves
half of the maximal supersymmetry in four dimensions but from the 3d perspective studied
here it has N = 2 supersymmetry. This three-dimensional quiver gauge theory contains two
U(N) gauge groups with equal Chern-Simons level k, see Figure 2. The field content of this
SCFT consists of two adjoint vector multiplets, two adjoint chiral multiplets, Φ1,2, and four
bi-fundamental chiral superfields. Two of the chiral superfields, A1,2, transform in the (N, N̄)
representation of U(N)k×U(N)k gauge groups and the other two, B1,2, transform in the (N̄,N)
representation. The superpotential is given by

W = λ [TrΦ1(A1B1 + A2B2) + TrΦ2(B1A1 + B2A2)] . (10)

This superpotential leads to all chiral superfields having R-charge 2/3. Therefore we have
a total of 10 candidate marginal operators that are obtained as level 2 descendants of the
following gauge invariant chiral operators of R-charge 2

TrΦ1A1B1 , TrΦ1A1B2 , TrΦ1A2B1 , TrΦ1A2B2 , TrΦ3
1 ,

TrΦ2B1A1 , TrΦ2B1A2 , TrΦ2B2A1 , TrΦ2B2A2 , TrΦ3
2 .

(11)

Figure 2: Quiver representation of the 4d Z2 orbifold of the 4d N = 4 SYM theory
interpreted as a 3d N = 2 quiver with equal Chern-Simons levels.
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Figure 3: Quiver representation of the 4d N = 1 Klebanov-Witten theory interpreted
as a 3d N = 2 quiver with equal Chern-Simons levels.

To count the exactly marginal operators in this model we first discuss the global symmetries
in the theory without a superpotential. One linear combination of the two U(1) factors in the
U(N)k×U(N)k gauge group acts trivially and will not play a role. The other linear combination
results in a topological U(1)T global symmetry.5 In addition the theory with no superpotential
has a U(2)×U(2) global flavor symmetry. We therefore conclude that the complex dimension
of the conformal manifold is

dimC(Mc) = 10− dim(U(2)×U(2)×U(1)T) = 10− 9= 1 . (12)

Note that this result agrees with the intuition from the 4d cousin of this SCFT. As discussed
in [28] the 4d theory has a conformal manifold of complex dimension 3 where 2 of the exactly
marginal couplings are given by the complexified gauge couplings that are not present in the 3d
SCFT. All candidate marginal operators in (11) are invariant under the U(1)T global symmetry
which acts with equal and opposite charges on the A1,2 and B1,2 chiral superfields. Therefore,
the whole conformal manifold enjoys this global symmetry in addition to the omnipresent U(1)
R-symmetry. The S3 free energy of this SCFT can be readily computed using the results in [16]
to find

ReF2,adj =
24/331/6

5
πk1/3N5/3 . (13)

We can deform this family of SCFT by adding a mass term for the chiral adjoint superfields
to the superpotential, i.e. we add the following relevant terms to the superpotential in (10)

W = m
�

TrΦ2
1 − TrΦ2

2

�

. (14)

In the deep IR we can integrate out the chiral superfields Φ1,2 and arrive at a 3d N = 2 SCFT
which is a direct analog of the 4d N = 1 Klebanov-Witten SCFT studied in [29], see Figure 3.
The superpotential for this model is given by

WKW = ε
i jεklTr (AiBkA jBl) . (15)

The global symmetry of this theory is SU(2)A × SU(2)B × U(1)R × U(1)T. All four chiral su-
perfields are charged under the superconformal R-symmetry U(1)R with charge qR = 1/2 and
have conformal dimension ∆ = 1/2. The fields Ai and B j transform as doublets under the
SU(2)A and SU(2)B flavor symmetries. Finally, the topological U(1)T global symmetry acts
with charge +1 on the Ai and −1 on the B j .

All single-trace marginal operators have dimension∆= 2 and are of the form λi j,klTr (AiBk
A jBl). Since the Ai and B j transform respectively in the (2,1) and (1,2) representations of
SU(2)A× SU(2)B, a generic quartic term transforms as

(2,1)⊗ (1,2)⊗ (2,1)⊗ (1,2) = (1,1)⊕ (3,1)⊕ (1,3)⊕ (3,3) . (16)

The trace annihilates the terms (1,3) and (3,1) so the most general single trace superpotential
deformation is given by

δW = λ(i j)(kl)Tr (AiBkA jBl) , (17)

5One can alternatively consider this theory with an SU(N)k×SU(N)k gauge group. In this case the U(1)T plays
the role of a baryonic global symmetry.
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where λ(i j)(kl) is symmetric in the indices i, j and k, l. Therefore, after accounting for the
chiral ring relations coming from the superpotential in (15), there are 10 candidate marginal
superpotential terms, 1 that preserves SU(2)A × SU(2)B and 9 that violate it. The complex
dimension of the conformal manifold Mc of this three-dimensional N = 2 SCFT is therefore

dimC(Mc) = 10− dim(SU(2)A× SU(2)B ×U(1)T) = 3 . (18)

Again, this agrees with the expectation from four dimensions where one finds a five-dimensional
conformal manifold where the two extra exactly marginal deformations can be accounted for
by the complexified gauge couplings [28]. The three exactly marginal deformations are in-
duced by the operators

Tr (A1B1A2B2 + A1B2A2B1) , (19)

Tr (A1B1A1B1 + A2B2A2B2) , (20)

Tr (A1B2A1B2 + A2B1A2B1) . (21)

The full superpotential with generic couplings for the exactly marginal deformations can thus
be written as

W =Tr (A1B1A2B2 − A1B2A2B1)

+λPWTr (A1B1A2B2 + A1B2A2B1 − A1B2A1B2 − A2B1A2B1)

+λβTr (A1B1A2B2 + A1B2A2B1)

+λ2Tr (A1B1A1B1 + A2B2A2B2) ,

(22)

where the couplings are labeled following the notation for the four-dimensional parent theory,
see [28]. The term proportional to λPW preserves an SU(2)×U(1)T global symmetry analogous
to the four-dimensional Pilch-Warner deformation [30]. The term proportional to λβ is the
analog of the β-deformation in (3) and preserves the U(1)3 Cartan subalgebra of the flavor
symmetry. Finally, turning on the last coupling λ2 preserves only the U(1)T global symmetry.
Putting λPW = λ2 = 0 the superpotential (15) is deformed to

Wβ = Tr (eiπβA1B1A2B2 − e−iπβA1B2A2B1) , (23)

which makes the analogy with (3) manifest. The S3 free energy of this SCFT can again can be
computed in the large N limit using supersymmetric localization with the result

ReF2 =
313/6

20
πk1/3N5/3 . (24)

Necklace quivers

We now study a natural generalization of the constructions above given by a 4d parent the-
ory obtained by a Zb orbifold of the N = 4 SYM theory. These 4d N = 2 theories are suc-
cinctly summarized by the necklace quiver in Figure 4.6 The field content of these theories
consists of b vector multiplets, b adjoint chirals, and b chiral multiplets in the representations
(1, · · · , N(i), N (i+1), · · · , 1) and b chiral multiplets in the representations (1, · · · , N (i), N(i+1), · · · ,
1) where N(i) and N (i) denote the fundamental representation of the ith gauge group. We call
these fields Φi , Ai and Ãi , respectively. The quiver is given in Figure 4 and as usual we add
a Chern-Simons level k to each of the gauge nodes. The superpotential for this model is the
same as the one for the 4d N = 2 parent theory and is given by7

W =
b
∑

i=1

λiTr
�

ΦiAiÃi

�

+
b
∑

i=1

λ̃iTr
�

ΦiÃi+1Ai+1

�

. (25)

6These theories are the same as the L0b0 SCFTs studied in [31].
7Due to the cyclicity of the quiver we identify b+ 1≡ 1.
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Clearly all superfields have charges 2/3 under the U(1) R-symmetry. In addition the model

Figure 4: Left: A necklace quiver gauge theory with b nodes obtained by performing
a Zb orbifold of N = 4 SYM. Right: The quiver representation of the theory consists
of b gauge nodes, each with Chern-Simons level k, connected with a bifundamental
hypermultiplet. In addition a chiral adjoint is attached to every node.

with no superpotential enjoys a large flavor symmetry. To every pair of bi-fundamental chiral
multiplets we can assign a U(1) action with generators Ji under which the fields are charged
as Ji(A j) = Ji(Ã j) = δi j and Ji(Φ j) = 0. Similarly, to every chiral adjoint there is an associated
U(1) action with generators Fi under which the fields are charged as Fi(A j) = Fi(Ã j) = 0 and
Fi(Φ j) = δi j . Using these charges one can then check that the linear combinations Ji+1 − Ji

and Ji + Ji−1 − 2Fi lead to U(1)2b flavor symmetries. In addition to these symmetries there
are b − 1 U(1) “baryonic” symmetries that act with equal and opposite charges on each pair
(Ai , Ãi).8

There are a total of 3b candidate marginal operators in the theory with no superpotential
which are obtained as descendants of the following chiral operators of R-charge 2.

Tr
�

ΦiAiÃi

�

, Tr
�

ΦiÃi+1Ai+1

�

, Tr
�

Φ3
i

�

, i = 1,2, 3, . . . , b . (26)

Following [17–19] we find that the dimension of the conformal manifold is given by

dimCMc = 3b− dim(U(1)2b ×U(1)b−1) = 3b− 2b− (b− 1) = 1 . (27)

This result again agrees with the intuition obtained from the 4d parent theory where it was
argued in [32] that the operators Tr

�

Φ3
i

�

are marginally irrelevant and only a single linear
combination of the operators Tr

�

ΦiAiÃi

�

and Tr
�

ΦiÃi+1Ai+1

�

is exactly marginal. This exactly
marginal deformation is exactly the analog of the β-deformation of N = 4 SYM which survives
the orbifold action and preserves a U(1)2 subgroup of the flavor symmetry.

The S3 free energy of the necklace quiver with adjoint chirals can be computed using the
results in [16] and reads

ReFb,adj =
21/331/6

5
bπk1/3N5/3 . (28)

We can generalize the construction above by adding a relevant mass term to the superpo-
tential of the form

∑

i

mi

2
Tr (Φ2

i ) . (29)

8In the quiver with U(N) gauge groups, that we study here, at every node these “baryonic” symmetries are
actually part of gauge group however each of them leads to global topological symmetry acting on monopole
operators, similar to the the U(1)T discussed below (11). One can alternatively consider a quiver gauge theory
with SU(N) gauge groups at all nodes in which case these are global baryonic symmetries.
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This type of mass deformations of the necklace quivers are well known in the 4d SCFT context,
see for instance [33]. In the IR one can integrate out the adjoint chiral superfields and arrive
at a necklace quiver of the same form as in Figure 4 but with no “adjoint lines” attached
to each node. The bifundamental chiral multiplets are still present in the IR and the theory
has a quartic superpotential similar to the one of the KW theory. Note that for quivers with
even number of nodes, i.e. b = 2a, the IR theory is the same as the ones described by the Laaa

quiver gauge theories, see [31]. Since the superpotential is quartic in the bifundamental chiral
superfields all of them have equal R-charge equal to 1/2. The global symmetry associated
with the adjoint chiral superfields is not present any more and therefore these models (with no
superpotential) have only U(1)b flavor symmetry along with the U(1)b−1 “baryonic” symmetry
discussed above. The candidate marginal operators in these models are given by the

Tr
�

AiÃiAi+1Ãi+1

�

, Tr
�

AiÃi+1Ai+1Ãi

�

, i = 1,2, 3, . . . , b . (30)

We can now once again utilize the general result in [17–19] to conclude that the dimension
of the conformal manifold for these quiver SCFTs is given by

dimCMc = 2b− dim(U(1)b ×U(1)b−1) = 2b− b− (b− 1) = 1 . (31)

We can once again compute the S3 free energy of these SCFTs to find

ReFb =
313/6

5 · 23
bπk1/3N5/3 . (32)

2.2 Comments on RG flows

In all models discussed above we have the option to deform the theory with adjoint chiral
superfields by a superpotential mass term and thus flow to a new IR SCFT. These types of RG
flows are well-known in the context of 4d SCFT where they were shown to exhibit universal
properties in [34]. The discussion above naturally suggests that there is a similar universality
in the class of Chern-Simons-matter theories of interest here. In particular for all RG flows
triggered by masses for adjoint chiral superfields above we find the same ratio of S3 free
energies between the IR and the UV SCFT, namely

ReFIR

ReFUV
=
�

27
32

�2/3

≈ 0.892913 . (33)

This result is of course compatible with the F-theorem and can be viewed as a 3d N = 2
analogue of the universal ratio between IR and UV conformal anomalies for the 4d SCFTs
discussed in [34]. We should stress that the result in (33) is valid only to leading order in the
large N expansion of the gauge theory free energy. It will be most interesting to understand
whether this universality persists to subleading order and what is precisely the class of 3d
N = 2 SCFTs to which it applies.

2.3 A digression on ABJM

Before discussing the supergravity background dual to the above-mentioned SCFTs, let us
briefly discuss the ABJM theory and a closely related SCFT obtained by a mass deformation.
The ABJM theory is a double Chern-Simons-matter theory [35] very similar to the three-
dimensional KW SCFT discussed above. The gauge group is U(N)k×U(N)−k where in contrast
to the above, the Chern-Simons levels are now given by k and −k. Since the two levels are
equal and opposite this theory preserves parity. The field content, superpotential and global
symmetries of this theory, however, are identical to those of the three-dimensional KW theory.
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Figure 5: Quiver representation of the ABJM theory.

This theory is conformal and describes the dynamics of N M2-branes probing a C4/Zk sin-
gularity in M-theory. The Zk acts as an e2πi/k rotation on the four complex planes transverse to
the stack of branes. There are various generalizations of this setup to U(N)k1

×U(M)k2
Chern-

Simons-matter theory with N 6= M , see [36], and k1+k2 6= 0, see [14], which we do not discuss
further here. When k = 1, 2 the ABJM theory preserves N = 8 supersymmetry. For k > 2 on
the other hand, supersymmetry is partially broken to N = 6. These two cases have impor-
tant differences and we discuss them separately below. Our goal is to understand the space of
exactly marginal deformation of this class of SCFTs which preserve N = 2 supersymmetry.9

2.3.1 k > 2

The ABJM theory with k > 2 has N = 6 superconformal symmetry and an SO(6) ' SU(4)
R-symmetry. This is not manifest in superspace but can be deduced when the Lagrangian of
the theory is written in components [35]. The U(1)R × SU(2)A× SU(2)B is a subgroup of the
SU(4) R-symmetry. The A and B fields can be organized in representation of SU(4) × U(1)b
(see for example [38]) as follows

(A1, A2, B†
1, B†

2) , transforms in the 41 ,

(A†
1, A†

2, B1, B2) , transforms in the 4−1 .
(34)

Since the R-charges and dimensions of the chiral primaries as well as the chiral ring relations
are exactly the same as in the three-dimensional Klebanov-Witten SCFT, we find the same ex-
actly marginal operators and consequently the complex dimension of the conformal manifold
is given by dimC(M

ABJMk>2
c ) = 3. This result was also found in [9].

2.3.2 k = 1,2

For k = 1, 2, there is an important new ingredient in the discussion, namely monopole oper-
ators [39,40]. The monopole operators, T (q), are not constructed out of Lagrangian building
blocks but can be thought of as point-like insertions which turn on q ∈ Z units of flux (through
the S2 surrounding the point) for the topological current ∗3Tr(F + eF). For the k = 1 theory
the operators T (1) and T (−1) reside in respectively the (N,N) and (N,N) representations of the
gauge groups. One can consistently choose the charge under U(1)R of these operators to be 0.
Note that in order to obtain chiral primary operators one has to form a gauge invariant product
of A1,2, B1,2, T (1), and T (−1). For example, Tr(T (1)A1T (1)A1) is a chiral primary operator of di-
mension and R-charge ∆= qR = 1.10 The existence of these monopole operators is ultimately
what is responsible for the enhancement of supersymmetry to N = 8 and the R-symmetry
to SO(8) [41, 42]. For the k = 2 theory the relevant operators to consider are T (2) and T (−2)

which transform in (N⊗N,N⊗N) representation of the gauge group and lead to chiral primary
operators of the form Tr(A1T (2)A1). To avoid repetition we will focus on discussing the k = 1

9The general results in [37] imply that there are no exactly marginal deformations in 3d SCFTs which preserve
more than N = 2 supersymmetry.

10Operators of the type Tr(T (1)A1) or Tr(T (−1)B2) have ∆ = qR = 1/2 and thus saturate the unitarity bound in
3d. There are 8 such operators which is exactly the right number to account for the decoupled Abelian M2-brane
theory which is free and describes the “center of mass” mode of the stack of N M2-branes.
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theory below, see Section 3.2 of [43] for more explicit details on the monopole operators and
corresponding gauge invariant operators for the k = 2 model.

For the purposes of studying the conformal manifold we can formally define 4 chiral pri-
mary operators

Φ1 = T (1)A1 , Φ2 = T (1)A2 , Φ3 = T (−1)B1 , Φ4 = T (−1)B2 , (35)

where the fields Φi belong to the 41/2 representation of the SU(4)F×U(1)R subgroup of SO(8).
Here SU(4)F is the commutant of U(1)R inside SO(8), in other words the manifest flavor sym-
metry SU(2)A × SU(2)B × U(1)b is a subgroup of SU(4)F . The candidate marginal operators
are descendants of quartic operators with R-charge 2 of the form

W ∼ hi jklTr (ΦiΦ jΦkΦl) . (36)

The presence of the superpotential in (15) gives rise to several nontrivial chiral ring relations
[44]. These relations arise from the equation ∂A1,2

W = ∂B1,2
W ∼ 0 where ∼ 0 means zero up

to non-chiral primaries. In particular, this results in the following 4 relations

B1A2B2 ∼ B2A2B1 , B2A1B1 ∼ B1A1B2 ,

A2B2A1 ∼ A1B2A2 , A1B1A2 ∼ A2B1A1 .
(37)

These relations should be treated formally and should only be used in gauge invariant com-
binations and thus could be sprinkled with monopole operators. Due to the presence of these
relations, we can take the constants hi jkl in (36) to be the components of a completely sym-
metric tensor.

The flavor symmetry is SU(4)F and hence the dimension of the conformal manifold is

dimC(M
ABJMk=1,2
c ) = 35− dim(SU(4)F ) = 20 , (38)

in agreement with the counting in [18]. As explained in [18] the 35 naive complex marginal
deformations are in the 35⊕35 representation of SU(4)F . There is a special one-dimensional
(complex) submanifold of the conformal manifold on which the U(1)3 Cartan subgroup of
SU(4)F is preserved. It is spanned by the two singlets arising from the decomposition of the
35 and 35 under U(1)3. This one-dimensional conformal sub-manifold should be the direct
analog of the β deformation of the N = 4 SYM theory and it is natural to wonder what is
its gravitational dual description. Indeed, a deformation of the AdS4 × S7 solution of 11d
supergravity with precisely this isometry was described in [11] however it is controlled by a
single real parameter γ̂. We are not aware of an AdS4 supergravity solution which realizes the
more general complex marginal deformation preserving U(1)3 ×U(1)R.

2.3.3 mABJM

The ABJM theory with k = 1 can be deformed by the superpotential term11

Wm = m2Tr(T (1)A1T (1)A1) . (39)

This is a relevant operator of conformal dimension and R-charge ∆ = qR = 1 which triggers
an RG flow. The resulting IR dynamics is controlled by another strongly interacting 3d N = 2
SCFT which we refer to as mABJM. This 3d theory was introduced soon after the ABJM theory
in [45] (see also [24, 43]) and the gravity dual in four-dimensional gauged supergravity was
constructed in the early days of gauged supergravity by Warner [46]. The corresponding AdS4

11This deformation is also possible in the theory with k = 2 where the superpotential is Wm = m2Tr(A1T (2)A1).
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solution in 11d was found in [47]. The space of exactly marginal deformations of this theory
as well as its gravitational dual however have not been studied in the literature.

Formally, we can think of the deformation (39) as Tr(Φ2
1). This modifies the R-charge

assignments for Φ2,3,4 such that they now have R-charge qr =
1
3 . Another way to say this

is that the IR superconformal R-symmetry, U(1)r , is obtained by breaking SU(4)F × U(1)R to
SU(3)F × U(1) f × U(1)R and then taking U(1)r to be the diagonal of U(1) f × U(1)R. The
candidate supersymmetric marginal deformations are then sextic operators built out of the
Φ2,3,4. These are deformations of the superpotential of the type

W ∼ λi1 i2 i3 i4 i5 i6Φi1Φi2Φi3Φi4Φi5Φi6 , ik = 2, 3,4 . (40)

Using the chiral ring relations that follow from combining the superpotentials in (15) and (39)
one finds that the tensor λi1 i2 i3 i4 i5 i6 has to be completely symmetric in its indices, i.e. it should
be in the 28 representation of SU(3)F . We thus arrive at the conclusion that the dimension of
the conformal manifold of the mABJM theory should be

dimC(MmABJM
c ) = 28− dim(SU(3)F ) = 20 . (41)

Curiously, the dimensions of the conformal manifolds of the k = 1,2 ABJM and mABJM SCFTs
are exactly the same. We can again ask how many operators are singlets of the Cartan U(1)2

of SU(3)F . We have one from the 28 and one from the 28. This indicates that the conformal
manifold of the mABJM theory contains a one-complex-dimensional submanifold on which
the U(1)2 × U(1)R symmetry is preserved. This should be manifested holographically as a
one-parameter family of deformations of the CPW solution [47] which preserves all supersym-
metries as well as the isometries of AdS4. It will be most interesting to construct this solution
explicitly.

We end our digression with a short discussion of the S3 free energies of the ABJM and
mABJM theory, see [24]. They can be computed by supersymmetric localization and read

FABJM
S3 =

p
2π
3

N3/2 , FmABJM
S3 =

4
p

2π

9
p

3
N3/2 . (42)

The ratio of these two quantities is equal to 4/33/2 and therefore the RG flow connecting the
ABJM and mABJM theory does not belong to the same “universality class” as the one described
around (33).

3 Supergravity

We now switch gears to discuss the holographic dual description of the 3d N = 2 SCFTs
presented above together with some of their marginal deformations. We focus on AdS4 so-
lutions of type IIA supergravity with non-vanishing Romans mass since the SCFTs of interest
break parity and have non-vanishing sum of the Chern-Simons levels. We start by introduc-
ing a set of “seed solutions” corresponding to the undeformed SCFTs. We then introduce the
holographic dual of a marginal deformation by performing the TsT transformation discussed
in [11]. As discussed in the previous section, the 3d SCFTs are related to certain 4d parent
SCFTs. In the same spirit, the AdS4 solutions we discuss are related to parent AdS5 solutions.
The 4d parent N = 1 quiver gauge theory can be engineered as the worldvolume theory of
a stack of N D3-branes on the background R1,3 × X . The dual supergravity background then
describes the back-reaction of this stack of D3-branes and is of the form AdS5×Y 5 where Y 5 is
a five-dimensional Sasaki-Einstein manifold which is given as the link of the Calabi-Yau space
X . To this solution we can associate a solution in massive type IIA supergravity which has
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the form AdS4 ×M6, where M6 ' SY 5 is the suspension of Y 5 [15, 16]. Indeed, this solution
then describes a stack of N D2-branes probing R× X . A first example of this construction was
discussed in [15], where the dual to the one node quiver theory in Figure 1 was constructed.
This was subsequently generalized to a larger class of quiver gauge theories in [16].

3.1 Seed solutions

The massive type IIA supergravity backgrounds of interest take the general form [15,16]:

ds2
10 =

p
2+ cos2α

3(g5m)1/3

�

ds2
AdS4
+

3
2

dα2 +
3sin2α

1+ cos2α
ds2

B +
9sin2α

2(2+ cos2α)
η2

�

,

eΦ =
� g

m

�5/6 (2+ cos2α)3/4

1+ cos2α
,

H3 =
2

(g5m)1/3
sin3α

(1+ cos2α)2
J ∧ dα ,

F0 =m ,

F2 =−
�

m2

g5

�1/3�
sin2α cosα

(1+ cos2α)(2+ cos2α)
J +

3(2− cos2α) sinα
2(2+ cos2α)2

dα∧η
�

,

F4 =
�

m
g10

�1/3� 1
p

3
volAdS4

+
(2+ 3 cos2α) sin4α

2(1+ cos2α)2
J ∧ J

+
3(4+ cos2α) sin3α cosα
2(1+ cos2α)(2+ cos2α)

J ∧ dα∧η
�

,

(43)

where ds2
10 is the ten-dimensional metric in Einstein frame. The AdS metric, ds2

AdS4
has unit

AdS length and volume form vol4. B is a four-dimensional Kähler-Einstein base manifold with
Ricci tensor Rµν = 6gµν, J is the corresponding transverse Kähler form and η = dψ + σ is
a suitable contact one-form such that dη = 2J . We refer to Appendix A for our supergravity
conventions. The precise form of the gauge potentials for the seed solutions can be found in
Appendix B. As mentioned above, we can relate these massive type IIA backgrounds to type
IIB backgrounds, corresponding to the four-dimensional parent theory. The four-dimensional
parent field theory has an AdS5 × Y 5 dual, where Y 5 is a Sasaki-Einstein manifold with base
B, i.e. with Sasaki-Einstein metric

ds2
Y 5 = η2 + ds2

B . (44)

Topologically, the near horizon geometries of our seed solutions are warped products of the
form AdS4 × SY 5 where SY 5 denotes the suspension of the Sasaki-Einstein space Y 5. Due to
the additional fluxes, the suspended geometry is deformed but the topology remains the same.
The coordinate α ranges from 0 to π and, for generic Y 5, one encounters isolated Calabi-Yau
conical singularities at the endpoints of this interval, inherited from the singularity of X . It
is natural to expect stringy degrees of freedom to be supported at the singularities, however,
these appear to not contribute to some physical observables at leading order in the large N
expansion. We provide evidence for this claim by computing the S3 free energy of both the
seed and TsT deformed solution and comparing it with the leading order field theory answer.

We are interested in deformations of the AdS4 solution above that describe the exactly
marginal couplings parameterizing the conformal manifold discussed in Section 2. We do not
know how to construct the general supergravity solution dual to these marginal deformations
and will only study a particular one-dimensional real submanifold of the conformal manifold
described by the TsT transformation of Lunin-Maldacena [11]. To implement this series of
duality transformations on the supergravity solution above and preserve supersymmetry we
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need to choose spaces B that have at least U(1)2 invariance, i.e. we need B to be a toric
Kähler-Einstein 4-manifold with positive curvature. Combining results from [48] and [49] we
find that the only regular Kähler-Einstein bases satisfying these conditions are CP2, S2 × S2

and the third del Pezzo surface dP3.
For B = CP2 the dual 3d SCFT is the single node theory discussed in Section 2, see Figure 1.

In this case the associated Sasaki-Einstein manifold is Y 5 = S5 and the topology of the internal
space is S6. The full solution exhibits an SU(3)F ×U(1)R symmetry in agreement with the field
theory analysis. For convenience, we use the following toric metric on CP2,

ds2
CP2 =dα2

0 +
sin2α0

4

�

σ2
1 +σ

2
2 + cos2α0σ

2
3

�

,

σCP2 =
sin2α0

2
σ3 ,

(45)

where σCP2 is related to the one-form η as described below (43) and σi are the SU(2) left-
invariant one-forms

σ1 = cosα3 dα1 + sinα1 sinα3 dα2 ,

σ2 = sinα3 dα1 − sinα1 cosα3 dα2 ,

σ3 =dα3 + cosα1 dα2 .

(46)

For B = S2 × S2 the associated Sasaki-Einstein Manifold is Y 5 = T1,1 ' S2 × S3 and the
global symmetry is given by SU(2)2F×U(1)b×U(1)R. The two SU(2) symmetries are associated
to the two CP1 factors of T1,1 and the U(1)R is associated to the fiber. The baryonic symmetry
on the other hand is not associated to the isometries but to the presence of the nontrivial three-
cycle in the topology of T1,1. The dual field theory is given by a U(N)k×U(N)k Chern-Simons
gauge theory with four bifundamental chirals corresponding to the three-dimensional N = 2
Klebanov-Witten SCFT discussed in Section 2, see Figure 3. The explicit form of the metric
and one-form needed to specify the solution in (43) are given by

ds2
B→ ds2

S2×S2 =
1
6
(dα2

0 + dα2
1 + sin2α0dα2

2 + sin2α1dα2
3) ,

σ→ σS2×S2 =
1
3
(cosα0dα2 + cosα1dα3) .

(47)

We have explicitly checked that the equations of motion of the 10d supergravity theory are
indeed satisfied.

In order to find the supergravity description of the more general necklace quivers dis-
cussed in Section 2 we need to relax the regularity condition on the base B and allow for
orbifold singularities. In particular the Sasaki-Einstein space relevant for the description of
the the necklace quivers with adjoint chirals and b nodes is Y 5 = S5/Zb which is the same
as the L0b0 manifold. For the necklace quivers without adjoints and even b = 2a the rele-
vant Sasaki-Einstein spaces are the Laaa manifolds. For each of these seed solutions there is a
U(1)×U(1) isometry dual to the flavor symmetry in the dual SCFT on which we can apply the
TsT transformation.

3.2 TsT

After defining the seed solutions of interest, we are ready to construct a one-parameter family
of novel massive type IIA supergravity solutions obtained by applying the TsT transformation
in [11].

For both B = CP2 and B = S2 × S2 we choose coordinates in which the U(1) × U(1)
symmetry used in the TsT transformation is manifested in terms of the Killing vectors ∂α2

and
∂α3

. The TsT transformation consists of a T-duality transformation along α2 followed by a
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shift α3→ α3 + γα2 and then another T-duality transformation along α2. The real parameter
γ is the supergravity manifestation of an exactly marginal coupling in the dual SCFT. The
transformation rules of the NS-NS supergravity sector under this combined action are given
explicitly in Appendix C and follow the conventions of [50]. The TsT transformation of the
R-R sector is most succinctly written as the following action on the potentials

eCp = Cp + γ
�

Cp+2

�

[α2][α3]
, (48)

where the inner product operation •[α2][α3] acts on a p-form and yields a p− 2 form12

(ωp[α2][α3]
)M1...Mp−2

=ωM1...Mp−2α2α3
. (49)

The transformed NS-NS sector takes a more complicated form. The TsT transformed metric
and B-field for B = CP2 are given by

eds
2
10 =
p

2+ cos2α

3(g5m)1/3

�

ds2
AdS4
+

3 sin2α

1+ cos2α
ds2
fCP

2 +
3
2

dα2 +
9 sin2α

2(2+ cos2α)
Mη̃η̃∗

�

,

eB2 =M
�

B2 +
�

1−M−1
�

�

γ−1dα2 ∧ dα3 +
sin3α

(g5m)1/3(1+ cos2α)2
dα∧ dψ

�

−
3γM−1/2

16(g5m)2/3
sin4α sin4α0 sinα1

1+ cos2α
(sinα3Σ1 − cosα3Σ2)∧ dψ

�

,

e2Φ̃ =Me2Φ ,

(50)

where a star denotes complex conjugation. The function M is given by

M−1 = 1+ γ2 sin4α(7+ 5cos2α+ 2cos 2α0 sin2α)α sin4α0 sin2α1

64(g5m)2/3(1+ cos2α)2
, (51)

and the modified CP2 metric is

ds2
fCP

2 = dα2
0 +

sin2α0

4
(Σ2

1 +Σ
2
2 + cos2α0Σ

2
3) , (52)

where we have defined the modified one-forms

Σ1 = cosα3dα1 +M1/2 sinα3

�

sinα1dα2 −
γ

2g5/3m1/3

sin3α sin2α0 sinα1

(1+ cos2α)2
dα

�

,

Σ2 = sinα3dα1 −M1/2 cosα3

�

sinα1dα2 −
γ

2g5/3m1/3

sin3α sin2α0 sinα1

(1+ cos2α)2
dα

�

,

Σ3 =M1/2σ3 .

(53)

For convenience we have defined the following complex one-form

η̃= η+ iγ

p
2+ cos2α sin2α

4(g5m)1/3(1+ cos2α)
cosα0 sin2α0 sinα1 dψ . (54)

We emphasize that the metric and all fluxes are manifestly real.

12With a slight abuse of notation, we identify the coordinates α2,3 with their index values, i.e. xα2,3 = α2,3.
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When the base space is B = S2×S2 the NS-NS sector of the TsT transformed solution takes
a very similar form.

eds
2
10 =
p

2+ cos2α

3(g5m)1/3

�

ds2
AdS4
+

3 sin2α

1+ cos2α
ds2
ãS2×S2

+
3
2

dα2 +
9sin2α

2(2+ cos2α)
Mη̃η̃∗

�

,

eB2 =M
�

B2 +
�

1−M−1
�

�

γ−1dα2 ∧ dα3 +
sin3α

(g5m)1/3(1+ cos2α)2
dα∧ dψ

�

− γ
sin4α

12(g5m)2/3(1+ cos2α)
(cosα1Σ1 + cosα0Σ2)∧ dψ

�

,

e2Φ̃ =Me2Φ ,

(55)

where we have defined

M−1 = 1+γ2 sin4α((1+ cos2α)(cos2α1 sin2α0 + cos2α0 sin2α1) + (2+ cos2α) sin2α0 sin2α1

36(g5m)2/3(1+ cos2α)2
, (56)

and the modified S2 × S2 metric is given by

ds2
ãS2×S2

=
1
6

�

dα2
0 + dα2

1 +M(Σ2
1 +Σ

2
2)
�

, (57)

in terms of the modified one-forms

Σ1 = sinα0

�

dα2 −
γ cosα1

(g5m)1/3
sin3α

3(1+ cos2α)
dα

�

,

Σ2 = sinα1

�

dα3 +
γ cosα0

(g5m)1/3
sin3α

3(1+ cos2α)
dα

�

.

(58)

We have again made use of a complex one-form give by

η̃= η+ iγ

p
2+ cos2α sin2α

6(g5m)1/3(1+ cos2α)
sinα0 sinα1 dψ . (59)

Similarly, for other Kähler-Einstein bases preserving at least U(1)2 global symmetry, the
same rules can be applied to find a solution to the equations of motion. Indeed, we checked
that this works for the seed solutions associated with the L0b0 and Laaa Sasaki-Einstein mani-
folds dual to the necklace quivers discussed in Section 2. Due to the reduced isometry of the
internal space the deformed supergravity solution becomes more complicated and not partic-
ularly enlightening so we refrain from presenting it explicitly here.

3.3 Quantization and free energy

To ensure that the supergravity solutions discussed above can be promoted to proper string
theory backgrounds we should impose quantization of all fluxes threading non-trivial cycles.
All the spaces considered above contain a non-trivial six-cycle M6 hence we should impose a
flux quantization condition on F0 and F6. As explained in [51], there are various different
notions of charge – brane charges, Maxwell charges, Page charges – but only the Page charge
is conserved, localized and quantized. However, it is not invariant under large gauge trans-
formations. Therefore, when computing the Page charges, it is important that we consider
an appropriate gauge choice for the potentials. Using the potentials for the seed solutions as
defined in Appendix B we find the following quantization conditions:

F0 =m=
n

2πls
,

N =
1

(2πls)5

∫

M6

(F6 +H3 ∧ C3) =
1

(2πls)5

∫

M6

dC5 =
16

3(2π`s g)5
VY 5 ,

(60)
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where n, N ∈ Z and VY 5 is the volume of the five-dimensional Sasaki-Einstein manifold Y 5.
In the dual field theory, the integer n has the natural interpretation as the sum of all Chern-
Simons levels of the gauge groups in the quiver. The integer N , on the other hand, is mapped
to the rank of the gauge groups.

Next, we want to compute the gravitational S3 free energy which is inversely proportional
to the effective four-dimensional Newton’s constant Fsugra =

πL2

2G(4)N

[52]. In Einstein frame, the

ten-dimensional metric takes the form

ds2
Einstein = L2e2λ(ds2

4 + ds2
M6
) , (61)

where

L2 =
m1/12

3 · 25/8 g25/12
, e2λ =

Æ

cos(2α) + 3(cos2α+ 5)1/8 . (62)

Consequently, we find the four-dimensional Newton’s constant to be

L2

G(4)N

=
L8

G(10)
N

∫

M6

e8λvol6 =
25/235/2 L8

5π6`8
s

VY 5 , (63)

where 16πG(10)
N = (2π)7l8

s , the volume form of the internal space with metric ds2
M6

is given by

vol6 and VY 5 is the volume of Y 5. Using (60) and (63), we thus find that the free energy of
our seed solutions is given by

Fsugra =
πL2

2G(4)N

=
21/331/6π3

5V2/3
Y 5

n1/3N5/3 . (64)

The parameters n and N are integer quantized and therefore cannot vary smoothly as a
function of the real parameter γ that controls the family of TsT deformed solutions we con-
structed. Indeed, we can explicitly compute these parameters for the family of AdS4 solutions
discussed above and find

F0 = m=
n

2πls
, N =

1
(2πls)5

∫

S6

d eC5 . (65)

Since eC9 = C9, the Romans mass F0, n and therefore k remain unchanged. The potential
C5 on the other hand does change under the TsT transformation, but it does so by a glob-
ally well-defined differential form. Therefore, its integral cohomology class does not change
and N remains identical after the transformation. Since the TsT deformed solutions are still
of the form (61) we can proceed analogously to the undeformed case to compute the free
energy. As is clear from (50) and (55), in string frame, the warp factor in front of AdS4 is
unaltered by the TsT transformation, while the dilaton picks up a factor of M. The relation
between string and Einstein frame, ds2

string = eΦ/2ds2
Einstein, then implies the transformation

rule L8e8λ →M−1 L8e8λ. The volume form of the internal manifold however transforms as
vol6→Mvol6 and therefore it follows that the S3 free energy is unaffected by the TsT trans-
formation. This is in line with the expectation that γ corresponds to an exactly marginal
deformation in the field theory which leaves the S3 free energy invariant. This constitutes a
non-trivial consistency check of our supergravity analysis.

We conclude our discussion with some explicit calculations of the S3 free energy using
the holographic result above for the solutions dual to the quiver gauge theories discussed in
Section 2. As emphasized in [16], the calculation is streamlined by the expression in (64)
which makes it clear that the holographic S3 free energy depends only on the volume of the
associated Sasaki-Einstein manifold Y 5. Using the standard expression for the volume of S5,
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as well as the volumes of T1,1 and Laba computed in [53, 54], we have compiled the results
for the holographic free energy in Table 1. Comparing these results with the large N S3 free
energy of the various quiver theories presented in Section 2 we indeed find agreement for all
cases by identifying n = bk where b is the number of gauge nodes in the quiver. The only
case not covered by this analysis is the supergravity solution dual to the one node theory with
N = 3 supersymmetry. This example was studied holographically in some detail in [26]where
it was shown that indeed the supersymmetric localization and holographic results for the S3

free energy agree.
Finally we point out that the holographic manifestation of the RG flows discussed around

(33), for b = 2a ≥ 2, should be in terms of supergravity solutions which interpolate between
the AdS4 vacua associated with L02a0 in the UV and Laaa in the IR. Indeed from the results in
Table 1 one finds

FLaaa

FL02a0
=
�

27
32

�2/3

. (66)

This confirms the expectation from field theory and gives further evidence that indeed such
RG flows exists.

Table 1: The holographic S3 free energy for various choices of internal manifolds.

B Y 5 VY 5 Fsugra

CP2 S5 π3 21/331/6

5 πn1/3N5/3

S2 × S2 T1,1 16π3

27
313/6

5·27/3πn1/3N5/3

L0b0 π3

b
21/331/6 b2/3

5 πn1/3N5/3

L
b
2

b
2

b
2 32π3

27b
313/6 b2/3

5·23 πn1/3N5/3

4 Discussion

In this note we studied some examples of 3d N = 2 Chern-Simons-matter theories associated
to 4d N = 1 parent quiver gauge theories. These theories are constructed by interpreting
the 4d quiver representation and superpotential in a 3d context and assigning equal Chern-
Simons levels k to all gauge nodes. Our focus was on exploring the space of exactly marginal
deformations of these theories and their dual holographic manifestation. In particular, we
constructed novel one-parameter families of massive type IIA AdS4 supergravity backgrounds
dual to a one-dimensional submanifold of the conformal manifold of these 3d N = 2 SCFTs.

Notably, the one-parameter families of supergravity solutions we found depend on one
real parameter whereas the marginal couplings in the 3d SCFTs that preserve U(1) × U(1)
flavor symmetry are complex. Using only the TsT transformation in supergravity we cannot
generate such a complex parameter. One can try to introduce a complex parameter in the
supergravity construction by considering a TsγSσT-transformation where the Sσ denotes an
S-duality transformation in the intermediate type IIB solution. When performing an S-duality
transformation, a priori, σ ∈ SL(2,R) has three parameters. Defining the complex axion-
dilaton as τ = C0 + ie−φ , a general S-duality acts on τ and the B2, C2 doublet as follows,

τ→
aτ+ b

cτ+ d
, with ad− bc= 1 , (67)

and
�

C2
B2

�

→
�

a b

c d

��

C2
B2

�

. (68)
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This transformation will generate a larger family of AdS4 solutions in IIA supergravity when ap-
plied to a given seed solution. However to ensure that these backgrounds are dual to the com-
plex marginal deformations of interest the quantized fluxes n and N need to be the same as the
ones for the original seed solution. We have shown above that this condition is obeyed by the
TsT transformation. However, for the more general TsγSσT transformation not allσ ∈ SL(2,R)
are compatible with this condition. In order for the Romans mass in (60) to remain the same
σ has to be of the form

σ =

�

±1 b

0 ±1

�

, (69)

i.e. only S-duality transformations of the form τ→ τ+ b, b ∈ R are allowed. This leaves us
with a transformation that depends on the 2 real parameters γ and b. Under this combined
TsγSbT transformation the RR potentials of the supergravity solution are modified with respect
to the pure TsT transformation but all gauge invariant quantities remain unchanged. It is
therefore unclear to us whether the parameter b should really be viewed as generating a new
distinct supergravity solution. As discussed in Section 2.3 a similar puzzle exists for the ABJM
SCFTs and the TsT transformation of the AdS4 × S7 solution of 11d supergravity, namely the
supergravity family of solutions with U(1)4 isometry found in [11] depend on a real parameter
whereas the exactly marginal coupling of the ABJM theory compatible with this symmetry is
complex. It will be most interesting to find a resolution to this apparent puzzle.

Our work should be viewed only as a starting point in the exploration of the conformal
manifolds of this class of 3d N = 2 quiver gauge theories and their dual supergravity descrip-
tion. There are a number of interesting open questions and possible generalizations and we
list some of them below

• The AdS4 supergravity solutions we constructed in Section 3 should fall into the general
classification of supersymmetric AdS4 vacua of massive IIA supergravity presented in
[55]. It will be very interesting to flesh this out in more detail and perhaps extract
important lessons that will allow for the construction of more general classes of solutions.
It will also be interesting to understand how our supergravity construction fits into the
broader effort to understand the exceptional/generalized geometry that underlies the
properties of supergravity solutions dual to SCFT marginal deformations, see [12, 56].
In particular, it is clear from the SCFT discussions in Section 2 that there should be more
general families of supergravity solutions dual to the marginal deformations that break
the U(1)×U(1) flavor symmetry preserved by the TsT transformation. Constructing these
solutions will be challenging by direct methods and perhaps the techniques discussed
in [12, 56] may shed some light on this problem. We note that it should be possible to
calculate the expectation values of supersymmetric Wilson lines in the 3d SCFTs using
the supergravity solutions we construct. In [16] this quantity was computed at large
N for the class of seed supergravity solutions we presented above. Supersymmetric
localization suggests that this Wilson line vev should not depend on the exactly marginal
coupling and it will be interesting to confirm this by an explicit probe string calculation
in the family of new AdS4 solutions constructed in Section 3. Finally, it is desirable to
develop tools to compute the KK spectrum of the supergravity solutions we constructed
since this will elucidate how the spectrum of operator dimensions in the dual SCFT
depends on the exactly marginal coupling corresponding to the deformation parameter
γ. The recent results in [22] may serve as a starting point for such analysis.
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• While we have computed the dimensions of the conformal manifolds for the class of
theories we discussed in Section 2 we have not discussed most of the interesting ques-
tions pertaining to their physics. It will be very interesting to understand what is the
global structure of these conformal manifolds. Presumably these conformal manifolds
are intrinsically strongly coupled and are therefore compact, see [5] for a general recent
discussion. It is important to elucidate the connection between the conformal manifolds
of the 3d N = 2 SCFTs and that of the parent 4d N = 1 quiver gauge theory. It is also
important to develop tools to calculate physical observables, like the spectrum of opera-
tors, OPE coefficients, and the Zamolodchikov metric, along these conformal manifolds.
It will also be nice to calculate explicitly the recently discussed nilpotency index of the
conformal manifold, see [57]. The one node quiver with three chiral adjoints discussed
in Section 2.1 has a superpotential similar to that of the 3d N = 2 XYZ model and its
exactly marginal deformation. This conformal manifold has been studied in some de-
tail in [58] and it will be interesting to understand if there is any relation between the
physics of these two models.

• While our main focus here was on exactly marginal deformations, in Section 2.2 we also
briefly discussed the existence of what appears to be universal RG flows in this class of
3d N = 2 SCFTs. It is important to understand the physics of these RG flows and how
the universal relation between the UV and IR S3 free energy is modified for finite N .
There should also be supergravity domain wall solutions that interpolate between the
AdS4 vacua dual to the UV and IR SCFTs and it will be nice to construct them explicitly.

• Finally, we note that there are more general classes of 4d N = 1 quiver gauge theories
which can be used as “parents” for 3d N = 2 SCFTs by following the same pattern as
in Section 2. The conformal manifolds for some of these 4d N = 1 SCFTs was studied
in [28] and it should be possible to generalize this analysis to 3d both in the SCFT and
in the holographically dual AdS4 solutions.

We hope that our work will stimulate further explorations of these interesting questions.
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A Supergravity conventions

The solutions constructed in this note solve the equations of motion of ten-dimensional massive
type IIA supergravity [59]. The bosonic field content consists of a metric GMN , a dilaton Φ,
a the three-form H3 and n-form field strengths Fn, with n = 0,2, 4. The Romans mass, F0,
does not have any propagating degrees of freedom. The fermionic field content consists of a
doublet of gravitinos, ψM , and a doublet of dilatinos, λ. The components of these doublets
are of opposite chirality.

In this note we use the “democratic formalism” in which the number of R-R fields is doubled
such that n runs over 0, 2,4, 6,8, 10 [60]. This redundancy is removed by introducing duality
conditions for all R-R fields

Fn = (−1)
(n−1)(n−2)

2 ?10 F10−n . (70)

These duality conditions should be imposed by hand after deriving the equations of motion
from the action. The bosonic part of the action written in string frame is given by

Sbos =
1

2κ2
10

∫

?10

�

e−2Φ
�

R+ 4|dΦ|2 −
1
2
|H3|2

�

−
1
4

∑

n

|Fn|2
�

, (71)

where the ten-dimensional Newton constant κ10 is related to the string length through 4πκ10 =
(2πls)8 and we have defined

?10|A|2 ≡ ?10
1
n!

AM1...Mn
AM1...Mn = ?10A∧ A . (72)

This action should be completed by its fermionic counterpart, which we do not write explicitly.
The Bianchi identities and equations of motion derived from the action (71) are

dH3 = 0 , and d(e−2Φ ?10 H3) +
1
2

∑

n

?10Fn ∧ Fn−2 = 0 , (73)

for the NS-NS field H3 and
dFn −H3 ∧ Fn−2 = 0 , (74)

for the R-R form fields. The dilaton and the Einstein equations of motion can be written as

0=∇2Φ− |dΦ|2 +
1
4

R−
1
8
|H3|2 ,

0= RMN + 2∇M∇NΦ−
1
2
|H3|2MN −

1
4

e2Φ
∑

n

|Fn|2MN ,
(75)

where we have defined

|An|2MN ≡
1

(n− 1)!
(An)M

M2···Mn(An)N M2···Mn
. (76)

B Potentials in the democratic formalism

The type IIA fluxes we use are defined as follows

Fp = dCp−1 −H3 ∧ Cp−3 + F0 eB2
�

�

p , (77)
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where eB2
�

�

p denotes the p-form term in the expansion of the exponential. In these conventions
the potentials for the field strengths in equation (43) are given explicitly by

B2 =
�

1
g5m

�1/3

d
� cosα

1+ cos2α

�

∧η ,

C1 =−
�

m2

g5

�1/3
cosα sin2α

2(1+ cos2α)(2+ cos2α)
η ,

C3 =
�

m
g10

�1/3
�

ω3p
3
+
(2+ 3 cos2α) sin4α

4(1+ cos2α)2
η∧ J

�

,

C5 =
cosα

g5

�

2+ cos2α

6
p

3
η∧ volAdS4

−
2

p
3(1+ cos2α)

ω3 ∧ J

−
39+ 59 cos2α+ 21cos4α+ 9cos6α

12(1+ cos2α)3
J ∧ J ∧η

�

,

C7 =
�

1
g20m

�
1
3
�

2cos2α
p

3(1+ cos2α)2
ω3 ∧ J ∧ J −

2+ 5cos2α− cos4α

12
p

3(1+ cos2α)
volAdS4

∧η∧ J

�

,

C9 =
�

1
g25m2

�1/3

cosα
40+ 50 cos2α− 9cos4α+ 2cos6α+ cos8α

60
p

3(1+ cos2α)2
volAdS4

∧ J ∧ J ∧η .

(78)

Here we introduced the three-form ω3 whose exterior derivative gives the volume form on
AdS4, dω3 = volAdS4

.

C TsT transformation

In this appendix we present an algorithmic procedure to obtain the TsT transformation of a type
IIA(B) supergravity background with metric GMN , dilaton Φ, anti-symmetric tensor field BMN
with three-form field strength H3, and modified R-R field strengths Fp = dCp−1 − dB ∧ Cp−3
with p odd for type IIB and Fp = dCp−1 − dB ∧ Cp−3 + m eB with p even for type IIA. This
appendix follows closely the exposition in [50].

Let us start by defining the composite object eMN = GMN + BMN . Next, assume that the
coordinates α2,3 parameterize the two commuting U(1) isometries of the solution. The TsT
transformation along α2 and α3 now consists of three steps. First, a T-duality along α2. The
type IIA(B) solution now becomes a type IIB(A) solution with dual coordinates {α̃2, α̃3}. Next,
shift the α̃3 coordinate in the T-dual solution as

α̃3→ α̃3 + γα̃2 , (79)

with γ an arbitrary real parameter. Finally, perform another T-duality along α̃2, going back to
type IIA(B). For simplicity, we call the final coordinates again {α2,α3}. Starting from a solution
to the equations of motion, this transformation is guaranteed to result in a new supergravity
solution. Furthermore, it will not generate new singularities.

Carefully applying the Buscher rules [61,62], the NS-NS fields eGMN , eBMN and Φ̃ of the TsT
transformed solution can be obtained from the NS-NS fields GMN , BMN and Φ of the original
solution from the following rule:

ẽMN =M







eMN − γ
�

det

�

eα2α3
eα2N

eMα3
eMN

�

− det

�

eα3α2
eα3N

eMα2
eMN

��

+ γ2 det





eα2α2
eα2α3

eα2N
eα3α2

eα3α3
eα3N

eMα2
eMα3

eMN











,

e2Φ̃ =Me2Φ ,
(80)
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where ẽMN = eGMN + eBMN and M is defined as

M=

�

1− γ(eα2α3
− eα3α2

) + γ2 det

�

eα2α2
eα2α3

eα3α2
eα3α3

��−1

. (81)

The transformed R-R potentials eCp can be computed from the original ones as

eCp = Cp + γ [Cp+2][α2][α3] , (82)

where the inner product operation •[α2][α3] acts on a p-form and returns a p− 2 form

(ωp[α2][α3]
)M1...Mp−2

=ωM1...Mp−2α2α3
. (83)

One can check explicitly that this transformation is indeed a solution generating procedure
such that it transforms one set of fields solving the equations of motion into a new one.
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