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Abstract

We use the recently developed Kinetic Field Theory (KFT) for cosmic structure forma-
tion to show how non-linear power spectra for cosmic density fluctuations can be cal-
culated in a mean-field approximation to the particle interactions. Our main result is
a simple, closed and analytic, approximate expression for this power spectrum. This
expression has two parameters characterising non-linear structure growth which can be
calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum
agrees with results obtained from numerical simulations to within typically ® 10 % up
to wave numbers k ® 10 h Mpc−1 at redshift z = 0. Adjusting the two parameters to opti-
mise agreement with numerical simulations, the relative difference to numerical results
shrinks to typically ® 5 %. As part of the derivation of our mean-field approximation,
we show that the effective interaction potential between dark-matter particles relative
to Zel’dovich trajectories is sourced by non-linear cosmic density fluctuations only, and
is approximately of Yukawa rather than Newtonian shape.
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1 Introduction

Kinetic Field Theory (KFT) describes ensembles of classical particles in and out of equilibrium
[1–3]. It is based upon the Martin-Siggia-Rose approach to classical statistical systems [4]
and has been adapted to cosmological initial conditions and to the expanding cosmological
background in previous papers [5,6]. Its central mathematical object is a generating functional
encapsulating the statistical properties of the initial state, the Green’s function or propagator of
the equations of motion, and the particle-particle interactions. These interactions are described
by an exponential operator acting on the free generating functional. In the conventional
approach to statistical field theories, this operator is expanded into a Taylor series, leading to a
systematic approach to perturbation theory in terms of Feynman diagrams.

Unlike other approaches to kinetic theory, KFT is not based on a phase-space density
function subject to the Liouville or Boltzmann equations. It is a kinetic theory in the sense
that it describes the joint evolution of a particle ensemble while intentionally integrating
over microscopic information. KFT defines the initial state of a particle ensemble by covering
phase-space with a probability distribution. It samples this distribution with discrete particles
and follows their Hamiltonian phase-space trajectories in time. Each trajectory thus carries
an initial occupation probability through phase space. The set of all particle trajectories is the
field that KFT operates on. Statistical properties of the particle ensemble can be derived from
the evolved bundle of trajectories. A discussion of how KFT relates to the BBKS hierarchy of
kinetic theory can be found in [7].

In this paper, we show that the interaction operator can instead be approximated as an
averaged interaction term using a mean-field approach. This can be done in such a way
that its action on the generating functional can be separated from the integration over the
initial phase-space distribution. This results in a numerical, time and scale-dependent factor
multiplying the free generating functional. Averaging over a pair of density factors then leads
to an approximate, but closed and analytic expression for the non-linear power spectrum of
cosmic density fluctuations.

The mean-field approximation introduces two parameters, the non-linear scale and an

2

https://scipost.org
https://scipost.org/SciPostPhys.10.6.153


SciPost Phys. 10, 153 (2021)

effective viscosity reducing the velocity variance after shell-crossing. Both of them can be
calibrated from within KFT itself. With these parameters self-calibrated in this way, our mean-
field approximation to the non-linear power spectrum agrees with results from numerical
simulations with a relative deviation of typically ® 10% up to k ≈ 10 h Mpc−1 at redshift z = 0.
Alternatively, these parameters can be optimised to further improve the agreement between the
non-linear power spectra from our mean-field approximation and from numerical simulations.
Doing so, the relative deviation to numerical results for ΛCDM can be lowered to ® 5 % in the
same range of wave numbers.

In Sect. 2, we discuss the trajectories of Hamiltonian particles in the expanding cosmic
space-time. Using results derived in detail in Appendix A, we show that the conventional
Zel’dovich approximation for the inertial motion of particles implies that the remaining particle-
interaction potential is sourced only by the non-linearly evolved density contrast, which leads
to an approximately Yukawa-shaped cut-off of the Newtonian gravitational potential. In Sect. 3,
we briefly review the calculation of power spectra from kinetic field theory. In Sect. 4, we
develop our mean-field approach to the particle-particle interaction term, and we summarise
and discuss our results in Sect. 5.

We use the convention

F [ f ] =: f̃
�

~k
�

=

∫

q
f (~q )e−i~k·~q , F−1

�

f̃
�

= f (~q ) =

∫

k
f̃
�

~k
�

ei~k·~q , (1)

for the Fourier transform F and its inverse F−1, with the short-hand notations
∫

q
:=

∫

d3q ,

∫

k
:=

∫

d3k
(2π)3

. (2)

Where needed, we adopt a (spatially flat) ΛCDM cosmological model with matter-density
parameter Ωm0 = 0.3.

2 Particle dynamics

2.1 Particle trajectories

On the expanding spatial background of a Friedmann-Lemaître model universe with scale
factor a, we introduce comoving coordinates ~q and use the linear growth factor D+ as the time
coordinate t. We set initial conditions at some time ti in the distant past when matter just
began dominating the dynamics of the cosmic expansion.

For later convenience, we set both the scale factor a and the growth factor D+ to unity at
the initial time such that t = D+ − 1 and ti = 0 initially. In these coordinates, the Hamiltonian
of point particles is

H =
~p 2

2m
+mϕ , (3)

with an effective, dimension-less, time-dependent particle mass m given by

m= a3D′+(a)E(a) , E(a) :=
H(a)

Hi
, (4)

in terms of the derivative D′+(a) = dD+(a)/da of the linear growth factor and the expansion
function E(a), defined as the Hubble function H(a) divided by the Hubble constant Hi at the
initial time. The particle mass m used to be called g in our earlier papers on KFT, but we
change the notation here to acquire a more intuitive meaning. Like a and D+, the expansion
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function E is supposed to be normalised to unity at the initial time such that m(ti) = 1. In an
Einstein-de Sitter universe, D+ = a and E = a−3/2, thus m = a3/2 = (1+ t)3/2. The potential ϕ
in (3) satisfies the Poisson equation

~∇2ϕ = Aϕδ with Aϕ :=
3
2
Ω(i)m

a
m2

, (5)

sourced by the density contrast δ relative to the background density [8]. The Laplacian in (5)
acts with respect to the comoving coordinates ~q.

Combining the phase-space coordinates of an individual particle j into a vector ~x j := (~q j , ~̇q j)>,

the solution of the Hamiltonian equation of motion beginning at ~x (i)j = (~q
(i)
j , ~p (i)j ) at ti can be

written in the form

~x j(t) = G(t, 0)~x (i)j +

∫ t

0

dt ′ G(t, t ′)

�

0
~f j(t ′)

�

, (6)

with the matrix-valued propagator G(t, t ′) and the effective force ~f j(t ′) on particle j, introduced
and derived in Appendix A.

Instead of individual particles, we consider canonical ensembles of N � 1 classical particles
j at positions ~q j with velocities ~̇q j and introduce the tensor x = ~x j⊗~e j to bundle the phase-space
coordinates of the entire ensemble, where ~e j is the j-th Cartesian unit vector in N dimensions.
This allows us to write the entire bundle of all particle trajectories in the compact form

x (t) = G(t, 0)x (i) +

∫ t

0

dt ′G(t, t ′)

�

0
f (t ′)

�

=: x 0(t) + y(t) , (7)

with G(t, t ′) := G(t, t ′)⊗1N and f (t ′) := ~f j(t ′)⊗~e j . The inertial trajectories are x 0 = G(t, 0)x (i),
and y are the deviations therefrom caused by the effective force f .

2.2 Effective gravitational potential

The potential of the effective force acting relative to Zel’dovich trajectories is given by Eq. (73)
of Appendix A,

φ = ϕ + AϕD+ψ , (8)

where ψ is the potential of the curl-free initial velocity field. With the Poisson equations (5) for
ϕ and ~∇2ψ= −δ(i) for the initial velocity potential ψ, the Poisson equation for φ is

~∇2φ = Aϕ
�

δ− D+δ
(i)
�

= Aϕ
�

δ−δ(lin)
�

, (9)

where δ(lin) = D+δ
(i) is the linearly growing density contrast. The potential φ describing

the gravitational interaction relative to the inertial particle trajectories x 0(t) is thus sourced
exclusively by the non-linearly evolved contribution to the density fluctuations. The effective
gravitational force mediated by φ is therefore confined to small scales.

This has important consequences for kinetic theory. If we describe inertial particle orbits
with the Zel’dovich propagator, their mutual interaction must be modified in such a way that
only the non-linear density contrast contributes to the force between them. This reflects
the fact that the Zel’dovich propagator already takes the large-scale part of the gravitational
interaction between the particles into account. Since the Zel’dovich trajectories reflect effective
inertial motion with respect to the time coordinate t = D+ − 1, and since the gravitational
force caused by the linear density contrast relative to these trajectories needs to vanish, only
the deviation of the density contrast from its linear value can be the source of the effective
gravitational interaction. On large scales, where the density contrast keeps growing linearly
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for all cosmologically relevant times, and where the Zel’dovich approximation describes the
particle motion accurately, the effective force must vanish. On small scales, where non-linear
structures build up, the effective gravitational interaction must set in as non-linear density
contrasts develop.

2.3 Shape of the effective potential

The effective gravitational potential between particles following Zel’dovich trajectories must
thus deviate from the Newtonian form in such a scale-dependent way that the force tends to
zero for k� k0 and approaches the Newtonian form for k� k0, with the wave number k0 set
by the time-dependent boundary between linear and non-linear scales.

For quantifying how the potential needs to be modified, we search for a particle-particle
interaction potential v such that the collective potential φ = nδ∗v of the particle ensemble with
the mean number density n, i.e. the convolution of the particle number-density fluctuation nδ
with the potential v, satisfies the Poisson equation (9). Using the Fourier convolution theorem,
the Fourier transform of this Poisson equation reads

δ̃ ṽ = −
Aϕ
nk2

�

δ̃− δ̃(lin)
�

. (10)

Multiplying this equation once with δ̃, once with δ̃(lin), and taking the ensemble average gives

Pδ ṽ ≈ −
Aϕ
nk2

�

Pδ −



δ̃δ̃(lin)
��

and




δ̃δ̃(lin)
�

ṽ ≈ −
Aϕ
nk2

�




δ̃δ̃(lin)
�

− P(lin)
δ

�

, (11)

introducing the power spectrum Pδ of the density contrast. Going from (10) to (11), we have
implicitly assumed that the form of ṽ is independent of the density contrast, which should be a
good approximation, but does not generally need to be the case. Eliminating 〈δ̃δ̃(lin)〉 between
these equations leads to a quadratic equation for ṽ whose only meaningful solution is

ṽ = −
Aϕ
nk2

fv(k) with fv(k) = 1−

 

P(lin)
δ

Pδ

!1/2

. (12)

The function fv(k) turns to zero for wave numbers k small enough to fall into the linear regime,
and to unity for k large enough to be deeply in the non-linear regime. Power spectra obtained
from numerical simulations [9–11] suggest that the function

fv(k) =
k2

k2
0 + k2

(13)

represents the transition from large to small scales reasonably well, with k0 quantifying the
wave number above which non-linear evolution begins to dominate (see Fig. 1). With (12),
this results in the effective potential

ṽ = −
Aϕ

n
�

k2
0 + k2

� , (14)

which is of Yukawa rather than Newtonian form.
The essential result of this discussion is thus that the effective interaction between particles

following Zel’dovich trajectories is mediated by an approximately Yukawa-like rather than a
Newtonian potential. It is important to emphasize that expression (12) for the particle-particle
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Figure 1: Left: The ratio of power spectra 1− (P(lin)
δ
/Pδ)1/2, scaled to unity at k� 1,

compared to the fitting function fv(k) from Eq. (13). The linear power spectrum was
taken from [12], the non-linear from [10]. Right: The Yukawa scale k0 as a function
of the redshift z.

interaction potential v is statistical in the sense that this potential describes the interaction
between particles in an ensemble average. Thus, v(q) is cannot be taken as the interaction
potential between two individual particles separated by q, but must be understood as the
ensemble-averaged potential between such particles. The derivation leading to (12) shows that
v depends on the spatial correlations within the particle ensemble.

The Yukawa scale k0 separates non-linear from linear scales. On larger scales, the density
contrast evolves linearly. The gravitational interaction on such scales is already captured by
the Zel’dovich approximation and thus needs to be removed from the interaction potential. On
smaller scales, trajectories deviate from the inertial Zel’dovich trajectories under the influence
of that part of the gravitational interaction neglected by the Zel’dovich approximation. It is
important for our purposes to note that the scale k0 can be determined from KFT itself in a
way to be described in Sect. 4.3. The right panel in Fig. 1 shows the time-dependent Yukawa
scale k0 determined in this way.

Concluding this section, we wish to point out that the shape (13) of the transition from the
linear to the non-linear shape of the power spectrum is a convenient fitting function that may
be improved. Thus, the Yukawa form of the interaction potential is a convenient approximation,
but not a fundamental result. The time dependence of the Yukawa scale k0 is sufficiently weak
for us to neglect it for simplicity in our mean-field approach.

3 Power spectra from KFT

We briefly review in this section the KFT approach to cosmic structure formation. For further
detail, we refer the reader to [5], [13], and the review [6].

3.1 Generating functional

The central mathematical object of KFT is its generating functional Z . Like a partition sum
in thermodynamics, it is a phase-space integral over the probability P(x ) for the phase-space
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positions x to be occupied. Splitting P(x ) into a probability P(x (i)) for an initial state times a
transition probability P(x |x (i)) from the initial to the final state, further introducing a generator
field

J :=

�

~Jqi
(t)

~Jpi
(t)

�

⊗ ~ei (15)

to allow extracting moments of particle positions and momenta via functional derivatives with
respect to J later, and introducing the particle trajectories x (t) from (7), leads to the generating
functional

Z[J] =

∫

dΓ eiJ ·x (16)

derived in [13], with the dot denoting the time-integrated scalar product

A · B =
∫

dt



~Ai , ~Bi

�

. (17)

According to (7), the phase in (16) can be split into a free and an interacting part,

Z[J] =

∫

dΓ eiJ ·(x 0+y) . (18)

Since the contribution SI[J] := iJ · y to the phase depends on all relative positions of the
correlated particle ensemble, it seems impossible to evaluate the generating functional Z[J]
analytically. A systematic approach to perturbation theory may begin with converting the
interaction term into an operator acting on the free generating functional Z0 defined in (20)
below, followed by Taylor-expanding this operator. We have previously shown that even the
first order of this perturbative approach leads to non-linear density-fluctuation power spectra
close to results from numerical simulations [5], and we will further analyse KFT perturbation
theory in future papers. Here, we follow a different path.

The essential purpose of this paper is to find a suitable average for the interacting part,

SI[J]→ 〈SI[J]〉 , (19)

which would allow us to write the generating functional (18) as

Z[J]≈ e〈SI[J]〉
∫

dΓ eiJ ·x 0 =: e〈SI[J]〉Z0[J] . (20)

Before we proceed to construct and analyse such an average, we briefly review how power
spectra are derived in KFT from the generating functional Z[J].

3.2 Density cumulants

The particle number density is a sum of delta distributions centered on the particle positions at
time t or, in a Fourier representation,

ρ̃
�

~k, t
�

=
N
∑

i=1

e−i~k·~qi(t) =:
N
∑

i=1

ρ̃i

�

~k, t
�

. (21)

Replacing the particle position ~qi in each one-particle density contribution ρ̃i(~k, t) by a func-
tional derivative with respect to ~Jqi

(t), we obtain the one- and N -particle density operators

ρ̂i

�

~k, t
�

= exp

�

−i~k ·
δ

iδ~Jqi
(t)

�

, ρ̂
�

~k, t
�

=
N
∑

i=1

ρ̂i

�

~k, t
�

. (22)
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Since the density operators are exponentials of derivatives with respect to components of J ,
they generate translations of the generating functional, Z[J]→ Z[J + L].

Density cumulants of order r are obtained by applying r density operators to the generating
functional. For synchronous power spectra, i.e. cumulants of order r = 2 with t1 = t2 =: t, we
have

Gρρ(1,2) =
N
∑

i 6= j=1

ρ̂i(1)ρ̂ j(2) Z[J] =
N
∑

i 6= j=1

Z[J + L] , (23)

with the corresponding shift

L= −δD(t
′ − t)

�

1
0

�

�

~k1 ⊗ ~ei + ~k2 ⊗ ~e j

�

. (24)

The short-hand notation (n) for the arguments in (23) indicates the Fourier-space position
(~kn, tn) at time tn. The generator field J can be set to zero once all density operators have acted
on the generating functional. Since the particles of the ensemble are indistinguishable, each
term under the sum in (23) gives the same result as for any particle pair arbitrarily labelled as
i, j = 1,2, and the cumulant becomes

Gρρ(1, 2) = N(N − 1) Z[L]≈ N(N − 1)e〈SI[L]〉Z0[L] . (25)

With initial conditions appropriate for the early universe, the free generating functional
Z0[J] after applying two density operators ρ̂1(1) and ρ̂2(2) can be written as

Z0[L] = (2π)
3δD

�

~k1 + ~k2

�

V−2e−QD P(k1) =: (2π)3δD

�

~k1 + ~k2

�

V−2P̄(k1) , (26)

with the damping term

QD :=
k2

3
(σ1 t)2 (27)

and the freely evolved, non-linear power spectrum

P(k1) :=

∫

q

�

e−t2k2
1a‖(q,µ) − 1

�

ei~k1·~q ; (28)

see [13] for the derivation. The function a‖ appearing here is the auto-correlation function of
momentum components parallel to the wave vector ~k1,

a‖ = µ
2ξ′′ψ(q) +

�

1−µ2
�
ξ′
ψ
(q)

q
, (29)

where µ is the direction cosine of ~q relative to ~k1. The function

ξψ(q) =
1

2π2

∫ ∞

0

dk
k2

P(i)
δ
(k) j0(kq) , (30)

containing the spherical Bessel function j0 is the auto-correlation function of the initial velocity
potential ψ, determined by the initial density-fluctuation power spectrum P(i)

δ
(k). The initial

velocity field is supposed to be the gradient of a velocity potential because any initial curl
would decay quickly due to cosmic expansion and angular-momentum conservation. We further
define the moments

σ2
n :=

∫

k
k2(n−2)P(i)

δ
(k) =

1
2π2

∫ ∞

0

dk k2n−2P(i)
δ
(k) , (31)
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of the density-fluctuation power spectrum and note that

lim
q→0

a‖ = −
σ2

1

3
. (32)

For small arguments of the first exponential in (28), P turns into the linearly evolved power
spectrum,

P(k)→ (1+ t)2P(i)
δ
(k) = P(lin)

δ
(k) , (33)

as shown in [13].

3.3 Damping and interaction

The damping term QD in (26) requires a careful discussion. Its definition (27) in conjunction
with the velocity dispersion σ2

1 from (31) shows that it arises because particles stream freely
with an average velocity σ1 in the Zel’dovich approximation. We should emphasise that this
velocity dispersion is not of thermal origin, but arises from drawing initial particle velocities
from a velocity potential which is a homogeneous and isotropic Gaussian random field. Where
this velocity field converges, structures form, but these structures are smoothed in a system of
free particles once caustics have been formed and converging particle streams have crossed.

In (26), it appears as if the damping term would exponentially reduce the power. However,
this is not the case. Rather, numerical integration and asymptotic analysis alike show that the
freely-evolved power spectrum P̄ combined with the damping term follows the linearly evolved
power spectrum P(lin)

δ
on large scales, drops below it on non-linear scales, but turns towards an

asymptotic behaviour∝ k−3 as k increases further [13].
Combining (25) and (26) to

Gρρ(1,2)≈ n2e〈SI[L]〉−QD P (k1) (34)

shows that the gravitational interaction between the particles counteracts this characteristic
reduction of the power. In fact, a major part of the interaction term is required for keeping
structures in place once they have formed. Any surplus, i.e. any positive difference between
〈SI〉 and QD, leads to non-linear structure growth.

4 Mean-field approach to non-linear power spectra

Based on these arguments, we now pursue the following approach. We wish to represent the
particle interactions by a suitably averaged interaction term 〈SI[L]〉. For simplicity, we further
wish to approximate the damped, freely evolving power spectrum P̄ by the linearly evolving
power spectrum P(lin)

δ
. As just discussed, this implies that we are ignoring the reduction of

power by the velocity variance after shell crossing. Since the interaction term counter-acts the
damping, we then also need to reduce the interaction term on non-linear scales. We will do so
by using Burgers’ approximation. The result will be the simple expression

P(nl)
δ
(k)≈ e〈SI〉(k)P(lin)

δ
(k) , (35)

for the non-linear power spectrum. Our main result will be a specific and simple equation for
〈SI〉(k) reproducing numerically derived, non-linear power spectra remarkably well.
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4.1 Averaged particle-particle force

With y from (7) and L from (24), we have

SI[L] = iL · y = −i

∫ t

0

dt ′ (t − t ′)
�

~k1 · ~f1(t ′) + ~k2 · ~f2(t ′)
�

, (36)

where ~fi(t) is the effective force on an arbitrary particle i. Note again that the time t here is
not the cosmological time, but defined by the linear growth factor D+. In terms of an effective
particle-particle interaction force ~fp and the particle number density ρ, we can write the force
~fi on particle i as

~fi =

∫

q1

∫

q2

ρi (~q1) ~fp (~q1 − ~q2)ρ (~q2) . (37)

We now average this force term over particle ensembles drawn from a statistically homoge-
neous, correlated random density field. Since we wish to retain the dependence of the resulting,
averaged, effective force term 〈 ~fi 〉 on the wave vector ~k, we project out the contribution by the
mode ~k of the density field, writing




~fi

� �

~k
�

=

∫

q1

∫

q2

~fp (~q1 − ~q2) 〈ρi (~q1)ρ (~q2)〉e−i~k·(~q1−~q2) . (38)

The average over the product of densities introduces the correlation function ξ(|~q1 − ~q2|) of
the density field,

〈ρi (~q1)ρ (~q2)〉=
1
N
〈ρ (~q1)ρ (~q2)〉=

n2

N
[1+ ξ (|~q1 − ~q2|)] . (39)

We keep only the connected part of the correlation expressed by ξ alone in (39) because the
disconnected part cannot contribute in a homogeneous random field. Owing to homogeneity,
the integrand in (38) depends only on the difference ~q1 − ~q2 =: ~q of position vectors. We can
thus integrate over ~q1, resulting in a factor V , and obtain




~fi

� �

~k
�

= n

∫

q

~fp (~q )ξ(q)e
−i~k·~q . (40)

Since the remaining expression is the Fourier transform of a product, the scale-dependent, mean
force term is the convolution of the particle-particle force f̃p in Fourier space and the power
spectrum Pδ of the particle distribution as the Fourier transform of the correlation function,




~fi

� �

~k
�

= n
�

f̃p ∗ Pδ
� �

~k
�

. (41)

Combining (41) with (36) and using Newton’s third axiom in the form 〈 ~fi 〉(−~k ) = −〈 ~fi 〉(~k ),
we thus find the expression

〈SI〉
�

~k
�

= −2in~k ·
∫ t

0

dt ′
�

t − t ′
� �

f̃p ∗ Pδ
� �

~k
�

, (42)

for the averaged, scale-dependent, interaction term.
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4.2 Damping within Burgers’ approximation

We now need to specify the power spectrum Pδ to be inserted into (41) for evaluating the
average force term 〈 ~fi 〉. Following (38), evaluating the mean interaction term with the density
correlation function suggests replacing Pδ = P̄ . Applying the same linear approximation
leading from (34) to (35), we would then arrive at Pδ ≈ P(lin)

δ
. However, since the linear power

spectrum in (35) ignores damping and thus overestimates the power on non-linear scales,
we need to reduce the average force term on these scales appropriately. The amount of this
reduction can be effectively estimated by Burgers’ approximation [14–16].

Burgers’ approximation changes the inertial motion of particles in the Zel’dovich time
coordinate in a way motivated by the Navier-Stokes equation of hydrodynamics,

d~̇q
dt
= 0 →

d~̇q
dt
= ν ~∇2~̇q , (43)

where ν is a viscosity parameter with the dimension of a squared length. We should emphasize
that we are introducing Burgers’ instead of the Zel’dovich approximation here with the same
motivation as it has been used in cosmology before, beginning with [17], which has been to
suppress the re-expansion of cosmic structures in the Zel’dovich approximation; cf. [18] for an
early application to large-scale structures, and [19] for a review. The only purpose we pursue
here with Burgers’ approximation is to reduce the amount of damping in the KFT interaction
term. Since this damping comes out too strong in the Zel’dovich approximation, lowering it by
Burgers’ approximation seems appropriate.

Since Burgers’ approximation deviates from the Zel’dovich approximation on non-linear
scales, a natural choice for the length scale ν1/2 is the non-linear radius rnl defined by

σ2
rnl
=

∫

k
Pδ(k)W

2
R (k)

�

�

�

�

R=rnl

= 1 , (44)

evaluated with the linear power spectrum from [12] and a top-hat window function WR(k) at
the present cosmic time. We set ν= r2

nl = const here for simplicity, but note that ν could also
be generalised to become time-dependent.

Burgers’ equation can be solved by a Hopf-Cole transformation [20,21], which results in

~̇q = −2ν ~∇ ln U , (45)

where U is an exponential velocity potential given by the convolution

U =Np2νt ∗ exp
�

−
ψ

2ν

�

(46)

of the scaled, exponentiated initial velocity potential ψ with a normal distribution N of width
(2νt)1/2. To linear order in ψ, (45) implies the velocity dispersion

σ2
v(t) =

∫

k

Pδ(k)
k2

exp
�

−2k2νt
�

. (47)

This expression clearly shows the effect of Burgers’ approximation: small-scale modes with
k ¦ (2νt)−1/2 are removed from the velocity field, slowing down the particles on such scales
and thus reducing the re-expansion of structures after stream crossing [17,18,22,23]. We take
this reduced amount of particle motion into account by replacing the damping term QD from
(27) by

Q̄D = k2λ2 with the damping scale λ(t) =

∫ t

0

dt ′σv(t
′) . (48)
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An excellent fit to λ(t) is

λ(t)≈
t

p

1+ t/τ
with τ≈ 24.17 . (49)

The form of this fit expresses the transition from ballistic to diffusive particle motion.

4.3 Averaged interaction term

Accordingly, we evaluate the averaged force term (41) as




~fi

� �

~k
�

= n
�

f̃p ∗ P̄δ
�

(k) , with P̄δ(k) =
�

1+ Q̄D

�−1
P(lin)
δ
(k) . (50)

Inserting the averaged force term (50) into (42) results in the averaged interaction term

〈SI〉 (k) = −2in~k ·
∫ t

0

dt ′
�

t − t ′
� �

f̃p ∗ P̄δ
�

(k) . (51)

We finally need to evaluate the convolution of the particle-particle force term f̃p with the
damped power spectrum P̄. This is done in Appendix B and results in the average interaction
term

〈SI〉 (k) = 2

∫ t

0

dt ′ (t − t ′)
ṁ
m

�

D+σ
2
J −

1
m

∫ t ′

0

d t̄ ṁD+σ
2
J

�

, (52)

where σ2
J is the moment (83) of the damped power spectrum. This interaction term 〈SI〉 in the

mean-field approximation is shown in the right panel of Fig. 4 as a function of wave number k
for redshift z = 0. As it has to be, the averaged interaction term is dimension-less.

The scale k0 of the Fourier-transformed Yukawa-like potential (14) still needs to be set.
KFT itself now suggests the following procedure. According to (35), the ratio between the
linearly and non-linearly evolved power spectra is estimated by the exponential of the averaged
interaction term. Combining (35) with (12), the factor fv from (12) is approximated by

fv(k)≈ 1− e−〈SI〉/2 . (53)

We can thus determine a first estimate for k0 by calculating 〈SI〉 with k0 = 0 and fitting fv(k)
from (53) with the functional form (13). With the resulting value of k0, an updated estimate
for 〈SI〉 can be calculated, and so forth. This iteration quickly converges; it turns out that even
one step suffices. The scale k0 determined from KFT in this way is shown in the right panel of
Fig. 1 as a function of redshift z. For simplicity, we adopt the constant value of k0 at z = 0 and
ignore its time dependence.

4.4 Non-linear density-fluctuation power spectrum

The mean-field averaged interaction term (52), inserted into (35), is our approximate expression
for the non-linear density-fluctuation power spectrum. Evaluating the averaged interaction
term 〈SI〉(k) from (52) numerically, determining the viscosity parameter ν and the Yukawa scale
k0 from KFT itself as described, and further assuming a spatially-flat ΛCDM model universe
with matter-density parameter Ωm0 = 0.3, leads to the result shown in Fig. 2.

In this Figure, our analytic approximation (35) is compared at redshift z = 0 to the
description by [10] of the power spectrum obtained from numerical simulations. As can be
seen there, the analytic power spectrum agrees within typically ® 10% with the numerical
expectation up to wave numbers of k ® 10h Mpc−1. With the parameters ν and k0 self-
calibrated from within KFT, the analytic expression (35) has no adjustable parameters since the
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Figure 2: Analytic and numerical power spectra at redshift z = 0. The linear power
spectrum is taken from [12], the numerical spectrum from [10]. The flat lower panel
shows the relative deviation between the analytic and the numerical power spectra.

Yukawa scale k0 is set by KFT itself, and the viscosity is set to the square of the non-linear scale
determined by the linear power spectrum from [12]. Expression (35) is also non-perturbative
in the sense that the original exponential interaction operator is not expanded into a power
series, but averaged in a mean-field approach.

We should emphasise that the derivation of the mean-field approximation is mathematically
not fully rigorous, but in several steps guided by some intuition and the principles of statistical
field theory. These are that we evaluate the mean interaction term with the linearly evolved
power spectrum, reduce its damping by means of Burgers’ equation, and approximate the
gravitational potential of the particles by a Yukawa form. Nonetheless, the agreement between
our mean-field approximated analytic and the numerical results well into the non-linear regime
of cosmic structure formation suggests that the microscopic approach of kinetic field theory,
combined with a suitable choice for the inertial reference motion and adapting the effective
force between particles to this reference motion, captures essential aspects of the physics of
large-scale cosmic structure formation. The notorious shell-crossing problem does not occur in
this approach, which is the main reason for the possibility to extend it far into the non-linear
regime.

Instead of self-calibrating the two parameters ν and k0 from within KFT, they can be consid-
ered as free parameters of the theory and chosen to optimise the agreement between numerical
power spectra and the mean-field expression (35) by minimising the squared difference be-
tween them. Doing so, using the power spectrum from [10] as a reference, results in the power
spectrum shown in Fig. 3.

The power spectrum shown there is obtained by reducing the Yukawa scale by 13% and
increasing the displacement (48) by 6%. The relative deviation of the mean-field approximated,
analytic power spectrum from its numerical counterpart is now lowered to typically ® 5%
up to k ® 10h Mpc−1. For even smaller scales, the analytic power spectrum falls below the
numerical expectation because then the mean-field approximation of the interaction term is no
longer strong enough.

We are not suggesting that we should ultimately calibrate the viscosity and the Yukawa scale
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Figure 3: Like Fig. 2, but with the parameters ν and k0 modified to optimise the
agreement with the numerical results by [10].

by numerical simulations. Rather, a more rigorous future derivation of the power spectrum
and higher-order spectra from KFT should explain the values of ν and k0 more accurately than
we have done here. Instead, we are showing Fig. 3 to emphasize that small variations of these
two parameters about the values suggested by KFT itself leads to a result which resembles the
shape of the numerically simulated, non-linear power spectrum very well, despite the simplicity
of our mean-field ansatz.

5 Summary and conclusion

The kinetic field theory for classical particle ensembles encapsulates the statistical information
on the initial state and the propagator for the equations of motion in a generating functional
which is closely analogous to the canonical or grand-canonical partition sum in thermodynamics.
This generating functional evolves in time. Statistical macroscopic information is obtained
from it by applying suitable operators. In this paper, we have used this approach to derive
an analytic expression for the non-linear power spectrum of cosmic density fluctuations in
a mean-field approximation of the particle-particle interaction term. Our main results are
the closed, analytic approximation (35) for the non-linear power spectrum P(nl)

δ
and the

expression (52) for the mean-field averaged interaction term. We have derived this form of
the interaction term from KFT, averaging it over particle ensembles drawn from a statistically
homogeneous, Gaussian random density field as shown in (38) and (42). This derivation is not
mathematically rigorous because we have bypassed several complications and subtleties for the
sake of simplicity. A rigorous assessment of the mean-field approximation needs to be based on
systematic perturbation theory and will be worked out in a forthcoming paper. Nonetheless,
the agreement with numerical results up to wave numbers k ® 10h Mpc−1 is very good and
encouraging.

It is important for our result that the microscopic, Hamiltonian equations of motion allow
the introduction of an inertial motion with respect to the time t = D+−1, corresponding to the
celebrated Zel’dovich approximation, which captures the linear evolution of cosmic structures
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on large scales. Linearly growing, large-scale density fluctuations must then not exert any
gravitational force on the inertial particle trajectories with respect to this time coordinate. This
requires us to replace the Newtonian gravitational potential by an approximately Yukawa-
shaped gravitational potential which ensures that only small-scale, non-linearly growing modes
contribute to the particle-particle interaction. The Yukawa scale k0 can be determined from
kinetic field theory itself in a quickly converging iteration. We emphasise that the Yukawa
shape is suggestive, but approximate and has no fundamental justification yet.

Our aim expressed in (35) to capture the non-linear evolution of the density-fluctuation
power spectrum simply by a multiplicative, exponential interaction term applied to the linearly
evolved power spectrum requires us to damp part of the interaction term on small scales. We
do so by means of the damping term naturally appearing in the mean-field expression for
the interaction term via KFT, but lowering the damping scale in a way derived from Burgers’
equation. This introduces a viscosity parameter ν, which is the square of a length scale
characterising non-linear structures. A natural choice for this length scale is the non-linear
radius defined in (44).

We thus have two parameters, k0 and ν, which can either be set by KFT itself or seen as free
parameters. Self-calibrating both parameters with KFT leads to the mean-field approximated,
non-linear power spectrum shown in Fig. 2, which already agrees well with numerical results.
This agreement can further be improved by slightly adjusting both parameters, as shown in
Fig. 3.

The initial state of the microscopic degrees of freedom is fully determined by the linear
density-fluctuation power spectrum at the initial time, which can (and should) be set as early as
the onset of the matter-dominated epoch. We have used the cold-dark matter power spectrum
here. Since we use the growth factor D+ of linear density fluctuations as a time coordinate, the
cosmological framework model enters only through the relation between redshift or scale factor
and time, and through the time dependence of the effective particle mass. It can thus easily be
generalised towards alternative dark-matter models, a different cosmological background, or
alternative gravity theories. Non-linear cosmic power spectra such as these shown in Figs. 2
and 3 can be calculated within seconds on conventional laptops.

The approach followed in this paper can be improved in several ways. So far, we substantially
simplified our mean-field approximation scheme, and we have modelled the particle-particle
interaction potential by a Yukawa form for intuitive simplicity. The detailed form of the
interaction potential could, however, also be derived from kinetic field theory itself; this would
just cause the calculation of the mean interaction term to become more involved. The results
shown should be seen as a further step towards a systematic interpretation of non-linear cosmic
structures in terms of fundamental physics.

We thus view this paper as a report on ongoing work, not as a final answer. The main
advantages of KFT compared to other analytic approaches to large-scale structure formation, in
particular Effective Field Theory [24–27], are that KFT avoids the shell-crossing problem, thus
allowing to enter quite deeply into the non-linear regime, and has a minimum of parameters
which can be determined from the theory itself. Compared to approaches based on the Zel’dovich
approximation and its second-order or truncated variants, or on Burgers’ equation, KFT provides
a systematic procedure to include particle interactions at different levels of approximation.
This is reflected by the comparison of non-linear power spectra obtained from Zel’dovich-
based approximation schemes with numerical results; e.g. [28, Fig. 7] or [29, Fig. 9]. There,
substantial deviations typically set in at k ¦ 0.2h Mpc−1 for redshifts z ¦ 0.35 − 0.5. The
mean-field approach together with the simplifying assumptions introduced in this paper allow
to calculate the non-linear power spectrum very quickly for k ® 10h Mpc−1 at z = 0. In
forthcoming papers, we will relax these assumptions and put the derivation of the mean-field
term on a more rigourous foundation.
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A Particle Trajectories

A.1 Particle mass

Beginning with the effective particle mass m defined in (4), the time derivative of m is

ṁ=
dm
dD+

=
m′

D′+
, (54)

by definition of the time t = D+−1. The prime denotes differentiation with respect to the scale
factor a. We can insert (4) once more into (54) to arrive at

ṁ=
a3E
D′+

�

D′′+ +
�

3
a
+

E′

E

�

D′+

�

. (55)

The growth factor D+ solves the linear growth equation. When transformed to the scale factor
a as an independent variable, this reads

D′′+ +
�

3
a
+

E′

E

�

D′+ =
3
2
Ωm

a2
D+ . (56)

Expressing the matter-density parameter Ωm by its value Ω(i)m at the initial time,

Ωm =
Ω(i)m

a3E2
. (57)

If we specify the initial conditions early in the matter-dominated epoch, we may further
approximate Ω(i)m ≈ 1. We thus find the expression

ṁ=
3
2
Ω(i)m

aD+
m

(58)

for the time derivative of the effective particle mass m. Inserting finally the potential amplitude
Aϕ from the Poisson equation (5), we arrive at the time derivative

ṁ= mAϕD+ = mAϕ(t + 1) (59)

of the effective particle mass m.
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A.2 Solution of the Hamiltonian equations of motion

The Hamiltonian equations of motion for the phase-space point ~x = (~q, ~p )> can be written in
the form

~̇x = A(t)~x −
�

0
m ~∇ϕ

�

with A(t) :=

�

03 m−113
03 03

�

. (60)

Notice that A(t) is a 6 × 6 matrix, with 03 and 13 representing the zero and unit matri-
ces in three dimensions, respectively. The homogeneous equation ~̇x = A(t)~x is solved by
~xh = exp[Ā(t, 0)] ~x0, with

Ā(t, t ′) :=

∫ t

t ′
d t̄ A( t̄) =

�

03 gH(t, t ′)13
03 03

�

, gH(t, t ′) :=

∫ t

t ′

d t̄
m( t̄)

. (61)

Since Ā is nilpotent, Ā2(t, t ′) = 06, the homogeneous solution shrinks to

~xh(t) =
�

1+ Ā(t, 0)
�

~x0 . (62)

By variation of the constant vector ~x0, the inhomogeneous equation of motion (60) leads to

~x0(t) = ~x
(i) −

∫ t

0

dt ′
�

1+ Ā(t ′, 0)
�

�

0
m ~∇ϕ

�

(63)

and thus to the solution

~x(t) =
�

1+ Ā(t, 0)
�

~x (i) −
∫ t

0

dt ′
�

1+ Ā(t, t ′)
�

�

0
m ~∇ϕ

�

, (64)

for phase-space trajectories beginning at ~x (i) = (~q (i), ~p (i))> at t = 0. The spatial trajectories
are accordingly

~q(t) = ~q (i) + gH(t, 0)~p
(i)

︸ ︷︷ ︸

=: ~q0(t)

−
∫ t

0

dt ′ gH(t, t ′)m ~∇ϕ =: ~q0(t) + ~yq(t) . (65)

A.3 Reference Trajectories

It is often convenient in cosmology to replace the force-free trajectories ~q0(t) = ~q (i)+gH(t, 0)~p (i)

by the trajectories postulated in the Zel’dovich approximation,

~q0(t)→ ~q (i) + t~p (i) , (66)

exchanging the Hamiltonian propagator gH(t, t ′) for (t − t ′). The deviation ~yq(t) defined in
(65) as the difference between the actual and these reference trajectories is then determined
by

~yq(t) = −
∫ t

0

dt ′
�

gH(t, t ′)m ~∇ϕ +
�

1− ġH(t
′, 0)

�

~p (i)
�

. (67)

Implicitly defining an amplitude Ap(t ′) by
∫ t

0

dt ′
�

1− ġH(t
′, 0)

� !
=

∫ t

0

dt ′ gH(t, t ′)Ap(t
′) , (68)

we can write (67) in the form

~yq(t) = −
∫ t

0

dt ′ gH(t, t ′)
�

m ~∇ϕ + Ap(t
′)~p (i)

�

. (69)
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Since the initial momentum is the gradient of a potential, ~p (i) = ~∇ψ, (69) suggests defining an
effective potential

φ := ϕ +
Ap

m
ψ , (70)

such that

~yq(t) = −
∫ t

0

dt ′ gH(t, t ′)m ~∇φ . (71)

Differentiating (68) twice with respect to the time t and using ġH(t, t ′) = m−1(t) gives

Ap(t) = ṁ= mAϕD+ (72)

with (59), and thus the trajectories

~q(t) = ~q (i) + t~p (i) −
∫ t

0

dt ′ gH(t, t ′)m ~∇φ , φ = ϕ + AϕD+ψ . (73)

Continutity demands that the initial velocity potential satisfies the Poisson equation ~∇2ψ = −δ(i).

A.4 Unifying Propagators

It is often convenient to replace the propagator gH(t, t ′) in (73) also by the time difference
t − t ′. For doing so, we implicitly introduce an effective force ~f demanding

∫ t

0

dt ′ gH(t, t ′)m ~∇φ !
= −

∫ t

0

dt ′
�

t − t ′
�

~f (t ′) , (74)

and solve for ~f (t). Differentiating (74) twice with respect to t, we find

~f (t) = − ~∇φ +
ṁ
m2

∫ t

0

dt ′m ~∇φ . (75)

With this expression for ~f (t), we can write the spatial trajectories as

~q(t) = ~q (i) + t~p (i) +

∫ t

0

dt ′
�

t − t ′
�

~f (t ′) . (76)

Finally replacing ~x = (~q, ~p )> by (~q, ~̇q )>, we can bring the solution ~x(t) of the equations of
motion into the form

~x(t) = G(t, 0)~x (i) +

∫ t

0

dt ′ G(t, t ′)

�

0
~f (t ′)

�

, (77)

with the 6× 6 matrix

G(t, t ′) =

�

13 (t − t ′)13
03 13

�

. (78)

B Convolving the particle-particle force with the power spectrum

Based on the result (75) for the effective force, we begin with the expression

~fp = − ~∇v +
ṁ
m2

∫ t

0

dt ′m ~∇v , (79)
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Figure 4: Left panel: The function J(κ,κ0) appearing in the averaged force term 〈 f̃12〉
is shown here for five values of κ0. While the asymptotic behaviour of J(κ,κ0)∝ κ−2

for κ� 1 is unaffected by κ0, J(κ,κ0) approaches the value 2/(1+ κ2
0) for κ� 1.

Right panel: Average interaction term 〈SI〉(k) as a function of the wave number k.

for the particle-particle force represented by the potential v. The averaged interaction term (51)
requires projecting the Fourier-transformed particle-particle force convolved with the power
spectrum onto the wave vector ~k. With this in mind, we first convolve the Fourier-transformed
potential gradient Ý∇v = i~kṽ with the damped power spectrum. Inserting ṽ from (14) then
leads to the intermediate equation

~k ·
�

Ý∇v ∗ P̄δ
�

(k) = −
iAϕ
n

∫

k′

~k ·
�

~k− ~k′
�

k2
0 +

�

~k− ~k′
�2 P̄δ

�

k′
�

. (80)

We introduce spherical polar coordinates to evaluate the integral in (80) and turn the coordinate
system such that ~k points into the direction of the polar axis. Defining the cosine µ of the polar
angle between ~k and ~k′, further substituting κ := k′/k and κ0 := k0/k then leads to

~k ·
�

Ý∇v ∗ P̄δ
�

(k) = −
iAϕ
n

k3

(2π)2

∫ ∞

0

dκκ2 P̄δ
�

kκ, t ′
�

J(κ,κ0) , (81)

with

J(κ,κ0) :=

∫ 1

−1

dµ
1− κµ

1+ κ2
0 + κ2 − 2kκµ

= 1+
1−κ2 − κ2

0

4κ
ln
κ2

0 + (1+ κ)
2

κ2
0 + (1− κ)2

. (82)

The left panel of Fig. 4 shows the function J(κ,κ0) for different values of κ0. It falls off
∝ κ−2 for κ� 1 and tends towards the constant 2/(1+κ2

0) for κ� 1. The function J(κ,κ0)
can thus be seen as a filter function for the power spectrum. We introduce the moment

σ2
J :=

k3

(2π)2

∫ ∞

0

dκκ2 P̄(i)
δ
(kκ) J(κ,κ0) (83)

of the damped initial power spectrum P̄(i)
δ

, filtered with the function J , and bring (81) into the
form

~k ·
�

Ý∇v ∗ P̄
� �

~k
�

= −
iAϕ
n

D2
+σ

2
J = −

i
n

ṁ
m

D+σ
2
J . (84)
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In the last step, we have used the time derivative ṁ from (59) in Appendix A. According to
(79), and using (84), the convolved force f̃p ∗ P̄ projected on the wave vector ~k is

~k ·
�

f̃p ∗ P̄
�

=
i
n

ṁ
m

�

D+σ
2
J −

1
m

∫ t

0

dt ′ ṁD+σ
2
J

�

. (85)

With this result, we return to the averaged interaction term (51), finding the averaged interac-
tion term (52).
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