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Abstract

An exact description of integrable spin chains at finite temperature is provided using
an elementary algebraic approach in the complete Hilbert space of the system. We fo-
cus on spin chain models that admit a description in terms of free fermions, including
paradigmatic examples such as the one-dimensional transverse-field quantum Ising and
XY models. The exact partition function is derived and compared with the ubiquitous
approximation in which only the positive parity sector of the energy spectrum is consid-
ered. Errors stemming from this approximation are identified in the neighborhood of
the critical point at low temperatures. We further provide the full counting statistics of
a wide class of observables at thermal equilibrium and characterize in detail the ther-
mal distribution of the kink number and transverse magnetization in the transverse-field
quantum Ising chain.
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1 Introduction

Quantum many-body spin systems that are exactly solvable and exhibit a quantum phase tran-
sition have been key to advance our understanding of critical phenomena in the quantum
domain. Among them, the one-dimensional XY model and the closely-related transverse-field
quantum Ising model (TFQIM) occupy a unique status, and are paradigmatic test-beds of quan-
tum critical behavior [1–4]. They belongs to a family of models that admit an exact diagonal-
ization by a combination of Jordan-Wigner and Fourier transformations, yielding a formulation
of the system in terms of free fermions [5, 6]. These family of quasi-free fermion models in-
clude as well the Kitaev spin model in one dimension and on a honeycomb lattice [7], among
other examples [1,2,4].

Quasi-free fermion models have indeed been instrumental in exploring both equilibrium
and nonequilibrium properties. At equilibrium, the study of the ground-state critical behavior
was shown to be of relevance to the characterization of the system at finite temperature [8–10].
Out of equilibrium, these models have been used to explore the dynamics following a sudden
quench (e.g., of the magnetic field). The study of finite-time quenches was key to establish
the validity of the universal Kibble-Zurek mechanism in the quantum domain, and confirm the
power-law scaling of the number of kinks by driving the ground-state of a paramagnet across
the phase transition [11, 12], as reported in a variety of experiments [13–16]. These results
have also been extended to nonlinear quenches [17,18] and inhomogeneous systems [19–23],
while their breakdown has been characterized in open systems [24–26]. More recently, it has
been shown that signatures of universality are present in the full kink-number distribution and
that all cumulants scale as a universal power-law of the quench time [16,27–31]. The universal
dynamics of defect formation is not always desirable, and a variety of works have been devoted
to circumvent it using diverse control protocols [32–42], beyond the use of nonlinear quenches
and inhomogeneous driving. In addition, quasi-free fermion models have been discussed in the
context of quantum thermodynamics, as a test-bed to explore work statistics and fluctuation
theorems [43–46] and as a working substance in a quantum thermodynamic cycle [47].

Quasi-free fermion models provided an effective description of a variety of condensed-
matter systems, where they can be realized with high accuracy in [48]. They are further
amenable to quantum simulation with trapped ions [49–53], ultracold gases in optical lat-
tices [54] and superconducting qubits [55]. Digital quantum simulation provides yet another
avenue for their study in the laboratory [15,56–58].

In many applications, it is generally desirable to consider a thermal state and analyze
the finite-temperature behavior. For a given observable, full information about the eigen-
value distribution and its cumulants can be extracted from the characteristic function. An
ubiquitous approximation in such description exploits the parity symmetry of the TFQIM and
XY modes, focusing on the positive-parity subspace, while disregarding the rest of the spec-
trum [1–4, 44, 59–62]. We refer to it as the positive-parity approximation or PPA for short.
The PPA is considered to be accurate in the thermodynamic limit [63], invoked in many
works [6, 64]. However, even in the thermodynamic limit, an exact treatment requires taking
into account parity properly and at finite temperature both subspaces are populated. Katsura
derived the exact partition function for a finite-size spin chain in 1962 [63]. Kapitonov and
Il’inskii provided an alternative derivation of the closed form expression of the exact parti-
tion function using functional integrals over Grassmann variables [65]. More recently, Fei and
Quan [45] used group theory methods to calculate the exact partition function and quantum
work distribution.

In this manuscript, we first elaborate on these results providing an elementary derivation
of the exact partition function based on the structure of the Hilbert space. Using this approach,
we next provide exact expressions for the eigenvalue distribution (full counting statistics) of
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a wide class of observables at thermal equilibrium. We present step-by-step worked examples
deriving the exact moment generating function for important observables: the kink number
and transverse magnetization. In addition, we analyze finite-size effects and illustrate discrep-
ancies between results obtained using the PPA for the partition function and the exact partition
function for small systems spins. These discrepancies are of direct relevance to typical system
sizes in current experimental realizations of spin systems [66, 67]. For convenience of the
reader interested in using the final results of a calculation, the corresponding explicit formulas
are summarized in boxes that are self-contained and make little or no reference to the rest of
the manuscript.

2 Full Diagonalization of Spin-1
2 XY Model

We consider the anisotropic one-dimensional XY Hamiltonian for spins 1/2 in a transverse
magnetic field g. The Hamiltonian reads:

Ĥ (g,γ) = −J

� L
∑

n=1

�

1+ γ
2

�

X̂nX̂n+1 +
�

1− γ
2

�

ŶnŶn+1 + g Ẑn

�

. (1)

Here, J parameterizes the ferromagnetic (J > 0) or antiferromagnetic (J < 0) exchange inter-
action between nearest neighbors; we set the energy scale by taking J = 1. The dimensionless
anisotropic parameter in the XY plane is given by γ > 0 and L is the number of sites in the
chain. For γ= 1, the Hamiltonian (1) corresponds to the Ising model in a transverse magnetic
field, which possesses a Z2 symmetry. The limit γ = 0 describes the isotropic XY model. For
the anisotropic case 0 < γ ≤ 1 the model belongs to the Ising universality class, and its phase
diagram is determined by the ratio ν = g/J . When ν > 1, the magnetic field dominates over
the nearest-neighbor coupling, polarizing the spins along the z direction. This corresponds to
a paramagnetic state, with zero magnetization in the x y plane. By contrast, in the regime
0 ≤ ν < 1 the ground state of the system corresponds to a ferromagnetic configuration with
polarization along the x y plane. These phases are separated by a quantum phase transition
(QPT) at the critical point ν = 1. Finally, for the isotropic case γ = 0, a QPT is observed
between gapless (ν < 1) and ferromagnetic (ν > 1) phases.
The operators X̂n, Ŷn, and Ẑn are matrices of order 2L defined by the relations

X̂n = Î1 ⊗ . . .⊗ În−1 ⊗ σ̂x
n ⊗ În+1 ⊗ . . .⊗ ÎL ,

Ŷn = Î1 ⊗ . . .⊗ În−1 ⊗ σ̂ y
n ⊗ În+1 ⊗ . . .⊗ ÎL ,

Ẑn = Î1 ⊗ . . .⊗ În−1 ⊗ σ̂z
n ⊗ În+1 ⊗ . . .⊗ ÎL .

(2)

Here, σ̂αn denotes the Pauli operator at site n along the axis α = x , y, z, În is the identity
matrix of order 2 at the site n, and periodic boundary conditions are assumed, σ̂αL+1 = σ̂

α
1 .

A standard way to diagonalize the Hamiltonian in Eq. (1) relies on introducing a new set of
Fermionic operators given by

σ̂x
n =

�

ĉ†
n + ĉn

�

∏

m<n

�

Îm − 2ĉ†
m ĉm

�

,

σ̂ y
n = −i

�

ĉ†
n − ĉn

�

∏

m<n

�

Îm − 2ĉ†
m ĉm

�

,

σ̂z
n = În − 2ĉ†

n ĉn .

(3)

These expressions represent the well-known Jordan-Wigner transformation [68]. Here, ĉn
and ĉ†

n are ladder Fermionic operators at site n, which satisfy anti-commutation relations
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¦

ĉi , ĉ†
j

©

= δi, j and
�

ĉi , ĉ j

	

=
¦

ĉ†
i , ĉ†

j

©

= 0. This is in contrast to the Pauli matrices, which satisfy

commutation relations
�

σ̂†
n, σ̂−m

�

= δn,mσ̂
z
n and

�

σ̂z
n, σ̂±m

�

= ±2δn,mσ̂
±
n with σ̂±n = σ̂

x
n ± iσ̂ y

n .
With periodic boundary conditions in the spin representation, the Fermionic operators ĉn and
ĉ†

n satisfy nontrivial boundary conditions

ĉ†
L+1 = (−1)N̂ ĉ†

1 , ĉL+1 = (−1)N̂ ĉ1 , (4)

where N̂ =
∑L

n=1 ĉ†
n ĉn is the Fermionic number operator. By direct substitution of Eq. (3) into

Eq. (1), the Hamiltonian can be written as a quadratic form

Ĥ (g,γ) = −
L−1
∑

n=1

�

ĉ†
n ĉn+1 + ĉ†

n+1 ĉn + γ
�

ĉ†
n ĉ†

n+1 + ĉn+1 ĉn

��

+ Π̂
�

ĉ†
L ĉ1 + ĉ†

1 ĉL + γ
�

ĉ†
L ĉ†

1 + ĉ1 ĉL

��

− g
L
∑

n=1

�

În − 2ĉ†
n ĉn

�

.

(5)

Here, the parity operator Π̂ is given by (−1)N̂ = exp
�

iπN̂
�

and has eigenvalues ±1. The
parity operator anticommmutes with the creation ĉ†

n and annihilation ĉn Fermionic operators,
¦

(−1)N̂ , ĉ†
n

©

=
¦

(−1)N̂ , ĉn

©

= 0, and therefore, it commutes with any operator bilinear in

ĉ†
n and ĉn. The Hamiltonian given by Eq. (5) does not conserve the number of Fermionic

excitations. However, it is well-known that the TFQIM has a global Z2 symmetry and, thus,
the parity operator Π̂ commutes with the Hamiltonian. As a result, the total Hilbert space is
split into the direct sum of two 2L−1 dimensional subspaces of positive (+1) and negative (−1)
parity. Using the projectors Π̂±,

Π̂± =
1
2

�

Î± (−1)N̂
�

, (6)

the Hamiltonian in Eq. (5) is represented in the form

Ĥ = Ĥ+Π̂+ + Ĥ−Π̂− , (7)

with the reduced Hamiltonians Ĥ± being given by

Ĥ± (g,γ) = −
L
∑

n=1

�

ĉ†
n ĉn+1 + ĉ†

n+1 ĉn + γ
�

ĉ†
n ĉ†

n+1 + ĉn+1 ĉn

�

+ g
�

În − 2ĉ†
n ĉn

��

. (8)

A subtle difference between Ĥ+ and Ĥ− is found in the boundary conditions for the Fermion
operators. Ĥ+ obeys antiperiodic boundary conditions (ĉL+1 = −ĉ1 and ĉ†

L+1 = −ĉ†
1) while

Ĥ− satisfies periodic boundary conditions (ĉL+1 = ĉ1 and ĉ†
L+1 = ĉ†

1). The Hamiltonian given
by Eq. (8) is quadratic in the Fermionic operators and is thus exactly diagonalizable using
Fourier and Bogoliubov transformations [64,69–71]. We expand the operator ĉn via a Fourier
transformation in momentum space,

ĉn =
e−iπ/4

p
L

∑

k∈K±
ĉk exp (ink) , ĉ†

n =
eiπ/4

p
L

∑

k∈K±
ĉ†

k exp (−ink) . (9)

The wavevector k takes values in the positive
�

K+
�

and negative
�

K−
�

parity sectors

K+ =

�

k
�

�

�

π

L
(2m− 1) , m= −

L
2
+ 1,−

L
2
+ 2, . . . ,

L
2
− 1,

L
2

�

, (10)

K− =

�

k

�

�

�

�

2π
L

m , m= −
L
2
+ 1,−

L
2
+ 2, . . . ,

L
2
− 1,

L
2

�

. (11)
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We emphasize that Eqs. (10) and (11) are valid for an even and odd number of particles in
the chain. In the following analysis, we consider even L. In this way, the modes k = 0 and
k = π are included in the negative parity sector. For even L, we can rewrite conveniently the
momentum values as

K+ =
§

±
π

L
,±

3π
L

,±
5π
L

, . . . ,±
π (L − 1)

L

ª

= k+ ∪ {−k+} ,

K− =
§

0 ,±
2π
L

,±
4π
L

, . . . ,±
π (L − 2)

L
,π
ª

= k− ∪ {−k−} ∪ {0,π} ,

with

k+ =
§

π

L
,
3π
L

, . . . ,
π (L − 1)

L

ª

, and k− =
§

2π
L

,
4π
L

, . . . ,
π (L − 2)

L

ª

. (12)

By direct substitution of Eq. (9) into Eq. (8), the reduced Hamiltonians Ĥ+ and Ĥ− are ex-
pressed in terms of ĉk and ĉ†

k as

Ĥ+ (g,γ) =
∑

k∈k+
Ĥk (g,γ) ,

Ĥ− (g,γ) =
∑

k∈k−
Ĥk (g,γ) + Ĥ0 (g) + Ĥπ (g) ,

(13)

where

Ĥk (g,γ) = 2
�

(g − cos (k))
�

ĉ†
k ĉk − ĉ−k ĉ†

−k

�

+ γ sin (k)
�

ĉ†
k ĉ†
−k − ĉ−k ĉk

��

,

Ĥ0 (g) = (g − 1)
�

ĉ†
0 ĉ0 − ĉ0 ĉ†

0

�

,

Ĥπ (g) = (g + 1)
�

ĉ†
π ĉπ − ĉπ ĉ†

π

�

.

(14)

We next make use of a Bogoliubov transformation, and define a new set of fermion operators
γ̂k and γ̂†

k given by

γ̂k = uk ĉk − ivk ĉ†
−k , γ̂†

k = uk ĉ†
k + ivk ĉ−k , (15)

where the real numbers uk and vk satisfy uk = u−k, vk = −v−k and |uk|
2 + |vk|

2 = 1. The
canonical anti-commutation relations for the operators ĉk and ĉ†

k imply that the same relations
are also satisfied by γ̂k and γ̂†

k, that is,
�

γ̂k, γ̂†
k′
	

= δk,k′ , and
�

γ̂†
k, γ̂†

k′
	

= {γ̂k, γ̂k′}= 0. By direct
substitution of the Bogoliubov transformations into Eq. (13), after a some algebra, we obtain

Ĥk (g,γ) = 2γ̂†
kγ̂k

�

u2
k (cos (k)− g) + γ sin (k)ukvk

�

+ 2γ̂kγ̂
†
k

�

(cos (k)− g) v2
k − γ sin (k)ukvk

�

− iγ̂kγ̂−k

�

γ sin (k)
�

u2
k − v2

k

�

+ 2 (cos (k)− g)ukvk

�

− iγ̂†
kγ̂

†
−k

�

γ sin (k)
�

u2
k − v2

k

�

+ 2 (cos (k)− g)ukvk

�

+ g.

(16)

The terms proportional to γ†
kγ

†
−k and γkγ−k should vanish for the Hamiltonian to acquire a

diagonal form. Writing uk = cos (ϑk/2) and vk = sin (ϑk/2), the Bogoliubov angles satisfy

tan (ϑk) =
γ sin (k)

g − cos (k)
. (17)

For numerical simulations, the last condition can be rewritten as γ sin (k)
�

u2
k − v2

k

	

+
2 (cos (k)− g)ukvk = 0. Finally, the Hamiltonian (13) can be rewritten as a sum of noninter-
acting terms

Ĥ+ (g ,γ) =
∑

k∈k+
εk (g ,γ) (n̂k + n̂−k − 1) ,

Ĥ− (g ,γ) =
∑

k∈k−
εk (g ,γ) (n̂k + n̂−k − 1) + (g − 1) (2n̂0 − 1) + (g + 1) (2n̂π − 1) ,

(18)
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with n̂k = γ̂
†
kγ̂k denoting the fermion number operator and εk (g,γ) = 2

Æ

(g − cos k)2 + γ2 sin2 k
being the quasiparticle energy of mode k 6= 0,π per particle.

2.1 Mathematical tools for the complete Hilbert space

To simplify the presentation, we focus on the positive-parity subspace in this subsection. How-
ever, the methods presented are applicable in the negative-parity sector too. In order to keep
the notation clear, we use the following conventions:

• Hilbert spaces are denoted by letters in blackboard bold style, for example Hk.

• Operators are denoted by letters with a hat, such as Ôk and ĥki
.

• Operations on tensor products of Hilbert spaces are denoted with calligraphic letters P
and N .

To begin with, we note that the positive-parity Hilbert subspace H+ can be written as the
tensor product of subspaces corresponding to each pair of momenta (k and −k)

H+ =
⊗

k∈k+
Hk . (19)

Each subspaceHk is the linear span of the vacuum and states involving one and two Fermionic
excitations with a given momentum

Hk = span{|0〉k , ĉ†
k ĉ†
−k |0〉k , ĉ†

k |0〉k , ĉ†
−k |0〉k}

= {|00〉k , |11〉k , |10〉k , |01〉k}, ∀ k ∈ k+ .
(20)

Here, |0〉k is the vector annihilated by both ĉk and ĉ−k. Each of the subspaces can be divided
into the sectors with even H(p)k and odd H(n)k number of excitations

H(p)k = span{|0〉k , ĉ†
k ĉ†
−k |0〉k}= {|00〉k , |11〉k} ,

H(n)k = span{ĉ†
−k |0〉k , ĉ†

k |0〉k}= {|01〉k , |10〉k} .
(21)

Note that the dimension of the right hand side of equation (19) is equal to 4L/2 = 2L , as there
are L/2 positive momenta and each corresponding subspace is four-dimensional. However,
there is an additional condition in the positive-parity subspace: the parity operator Π̂ has
eigenvalue +1. Thus, the subspace is only spanned by vectors associated with an even number
of quasiparticles. We denote this subspace by P (

⊗

k∈k+Hk)

P = P
�

⊗

k∈k+
Hk

�

= span

¨

⊗

k∈k+
|ik jk〉 : ik, jk ∈ {0,1},

∑

k∈k+
(ik + jk) is even

«

. (22)

Similarly, we define the subspace spanned by odd number of quasi-particle excitations and de-
note it byN =N (

⊗

k∈k+Hk). It is easy to see that both spacesP (
⊗

k∈k+Hk) andN (
⊗

k∈k+Hk)
have dimension 2L−1 and satisfy

H+ = P
�

⊗

k∈k+
Hk

�

⊕N
�

⊗

k∈k+
Hk

�

. (23)

For the positive-parity subspace only P is relevant; vectors in N have no physical meaning
for the system described by the Hamiltonian Ĥ+. However, the spaces P and N (defined for
proper momenta) exchange their roles for Ĥ−; see Eq. (18). These considerations suggest that
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to obtain correct results in the positive-parity subspace, it is sufficient to redefine the tensor
product to take into account only vectors from P . This can be done for states and observables.
Before dealing with observables, we introduce an alternative recursive definition of the spaces
P and N , equivalent to Eq. (22). We shall make use of it in deriving the exact partition
function and characteristic functions of observables. We start by defining the subspaces for
one momentum, see Eq. (21),

P
�

Hk1

�

=H(p)k1
, N

�

Hk1

�

=H(n)k1
. (24)

Next, we specify how to construct spaces P and N when a mode with momentum kn+1 is
added:

P
�

n+1
⊗

i=1

Hki

�

= P
� n
⊗

i=1

Hki

�

⊗H(p)kn+1
⊕N

� n
⊗

i=1

Hki

�

⊗H(n)kn+1
, n≥ 1 ,

N
�

n+1
⊗

i=1

Hki

�

=N
� n
⊗

i=1

Hki

�

⊗H(p)kn+1
⊕P

� n
⊗

i=1

Hki

�

⊗H(n)kn+1
, n≥ 1 .

(25)

The intuitive meaning of these equations is that in order to obtain an even number of excita-
tions one has to add an even number of excitations to an even number, or an odd number of
excitations to an odd number.

We can extend these definitions for operators and density matrices. We assume that oper-
ators Ôk act independently on each subspace Hk and each Ôk can be written as a sum of an
even part Ô(p)k and an odd part Ô(n)k as

Ôk = Ô(p)k + Ô(n)k , Ô(p)k

�

�

�

�

H(n)k

= 0, Ô(n)k

�

�

�

�

H(p)k

= 0 . (26)

The operators Ô(p)k and Ô(n)k act on the total space Hk, but have a 2× 2 zero block 02 in the
respective subspace. The proper restrictions of the tensor product of operators Ôk can be
defined in a similar way as in Eqs. (24) and (25) for P

�

Ôk1

�

= Ô(p)k1
and N

�

Ôk1

�

= Ô(n)k1
, and

are given by

P
�

n+1
⊗

i=1

Ôki

�

= P
� n
⊗

i=1

Ôki

�

⊗ Ô(p)kn+1
+N

� n
⊗

i=1

Ôki

�

⊗ Ô(n)kn+1
, n≥ 1 ,

N
�

n+1
⊗

i=1

Ôki

�

=N
� n
⊗

i=1

Ôki

�

⊗ Ô(p)kn+1
+P

� n
⊗

i=1

Ôki

�

⊗ Ô(n)kn+1
, n≥ 1 .

(27)

Example 2.1: Even and odd parity parts of the Hamiltonian

For Ĥk given by Eq. (14), note that for a each mode kn the Hamiltonian can be rewritten
as

Ĥk = P
�

Îk1
⊗ Îk2

⊗ . . .⊗ ĥkn
⊗ . . .⊗ ÎkL/2

�

,

where, in the basis {|00〉k , |11〉k , |01〉k , |10〉k},

ĥkn
= 2







cos (kn)− g γ sin (kn) 0 0
γ sin (kn) g − cos (kn) 0 0

0 0 0 0
0 0 0 0






.

Here, ĥ(n)kn
is 4× 4 zero matrix (with no odd part), and ĥ(p)kn

= ĥkn
.
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As the odd part of Hamiltonian is zero, the description using ordinary tensor products
instead of over P is valid for pure states. However, the canonical thermal Gibbs state has a
non-vanishing odd-parity contribution:

Example 2.2: Even and odd-parity contributions to the exact Gibbs state

Consider the part of the thermal Gibbs state corresponding to momentum k:

ρ̂k = exp
�

−β ĥk

�

. (28)

Using the expression for ĥk in the the basis {|00〉k , |11〉k , |01〉k , |10〉k} ,

ρ̂k = exp

�

−2β

�

cos(k)− g γ sin(k)
γ sin(k) g − cos(k)

��

⊕ I2 . (29)

Therefore, the even and odd parts read:

ρ̂
(p)
k = exp

�

−2β

�

cos(k)− g γ sin(k)
γ sin(k) g − cos(k)

��

⊕ 02 , ρ̂
(n)
k = 02 ⊕ I2 . (30)

Using the fact that ĥk has eigenvalues ±εk, we have:

Tr
�

ρ̂
(p)
k

�

= 2cosh (βεk (g,γ)) , Tr
�

ρ
(n)
k

�

= 2 . (31)

Next, we state three propositions helpful in calculating the complete and exact expression
of the partition function and the full counting statistics of observables:

Proposition 2.3: Identities for product of operators

Consider two operators Ôk and R̂k acting independently on each subspace Hk. Then,
the following identities are true for operator multiplication

P
� n
⊗

i=1

Ôki

�

P
� n
⊗

i=1

R̂ki

�

= P
� n
⊗

i=1

Ôki
R̂ki

�

,

N
� n
⊗

i=1

Ôki

�

N
� n
⊗

i=1

R̂ki

�

=N
� n
⊗

i=1

Ôki
R̂ki

�

.

(32)

The following proposition is useful in calculations involving Gibbs states and time-evolutions:

Proposition 2.4: Identities for exponentials of operators

For every set of operators Ok acting on the subspace Hk, the following identities for
exponents of operators hold:

exp

�

P
� n
⊗

i=1

Ôki

��

= P
� n
⊗

i=1

exp
�

Ôki

�

�

,

exp

�

N
� n
⊗

i=1

Ôki

��

=N
� n
⊗

i=1

exp
�

Ôki

�

�

.

(33)

Lastly, the use of traces turns out to be essential to determine expectation values of observ-
ables, and, more generally, their full counting statistics:
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Proposition 2.5: Trace identities

Consider operators Ôk that act independently on each subspace Hk. Then, the traces of
the restricted tensor products can be expressed as follows,

tr

�

P
� n
⊗

i=1

Ôki

��

=
1
2

� n
∏

i=1

tr
�

Ôki

�

+
n
∏

i=1

�

tr
�

Ô(p)ki

�

− tr
�

Ô(n)ki

��

�

,

tr

�

N
� n
⊗

i=1

Ôki

��

=
1
2

� n
∏

i=1

tr
�

Ôki

�

−
n
∏

i=1

�

tr
�

Ô(p)ki

�

− tr
�

Ô(n)ki

��

�

.

(34)

We present a proof ot Eq. (34) in the Appendix A.

Negative-parity subspace. In the negative-parity subspace, all formulas derived for the
positive-parity subspace remain valid. In particular, for all momenta k 6= 0,π expressions
from examples 2.1, 2.2 apply. The only difference is that one has to treat carefully the parts of
the Hilbert space associated with momenta 0 and π. They are spanned by the following bases:

H0 = span{|0〉0 , ĉ†
0 |0〉0} ,

Hπ = span{|0〉π , ĉ†
π |0〉π} .

(35)

As a result, matrices describing the Hamiltonian and Gibbs state are 2× 2 instead of 4× 4. In
the following example we give formulas for the even- and odd-parity parts of the Gibbs state
in modes k = 0,π:

Example 2.6: Even- and odd-parity parts of the exact Gibbs state for 0,πmomenta

Using equation (16), the explicit form of the Gibbs state of the modes with momenta
0,π, in the bases {|0〉0 , ĉ†

0 |0〉0}, {|0〉π , ĉ†
π |0〉π}, are respectively given by

ρ̂0 =

�

e−β(g−1) 0
0 eβ(g−1)

�

, ρ̂π =

�

e−β(g+1) 0
0 eβ(g+1)

�

. (36)

Thus, the corresponding even- and odd-parity parts read

ρ̂
(p)
0 =

�

e−β(g−1) 0
0 0

�

, ρ̂(p)π =

�

e−β(g+1) 0
0 0

�

, (37a)

ρ̂
(n)
0 =

�

0 0
0 eβ(g−1)

�

, ρ̂(n)π =

�

0 0
0 eβ(g+1)

�

. (37b)

In closing this section, we point out that when L is odd, the momenta 0 and π appear in
the positive-parity subspace; the general formulas (24) and (26) are always valid.

3 The Canonical Partition Function

The partition function is a fundamental object in statistical mechanics from which all equilib-
rium thermal properties of a system can be derived. It further facilitates the study of critical
phenomena through the study of its zeroes in the complex plane, know as Lee-Yang zeros [72].

For its study, we consider a linear spin−1/2 chain described by Eq. (1). The system is
prepared in a canonical thermal Gibbs state at finite inverse temperature β and characterized
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by the initial density operator

ρ̂Gibbs (β , g,γ) =
exp

�

−β Ĥ (g,γ)
�

Z (β , g,γ)
, (38)

where Z (β , g,γ) is the canonical partition function given by

Z (β , g,γ) = tr
�

exp
�

−β Ĥ (g,γ)
��

. (39)

In a Gibbs state, the system is in a mixture of positive- and negative-parity states and both
subspaces should be taken into account. To this end, we consider the operator ρ̂ = exp

�

−β Ĥ
�

,
where Ĥ is given by Eq. (1). According to the exact diagonalization (see Sec. 2), the total
Hamiltonian can be mapped to a set of independent mode operators in each parity sector. For
fixed even L , the operator ρ̂ is given by

ρ̂ = exp
�

−β
�

Ĥ+Π̂+ + Ĥ−Π̂−
��

= ρ̂+ ⊕ ρ̂− , (40)

where

ρ̂+ = P
�

⊗

k∈k+
ρ̂k

�

, ρ̂− =N
�

⊗

k∈k−
ρ̂k ⊗ ρ̂0 ⊗ ρ̂π

�

, (41)

and ρ̂k are defined in Examples 2.2, with the sets k+ and k− given in Eq. (12). For these
operators the corresponding reduced partition functions are

Z+(β , g,γ) = tr

�

P
�

⊗

k∈k+
ρ̂k

��

, and Z−(β , g,γ) = tr

�

N
�

⊗

k∈k−
ρ̂k ⊗ ρ̂0 ⊗ ρ̂π

��

. (42)

For simplicity, we calculate Z+ and Z− separately, and focus on Z+ first. Using the formulas
from Example 2.2, one finds

tr (ρ̂k) = 2 cosh (βεk) + 2= 4cosh2
�

βεk

2

�

,

tr
�

ρ̂
(p)
k

�

− tr
�

ρ̂
(n)
k

�

= 2cosh (βεk)− 2= 4sinh2
�

βεk

2

�

.
(43)

Making use of the first identity in (34), we obtain an expression for canonical partition function
in the positive-parity sector

Z+ (β , g,γ) =
1
2

�

∏

k∈k+
22 cosh2

�

β

2
εk (g,γ)

�

+
∏

k∈k+
22 sinh2

�

β

2
εk (g,γ)

�

�

. (44)

The computation of the negative-parity part of the partition function proceeds in the same
way; we use the second of the trace identities (34) and the expressions from the example 2.1
to find

Z− (β , g,γ) =
1
2

�

22 cosh (β (g + 1)) cosh (β (g − 1))
∏

k∈k−
22 cosh2

�

β

2
εk (g,γ)

�

− 22 sinh (β (g + 1)) sinh (β (g − 1))
∏

k∈k−
22 sinh2

�

β

2
εk (g,γ)

�

�

.

(45)

Using (40), the exact partition is the sum of contributions of positive and negative parity:
Z(β , g,λ) = Z+(β , g,γ) + Z−(β , g,γ). To sum up, one can rewrite exact partition function in
closed-form.
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Summary 3.1: Exact partition function for spin-1
2 XY model

Z (β , g,γ) =
1
2

�

∏

k∈K+
2cosh

�

β

2
εk (g,γ)

�

+
∏

k∈K+
2 sinh

�

β

2
εk (g,γ)

�

+
∏

k∈K−
2 cosh

�

β

2
εk (g,γ)

�

−
∏

k∈K−
2sinh

�

β

2
εk (g,γ)

�

�

,

(46)

where

εk (g,γ) = 2
q

(g − cos (k))2 + (γ sin (k))2, εk=0 = 2(g − 1), εk=π = 2(g + 1) .

(47)

In this expression the products run over all momenta, not only those with non-negative
values. In general, the total partition function can be represented as the sum of four contribu-
tions,

Z (β , g,γ) =
1
2

�

Z+F (β , g,γ) + Z−F (β , g,γ) + Z+B (β , g,γ)− Z−B (β , g,γ)
�

, (48)

where Z±F (β , g,γ) =
∏

k∈K± 2cosh (βεk (g,γ)/2) and Z±B (β , g,γ) =
∏

k∈K± 2sinh (βεk (g,γ)/2)
are the “Fermionic" and “boundary" contributions. The first term, which takes only into account
Fermionic and positive-parity contribution is the only term considered in the PPA, widely used
in the literature as the correct approximation in the limit N →∞ [1,44,59,60,62,64]

Summary 3.2: PPA partition function

ZPPA(β , g,γ) = Z+F (β , g,γ) =
∏

k∈K+
2cosh

�

β

2
εk (g,γ)

�

. (49)

Figure 1: Comparison of the exact and PPA canonical partition functions. The
ratio between the total partition function 3.1 and the PPA Eq. (49) is shown in the β-
g plane for finite system size L = 50, 100, 5000, 10000, increasing from left to right
(anisotropic parameter γ = 1). Significant differences appear close to the critical
point g = gc = 1, with the magnitude of Z+F (β , g,γ) deviating by 50% from the exact
partition function. The paramagnetic phase is correctly reproduced by the simplified
approximation g > gc while errors in the partition function are shown in red in the
ferromagnetic phase at low temperatures.
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In the isotropic case with γ = 0, the exact partition function admits a more compact ex-
pression [73] but this limit lies outside the Ising universality class, our primary focus. The
complete expression for the partition function 3.1 was first derived with the aid of creation
and annihilation operators by Katsura [63]. An alternative approach has been reported using
Grassmann variables, without a numerical characterization [65]; see as well [45].

It is thus natural to analyze the extent to which the PPA Z+F (β , g,γ) provides a valid ap-
proximation to the exact partition function.
Fig. 1 shows the difference between the ratio Z+F (β)/Z (β) as a function of the inverse of
temperature and the magnetic field. The error is negligible away from criticality and at high
temperatures. However, prominent discrepancies between the exact partition function 48 and
the ubiquitously-used PPA (49) are manifested in the neighborhood of the critical point in the
regime of low-temperatures, which is often times the regime studied and of interest. Indeed,
in this region errors reach sufficiently large values such that Z+F (β , g,γ)≈ 0.5 Z (β , g,γ).

One can provide a simple and intuitive explanation of the magnitude of this discrepancy
by considering the structure of the spectrum. The complete spectrum consists of two disjoint
“ladders" of levels, spanning the positive-parity and negative-parity subspaces. In the following
analysis we denote by Eαg and |gα〉 the lowest energy level and the corresponding eigenstate in
the subspace of parity α= ±. The diagonalization procedure of the Ising model yields explicit
formulas for these eigenvalues. For even number of spins [74]

E+g = −
∑

k∈k+
εk ,

E−g = −
∑

k∈k−
εk − 2 .

(50)

The corresponding eigenstates read

|g+〉=
∏

k∈k+
(cos(ϑk/2)− sin(ϑk/2)ĉ

†
k ĉ†
−k) |vac〉 ,

|g−〉= c†
0

∏

k∈k−
(cos(ϑk/2)− sin(ϑk/2)ĉ

†
k ĉ†
−k) |vac〉 ,

(51)

where |vac〉 is annihilated by all ĉk for k ∈ K+∪K− (including 0 and πmodes). In what follows,
we restrict ourselves to the TFQIM (γ = 1). In the TFQIM with even number of spins L, the
true ground state always lies in the positive-parity subspace (this is not necessary true in the
XY model, see [75]). The energy gap δ(g) between these two lowest energy states plays a
crucial role. We recall its asymptotic behavior [74]

δ(0< g < 1) =O [∼ exp (−L/ξ(g))] ,

δ(g = 1) = 2tan
h π

4L

i

≈
π

2L
,

δ(g > 1) = 2g − 2+O
�

g−L
�

,

(52)

where ξ(g) denotes the correlation length. In the low temperature regime, the Gibbs state
is effectively spanned by the two lowest energy states, |g〉+ and |g〉−. In this truncation, the
partition function and Gibbs state read

Zapprox(β , g) = e−βE+g + e−βE−g , (53)

ρGibbs(β , g)≈
1

Zapprox(β , g)

�

e−βE+g |g+〉 〈g+|+ e−βE−g |g−〉 〈g−|
�

. (54)
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Figure 2: Ratio between the low-temperature approximation and exact partition
functions as a function of the inverse temperature. The accuracy of the two-level ap-
proximation (53) is considered for different values of the transverse magnetic field g
and two different system sizes. As the energy gaps δ(g) and ∆(g) in the neighbour-
hood of gc = 1 are comparable, a lower temperature is required to obtain a desired
level of accuracy. For given β , the accuracy decreases with increasing system size.

This low-temperature two-level approximation relies on (51) and disregards the contribution
from higher excited states, that are energetically separated from |g+〉 and |g−〉. The energy
gap to the next excited state can be calculated as the energy of a single-particle excitation in
the positive-parity subspace, which sufficiently far from the critical point is estimated by

∆(g) = 4
s

g2 − 2g cos
�π

L

�

+ 1= 4|g − 1|+O
�

1
L2

�

, g > 0, g 6= 1 , (55)

while at the critical point, this gap behaves as

∆(g = 1)≈
4π
L

. (56)

In the ferromagnetic phase, the first excited state is separated from the ground state by an
exponentially vanishing gap and the second excited state lies far away from both of them.
Therefore, the correction from high-energy states is negligible in the low temperature limit
β∆(g)� 1. Similarly, in the paramagnetic phase, the ground state is energetically separated
from all the excited states. At the critical point the two lowest excited states are separated
from the ground state by a comparable gap,

∆(g = 1)
δ(g = 1)

−−−→
L→∞

1
8

. (57)

However, for large β the error is very small. The accuracy of the the two-level approximation
for different phases is shown in Fig. 2. The validity of this approximation (53) explains the
magnitude of the errors between the exact and the PPA partition functions shown in Fig. 1.
For g < 1, the simplified partition function takes into account only the ground state |g+〉 and
can be approximated by e−βE+g , while the complete partition function is approximately

Zapprox(β , g)≈ e−βE+g + e−βE−g ≈ 2e−βE+g . (58)

This explains the observed error of about 50% between the exact and PPA partition functions.
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4 Full Counting Statistics in Integrable Spin Chains

The characterization of a given observable in a quantum system generally relies on the study of
its expectation value. To determine it, experiments often collect a number of measurements,
and build a histogram, from which the eigenvalue distribution is estimated. The full count-
ing statistics of an observable focuses on the complete eigenvalue distribution. Its study has
proved useful in a wide variety of applications and alternative methods for its measurement
have been put forward [76]. A prominent example concerns the counting statistics of the
number of fermions (electrons) traversing a point contact in a wire, that is described by the
Levitov-Lesovik formula [77–79]. Distributions of other observables such as the total energy
play a key role in quantum chaos [80] and the statistics of related positive-operator valued
measures (POVMs, such as work) are at the core of fluctuation theorems in quantum ther-
modynamics [81]. In the context of spin chains, the distribution of the order parameter has
long been recognized as a probe for criticality and turbulence [82–90]. Further, the study
of the full counting statistics of quasiparticles and topological defects has been key to un-
cover universal dynamics of phase transitions beyond the paradigmatic Kibble-Zurek mecha-
nism [16,27–30,91].

The full counting statistics is characterized by the probability P (ω) to obtain the eigenvalue
ω of a general operator Ŵ . It is defined as the expectation value

P (ω) =
­

δ
�

Ŵ −ω
�

·

, (59)

where the δ function is to be interpreted as a Kronecker or Dirac delta function, depending
on whether the spectrum of Ŵ is point-wise or continuous. The angular bracket denotes the
quantum expectation value with respect to a general state characterized by a density matrix
ρ̂. We introduce the Fourier transform representation

P (ω) =
1

2π

∫ ∞

−∞
dθ P̃ (θ )exp (−iθω) , (60)

where P̃ (θ ) is the characteristic function given by

P̃ (θ ) = tr
�

ρ̂ exp
�

iθŴ
��

. (61)

In cases such as the kink number and the transverse magnetization, the eigenvalues are inte-
gers ω ∈ Z and the range of the integral can be restricted from −π to π. The characteristic
function is also known as the moment generating function, as it allows to directly compute the
mean value and higher-order moments of a given observable Ŵ according to

〈Ŵ m〉=
1
im

dm

dθm
P̃(θ )

�

�

�

�

θ=0
. (62)

Further, its logarithm is the cumulant generating function used to derive the cumulants of the
distribution through the identity

κm = (−i)m
dm

dθm
ln P̃(θ )

�

�

�

�

θ=0
. (63)

The first cumulant κ1 is just the mean value, κ2 is the variance, and κ3 coincides with the third
central moment. Cumulants are useful in characterizing fluctuations in a quantum system. For
example, since the only distribution with finite κ1,κ2 6= 0 and vanishing κm = 0 for m > 2 is
the Gaussian distribution, higher cumulants quantify non-normal features of the distribution
of interest, e.g., an eigenvalue distribution.
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We next derive the general form of characteristic function for a wide classW of observables.
This class is defined by the property that any operator Ŵ ∈W , in each parity subspace, can
be written in the form

Ŵ =
∑

k

Ŵk , (64)

where
Ŵk = Ψ̂

†
k ŵkΨ̂k, Ψ̂† =

�

ĉ−k, ĉ†
k, ĉk, ĉ†

−k

�

(65)

and the matrix ŵk has the block-diagonal form

ŵk =

�

ŵ(1)k 0
0 ŵ(2)k

�

. (66)

Here, ŵ(1)k and ŵ(2)k are 2× 2 are matrices for momenta different from 0,π and 1× 1 matrices
for 0,πmomenta. We point out that the notation in equations (65, 66) is compatible with ma-
trix expressions from Examples 2.1, 2.2, written in the basis {|00〉k , |11〉k , |01〉k , |10〉k}. When
off-diagonal blocks vanish, the operator Ŵk can be written as a quadratic form in Fermionic op-
erators. However, there are relevant observables which have components linear in Fermionic
operators. For example, the longitudinal magnetizations X i or Yi do not belong to the class W
as these observables mix the subspaces with different parities. This leads to severe difficulties.
Namely, one has to switch between fermionic operators defined for different sets of momenta.
For example, for a given k ∈ K− one has to perform inverse Fourier transform to express ck as a
linear combination of fermionic operators in space domain, and then apply Fourier transform
with K+ as a set of momenta. This will cause, that subspaces with different momenta will be all
intertwined, contrary to the basic feature exploited in the systems with periodic boundary con-
ditions - that one can perform calculations independently for every momentum. The treatment
of such operators is thus beyond the scope of this paper. The systematic treatment of longitudi-
nal magnetization in zero temperature for Ising model with PBC was conducted in [92], with
further extensions including observables involving three fermionic operators in [89]. For other
approaches, see for example [93] (open boundary conditions) or [61] (exploiting methods of
field theory).

In the following we present the detailed procedure for computing characteristic function
P̃ (θ ) of a given observable Ŵ in the class W .

1. First, we fix the state ρ̂ to be the thermal-equilibrium Gibbs state, ρ̂ = ρ̂Gibbs given by
equation (38). Then, using formulas from Section 2 we can diagonalize the even-parity
part of ρ̂k

exp

�

−2β

�

cos(k)− g γ sin(k)
γ sin(k) g − cos(k)

��

= Ŝ†
k diag

�

e−βεk(g,γ), eβεk(g,γ)
�

Ŝk , (67)

where

Ŝk =

 

cos
�

ϑk
2

�

sin
�

ϑk
2

�

sin
�

ϑk
2

�

− cos
�

ϑk
2

�

!

(68)

and the angle ϑk satisfies

cos (ϑk) =
2(cos(k)− g)
εk(g,γ)

, sin (ϑk) =
2γ sin(k)
εk(g,γ)

. (69)

2. As in the case of the partition function, it is convenient to separate in the full character-
istic function the contributions of positive and negative parity:

P̃ (θ ) =
1

Z(β , g,γ)

�

P̃+ (θ ) + P̃− (θ )
�

. (70)
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Using Propositions 2.3 and 2.4, we aim at calculating

P̃+ (θ ) = tr

�

P
�

⊗

k∈k+
ρ̂k exp (iθ ŵk)

��

, P̃− (θ ) = tr

�

N
�

⊗

k∈k−
ρ̂k exp (iθ ŵk)

��

. (71)

Next, we define the matrix

σ̂k = Ŝk exp
�

iθ ŵ(1)k

�

Ŝ†
k . (72)

Denoting the eigenvalues of ŵ(2)k by µk and λk we find

tr [ρ̂k exp (iθ ŵk)] = σ̂
11
k e−βεk(g,γ) + σ̂22

k eβεk(g,γ) + eiθµk + eiθλk ,

tr
�

ρ̂
(p)
k exp

�

iθ ŵ(p)k

��

− tr
�

ρ̂
(n)
k exp

�

iθ ŵ(n)k

��

= σ̂11
k e−βεk(g,γ) + σ̂22

k eβεk(g,γ) − eiθµk − eiθλk .
(73)

Using Proposition 2.5 we obtain

2P̃+ (θ ) =
∏

k∈k+

�

σ̂11
k e−βεk(g,γ) + σ̂22

k eβεk(g,γ) + eiθµ + eiθλ
�

+
∏

k∈k+

�

σ̂11
k e−βεk(g,γ) + σ̂22

k eβεk(g,γ) − eiθµ − eiθλ
�

.
(74)

3. To determine P̃−(θ ) it remains to compute the contributions corresponding to 0,π mo-
menta. Denoting

ŵ0 = diag
�

w1
0, w2

0

�

, ŵπ = diag
�

w1
π, w2

π

�

, (75)

one finds

ρ̂0 exp (iθ ŵ0) = diag
�

eβ(g−1)+iθw1
0 , e−β(g−1)+iθw2

0

�

,

ρ̂π exp (iθ ŵπ) = diag
�

eβ(g+1)+iθw1
π , e−β(g+1)+iθw2

π

�

.
(76)

Therefore, the negative-parity part of the characteristic function is

2P̃− (θ ) =P̃ F (θ )
∏

k∈k−

�

σ̂11
k e−βεk(g,γ) + σ̂22

k eβεk(g,γ) + eiθµ + eiθλ
�

− P̃B(θ )
∏

k∈k−

�

σ̂11
k e−βεk(g,γ) + σ̂22

k eβεk(g,γ) − eiθµ − eiθλ
�

,
(77)

where

P̃ F (θ ) =
�

eβ(g−1)+iθw1
0 + e−β(g−1)+iθw2

0

��

eβ(g+1)+iθw1
π + e−β(g+1)+iθw2

π

�

,

P̃B(θ ) =
�

eβ(g−1)+iθw1
0 − e−β(g−1)+iθw2

0

��

eβ(g+1)+iθw1
π − e−β(g+1)+iθw2

π

�

.
(78)

Note that this is not the only way to calculate the characteristic function: instead of diagonal-
izing ρ̂k, one could diagonalize an observable ŵk. However, in our approach the role of the
Boltzmann factor set by βεk(g,γ), which is usually dominant, is clear from the formulas (74)
and (77). In the following sections we apply this method to characterize the full counting
statistics of two physically important observables, the number of kinks and the transverse
magnetization.
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4.1 Probability distribution of the number of kinks at thermal equilibrium

We next derive the full generating function for the kink-number operator, which is of funda-
mental importance in the study of quantum phase transitions [12, 16, 27–30]. Although the
relevance of this operator is most apparent in the Ising model, it is also well-defined for the
general XY model. In the following, we consider the TFQIM with γ = 1 for simplicity. The
explicit form of kink-number operator reads

N̂ =
1
2

L
∑

n=1

�

1− X̂n X̂n+1

�

, (79)

with eigenvalues n= 0, 1, . . . , L under periodic boundary conditions.
Comparing the Ising Hamiltonian Eq. (1), with γ = 1 and g = 0, with the Bogoliubov

Hamiltonian (18) at γ = 1 and g = 0, the kink operator takes a simple form as the sum of
the number operators of quasiparticles in each momentum [12]. Here, we generalize the kink
number operator definition for all values of the magnetic field. First, we rewrite the operator
(79) in the following form:

N̂ =
L
2
+
∑

k

N̂k . (80)

By analogy with Eq. (65) and Eq. (66), we define a new set of operators n̂k, n̂0, and n̂π; taking
for any mode k 6= 0,π the basis given by {|00〉k , |11〉k , |01〉k , |10〉k}, while selecting for 0,π
momenta the basis {|0〉0 , c†

0 |0〉0}, {|0〉π , c†
π |0〉π}. Therefore, we define the operators

n̂k =







cos (k) sin (k) 0 0
sin (k) − cos (k) 0 0

0 0 0 0
0 0 0 0






, n̂0 =

� 1
2 0
0 −1

2

�

n̂π =

�

−1
2 0

0 1
2

�

, (81)

and thus

n̂(1)k =

�

cos (k) sin (k)
sin (k) − cos (k)

�

, n̂(2)k = 02 . (82)

Note that exp
�

iθ n̂(1)k

�

has the simple form

exp
�

iθ n̂(1)k

�

=

�

cos(θ ) + i sin(θ ) cos(k) i sin(θ ) sin(k)
i sin(θ ) sin(k) cos(θ )− i sin(θ ) cos(k)

�

. (83)

Using expressions (68) and (72), one finds

σ11
k = cos(θ ) + i sin(θ ) cos(k− ϑk) ,

σ22
k = cos(θ )− i sin(θ ) cos(k− ϑk) .

(84)

This yields the explicit expression of the full characteristic function of the kink-number oper-
ator.

17

https://scipost.org
https://scipost.org/SciPostPhys.11.1.013


SciPost Phys. 11, 013 (2021)

Summary 4.1: Full characteristic function for kink number operator

The full characteristic function of the kink number operator Eq. (79) at thermal equi-
librium reads

P̃ (θ ) =
1

Z(β , g,γ)

�

P̃+ (θ ) + P̃− (θ )
�

. (85)

Positive part of characteristic function:

P̃+ (θ ) =
exp (i Lθ/2)

2

×
�

∏

k∈k+
2 (cos(θ ) cosh[βεk(g,γ)]− i sin(θ ) sinh[βεk(g,γ)] cos(k− ϑk) + 1)

+
∏

k∈k+
2 (cos(θ ) cosh[βεk(g,γ)]− i sin(θ ) sinh[βεk(g,γ)] cos(k− ϑk)− 1)

�

.

(86)

Negative part of characteristic function:

P̃− (θ ) =
exp (i Lθ/2)

2

×
�

P̃ F (θ )
∏

k∈k−
2 (cos(θ ) cosh[βεk(g,γ)]− i sin(θ ) sinh[βεk(g,γ)] cos(k− ϑk) + 1)

− P̃B(θ )
∏

k∈k−
2 (cos(θ ) cosh[βεk(g,γ)]− i sin(θ ) sinh[βεk(g,γ)] cos(k− ϑk)− 1)

�

,

(87)

where

P̃ F (θ ) = 22 cosh
�

βεk=0 + iθ
2

�

cosh
�

βεk=π − iθ
2

�

,

P̃B(θ ) = 22 sinh
�

βεk=0 + iθ
2

�

sinh
�

βεk=π − iθ
2

�

.
(88)

The exact total partition function is given by Eq. (48), with the eigenenergies εk (g,γ)
and εk=0 given by Eq. (47), and the Bogoliubov angles ϑk satisfying Eq. (17).

By contrast, in the customary PPA, the characteristic function of the kink-number operator
in the thermodynamic limit contains only the first term of P̃+(θ ):

Summary 4.2: PPA characteristic function for kink number

In the thermodynamic limit, Eq. (85) reduces to

P̃PPA(θ ) =
exp (i Lθ/2)
Z+F (β , g,γ)

∏

k∈k+
2 (cos(θ ) cosh(βεk(g,γ))− i sin(θ ) sinh(βεk(g,γ)) cos(k− ϑk) + 1) ,

(89)
where Z+F (β , g,γ) is defined in (49).

In Figure 3, we characterize the full counting statistics of kinks as a function of the mag-
netic field and inverse temperature. By numerical integration of Eq. (60), we find the ex-
act probability distribution function P (n) using Eq. (85). Additionally, we evaluate the PPA
probability distribution function using Eq. (89). The use of the PPA partition functions is
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Figure 3: Kink-number distribution at thermodynamic equilibrium. Probability
distribution of the number of kinks P(n) as a function of the magnetic field g and
temperature T for a chain of L = 50 spins. The exact probability distribution Eq. (85)
(red bars) is compared with the simplified expression in Eq. (89) (blue bars). Only in
the low-temperature paramagnet the PPA is accurate. Further, the normal (Gaussian)
approximation to the histograms is also shown (dashed lines).

widely extended in the literature, e.g., to analyze the formation of kinks after non-equilibrium
quenches [1,44,59,60,62,64]. For a large magnetic field and low temperature, the PPA works
well and reproduces essentially the exact full counting statistics of kinks. By contrast, when
thermal fluctuations are suppressed and the magnetic field contribution dominates, the PPA
leads to pronounced discrepancies (i.e. see Fig. 3 lower-left panels). The PPA also fails to
account for momentum conservation. Under periodic boundary conditions, kinks appear in
pairs. In general, the PPA incorrectly predicts a non-zero probability of exciting odd number
of kinks:

PPPA (n= 2`+ 1) =
1

2π

∫ π

−π
dθ P̃ (θ )exp [−iθ (2`+ 1)] 6= 0 , (90)

but for large g and β as shown in 3, when PPPA (n= 2`+ 1)≈ 0.
The fact that only even number of kinks in the presence of periodic boundary conditions

can be excited is intuitively clear. For a simple mathematical argument, consider the operator
∏L

n=1 X̂nX̂n+1 which is 1 for even kink number and −1 for an odd number. Using X̂ L+1 = X̂1

and
�

X̂n

�2
=
⊗L

n=1 În, it satisfies:
L
∏

n=1

X̂nX̂n+1 = 1 . (91)

The PPA characteristic function, P̃+(θ ) and P̃−(θ ) do not exhibit this feature.

In addition, we note that the magnitude of the exact P(n) for even n can be approximated
by the coarse-grained PPA approximation, whenever the distribution is symmetric, with tails
far from the origin, i.e.,

P (n)≈ PPPA (n) +
1
2
[PPPA (n− 1) + PPPA (n+ 1)] , (92)

as shown in Figure 4.
An analysis of the cumulants of the kink-number distribution as a function of the inverse

temperature is presented in Fig. 5 for various system sizes. In the paramagnetic phase (g > 1),
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Figure 4: Exact and Coarse-grained PPA kink-number probability distributions
at thermal equilibrium. The exact kink-number probability distribution evaluated
using Eq. (85) (red) is compared with the coarse-grained PPA probability distribu-
tion Eq. (92) (blue). The numerical histograms are compared with the Gaussian
N(κ1,κ2) with fitted numerical values for κ1 and κ2 (dashed lines). In as much as
the exact distribution is symmetric and its left tail is negligible near the origin, the
coarse-graining of the PPA distribution in Eq. (92) reproduces accurately the exact
distribution. Deviations are manifested at low g and temperature, when the distri-
bution is asymmetric.

the mean always exceeds the variance, making the kink-number distribution sub-Poissonian.
This need not be the case in the ferromagnetic phase, where the distribution changes from
sub-Poissonian to super-Poissonian as the temperature decreases. This behavior is shown to
be robust as a function of the system size. The difference between the exact cumulant values
and those derived from the PPA is systematically studied in Fig. 6 for a system size of L = 12
spins; the relative error is reduced with increasing system size. The quality of the PPA improves
with increasing temperature, in the classical regime, in the ferromagnetic phase. While the
dependence of the relative error as a function of the magnetic field g is not monotonic, the big-
ger discrepancies between the exact results and the PPA are found in the ferromagnetic phase
in the low temperature regime, when the relative error can reach 100%. In the paramagnetic
phase, the PPA provides an accurate description of the cumulants for different temperatures
and values of the magnetic field

To complete the characterization of the kink-number distribution we consider the limiting
cases of the ground-state distribution (β →∞) and the infinite-temperature case (β → 0) in
an exact approach, without using the PPA. The first can be easily described using (83), while
in the second we consider a maximally-mixed Gibbs state and apply trace formulas 2.5. For
β = 0, the exact result and the PPA coincide.
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Figure 5: Cumulants of the kink-number distribution as a function of the inverse
of temperature β . Using the exact characteristic function given by Eq. (85), the
mean kink number κ1 and the variance κ2 are shown by red circles and blue squares,
respectively. The dashed lines correspond to the numerical results using the PPA
characteristic function in Eq. (89). While in the paramagnetic phase the statistics is
sub-Poissonian, in the ferromagnetic phase it changes from sub- to super-Poissonian
as the temperature is decreased. The magnetic field is increased from 0.0 to 2.0,
varying from left to right in steps of 0.5. In the upper panels, the system size is
L = 12, while in the lower ones L = 100.

Summary 4.3: Limiting cases of kink number distribution

Exact ground-state characteristic function of the kink-number distribution:

P̃β→∞(θ ) = exp(i Lθ/2)
∏

k∈k+
(cosθ − i sinθ cos(k− ϑk)) . (93)

Exact infinite-temperature characteristic function of the kink-number distribution:

P̃β→0(θ ) = exp(i Lθ/2)
�

cosL θ

2
+ (−1)L/2 sinL θ

2

�

. (94)

Instances of the corresponding distributions are shown in Fig. 7 for the (pure) ground-state
as a function the magnetic field. For g = 0 one finds a Kronecker delta distribution centered at
n= 0, with P(0) = 1 and P(n) = 0 for n> 1, as expected. As the magnetic field is cranked up,
the distribution broadens and gradually shifts away from the origin, becoming approximately
symmetric in the paramagnetic phase.

The right panel in Fig. 7 also shows the corresponding distribution in the infinite-tempera-
ture case, that is symmetric, centered at n= L/2 and independent of the transverse magnetic
field g, as can be seen from Eq. (94). In fact, full probability distribution for infinite temper-
ature can be found by a combinatorial argument. Working in the basis of eigenstates of σx

i in
each site, the probability of obtaining n = 2l kinks is related to the number of basis vectors
with 2l spin flips, where we use the fact that an even number of kinks is enforced by boundary
conditions. One can choose the location of 2l kinks in the chain in 2

� L
2l

�

ways. Therefore, the
full probability distribution has the form:

Pβ→0(n= 2l) =
1

2L−1

�

L
2l

�

, l = 0,1, . . .
L
2

. (95)

The corresponding cumulant values read

κ1 =
L
2

, κ2 =
L
4

, κ3 = 0 , κ4 = −
L
8

, κ5 = 0, κ6 =
L
4

, . . . (96)
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Figure 6: Relative error for the first two cumulants of the kink-number distri-
bution as a function of magnetic field g. Using the full characteristic function in
Eq. (85) and the PPA characteristic function Eq. (89), the relative error is evaluated as
a function of the magnetic field for a system size L = 12 and different temperatures.

By keeping the first two cumulants and setting the rest to zero, Pβ→0(n = 2l) can be approx-
imated by a Gaussian distribution N(κ1,κ2) with mean κ1 = L/2 and variance κ2 = L/4.
As shown in Fig. 7 this approximation describes the envelope of the distribution with great
accuracy.

4.2 Probability distribution for the transverse magnetization at thermal equi-
librium

We next focus on the derivation of the explicit form of the characteristic function of the trans-
verse magnetization

M̂ =
L
∑

n=1

Ẑn , (97)

with eigenvalues m = −L,−L + 2, . . . , L − 2, L for even L. The latter has been studied in the
PPA and continuous approximations and finds broad applications in the characterization of
quantum critical behavior [82–86, 88, 89] and the identification of various many-body states
in ultracold-atom quantum simulators [87].

In the Fourier representation, it is the sum of two different contributions:

M̂+ =
∑

k∈k+
2(ĉk ĉ†

k − ĉ†
k ĉk) , M̂− =

∑

k∈k−
2(ĉk ĉ†

k − ĉ†
k ĉk) + ĉ0 ĉ†

0 − ĉ†
0 ĉ0 + ĉπ ĉ†

π − ĉ†
π ĉπ . (98)
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Figure 7: Limiting cases of kink number distribution. Probability distribution of
the number of kinks P(n) as a function of the magnetic field g and inverse tempera-
ture β for a chain of L = 50 spins. The left panel shows the kink-number distribution
for different values of the magnetic field and is obtained using the ground-state char-
acteristic function Eq. (93). The right panel shows the kink number distribution at
infinity temperature, computed using the characterization function given by Eq. (94).
The vertical dashed red line is located at κ1 = L/2, while the long-dashed black line
corresponds to the Gaussian approximation N(L/2, L/4).

In parallel with Eq. (81), we define a new set of a single-mode operators m̂k, m̂0, and m̂π,

m̂k =







2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0






, m̂(1)k =

�

2 0
0 −2

�

, m̂(2)k = 02 . (99)

In addition, in the negative-parity sector, the matrix m̂k has the same form for the momenta
0,π that is given by m̂0 = m̂π = diag (1,−1). We can easily compute exp

�

iθ m̂(1)k

�

and the σ̂k
matrix to obtain

σ̂
(11)
k = cos(2θ ) + i cos(ϑk) sin(2θ ) ,

σ̂
(22)
k = cos(2θ )− i cos(ϑk) sin(2θ ) .

(100)
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Summary 4.4: Full generating function of transverse magnetization

The full characteristic function for the transverse magnetization Eq. (97) at thermal
equilibrium reads

P̃ (θ ) =
1

Z(β , g,γ)

�

P̃+ (θ ) + P̃− (θ )
�

. (101)

Positive part of characteristic function:

P̃+ (θ ) =
1
2

�

∏

k∈k+
2 (cos(2θ ) cosh(βεk(g,γ))− i sin(2θ ) sinh(βεk(g,γ)) cos(ϑk) + 1)

+
∏

k∈k+
2 (cos(2θ ) cosh(βεk(g,γ))− i sin(2θ ) sinh(βεk(g,γ)) cos(ϑk)− 1)

�

.

(102)

Negative part of characteristic function:

P̃− (θ ) =
1
2

�

P̃ F (θ )
∏

k∈k−
2 (cos(2θ ) cosh(βεk(g,γ))− i sin(2θ ) sinh(βεk(g,γ)) cos(ϑk) + 1)

−P̃B(θ )
∏

k∈k−
2 (cos(2θ ) cosh(βεk(g,γ))− i sin(2θ ) sinh(βεk(g,γ)) cos(ϑk)− 1)

�

,

(103)

with

P̃ F (θ ) = 22 cosh
�

βεk=0 + 2iθ
2

�

cosh
�

βεk=π + 2iθ
2

�

,

P̃B(θ ) = 22 sinh
�

βεk=0 + 2iθ
2

�

sinh
�

βεk=π + 2iθ
2

�

.
(104)

The exact partition function is given by Eq. (48), with the eigenenergies εk (g,γ) and
εk=0 given by Eq. (47), and the Bogoliubov angles ϑk satisfying Eq. (17).

By contrast, in the PPA, the characteristic function of the transverse magnetization in the
thermodynamic limit contains only the first term of P̃+(θ ):

Summary 4.5: PPA characteristic function for transverse magnetization

In the thermodynamic limit, Eq. (101) reduces to

P̃PPA(θ ) =
1

2Z+F (β , g,γ)

∏

k∈k+
2 (cos(2θ ) cosh(βεk(g,γ))− i sin(2θ ) sinh(βεk(g,γ)) cos(ϑk) + 1) ,

(105)
where Z+F (β , g,γ) is defined in (49).

The magnetization distribution is shown in Fig. 8 for different values of g and β for a
fixed system size L = 50. The distribution P(m) vanishes for odd values of m for even L. It
is naturally symmetric for g = 0 and approximately so for finite g in the high-temperature
case at low magnetic fields, when it approaches a binomial distribution. The accuracy of the
PPA is remarkable as a function of g and β with discrepancies being noticeable in the pure
ferromagnet (g = 0) at low temperature. As the magnetic field is cranked up at constant β ,
the alignment of the spins is favored shifting the mean and increasing the negative skewness
of the distribution in the paramagnetic phase.
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Figure 8: Magnetization distribution at thermodynamic equilibrium. Probability
distribution of the transverse magnetization P(m) for different values of the magnetic
field g and inverse temperature β in a chain of L = 50 spins. The exact probabil-
ity distribution Eq. (101) (red bars) is compared with the simplified expression in
Eq. (105) (blue bars).

Figure 9 provides a systematic characterization of the first two cumulants as a function
of the inverse temperature for different values of g. In contrast with the kink-number dis-
tribution, in the ferromagnetic phase the variance always exceeds the mean, and thus the
magnetization distribution remains super-Poissonian. In the paramagnetic phase, at any fixed
value of g the variance decreases with temperature, while the converse is true for the mean
magnetization. As a result, the character of the distribution changes from super-Poissonian
to sub-Poissonian as the the temperature is lowered. The behavior of P(m) is shown to be
robust as a function of the system size, with discrepancies between the exact results and the
PPA being restricted to the critical point. The relative error of the PPA remains below 10% as
a function of g and β as shown in Fig. 10.

As in the case of kink number distribution, we close with a characterization of the magne-
tization distribution in the limits of infinite and vanishing inverse temperature β .

Summary 4.6: Limiting cases of transverse magnetization distribution

Exact ground-state characteristic function of transverse magnetization:

P̃β→∞(θ ) =
∏

k∈k+
(cos2θ − i sin2θ cosϑk) . (106)

Exact infinite-temperature characteristic function of transverse magnetization:

P̃β→0(θ ) = cosL θ . (107)

The behavior of the ground-state magnetization distribution is the reverse of the kink-
number distribution in the sense that it becomes approximately symmetric in the ferromagnetic
phase and sharply peaked at m= L in the paramagnetic phase. Using formulas (106) and (63),
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Figure 9: Cumulants of the magnetization distribution as a function of the in-
verse of temperature β . Using the full characteristic function given by Eq. (101),
the mean value of the transversal magnetization κ1 and the variance κ2 are shown
by red circles and blue squares, respectively. The dashed lines correspond to the
numerical results using the simplified characteristic function (Eq. (105)). In the fer-
romagnetic phase the statistics is super-Poissonian, while it changes from super- to
sub-Poissonian in the paramagnetic phase as the temperature is decreased. The mag-
netic field varies from 0.0 to 2.0 from left to right in steps of 0.5. The system size is
L = 12 in the upper row and L = 100 in the lower one.

one can find the first cumulants of the ground-state distribution explicitly. In particular, the
first few cumulants read

κ1 = −
∑

k∈k+
2cosϑk , (108)

κ2 = L − 2
∑

k∈k+
cos(2ϑk) , (109)

κ3 = 4
∑

k∈k+
[cos(ϑk)− cos(3ϑk)] . (110)

The second cumulant turns out to have a particularly simple form due to its close relation to
the ground-state fidelity susceptibility [74,94] and reads

κ2 = L
1+ g L−2

1+ g L
. (111)

By contrast, in the infinite-temperature case, in which the PPA is exact, the distribution
is symmetric, centered at m = 0 and independent of the magnetic field. The magnetization
distribution describes in this case the sum of L independent discrete random variables with
outcomes ±1 with equal probability 1/2. As a result κ1 = 0, κ2 = L/4. In the infinite tem-
perature limit, P(m) is equal to that of a classical Ising chain and can be written explicitly:

Pβ→0(m) =
1
2L

�

L
1
2 (m+ L)

�

, m= −L,−L + 2, . . . , L − 2, L . (112)

Odd cumulant identically vanish, while the first even ones read

κ2 = L , κ4 = −2L , κ6 = 16L , κ8 = −272L , κ10 = 7936L , . . . (113)

As a result, in the normal approximation Pβ→0(n = 2l) is given by Gaussian distribution with
zero mean and variance κ2 = L. Fig. 11 shows this Gaussian distribution as a black envelope,
accurately approximating the exact results.
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Figure 10: Relative error for the first two cumulants of the magnetization distri-
bution as a function of magnetic field g. Using the full characteristic function in
Eq. (101) and the corresponding PPA Eq. (105), the relative error is evaluated as a
function of the magnetic field for a system size L = 12 and different temperatures.

Figure 11: Limiting cases of transverse magnetization distribution. Probability
distribution of the transverse magnetization P(m) as a function of the magnetic field
g and inverse temperature β for a chain of L = 50 spins. The left panel shows the
ground-state transverse magnetization distribution for different values of the mag-
netic field, and is computed using the characteristic function Eq. (106). The right
panel shows the transverse magnetization distribution at infinity temperature, ob-
tained using the characterization function given by Eq. (107). The envelope of the
distribution is reproduced by the Gaussian approximation N(0, L) shown as a dashed
black line.
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5 Conclusion

We have provided an exact treatment of the thermal equilibrium properties for a class of inte-
grable spin chains that admit a description in terms of free fermions. Instances of this family
are the one-dimensional transverse-field Ising, XY and Kitaev models, among other examples.
Whenever the system Hamiltonian commutes with parity operator, the complete Hilbert spaces
is the direct sum of the corresponding even and odd parity subspaces. For an exact treatment
of thermal equilibrium, we have detailed an algebraic approach in the complete Hilbert spaces
and provided the exact expression for the partition function. We have identified the limitations
of the approximate description of thermal equilibrium in terms of the positive-parity sector, fre-
quently adopted in the literature. This approximate approach fails in what can be considered
the most interesting regime: the neighborhood of a quantum critical point at low tempera-
tures. In particular, we have shown that the discrepancies between the exact and approximate
results can lead to significant errors in this regime.

Making use of the exact algebraic framework, we have computed as well the eigenvalue
probability distribution of different observables. As an application, we have characterized in
detail the distribution of the number of kinks as well as the transverse magnetization, covering
all regimes from zero temperature (ground-state behavior) to infinite temperature. Our results
are of direct relevance to the study of thermal equilibrium properties of integrable spin chains
as well as the study of the nonequilibrium dynamics generated by driving a thermal state out
of equilibrium. They are thus expected to find applications in the description of quantum
simulation experiments, quantum annealing and quantum thermodynamics of spin systems.
As a prospect, it is interesting to extend our results to the generalized Gibbs state whenever
the relaxing dynamics of an initial state preserves a set of integrals of motion.
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A Proof Proposition 2: Identities for Traces
First, the formulas given by Eq. (34) are true for n= 1. We assume that they are true for some
n≥ 1 and we compute
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Ô(p)kn+1

�

+ tr
�
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Ô(p)ki

�

− tr
�
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and an inductive step is completed.
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