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Abstract

We demonstrate how to map out the phase diagram of a two dimensional quantum
many body system with no prior physical knowledge by applying deep anomaly detection
to ground states from infinite projected entangled pair state simulations. As a bench-
mark, the phase diagram of the 2D frustrated bilayer Heisenberg model is analyzed,
which exhibits a second-order and two first-order quantum phase transitions. We show
that in order to get a good qualitative picture of the transition lines, it suffices to use
data from the cost-efficient simple update optimization. Results are further improved by
post-selecting ground-states based on their energy at the cost of contracting the tensor
network once. Moreover, we show that the mantra of “more training data leads to bet-
ter results” is not true for the learning task at hand and that, in principle, one training
example suffices for this learning task. This puts the necessity of neural network opti-
mizations for these learning tasks in question and we show that, at least for the model
and data at hand, a simple geometric analysis suffices.
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1 Introduction

With the introduction of a new data-driven computation paradigm, machine learning (ML)
techniques have been very successful in performing recognition tasks and have had a big im-
pact on industry and society. ML has been successfully applied to a variety of physical problems,
and vice versa, physics has inspired new directions to explore in understanding or improving
ML techniques [1]. Among the most prominent and successful applications of ML in physics
is the classification of phases in many body physics [2–20]. Of particular interest are unsu-
pervised methods that require no or little prior information for labeling [2, 3, 6–8, 21]. In
particular, phase diagrams have been mapped out in a completely unsupervised fashion with
no prior physical knowledge from 1D tensor network data [22] and experimental data [23]
via anomaly detection.

In this work, we extend the application of anomaly detection for phase characterization
to 2D quantum many body systems with projected entangled-pair states (PEPS). PEPS have
been introduced as an efficient ansatz for ground states for 2D Hamiltonians [24–26] and
extended to simulate the thermodynamic limit with infinite PEPS (iPEPS) [27]. Various meth-
ods to optimize the iPEPS tensors exist, including (fast-) full update imaginary time evolution
algorithms [27, 28] and energy minimization approaches [29–31]. Computationally cheaper
alternatives were introduced with the simple update [32, 33] and cluster update [34] algo-
rithms that perform optimizations locally at the cost of numerical accuracy. Progress in the
systematic study of continuous phase transitions has recently been achieved based on a finite
correlation length scaling analysis [35–37].

The intention of the scheme presented in this work is not to improve numerical accuracy
of determining phase boundaries, but to obtain a qualitative phase diagram with low computa-
tional cost and no physical a priori knowledge. The former, low computational cost, is achieved
by employing the simple update optimization algorithm with contractions omitted throughout
the whole process. Physical knowledge in this scheme is redundant as we resort to quantities
obtained directly from the iPEPS wave function from simulations as inputs for the machine
learning method; in this case singular values between bonds or reduced density matrices. In
other words, we do not need to choose and compute suitable observables that contain sufficient
information about the phase boundaries for the machine learning processing. In 1D systems,
the singular values between bonds have a clear physical interpretation, as they characterize
the entanglement properties between the subsystems at each end of the bond. In 2D, however,
there is no such interpretation and it is non-trivial to show that singular values at bonds are
still sufficient to determine phase boundaries. In the considered approach, phase boundaries
are characterized without the need to know the order parameter or symmetry groups of the
phases. In fact, in a scenario where we are given data from iPEPS to analyze, in principle we
do not even need to know the Hamiltonian.

In contrast to supervised methods, where at least a rough idea of the regions of different
phases (and the number of separate phases) is needed for labeling a training set, we do not
need to know anything about the phase diagram by using unsupervised anomaly detection.
This is because in this scheme a region of the diagram is chosen to represent normal data and
is then tested for the whole diagram. Initially, this normal region is chosen randomly and may
contain states from one or multiple phases. When states from different phases than it has been
trained on are tested, they are marked as anomalies. Between those states and the training
region, there is a transition from normal to anomalous data that corresponds to the phase
transition. In the next training iteration, the normal region is put where anomalies have been
found in the previous round and the process repeated until no previously unseen anomalous
region is found. This process only needs O(Nphases) iterations where Nphases is the number of
phases in the diagram. This is in contrast to learning by confusion schemes where the phase
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diagram is scanned by iteratively shifting the labeling and retraining [3,6].
In spirit, the approach presented here is similar to the method described in [38,39]. There,

phase transitions are determined by looking at the overlap (fidelity) between neighboring
ground states in the phase diagram, with a drop in the fidelity at quantum phase transitions as
the overlap between states from different phases is small (zero) for finite (infinite) system sizes.
The big advantage of the approach presented here is that we avoid computationally expensive
contractions of the tensor network, which, in contrast, is needed to compute overlaps.

As an example, we examine the 2D frustrated bilayer Heisenberg model, a challenging
problem which suffers from the negative sign problem [40]. The model contains two 1st order
and one 2nd order phase transition and is therefore a good benchmark for the success of this
method. This manuscript is organized as follows: The general approach of applying anomaly
detection with neural networks to map out phase diagrams is described in section 2. Details on
iPEPS are described in section 3 and a brief overview of the 2D frustrated bilayer Heisenberg
model is given in section 4. The results are then presented in section 5, followed by our
conclusions in section 6.

2 Anomaly Detection

We follow the approach in [22,23], where it was shown that phase diagrams can be mapped
out from different data types in an unsupervised fashion via anomaly detection. The scheme
works in the following way: We employ a special neural network architecture, called an au-
toencoder, to efficiently decode and encode data of the type it has been trained on (data
specific compression). For the training1, we define a training dataset containing normal data.
The autoencoder is trained to efficiently reproduce data with the same or similar characteris-
tics. Anomalies are detected by deviations of a loss function between input and output of the
autoencoder, compared to the region it has been trained on and amount to separate phases
in the diagram. This training has to be performed only O(Nphases) times where Nphases is the
number of phases present in the phase diagram. Moreover, this procedure does not necessi-
tate any prior physical knowledge about the system as one starts with an arbitrary parameter
range, typically at the origin of the parameter space. From there, abrupt changes in the re-
production loss are saved as possible phase boundaries and the next training iteration is done
in the region with the highest loss after the previous training. Note that in principle one does
not even need to know the underlying Hamiltonian, it suffices to be provided with data and
the corresponding physical parameters.

We employ autoencoder neural network architectures implemented with TensorFlow [41].
An autoencoder is composed of an encoder and a decoder. The encoder takes the input x and
maps it to a latent space variable z. This latent space variable is then mapped by the decoder
to the output y(x). Both encoder and decoder are composed of multiple consecutive layers,
parametrized by free parameters θ . We tried different architectures comprising different com-
binations of fully-connected and convolutional layers. We find no specific model dependence,
with different architectures performing similarly such that simple vanilla autoencoders com-
posed solely of fully-connected layers suffice and are used throughout this paper. For details
about the implementation see [42]. The goal of the autoencoder is to reproduce x , i.e. match-
ing the output of the network with its input y(x) = x , which is achieved by minimizing the
reproduction loss

L(θ ) =
∑

i

||x i − yi(x i)||2 , (1)

1Training in machine learning refers to data-specific optimization. This is described in more detail below around
eq. (1).

3

https://scipost.org
https://scipost.org/SciPostPhys.11.2.025


SciPost Phys. 11, 025 (2021)

with respect to the free parameters θ (y(x) implicitly depends on θ). The sum reaches over
the training examples defined for the training iteration. Here we have chosen the loss to be the
mean squared error as it is simple and effective for our task, but in principle there is a variety
of possible and valid loss functions depending on the task and data at hand. The optimization
task of minimizing L is achieved by gradient descent θ 7→ θ − α∇θ L(θ ), i.e. computing the
gradient of L and changing the free parameters in the opposite direction for some stepsize α
(hyper parameter given by the user). For neural networks, there is an efficient implementation
called backpropagation [43]. We employ ADAM, a modern optimization scheme with adaptive
stepsizes based on gradient descent with backpropagation for faster optimization [44].

3 Infinite projected entangled-pair states

An iPEPS [27] is a tensor network ansatz to represent 2D ground states directly in the thermo-
dynamic limit and can be seen as a generalization of 1D infinite matrix product states (iMPS)
to 2D. The ansatz consists of a unit cell of rank-5 tensors repeated periodically on a lattice.
Here we use a unit cell with two tensors arranged in a checkerboard pattern on a square lat-
tice, with one tensor per dimer in the bilayer model introduced in Sec. 4. Each tensor has one
physical index representing the local Hilbert space of a dimer and four auxiliary indices, which
connect to the four nearest-neighbor tensors. The accuracy of the variational ansatz is system-
atically controlled by the bond dimension D of the auxiliary indices. To improve the efficiency
of the calculation we use tensors which exploit the U(1) symmetry of the model [45,46].

In this paper the optimization of the tensors is done based on an imaginary time evolution,
which involves a truncation of a bond index at each time step (see Refs. [27,28,47] for details).
While an optimal truncation requires a full contraction of the 2D tensor network (called the full
update [27]), which is computationally expensive, there exist also local, approximate schemes
avoiding the full contraction. In the simple-update approach [32, 33], which we use in this
work, the truncation is performed by a local singular value decomposition of two neighboring
tensors. A more accurate, but still local scheme is provided by the cluster update introduced
in Ref. [34], in which the truncation is done based on a cluster of tensors, where the accuracy
is controlled by the cluster size.

We start the iPEPS optimizations from random initial states, thereby avoiding the need for
any knowledge of the system a priori. Depending on the initial state, the iPEPS may converge
to a local minimum. To improve the convergence behavior, the state is initially evolved for a
few steps at large bond dimension and large imaginary time step, then projected to D = 1, and
then evolved at the target D. Optimization runs are discarded and repeated when convergence
is not reached after a certain number of steps. Finally, the state is further evolved at the target
dimension at a smaller time step until convergence is reached. We found that this scheme
improves the efficiency and quality of the results, compared to an evolution only at the target
D, especially close to the first order phase transition line of the model.

As input data for the anomaly detection, we use the singular values of the four auxiliary
bonds obtained from the simple-update approach. In 1D iMPSs in canonical form, they cor-
respond to the Schmidt coefficients, characterizing the entanglement between the two sides
of the system connected by the bond. In 2D, however, there exists no canonical form and the
singular values do not correspond to the Schmidt coefficients because of the loops in the ten-
sor network ansatz. Still, we will show that the singular values contain information that can
be used for and interpreted by the machine learning algorithm to characterize the underlying
ground state.
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For comparison we also consider the 2-site reduced density matrix as input data, which is
computed by contracting the 2D tensor network using the corner transfer matrix
method [48–50].

4 Model

We test the anomaly detection scheme in combination with iPEPS for the S = 1/2 2D frustrated
bilayer Heisenberg model - a challenging problem, where a large part of the phase diagram is
inaccessible to Quantum Monte Carlo due to the negative sign problem [40]. The model can
be represented as a two-dimensional lattice of coupled dimers, formed by the two S = 1/2’s
of the adjacent layers. The Hamiltonian reads

H =
∑

i

J⊥~Si,1 · ~Si,2 +
∑

i,m=1,2
j=i+ x̂ ,i+ ŷ

�

J‖~Si,m · ~S j,m + Jx ~Si,m · ~S j,m̄

�

, (2)

where J‖ is the nearest-neighbor intralayer coupling and J⊥ (Jx) the nearest (next-nearest)
neighbor interlayer coupling, i is the index of a dimer, j runs over the nearest-neighbor dimers,
m denotes the two layers, and m̄ the layer opposite to m.

In the limit of strong J⊥ the ground state is a dimer singlet (DS) state with vanishing local
magnetic moment. For Jx = 0 the model is unfrustrated with an ordered bilayer antiferro-
magnetic (BAF) ground state for J⊥/J‖ < 2.5220(2) [51], separated from the DS phase by a
continuous transition. The limit Jx = J|| corresponds to the fully-frustrated Heisenberg bilayer
model with a dimer-triplet antiferromagnetic (DTAF) ground state for J⊥/J‖ < 2.3279(1) [52],
in which spins on a dimer are parallel (in contrast to the BAF phase where the spins on a dimer
are antiparallel). The ground state phase diagram of the full model was mapped out with iPEPS
in Ref. [40] and is shown in fig. 1 1a) by the white-dashed lines. It hosts a quantum critical
endpoint at which the line of continuous transitions between the BAF and DS phase terminates
on the first order line separating the DTAF phase from the DS and BAF phases.

5 Numerical Results

We now use the anomaly detection scheme described in section 2 with data from iPEPS, de-
scribed in section 3 to map out the phase diagram of the model without prior physical knowl-
edge in fig. 1. Three training iterations suffice to map out the boundaries of all three phases
of the system. We start in the top-left corner of the phase diagram corresponding to the DTAF
phase in fig. 1 1a) and obtain the first order transition line. The noise around the line is due to
hysteresis effects in the vicinity of the first order phase transition: Depending on the random
initial tensors, the converged states end up in one of the two adjacent phases. We will later
see how a sharp transition line can be obtained by measuring the energy of the states. Note
how the second order transition line is already indicated within the anomalous region of high
loss. The second training is performed in the region of highest loss from the previous iteration
in the top-right corner corresponding to DS in fig. 1 2a). The second order transition line
to the BAF phase is again signaled by a bump in the loss diagram. To complete and confirm
both lines, training is performed in the BAF phase in fig. 1 3a). In fig. 1 (1c-3c) we present
data for the single cut at Jx/J|| = 0.3 with five independent simulations for each value of
J⊥/J||, illustrating the characteristic hysteresis behavior around the first order DTAF-BAF tran-
sition.

All the results in fig. 1 are overlaid with the previous iPEPS simulation results from [40].
Note that those results are much more precise since the iPEPS were optimized with the more
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Figure 1: Three training iterations to map out all three phases of the phase diagram
without contraction and prior knowledge of the system, i.e. using simple update al-
gorithm starting from random initial iPEPS. The cyan rectangles show the training
regions. Overlayed in white are theoretical predictions, extrapolated to the infinite
D limit with full update optimization from [40]. Deviations of the second order BAF-
DS transition are expected due to finite D = 6 and simple update optimization. 1a)
Starting the training at the top-left (in DTAF phase) yields the first-order transition
line. Even the second order transition line is already pronounced inside the region
of higher loss beyond the first order line. 2a) Second iteration in the region of high-
est loss (DS phase) from the previous picture showing the part of the first order line
adjacent to the DS phase and the second order line. 3a) Confirming and completing
the picture by training in the BAF phase. The second row (1b-3b) is a single cut as
indicated by the magenta line in the phase diagram above. The third row (1c-3c)
shows the loss after training and evaluating extra single cut data with five indepen-
dent simulations per data point. Around the first order transition two branches are
obtained due to the characteristic hysteresis behavior.

expensive full update algorithm and the data has been extrapolated to the infinite D limit,
whereas here we only consider simple-update data at finite bond dimension D = 6. Thus a
quantitative deviation can be expected, especially for the location of the second order BAF-DS
transition line. However, the main goal here is to get a cheap and fast overview of the phase
diagram, which serves as a useful starting point for more accurate numerical investigations
(e.g. based on a finite correlation length scaling analysis [35, 36]). We note that the ML
approach could also be combined with the more accurate cluster update scheme [34], which
is still a local approach, or with the full-update [27,28] or energy minimization schemes [29–
31,53], which require full contractions. 2

To get an even clearer picture of the predicted phase boundaries, we compute the energy
of the states to post-select the best ground states. The ground-state optimization is initialized
from three different initial iPEPS (a representative point in each phase) and only the lowest
in energy is kept. The boundaries in the resulting pictures are now much more pronounced

2In the latter two cases the singular values can be extracted using the approach described in Ref. [54].
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Figure 2: Three training iterations to map out all three phases of the phase diagram.
Here, the reduced 2-site density matrix is used as input data. In comparison to fig. 1,
the first order transition line is much sharper as the ground states were post-selected
from energy considerations. The second row (b) shows the line at J⊥/J|| = 0.3 as
indicated by the dotted magenta line in row (a). In row (c), the eigenvalues of the
reduced 2-site density matrix in log-scale are used. The training is done just for the
single cut at J⊥/J|| = 0.3. Row (d) uses again the singular values like in fig. 1.

at the cost of invoking contractions to calculate the energy, yet still not taking any physical
knowledge of the order into account. For the sake of showcasing the method with different
inputs, we here use the 2-site reduced density matrix ρ(2) but also confirm again the viability
with singular values.

We proceed in an analogous fashion and perform three trainings to map out the phase
diagram in fig. 2. The phase boundaries appear even sharper compared to fig. 1, especially for
the first order transition line with a corresponding discontinuity (jump) in loss at the transition.
In fig. 2 c) we confirm that the results are qualitatively the same when using the singular values
as an input instead.

We note that, while in practice the singular values are found to be gauge-invariant (see
also Ref. [54]), the reduced density matrix is not necessarily unique. If the state breaks, e.g.,
SU(2) spin symmetry, then different random initial states will lead to different reduced density
matrices (since the local magnetic moments can be aligned along different directions). In
Fig. fig. 2, this is not an issue, because each anomaly detection is based on a single initial state
(which fixes the direction of the magnetic moments), and by using U(1) symmetric tensors, the
magnetic moments are automatically parallel to the z-axis. Alternatively, one can also consider
the eigenvalue spectrum of the reduced density matrix as input data, which is gauge-invariant,
as shown in fig. 2 (1c-3c).

It is a common mantra in machine learning that more data always yields better results. In
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Figure 3: Varying the training region to show that the outcome of the algorithm is
not sensitive to the number of training examples Nex. and the extent of the training
region. The number of epochs Nepochs is chosen such that Nepochs · Nex. = const.,
i.e. the neural network sees the same amount of examples throughout all training
iterations. We see that we can even map out the regions with just one single training
example (dotted magenta curve).

the present study, where the machine learning task is to find the phase boundary from singular
values, we find this to actually not be the case. Also, the result of the algorithm is not sensitive
to the extent of the training region, i.e. how far in parameter space the examples during
training reach. It seems that one example of the phase already captures the characteristic
features and that the data within the phase is so homogeneous that adding more examples
does not improve the result. To show this, we take a single cut at Jx/J|| = 0.3 and vary the
extent of the training regions in fig. 3 for singular value data with D = 10. In all cases the
predicted transitions are the same and the result is insensitive to the chosen training region. We
can put this to the extreme and only use one single training example Nex. = 1 and still obtain
the same results. In all the cases of training regions in fig. 3, the number of epochs Nepochs, that
is the number of times the neural network processes the full training set, is chosen in such a
way that Nepochs ·Nex. is held constant, such that during training the same number of examples
are processed for a fair comparison.

This raises the question of the necessity of the neural network machinery for the anomaly
detection. In fig. 4 we show simple, purely geometric and data-driven approaches that indicate
the phase boundaries in the spirit of anomaly detection without using neural networks. In
the first case, we compute the inner product between normalized singular value vectors si for
different physical parameters. Here, the inner product is just the standard inner vector product

inner(si , s j) =
∑

k

sk
i sk

j . (3)

The normalization is done such that inner(si , si) = 1. Using inner products, there is a clear
interpretation of the overlap values and we can see that the contrast in fig. 4 1) is of order
∼ 0.01 and therefore arguably small. We get better results when using a geometric similarity
measure

similarity(si , s j) =
∑

k

|sk
i − sk

j |
2 , (4)

between a fixed normalized singular value vector along the physical parameter space in fig. 4
2). Note that this is equivalent to the loss in eq. (1), used for the autoencoder. These results
are now very similar to the ones obtained with the autoencoder in fig. 3. An interesting open
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Figure 4: Detecting the phase boundaries with purely geometric data driven methods
at Jx/J|| = 0.3. 1) Inner product between the singular values Si along the param-
eter space and a fixed point (indicated by the X). 2) Geometric similarity measure
equivalent of the loss for the autoencoder eq. (1).

question to answer in future work is whether such a data-driven geometric analysis in the spirit
of machine learning but without neural networks suffice in general or if this is specific to the
model and data at hand.

6 Conclusions

In this work, we showed how to combine anomaly detection, a method for unsupervised ML,
with iPEPS, a tensor-network ansatz for variational optimization, to map the phase diagram
of 2D systems. By employing ML, we circumvented the necessity for defining and calculating
suitable observables to identify the phases. Furthermore, no prior physical knowledge was
required to run the unsupervised anomaly detection (i.e. no labels needed). We saw that a
successful training can be achieved with an arbitrarily small amount of examples, therefore
making the amount of data generated a matter of aesthetics by the user. Based on this, we
saw that for the present model and data, purely geometric and data-driven analyses sufficed
and raised the question whether such approaches are feasible in general for finding phase
transitions from data.

It shall also be mentioned that the dimension of the data being used was small, D×4 in the
case of the singular values, such that in this case there was no necessity for dedicated machine
learning hardware like graphical processing units (GPUs) and all trainings were performed in
less than 10 seconds on a commercial laptop with an Intel i7-4712HQ CPU, see [42]. Here we
used the resource economic simple update algorithm to obtain the iPEPS ground states, but we
note that the ML approach could also be combined with more accurate (but computationally
more expensive) optimization approaches. In summary, we provided a very fast and efficient
approach to qualitatively map out the phase diagram of 2D systems with no prior physical
knowledge of the underlying system, offering a powerful way to obtain quick insights into the
physics of new models.
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