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Abstract

Fixed points in three dimensions described by conformal field theories with
MNm,n = O(m)noSn global symmetry have extensive applications in critical phenomena.
Associated experimental data for m = n = 2 suggest the existence of two non-trivial fixed
points, while the ε expansion predicts only one, resulting in a puzzling state of affairs.
A recent numerical conformal bootstrap study has found two kinks for small values of
the parameters m and n, with critical exponents in good agreement with experimental
determinations in the m = n = 2 case. In this paper we investigate the fate of the cor-
responding fixed points as we vary the parameters m and n. We find that one family of
kinks approaches a perturbative limit as m increases, and using large spin perturbation
theory we construct a large m expansion that fits well with the numerical data. This new
expansion, akin to the large N expansion of critical O(N)models, is compatible with the
fixed point found in the ε expansion. For the other family of kinks, we find that it persists
only for n = 2, where for large m it approaches a non-perturbative limit with∆φ ≈ 0.75.
We investigate the spectrum in the case MN100,2 and find consistency with expectations
from the lightcone bootstrap.
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1 Introduction

Second-order phase transitions display scale-invariant physics and are widely believed to be
described by conformal field theories (CFTs), which arise at fixed points of the renormalization
group (RG) flow. Due to universality, the physics at these phase transitions is independent of
the underlying microscopic degrees of freedom, which means that the same CFT may describe
a variety of systems. Many important applications of three-dimensional CFTs arise for non-
zero temperature phase transitions, for instance critical liquid-vapor transitions, transitions
between magnetic phases and structural phase transitions.

The observables of a conformal field theory, such as the critical exponents, can be extracted
from the CFT data, which are the scaling dimensions and structure constants (OPE coefficients)
of the local operators in the theory. One principal goal in the theory of critical phenomena is
therefore to make precise determinations of the CFT data. A useful tool in studying CFTs rele-
vant for three-dimensional systems is the Landau–Ginzburg–Wilson description, in which one
writes down a quantum field theory with quartic interactions preserving a given global symme-
try group. By tuning mass parameters (equivalent to tuning the temperature in experiments),
the field theory flows under the RG to a fixed point preserving the same (or larger) global
symmetry. Methods within this paradigm, such as the ε expansion [1], produce in many cases
values of the critical exponents that match well with experiments; see [2] for an extensive
review.

Despite the remarkable success of the mentioned paradigm for many systems, including
those with emergent O(N) symmetry, one cannot rule out the existence of additional CFTs,
not captured by the Landau–Ginzburg–Wilson description but still relevant for experimental
realizations. An interesting case is systems with global symmetry group MNm,n = O(m)no Sn.
The most general Lagrangian that preserves MNm,n symmetry is

L = 1
2 ∂µφi ∂

µφi +
1
8 λ(φ

2)2 + 1
24 g [(φ2

1 + · · ·+φ
2
m)

2 + · · ·+ (φ2
m(n−1)+1 + · · ·+φ

2
mn)

2] , (1)

where φi is an mn-dimensional vector under MNm,n, φ2 = φiφi , and we keep only the kinetic
term and the quartic interaction terms. For the two-coupling theory (1), the ε expansion pre-
dicts only one fully-interacting fixed point with this global symmetry.1 For the experimentally
accessible case of m = n = 2, when the O(2)2 o S2 theory in (1) is equivalent to the more
commonly discussed O(2)2/Z2 theory [3], the critical exponents derived from this fixed point
have not been successful in matching those measured in experiments with helimagnets and
XY stacked triangular antiferromagnets, which cluster in two distinct regions; see Table 1.
Additionally, the fixed point in the ε expansion appears to have g < 0, which is inconsistent

1In addition to this fixed point, one finds also the free theory with g = λ= 0, the O(mn) symmetric theory with
g = 0 and n decoupled O(m) models with λ= 0.

2

https://scipost.org
https://scipost.org/SciPostPhys.11.1.015


SciPost Phys. 11, 015 (2021)

Table 1: Experimental results for phase transitions described by MN2,2 theory. These
values are compiled from [2,4] and references therein.

MN2,2 β ν

XY STAs 0.24(2) 0.55(5)
Tb 0.23(4) 0.53(4)
Ho, Dy 0.39(4) 0.57(4)
NbO2 0.40+0.04

−0.07

with the expected chiral universality class that should describe phase transitions in these sys-
tems [2,5]. 2 Evidence for the existence of further non-perturbative fixed points in the chiral
region has been offered [6–8], but this has been disputed by other authors [4,9–14].

This contradictory set of observations motivated the recent study of MN symmetric theo-
ries using the non-perturbative (numerical) conformal bootstrap [15]. This method, proposed
in [16] and extensively reviewed in [17], makes no assumptions on the underlying microscopic
description and studies CFTs based only on global and conformal symmetry, unitarity, and con-
sistency with the operator algebra (crossing symmetry). In agreement with the experimental
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Figure 1: Bounds in the (∆φ ,∆X ) plane for 3D CFTs with MNm,n global symmetry
with (m, n) = (2,2) and (m, n) = (20, 2). The allowed region lies below the curves
for the corresponding parameter values. These bounds are obtained with the use of
PyCFTBoot [18] with parameters n_max=9, m_max=6, k_max=36 and l_max=26.

data, the conformal bootstrap study in [15] found evidence for the existence of two distinct
CFTs with MN2,2 symmetry, as can be seen from Fig. 1. This figure displays bounds on operator
dimensions in the (∆φ ,∆X ) plane, where φ and X respectively denote the smallest dimension

2In much of the literature, e.g. [2, 5], a coupling v is used instead of our g in (1). The coupling v and our
coupling g have opposite signs, so the chiral region, defined by v > 0 in the literature, corresponds to g < 0 in our
notation.
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operators transforming in the vector and a certain rank-two representation of the MN sym-
metry group. The region below the curves is the allowed parameter space in the respective
theories. In various applications of the conformal bootstrap, it has been observed that a kink
in the boundary of the allowed region is related to the existence of a conformal field theory
with parameters near the location of the kink, and from the two kinks of the MN2,2 curve in
Fig. 1 the following values for the critical exponents were derived [15]:

kink 1: β = 0.293(3) , ν= 0.566(6) , kink 2: β = 0.355(5) , ν= 0.576(8) . (2)

While the critical exponents corresponding to the second kink show reasonable agreement,
within uncertainties, with the results of [8, 19], neither set of values is compatible with the
predictions from the ε expansion, which gives β = 0.370(5) and ν= 0.715(10) [20,21].3 Al-
though it was speculated in [15] that the first kink may be related to the ε expansion through
the large m limit, the results of that study were not sufficient to make any conclusive state-
ments.

The purpose of the present paper is to make a more systematic study of the hypothetical
CFTs living at the two kinks, by investigating the behavior of numerical bounds for various
(m, n). More specifically, we perform numerical conformal bootstrap studies for varying values
of m, keeping n fixed (for most of the work we keep n = 2, but we also obtain a bound for
m= 100 and n= 3,4). For n= 2 we find that, as we increase m, both kinks continue to exist,
and for large m the bound in the (∆φ ,∆X ) plane attain a profile similar to the case MN20,2
displayed in Fig. 1. The large m behavior of the CFT at each kink is subsequently studied.

First, we focus on the first kink, which approaches the value (∆φ ,∆X ) = (0.5, 2) as
m →∞. In [15], it was observed that this limit is compatible with the results in the ε ex-
pansion [3,21,24,25] expanded at large m, where indeed ∆φ →

d−2
2 and ∆X → 2 up to m−1

corrections. We show here that the m−1 corrections can be computed in a perturbative expan-
sion similar to the usual large N expansion of the O(N) model (see e.g. [26]), where now the
operator X acts as the Hubbard–Stratonovich auxiliary field. Specifically, we use the analytic
conformal bootstrap method of large spin perturbation theory, developed in [27–30], to com-
pute m−1 corrections to scaling dimensions and OPE coefficients. This expansion is valid for
all spacetime dimensions d ∈ (2, 4]. Near d = 4, the results agree with the ε expansion and
in d = 3 we get good agreement with the non-perturbative bootstrap results for the first kink.
This gives substantial evidence that we should view the first kink as describing a perturbative
CFT with MN symmetry, existing for a range of (m, n) and d and connected to the ε expansion
via the large m limit.

Second, we study the second kink for n= 2 and increasing m. The bounds in Fig. 1 reveal
that, as we increase m, the values of the scaling dimensions ∆φ and ∆X corresponding to this
kink move far away from the free theory values. We perform a single correlator numerical
bootstrap study where we search for bounds in the (∆φ ,∆X ) plane for increasing values of m,
with the hope of finding a limit point at infinite m for the position of the kink. The results show
that the second kink continues to exist for all values of m studied, and that the position in the
∆φ direction appears to stabilize near the value 0.75. The position in the ∆X direction takes
a value∆X ¦ 6, but is highly sensitive to the numerical precision of the computation (number
of derivatives in the functional used for the numerical bootstrap computations). These values
for ∆φ and ∆X show that, if there is a CFT corresponding to the second kink, it must be of a
non-perturbative type.

To investigate further the potential CFT corresponding to the second kink, we focus on the
case MN100,2 and increase the numerical precision. We use the extremal functional method,

3The corresponding fixed point is called “complex cubic” in [20,21]. Regarding RG stability of this fixed point
relative to the decoupled O(2) one, we note that since the scaling dimension of the first singlet of the O(2) model
is slightly above 1.5 [22], this means that the decoupled O(2) theory is stable in d = 3 [23].
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developed in [31], to extract information about the spectrum of operators in the φ ×φ OPE.
The results give some hints of an organization of the leading twist operators in twist families,
as must be the case according to the lightcone bootstrap [32–34]. For fixed m = 100 we also
study MN100,n for n= 3 and n= 4, but for these values we find no second kink in the (∆φ ,∆X )
bound.

This paper is organized as follows. In section 2 we explain how to study MN symmetric
CFTs in the bootstrap approach using crossing symmetry and unitarity. We introduce relevant
notation and review the known perturbative results of the ε expansion. In section 3 we show
that the CFT corresponding to the first kink can be matched with a perturbative large m expan-
sion, which we construct using large spin perturbation theory. Further, we comment on the
connection to the ε expansion. In section 4 we use the non-perturbative numerical bootstrap
to study the second kink, and discuss the twist families of the spectrum for the representative
case MN100,2. We finish with a discussion, and include some explicit results in an appendix.

For our numerical computations we have used PyCFTBoot [18], qboot [35] and SDPB [36].

2 Review

In this section we briefly review the constraints from unitarity and crossing symmetry on con-
formal field theories, with emphasis on theories with global MN symmetry. We then summarize
the results from previous studies in the ε expansion.

2.1 Unitarity and crossing in the presence of MNm,n symmetry

We consider the four-point correlator of φ i , i = 1, . . . , mn, transforming in the vector repre-
sentation V of the MNm,n = O(m)noSn global symmetry. More precisely, O(m) acts by rotating
the fields within each of the n groups of m fields, and Sn permutes these groups. In terms of

the conformal cross-ratios u =
x2

12 x2
34

x2
13 x2

24
and v =

x2
14 x2

23

x2
13 x2

24
, with x i j = |x i − x j|, the correlator takes

the form

〈φ i(x1)φ
j(x2)φ

k(x3)φ
l(x4)〉=

1

x
2∆φ
12 x

2∆φ
34

∑

R=S,X ,Y,Z ,A,B

Ti jkl
R GR(u, v) , (3)

where TR are projection tensors for the representations R in the tensor product
V ⊗ V = S ⊕ X ⊕ Y ⊕ Z ⊕ A⊕ B. S denotes the singlet representation with Ti jkl

S = 1
mnδ

i jδkl ,
while the remaining symbols denote rank-two symmetric (X , Y and Z) and antisymmetric (A
and B) representations. We will not need the precise form of these projection tensors, which
can be found in [15]. Each function GR(u, v) admits a decomposition in conformal blocks,

GR(u, v) =
∑

O∈R

(−1)`O λ2
O g∆O ,`O(u, v) , (4)

where the sum runs over conformal primary operators of dimension ∆O and spin `O trans-
forming in the representation R. The conformal blocks, denoted by g∆,`(u, v), sum up the
contribution to the correlator of a given primary and all its descendants, and are functions
depending only on the cross-ratios and the dimension and spin of the primary.

We will adopt a notation where we denote by R, R′, R′′ etc. the smallest dimension scalars
in the representation R, and likewise by R`, R′

`
, R′′
`

etc. the smallest dimension spin ` operators
in the representation R. In any unitary CFT, the S representation will contain the identity
operator 1 with ∆ = ` = 0,4 and the stress-energy tensor T = S2 with ∆T = d. In the

4This means we will denote by S the smallest dimension operator different from the identity.
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presence of a continuous global symmetry, a CFT contains in addition a conserved Noether
current Jµ with ∆J = d − 1, which in our case resides in the A representation: J = A1.

Unitarity imposes constraints on the decomposition (4). Reality of the three-point func-
tions 〈φ(x1)φ(x2)O(x3)〉 implies positivity of the expansion coefficients λ2

O, and positivity of
two-point functions of descendants implies unitarity bounds, namely

∆R ¾
1
2(d − 2) , ∆R` ¾ d − 2+ ` , (5)

where the inequalities are saturated only for a free scalar and a conserved current respectively.
Moreover, a non-trivial consequence of unitarity is Nachtmann’s theorem [37], which states
that the twists of the leading singlet operators, τS,` =∆S`−`, form an upward convex function
for all spin ` above some `0, see [38] for a recent discussion.

Crossing symmetry follows from the invariance of the correlator (3) under exchanging
pairs of insertion points. The invariance under x1 ↔ x2 is satisfied by each conformal block
together with the fact that only operators of even/odd spins appear in each representation,
while the invariance under x1 ↔ x3 leads to a non-trivial crossing equation which we will
use. In the presence of global MNm,n symmetry, the crossing equation takes the form

GR(u, v) =
�u

v

�∆φ∑

eR

MReR GeR(v, u) , (6)

where the crossing matrix MReR in the basis {S, X , Y, Z , A, B} is given by

MRR′ =

















1
mn

1
mn

1
m 1 −1 −1

n−1
mn

n−1
mn

n−1
m −1 1− n 1

(m−1)(m+2)
2mn

(m−1)(m+2)
2mn

m−2
2m 0 m+2

2 0
n−1
2n − 1

2n 0 1
2 0 1

2
−m−1

2mn −m−1
2mn

1
2m 0 1

2 0
− n−1

2n
1

2n 0 1
2 0 1

2

















. (7)

We refer to the left-hand side of (6) as the direct channel, and to the right-hand side as the
crossed channel. In the analytic bootstrap approach in section 3.1, the crossing equation is
expanded in the double lightcone limit u� v � 1, and the operators in the crossed channel
will source corrections to the CFT data of the operators in the direct channel.

In the numerical bootstrap approach in section 4.1, the crossing equation is re-written
in a form that treats the channels symmetrically. This form is given explicitly in [15], and
the technical details can be found in that paper. The principles are the standard ones of the
numerical conformal bootstrap [16, 17]: by acting on the crossing equation with a family of
functionals, positivity of the squared OPE coefficients λ2

O is turned into rigorous inequalities
which rule out large regions of the space of allowed operator dimensions. For the theory at
hand, we identify the potential fixed points by observing kinks in the bound in the (∆φ ,∆X )
plane, following [15]. To gain more information about the CFT at the position of the kink, we
apply the extremal functional method developed in [31], which uses the fact that a functional
in the vicinity of the CFT should vanish when applied to the conformal blocks of the operators
present in the spectrum.

2.2 Results from previous studies in the ε expansion

Conformal field theories with MN symmetry have been studied in the d = 4 − ε expansion
over a long time, [20,21,24,25,39,40], most recently in section 5.2.2. of [3]. From the beta
functions of the couplings λ and g in the Lagrangian (1), four fixed points are found in the ε
expansion: mn free fields, n decoupled critical O(m) models, the critical O(mn) model, and
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the perturbative MN CFT. We focus on the MN CFT, which has λ, g 6= 0. At this fixed point, the
scaling dimensions of the leading scalar operators have an expansion of the form

∆φ = 1−
ε

2
+

m(n− 1)[(m+ 2)mn− 10m+ 16]
4 C2

mn
ε2 + γ(3)

φ
ε3 +O(ε4) , (8)

∆S = 2− ε +
6m(n− 1)

Cmn
ε + γ(2)S ε

2 + γ(3)S ε
3 ++O(ε4) , (9)

∆X = 2− ε +
m((m+ 2)n− 6)

Cmn
ε + γ(2)X ε

2 + γ(3)X ε
3 +O(ε4) , (10)

∆Y = 2− ε +
2m(n− 1)

Cmn
ε + γ(2)Y ε

2 + γ(3)Y ε
3 +O(ε4) , (11)

∆Z = 2− ε −
2(m− 4)

Cmn
ε + γ(2)Z ε

2 + γ(3)Z ε
3 +O(ε4) , (12)

where Cmn = (m+ 8)mn− 16(m− 1). In the above expressions we have omitted the explicit
form of the order ε2 and ε3 corrections, which were derived in [3]5 and are available by an
email request to the authors. Moreover, the eigenvalues of the stability matrix are [3]

ω1 = ε +ω
(2)
1 ε

2 +ω(3)1 ε
3 +O(ε4) , (13)

ω2 = −
(m− 4)(mn− 4)

Cmn
ε +ω(2)2 ε

2 +ω(3)2 ε
3 +O(ε4) , (14)

which correspond to ωi =∆i − d for the singlet operators of φ4 type in the theory.
For the specific case of m = 2, the order ε4 renormalization was performed in [20, 21],

giving ∆φ , ∆S , ω1 and ω2 to this order. For the physically relevant cases n = 2 and n = 3, a
Borel–Leroy resummation was performed to give estimates for the critical exponents γ, ν, η
in three dimensions; see section 3.2 below.

3 The perturbative fixed point at large m

In this section we will derive a large m expansion for MNm,n symmetric CFTs, and show that
it gives predictions that match well with those found in the numerical bootstrap for the first
kink. The existence of this expansion establishes the perturbative nature of the corresponding
family of CFTs .

3.1 Analytic expansion from large spin perturbation theory

Expanding the expressions (9)–(12) for the scalar operators at large m we observe that

∆X = 2+O(m−1) , (15)

whereas the scalar operators in the S, Y and Z representations all satisfy ∆= 2− ε+O(m−1).
This observation indicates that there exists, for all d ∈ (2,4], a large m expansion where
∆X = 2+O(m−1), and∆R = d−2+O(m−1) for R= S, Y, Z . These values are consistent with a
description in terms of Hubbard–Stratonovich auxiliary fields, similar to the large N expansion
of the critical O(N) model.

In [30], based on [28, 29], it was described how to use large spin perturbation theory to
extract properties of φ4 theories with Hubbard–Stratonovich auxiliary fields. We will follow

5The leading m dependence is given in equation (5.104) and (5.105) in the arXiv submission of [3], where
N = mn and σ = S, ρ1 = X , ρ2 = Z and ρ3 = Y .
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this approach, which means that we assume that at large m the operator spectrum is that
of mean field theory for φ with ∆φ =

d−2
2 + O(m−1), but with the bilinear scalar in the X

representation replaced by a Hubbard–Stratonovich field X of dimension ∆X = 2+ O(m−1).
The framework of [30] will then show what operator dimensions, in the large m expansion,
are consistent with these assumptions.

Let us briefly review the method of large spin perturbation theory, which in the present case
will be a perturbation of mean field theory, i.e. we assume that each representation R in the
tensor product V⊗V contains operators of spin ` and scaling dimensions 2∆φ+2k+`+O(m−1).
The operators with k > 0 have OPE coefficients that are suppressed in the 1/m expansion,6

and we can therefore focus on the leading twist operators, which we denote by R`. These are
bilinear operators of the schematic form φ∂ `φ and acquire individual anomalous dimensions

∆R` = 2∆φ + `+ γR` , (16)

where γR,` is of order O(m−1). Symmetry under x1 ↔ x2 constrains the leading twist op-
erators such that those in the S, X , Y, Z representations have even spin, and those in the A, B
representations have odd spin.

In large spin perturbation theory, the OPE coefficients λ2
φφR`

and the anomalous dimen-
sions γR` of spinning operators in the direct channel are computed using the Lorentzian in-
version formula [42]. The integrand of the inversion formula is proportional to the double-
discontinuity dDisc[GR(u, v)], defined as the difference between the correlator and its two
analytic continuations around v = 0. In the limit u� v� 0, and in an expansion in m−1, the
double-discontinuity can be computed from crossed-channel operators, i.e. those appearing
in the conformal block decomposition of the right-hand side of (6). The contribution to the R`
from an operator O in the R̃ representation is proportional to

dDisc|O ∼ MRR̃λ
2
φφO sin2

�

π
2 (τO − 2∆φ)

�

, (17)

where the argument of the squared sine is derived from the v → 0 scaling of
v−∆φ g∆O ,`O(v, u) ∼ v

1
2τO−∆φ with τO = ∆O − `O. The appearance of the sin2 factor means

that the contribution from mean field theory operators will be suppressed by their squared
anomalous dimension.

In order to apply the framework of [30], we assume that the operator X has an OPE coef-
ficient of the form

λ2
φφX =

aX

m
+O(m−2) , (18)

for some constant aX depending on n and spacetime dimension d. The contribution to the
CFT data in the direct channel is then computed using the inversion formula from double-
discontinuities (17) of crossed-channel operators. The identity operator 1 generates the lead-
ing OPE coefficients of R`, and the operator X gives a leading order contribution to γR` in
all representations R. In the representations Y, Z , A, B the crossed-channel operators 1 and X
provide the only contributions at order m−1, and, using the formulas given in [30], we can
write down the scaling dimensions7

∆Y` =∆A` = `+ 2∆φ −
aX

2(`+ 1/2)(`− 1/2)m
+O(m−2) , (19)

∆Z` =∆B` = `+ 2∆φ +
aX

2(`+ 1/2)(`− 1/2)(n− 1)m
+O(m−2) . (20)

Recall that the spin ` is even for Y and Z , and odd for A and B.

6This follows immediately from the expression for the mean field theory OPE coefficients derived in [41], upon
inserting ∆φ =

d−2
2 +O(m−1).

7We present only the values in d = 3 dimensions, results for generic d are given in Appendix A.
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Due to the combined m dependence of all three factors in (17), the anomalous dimensions
in the S and X representations will get leading order contributions from X as well as from
the R` in the other four representations. In the language of [30], we therefore have group
I = {Y, Z , A, B}, and group II = {S, X }. Evaluating the formulas of that paper gives

∆S` = `+ 2∆φ −
aX

2(`+ 1/2)(`− 1/2)m
−

π2 ` a2
X n

4(`+ 1/2)(`− 1/2)(n− 1)m
+O(m−2) , (21)

∆X` = `+ 2∆φ −
aX

2(`+ 1/2)(`− 1/2)m
−

π2 ` a2
X n(n− 2)

4(`+ 1/2)(`− 1/2)(n− 1)2m
+O(m−2) . (22)

The expressions (19)–(22) depend on two unknowns: the constant aX introduced in (18),
and the leading anomalous dimension γ(1)

φ
defined by∆φ =

d−2
2 +γ

(1)
φ
/m+O(m−2). However,

conservation of the global symmetry current and the stress-energy tensor gives the two equa-
tions ∆A1

= d − 1, ∆S2
= d. The latter equation is quadratic in aX , and we get two solutions:

aX = γ
(1)
φ
= 0 and

aX =
4(n− 1)
π2n

, γ
(1)
φ
=

4(n− 1)
3π2n

. (23)

Choosing the non-trivial solution, we have fixed the leading order anomalous dimensions of
all leading twist spinning operators in the theory.

We have also computed the corrections to the OPE coefficients of these operators, de-
fined with respect to the leading order result given by MRS times the OPE coefficients of mean
field theory. In general, these results are not particularly illuminating, but specifying to the
conserved operators we extract the corrections to the central charge and the current central
charge,8

CT

CT,free
= 1−

40(n− 1)
9n

1
π2m

+O(m−2) , (24)

CJ

CJ ,free
= 1−

64(n− 1)
9n

1
π2m

+O(m−2) . (25)

The most important class of observables is the dimensions of the leading scalar operators
in each representation. Unfortunately, spin zero is beyond the guaranteed region of conver-
gence of the Lorentzian inversion formula and it is not a priori clear how to extract these
values. However, in the large N expansion of theories with O(N) [29] and O(m)×O(N) [30]
global symmetry, it has been observed that evaluating ∆R` for ` = 0 correctly reproduces the
dimensions of the scalar operators as computed by independent methods. If we assume that
this is the case also for our MN symmetric theory, we can find the scalar operator dimensions
by demanding that ∆X = d −∆X`=0

and that ∆R = ∆R`=0
for R = S, Y, Z . Further support for

this assumption is that the expressions derived from this assumptions, evaluated for d = 4−ε,
agree with the expressions (9)–(12) in the overlap of the orders: ε3/m. In three dimensions
we find the following dimensions of the scalar operators:

∆φ =
1
2
+

4(n− 1)
3n

1
π2m

+O(m−2) , (26)

∆S = 1+
32(n− 1)

3n
1
π2m

+O(m−2) , (27)

∆X = 2−
32(n− 1)

3n
1
π2m

+O(m−2) , (28)

8The observant reader may note that these results agree with those of one free and n − 1 interacting O(m)
models. This agreement is broken at higher orders in m−1, which can be seen from the ε expansion, where
CT/CT,free = 1− 5γ(2)

φ
ε2/3+O(ε3) [30].
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∆Y = 1+
32(n− 1)

3n
1
π2m

+O(m−2) , (29)

∆Z = 1+
8(n− 4)

3n
1
π2m

+O(m−2) , (30)

and results for generic spacetime dimension d are presented in Appendix A.

3.2 Comparison with numerical results

The results (26)–(30) can now be compared with the numerical bootstrap results for the first
kink. In Fig. 2 we display the bounds in the (∆φ ,∆X ) plane from Fig. 2 of [15], together with
our new large m results (26), (28), as well as the ε3 results (8), (10)9 from the literature. We

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535
1

1.2

1.4

1.6

1.8

2

2.2

MN3,2

MN5,2

MN10,2

MN30,2

∆φ

∆X

Figure 2: Bounds and corresponding locations of fixed points given as dots for large
m and crosses for ε expansion results. The lines connecting dots and crosses are
drawn to help illustrate results pertaining to the same theory.

see that the agreement is good between all three methods for m � 1, and that the large m
expansion better captures the finite m behavior than does the ε expansion.

Our new results in the large m expansion can also be used to derive predictions for the
critical exponents using the relations

η= 2− d + 2∆φ , ν−1 = d −∆S , α= 2− νd , (31)

β = ν∆φ , γ= ν (d − 2∆φ) , φκ = ν(d −∆Z) . (32)

For the physically relevant case MN2,2, our new predictions for β and ν from the large m expan-
sion are closer to numerical bootstrap results, as well as experiments and Monte Carlo results,
than predictions from the ε expansion, as can be seen in Table 2. Also for the chiral cross-over
exponent φκ, the value 1.2343 derived from our large m results10 compares favorably with
the Monte Carlo value 1.22(6) [43].

9In producing this graph, as well as the corresponding values in Table 2, we have used the truncated results of
the ε expansion at order ε3. We comment on this in section 3.3.

10We first estimated ∆S and ∆Z by evaluating the truncated expansions (27) and (30) for m = n = 2, before
using (32) to find φκ.
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Table 2: Comparison of data for MN symmetric theories across various methods. The
truncated series denote truncation to orders ε3 and m−1 respectively for the scaling
dimensions. These numerical values are then used in (31) and (32) to give estimates
for β and ν.

MN2,2 ∆φ ∆S ∆X β ν

XY STA 0.24(2) 0.55(5)
Tb 0.23(4) 0.53(4)
Monte Carlo [43] 0.253(10) 0.54(2)
Monte Carlo [8] 0.317(35) 0.63(7)
Numerical bootstrap [15] 0.518(1) 1.233(20) 1.676(10) 0.293(3) 0.566(6)
ε4 resummation [20,21] 0.370(5) 0.715(10)
ε expansion (trunc.) 0.5191 1.5052 1.3808 0.3473 0.6690
Large m expansion (trunc.) 0.5338 1.2702 1.7298 0.3086 0.5781
MN2,3 ∆φ ∆S ∆X β ν

Numerical bootstrap [15] 0.518(1) 1.279(20) 1.590(10) 0.301(3) 0.581(6)
ε4 resummation [20,21] 0.363(6) 0.702(10)
ε expansion (trunc.) 0.5186 1.4642 1.3976 0.3377 0.6511
Large m expansion (trunc.) 0.5450 1.3603 1.6398 0.3324 0.6099
MN20,2 ∆φ ∆S ∆X β ν

Numerical bootstrap 0.5032(1) 1.025(20) 1.965(10) 0.2548(26) 0.506(5)
ε expansion (trunc.) 0.5047 1.0215 1.9606 0.2551 0.5054
Large m expansion (trunc.) 0.5034 1.0270 1.9730 0.2551 0.5068

3.3 Connection to the ε expansion

As we mentioned in the introduction, results derived in the ε expansion have not been suc-
cessful in matching the experimental values observed in the cases MN2,2 and MN2,3. This is in
contrast to critical phenomena described by CFTs with several other symmetry groups, where
the results in the ε expansion give surprisingly good agreement with experimental data as well
as non-perturbative results from Monte Carlo simulations and numerical conformal bootstrap.

The lack of agreement between bootstrap and ε expansion results in the MN2,2 case may
be taken as a sign that the fixed point found of the ε expansion, as discussed in section 2.2, is
not connected to the CFT describing the critical phenomena in three dimensions. Our results
strongly indicate the contrary, and that the connection is manifest through the large m expan-
sion derived above. Specifically, near four dimensions our new analytic results agree with the
ε expansion, and in three dimensions, the large m expansion is connected to the finite m CFTs
through the family of kinks displayed in Fig. 2.

We note that for the larger values of m there is good agreement between all three methods:
large m expansion, ε expansion, and numerical conformal bootstrap. For the lower values of
m, our new large m expansion evaluates at a point closer to the corresponding kink than
does the ε expansion. For the latter, we have simply used direct truncation of the order ε3

results; alternatively one could use Padé approximants or various resummation techniques.11

In Table 2 we extended this comparison to more observables, and again we get an improved
agreement with the numerical bootstrap compared to the ε expansion. Note, for instance, that
for small m the ε expansion predicts that ∆X < ∆S , which is inconsistent with the bootstrap

11We find that the Padé approximants constructed from the order ε3 results contain spurious poles in the region
ε ¶ 1, and since the ε expansion is not the focus of this paper we have not attempted any resummation methods.
Note that the resummed ε expansion of [21], included in Table 2, does not give any improvement compared to a
direct truncation.
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results.
In Table 2, for the MN2,2 case, we have also included some results from experiments and

Monte Carlo simulations, which in the literature are assigned to the chiral universality class.
As mentioned in the introduction, the MN2,2 fixed point obtained in the ε expansion has g < 0
in (1), which means that it should not be applicable to these cases. However, g < 0 in the ε
expansion does not guarantee that g < 0 as ε becomes finite, and therefore it cannot be ruled
out that at ε = 1 the fixed point of kink 1 in fact has g > 0 and thus lies in the chiral region.
Unfortunately, we are currently unable to probe the sign of g using our bootstrap methods.

While the values for the critical exponent ν show good agreement across experiments,
bootstrap, Monte Carlo and large m expansion, the situation for the exponent β is more con-
cerning. In fact, as already pointed out in the literature [2, 4], some of the experimental and
Monte Carlo values do not satisfy the constraint 2β −ν¾ 0 as implied by the unitarity bound
(5) for ∆φ . This inconsistency could be explained by unknown systematic errors of these
methods, or that they are not measuring the exponents at criticality. We do not wish to com-
ment further on this, more than to point out that our results give exponents consistent with
unitarity.

4 The non-perturbative fixed point at large m

In this section we study, using the numerical bootstrap, the large m limit of the second kink
for MNm,n symmetric theories. While two kinks are clearly visible for MN2,3 in [15, Fig. 4], we
find that the second kink only persists at large m for the case n= 2, and we focus our attention
to the cases MNm,2 for various m.

4.1 Numerical bootstrap study

Our first set of results consists of bootstrap bounds for MNm,2 theories for large values of m;
see Fig. 3. These bounds show that the kink persists at large m and that its position stabilizes
close to ∆φ = 0.75. However, the kink still moves significantly in the ∆X direction.

The position for ∆X of the kink is not stable upon increasing the number of derivatives;
see Fig. 4. It appears, however, that∆φ is fairly stable near the value 0.75. We conjecture that

∆φ |m→∞,n=2 = 0.75(1) . (33)

For our strongest numerics we used qboot [35] with parameters prec=1300, n_Max=560,
lambda=51, numax=30 and the set of spins {0, . . . , 80, 85, 86, 89, 90, 93, 94, 97, 98, 101,
102, 105, 106, 109, 110, 111, 112, 115, 116, 119, 120}.

We also obtained bounds for m= 100 with n= 3, 4. As we see in Fig. 5, the kink is clearly
present only for n = 2. This suggests that there exists a critical line nc(m) below which we
have two distinct CFTs with MNm,n global symmetry.
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Figure 3: Bounds for 3D CFTs with MNm,2 global symmetry for various values of m.
The allowed region is below the curves in the corresponding theories. These bounds
are obtained with the use of PyCFTBoot [18] with parameters n_max=9, m_max=6,
k_max=36 and l_max=26.
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Figure 4: Bounds for 3D CFTs with MN100,2 global symmetry with increasing numer-
ical strength (top to bottom). For these bounds we used qboot [35]. These bounds
are all stronger than the corresponding bounds in Fig. 3. The latter are obtained with
qboot with the choice Λ≈ 25.

Subsequently, we focused on the values (m, n) = (100,2), and extracted the spectrum using
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Figure 5: Bounds for 3D CFTs with MN100,n global symmetry for various values of
n. The allowed region is below the curves in the corresponding theories. For these
bounds we used qboot [35]with parameters prec=1200, n_Max=520, lambda=45,
numax=26 and the set of spins {0, . . . , 60, 63, 64, 66, 67, 73, 74, 77, 78, 81, 82, 85,
86, 89, 90, 93, 94, 97, 98}.

the extremal functional method [31]; see Fig. 6 and Fig. 7. We present results for ∆φ = 0.75,
for which we used PyCFTBoot [18] with parameters n_max=13, m_max=10, k_max=50 and
l_max=40. From Fig. 4 we we estimate the scalar operator dimensions, for (m, n) = (100, 2),
to

∆φ = 0.75(1) , (34)

∆X = 6.1(4) . (35)

From Figs. 6 and 7 we then read off the dimensions of the leading scalar operators to

∆S ≈ 1.35 , (36)

∆Y ≈ 0.8 , (37)

∆Z ≈ 0.6 . (38)

It is interesting to note that these results have ∆Z < ∆φ . The small values for ∆Y and ∆Z
suggest that a mixed correlator bootstrap involving the operators Y and/or Z may give results
that are quite constraining.

4.2 Nonperturbative aspects of the large m theory

The results from our numerical bootstrap show that the second kink continues to exist for
all values of m ¾ 2, indicating the existence of a corresponding CFT, in the sense of a set
of conformal primary operators with scaling dimensions and OPE coefficients consistent with
unitarity and crossing. We have only considered the constraints from the 〈φφφφ〉 correlator,
and numerical studies using a multi-correlator approach will either give further constraints on
the candidate CFT or disprove its existence.
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Figure 6: Plots from the extremal functional method for the even representations. In
the horizontal axis we plot the scaling dimension and in the vertical the logarithm of
the action of the functional on convolved conformal blocks (denoted by F∆,` in [31]).
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Figure 7: Plots from the extremal functional method for the odd representations.

The motivation for our work was to see if the candidate theory approaches a simplifying
limit as m→∞, for instance a perturbation from a theory of generalized free fields. If this
were the case, it could potentially be studied using perturbative methods just like we did for
the first kink in section 3. Our results show that this is not the case, meaning that the candidate
CFT remains non-perturbative, or “strongly coupled” for all values of m. It will therefore be
challenging to corroborate the existence of this CFT.

There is, however, one test that any conformal field theory must pass, be it perturbative
or not, namely consistency with the predictions from the lightcone bootstrap [32, 33]. These
papers proved the twist additivity, stating that any conformal field theory containing operators
O1 and O2, must also contain an infinite family of spinning operators [O1,O2]0,`

12 with twists
(recall that τ=∆− `)

lim
`→∞

τ` = τ∞ = τ1 +τ2 . (39)

This statement means that a given theory will contain many different accumulation points
τ∞, see [44] for observations in the ε expansion of the O(N) model predating the lightcone
bootstrap, however not all these values may be visible in a given correlator. In fact, the only
accumulation point guaranteed to exist in the direct channel of the 〈O1O2O2O1〉 is τ1 + τ2,
but other values are not excluded. The conclusion is that we expect that in our candidate CFT
the value

τ∞ = 2∆φ = 1.50(2) (40)

is a twist accumulation point, and operators in the twist family corresponding to this value
should be visible in our numerical bootstrap study.

In a weakly coupled theory, where∆φ is close to the scalar unitarity bound d−2
2 , the twists

of the double-twist operators [φ,φ]0,` are also close to the spinning unitarity bound d − 2,
c.f. (5). In such a theory, the double-twist operators have leading twist, and will include the
stress-energy tensor at `= 2.

In the generic case, where ∆φ −
d−2

2 is finite, there are three possibilities:

• The double-twist operators [φ,φ]0,` remain the operators at leading twist for each spin,
which means that they acquire “large” anomalous dimensions γ` = τ` −τ∞ in order to
accommodate the stress-energy tensor at `= 2. This is the situation in 3D critical O(N)

12The interacting theory also contains subleading twist families [O1,O2]k,` with twists approaching τ1+τ2+2k.
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models at finite N , and indeed also in the perturbative fixed point of section 3 in this
paper.13

• The stress-energy tensor belongs to an additional twist family below the double-twist
operators. This case happens for instance when φ is a composite operator in weakly
coupled theories. An example is correlators of gauge-invariant operators in weakly cou-
pled N = 4 SYM, where the double-twist family consists of double-trace operators and
the additional leading twist family consists of the single-trace weakly broken currents.

• The stress-energy tensor and other conserved currents are isolated operators not belong-
ing to any twist family. This happens in N = 4 in the strong coupling expansion, where
the lower limit of analyticity in spin is shifted upwards [42], but is not expected for a
bona fide CFT with usual Regge behavior.

We now study the plots in Figs. 6 and 7 to see if they are consistent with any of the mentioned
scenarios. Since the position of the kink could not be precisely determined, we do not expect
these plots to give very precise values for the operator dimensions. We can, however, look at
the qualitative behaviour of the lowest dimension operators.

In the S and X representations, the spectrum plots are comparatively sparse. There the low-
est dimension operators at each spin are consistent with the first scenario, with large anoma-
lous dimensions. In the singlet representation, these anomalous dimensions are negative,
which is consistent with Nachtmann’s theorem (convexity) and with the stress-energy tensor
appearing at ` = 2. In the X representation, the anomalous dimensions are positive, and it
seems like the family can be extended to spin zero to include the X operator.14 On the contrary,
the Y , Z , A, and B representations show a comparably dense spectrum, which is consistent with
the second scenario of a twist family below the double-twist operators. In Fig. 8 we display a
cartoon that summarizes these observations; however, further numerical study will be needed
to confirm or disprove this picture.

While it is encouraging that the spectrum plots are not inconsistent with the constraints
from the lightcone bootstrap, we would like to address some issues that complicate the picture.
As already mentioned, the uncertainty in the position of the kink induces uncertainty in the
spectrum plots. Moreover, the plots should not be interpreted as displaying the full spectra
in the respective representations since they are only showing operators with a non-negligible
contribution to the φ four-point function. The complete spectrum of the theory is more dense
than our cartoons of Fig. 8 indicate. For instance, the singlet representation is expected to
contain accumulation points 2τO for all operators O in the theory and in our case this would
include an accumulation point 2∆Z = 1.2, which is below the value 2∆φ in (40). A numer-
ical bootstrap study of mixed correlators may reveal more operators. In [34], an ambitious
attempt was made to determine the operator spectrum in the 3D Ising CFT, using a system of
mixed correlators constructed out of σ and ε, the smallest dimension Z2 odd and even oper-
ators. Based on [45], the extremal functional was then applied to a sample of points on the
boundary of the allowed region (in this case an island), and only stable operator dimensions
were deemed to be candidates for primary operators in the spectrum. A similar computation
was performed in [46] for the 3D O(2) CFT. The method appears to give somewhat reliable
predictions for the spectrum at low operator dimensions, but misses higher-spin operators
asymptoting to double-twist dimensions of operators not included in the system of correlators
studied.15 It would be desirable to perform a similar study of the theory at hand.

13Note that in these theories, the anomalous dimensions never become particularly large; the largest values is
attained in the 3D O(2) CFT with τ∞ −τT = 0.0383.

14By studying also the spectrum plots at spin 6 and 8 (not displayed), we note that the twists of the leading
operator continues to decrease according to the behavior displayed in Fig. 8. Note however the feature at ∆ = 5
in Fig. 6f, a similar feature is noted at spin 6 (but not at spin 8) and is likely to be a spurious zero.

15For instance, results of [34] clearly identify the accumulation points 2∆σ = 1.036, 2∆ε = 2.825 and
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Figure 8: Cartoons for the hypothetical twist families in the various representations
showing spin on the horizontal axis and twist on the vertical axis. This picture is
based on the plots in Figs 6 and 7 using the extremal functional method, and needs
to be confirmed or disproved by other methods. The unitarity bound (5) is shown
in blue and the value 2∆φ = 1.5 is shown in dashed gray. The complete spectrum is
expected to contain more operators than those in the Regge trajectories shown. Only
S2 = T and A1 = J have twists exactly on the unitarity bound.

5 Discussion

In this work we studied CFTs with global symmetry MNm,n = O(m)noSn in d = 3 dimensions,
with the motivation of evaluating further the potential existence of two distinct fixed points
in such theories, as was recently suggested in [15] for the MN2,2 and MN2,3 theories. For
theories with n = 2 we found evidence supporting this conclusion by considering various
values of m and observing two distinct kinks in bootstrap bounds, even for large m. For n> 2,
our bootstrap bounds did not include a clear second kink in the expected region for large n,
although such a kink does exist in the MN2,3 theory (see [15, Fig. 4]). Our results suggest that
there exists a critical line nc(m) below which there are two distinct MN CFTs.

The second kink we examined appears to not correspond to a known theory obtained
within the standard Wilson–Fisher paradigm. Looking at the operator spectrum at this kink,
we verified that it satisfies general expectations derived from the Nachtmann theorem [37]
and the lightcone bootstrap [32, 33]. If this kink is due to a corresponding full-fledged CFT,
this would indicate that the Wilson–Fisher paradigm is incomplete, i.e. that there exist fixed
points in d = 3 that cannot be obtained from continuations of fixed points in d = 4 − ε.
Recently, other bootstrap works have reported kinks that do not appear to be of Wilson–Fisher
type [47–49], but the qualitative features of these kinks differ from ours and they may be of
different origin. Interestingly, the picture emerging from our spectrum analysis at large m
shows some similarities with results in large N O(N)3 bosonic tensor models [50].16 It would

2∆σ + 2 = 3.036, but misses the intermediate values 2τT = 2 and τT + ∆ε = 2.413. Likewise in the O(2)
CFT, not all expected operators in the charge 4 sector were found numerically in [46].

16In these models, ∆φ = d/4, and the bilinear operators in some representations, including those containing
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be interesting to further investigate the consistency of the spectrum of the second kink, using
a numerical application of the Lorentzian inversion formula as has been done for the Ising and
O(2) CFTs [46, 53]; see also [34]. This would require a more precise determination of the
spectrum and estimation of OPE coefficients.

With regards to the experimentally accessible MN2,2 case, out of the five scenarios of [4,
Sec. III.B.3], all of our bootstrap results favor “Scenario II”, with two fixed points and therefore
second-order phase transitions in both groups of systems. However, we stress that the values
of the exponent β obtained in experiments are in mild tension with the bootstrap ones for the
first kink, see Tab. 2. Related to this issue is perhaps the fact that experimental and Monte
Carlo results are inconsistent with unitarity, which predicts that 2β − ν ¾ 0. Of course, by
construction the numerical bootstrap results are consistent with unitarity. Given the relatively
good agreement of ν between bootstrap, experimental and Monte Carlo results, we conclude
that there is need for a more accurate determination of β with experiments and Monte Carlo
simulations, controlling systematic errors.

It would be desirable to compute results at large m using conventional diagrammatic tech-
niques similar to the large N expansion of the critical O(N) model. There, the leading scalar
operator dimensions have been computed to orders N−3 (∆φ [54]) and N−2 (∆S [55,56] and
∆T [57]), and results for the next-to-leading scalar singlet at order N−2 also exist [58]. A dif-
ference with the O(N) model is that the auxiliary field is now X , which is not a singlet under
the global symmetry.

Additionally, it would be informative to perform a numerical bootstrap in intermediate
dimensions 3 < d < 4, like that in [59–61], in order to examine the behavior of the kinks as
we approach d = 4. This will allow us to make better contact with the ε expansion for the first
kink, as well as determine if the second kink persists closer to d = 4. We note here that theories
defined for non-integer values of d are expected to be non-unitary [62], but this is not expected
to cause problems when bounding scaling dimensions of low-lying operators. Mixed correlator
bootstrap studies in d = 3 and 3 < d < 4 could also yield crucial pieces of information that
would allow us to further characterize the kinks. Finally, it would be instructive to apply
alternative methods, such as non-perturbative RG, to MN theories; see [63] for successful
recent work away from unitarity in O(N) models.
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conserved currents, acquire large anomalous dimensions, similar to Fig. 8a and 8b; see [51,52] for recent work in
the supersymmetric case.
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A Large m results for general d

In this appendix we present the results of section 3.1 for general spacetime dimension d = 2µ.
The scalar operator dimensions are given by

∆φ = µ− 1+
n− 1

n
η1

m
+O(m−2) , (41)

∆S = 2(µ− 1) +
4(µ− 1)(2µ− 1)(n− 1)

(2−µ)n
η1

m
+O(m−2) , (42)

∆X = 2− 4
(µ− 1)(2µ− 1)n− 4µ2 + 6µ− 1

(2−µ)n
η1

m
+O(m−2) , (43)

∆Y = 2(µ− 1) +
4(n− 1)
(2−µ)n

η1

m
+O(m−2) , (44)

∆Z = 2(µ− 1) + 2
(2−µ)n− 2
(2−µ)n

η1

m
+O(m−2) , (45)

where η1 =
(µ−2)Γ (2µ−1)

Γ (1−µ)Γ (µ)2Γ (µ+1) ; the spinning operator dimensions by

∆S` = `+ 2∆φ −
2µ(n− 1)

J2n

�

µ− 1+
Γ (`+ 1)Γ (2µ− 1)
Γ (`+ 2µ− 3)

�

η1

m
+O(m−2) , (46)

∆X` = `+ 2∆φ −
2µ
J2n

�

(µ− 1)(n− 1) +
(n− 2)Γ (`+ 1)Γ (2µ− 1)

Γ (`+ 2µ− 3)

�

η1

m
+O(m−2) ,

(47)

∆Y` =∆A` = `+ 2∆φ −
2(µ− 1)µ(n− 1)

J2n
η1

m
+O(m−2) , (48)

∆Z` =∆B` = `+ 2∆φ +
2µ(µ− 1)

J2n
η1

m
+O(m−2) , (49)

where J2 = (µ− 1+ `)(µ− 2+ `) and we have substituted the value for aX =
(n−1)(µ−1)µ

n(µ−2)2 η1;
and the central charge corrections by

CT

CT,free
= 1−

n− 1
(2−µ)µ(µ+ 1)n

�

2µ(2−µ)[π cot(πµ) + S1(2µ− 2)]−µ2 + 2µ+ 4
� η1

m

+O(m−2) , (50)

CJ

CJ ,free
= 1−

2(2µ− 1)(n− 1)
µ(µ− 1)n

η1

m
+O(m−2) , (51)

where S1(x) denotes the standard analytic continuation of the harmonic numbers away from
integer arguments. For µ= 3/2 the expressions here reduce to those computed in section 3.1,
and for µ= 2− ε/2, the expressions agree with the known results in the ε expansion.
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