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Abstract

We investigate the properties of foliated gauge fields and construct several foliated field
theories in 3+1d that describe foliated fracton orders both with and without matter, in-
cluding the recent hybrid fracton models. These field theories describe Abelian or non-
Abelian gauge theories coupled to foliated gauge fields, and they fall into two classes
of models that we call the electric models and the magnetic models. We show that
these two classes of foliated field theories enjoy a duality. We also construct a model
(using foliated gauge fields and an exactly solvable lattice Hamiltonian model) for a
subsystem-symmetry protected topological (SSPT) phase, which is analogous to a one-
form symmetry protected topological phase, with the subsystem symmetry acting on
codimension-two subregions. We construct the corresponding gauged SSPT phase as a
foliated two-form gauge theory. Some instances of the gauged SSPT phase are a variant
of the X-cube model with the same ground state degeneracy and the same fusion, but
different particle statistics.
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1 Introduction

The objective of a low-energy effective field theory is to describe the low-energy physics of
a physical system while ignoring physics that occurs at higher energies, the details of which
are viewed as unimportant. Restricting to low energies then reveals the universal spacetime
structure that is coupled to the physics. A celebrated example of effective theory is a Fermi
liquid (e.g. a metal) [1],which describes the low energy modes with momenta near the Fermi
surface. Another example of effective theory is topological quantum field theory (TQFT),
which describes the low energy physics of many gapped microscopic quantum systems and
only depends on the topology of the spacetime manifold (possibly equipped with extra struc-
ture such as a spin structure if the system has neutral fermions [2]). The topological nature,
such as the braiding and fusion of the excitations, has application in fault-tolerant quantum
computation [3]. Effective field theories are useful in describing the low energy (IR) physics
that typically occurs at large length scales, independent of many microscopic (UV) details.
In particular, different microscopic models can have the same low energy physics, while the
microscopic differences are washed out in the renormalization group (RG) flow. Only the
universal features are captured by effective field theories.

Recently, a new kind physics exhibited by so-called fracton models [4, 5]1 necessitate a
new kind of effective field theory description. The excitations in this class of models are clas-
sified by their sub-dimensional mobility: planons and lineons are restricted to move along
2D planes and 1D lines, respectively, while fractons are immobile. These excitations have
spatially-dependant fusion rules, which can be formalized using a module [10]. For instance,
two lineons that are constrained to move in two different directions could fuse into the vac-
uum when met at a point, or two neighboring fractons could fuse into a planon.2 A gapped
D-dimensional fracton model of length L can have up to O(LD−2) [11, 13, 14] robust zero-
energy non-local degrees of freedom. This is a phenomenon of UV/IR mixing: the low energy
physics depends on some microscopic details such as the total length measured in lattice spac-
ing. This UV/IR mixing is captured in the recent generalization of the usual effective field
theories [15–17]3 by certain singularities and discontinuities in the effective field variables,
but the fields are more continuous than the variables in lattice models.

In this note we will study a related class of effective field theories called foliated quan-
tum field theory (FQFT) (see e.g. [19]) that also exhibit UV/IR mixing: the fields can have
discontinuities or delta function singularities on “stacks of leaves” in spacetime. The different
foliations (e.g. k = 1,2, 3 for three foliations) are described using a 1-form ek for each folia-
tion k, which must satisfy ek ∧ dek = 0, and in this note we will assume dek = 0 for simplicity.
The fields are allowed to have certain kinds of singularities (detailed in Section 2.1), which
are not allowed in ordinary effective field theories. These singularities embody the foliated
spacetime structure [20, 21]. We will discuss examples of gapped and gapless foliated field
theories. In many examples, the FQFT has the structure of coupling an ordinary gauge theory
to a ZN foliated gauge field, which can be thought of as a stack of BF type theories in one
dimension lower.

While similar kinds of foliated fracton models are investigated using other field theories

1Fracton models were initially motivated by the glassy (i.e. slow) dynamics resulting from these mobility con-
straints. [6,7] It was later discovered that the slow dynamics of the type-II models yields a more robust quantum
memory. That is, the dynamics of the non-local degrees of freedom (which are used for the quantum memory) in
Haah’s code with generic time-dependant perturbations at finite (but low) temperature is asymptotically slower
than for toric code. [8,9]

2The latter process is the origin of the term “fracton” because in many examples a fracton is a fraction of a
mobile particle. However, this is not always the case; for example, type-II [11] fracton models such as Haah’s
code [12] do not have any mobile particles (by definition).

3See also a recent field theory construction for type II fracton models in [18].
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[17, 22–26] that implicitly depends on a foliation, our description using foliated field theory
makes the dependence on the foliation more explicit, and it utilizes the foliation structure to
constrain the effective action.

We remark that the mobility constraints of fracton models can be understood from gauging
subsystem symmetries that only act on a subregion such on a plane. [11, 27] The gauge field
of the subsystem symmetry can naturally be described using a foliated gauge field, where the
symmetry acts on the leaves of the foliation [28]. The background foliated gauge field can also
describe subsystem-symmetry protected topological (SSPT) phases [29,30] using the effective
action of the background foliated gauge field. We will give examples of such phases.

The note is organized as follows. In Section 2 we discuss the properties of U(1) and ZN
foliated n-form gauge fields. In Section 3 we discuss a twisted foliated ZN two-form gauge
theory and its lattice model. In Section 4 and Section 5 we discuss two classes of models,
which we call the electric and magnetic models, where we couple non-Abelian or Abelian gauge
theory to foliated gauge fields, which encompass many examples of models in the literature
e.g. [11, 31, 32] with excitations of restricted mobility. In Section 6 we discuss methods of
coupling matter fields to foliated gauge fields. In Section 7 we discuss dualities between the
electric and magnetic models.

There are several appendices. In Appendix A we provide an interpretation of foliated gauge
theory as ordinary gauge theory but with a sum over defect insertions. In Appendix B we give
a description of a foliated stack of scalars or fermions. In Appendix C we discuss an exactly
solvable lattice model for an example of the model in Section 4.

1.1 Summary of examples

Twisted foliated two-form gauge theory as gauged SSPT phase Many physical systems
are protected by global symmetry, and there are invertible phases that are non-trivial only in
the presence of global symmetry, known as symmetry protected topological (SPT) phases. In
Section 3, we present examples of SPT phases protected by subsystem symmetry, known as
subsystem SPT (SSPT) phases [29, 30]. For instance, the Zx

N ×Z
y
N ×Z

z
N subsystem symmetry

in 3+1d whose generators are supported on two-dimensional surfaces on yz, xz, x y planes
has an SSPT phase described by the effective action

∑

k,l

N pkl

4π
BkBl =

N
2π
(p12B1B2 + p13B1B3 + p23B2B3) , (1.1)

where Bk are background two-form ZN foliated gauge field that has components d xkd xµ with
µ = 0, 1,2, 3, µ 6= k. The coefficients pkl are integers mod N [33–36]. We construct a local
commuting projector Hamiltonian model [Figure 2] for the SSPT phase.

Then we gauge the subsystem symmetries to obtain a foliated ZN two-form gauge theory
[(3.1)], where the gauge field Bk is dynamical.4 We also construct a lattice Hamiltonian for
the gauged SPT phase [Figure 3]. We investigate the properties of the resulting two-form ZN
foliated gauge theory, and we find that certain examples of the theory reproduces the particle
content of the ZN X-cube model. The ground state degeneracy (GSD) of the foliated two-form
gauge theory on a T3 space with lengths Lx , L y , Lz along the three space directions measured

4The theory with the foliated gauge fields replaced by ordinary non-foliated gauge fields is discussed in [33–35,
37, 38], which is effectively an untwisted Abelian one-form gauge theory. The version with foliated gauge fields
that we consider is much richer.
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in the unit of a lattice cutoff is given by (3.23):

GSD=
∏

i

q
2ri(Lx+L y+Lz)−ci

i (1.2)

ci = 2 max(b(i)12 , b(i)23 , b(i)13) +median(b(i)12 , b(i)23 , b(i)13)

b(i)kl = ri − logqi
gcd(qri

i , pkl) ,

where N =
∏

i qri
i is the prime factorization of N . For N = 2, pkl = 1, the ground state

degeneracy equals 22Lx+2L y+2Lz−3, which equals the ground state degeneracy of the Z2 X-cube
model [39]. The theory with N = 2, pkl = 1 also has the same fusion module as the Z2 X-cube
model. However, we show that these two theories are not the same by showing that their
excitations are different.

Coupling ordinary gauge theory to foliated two-form gauge field In Section 4, we con-
sider a class of model called the electric model, with the action

SE =
∑

k

N
2π

dAkBk +
N
2π
ηk(a)B

k + I(a,φ) , (1.3)

where a is a G gauge field for some finite or continuous group G, and ηk ∈ H2(G,ZN ), Bk is
a foliated two-form gauge field satisfying Bkek = 0, and Ak is a one-form gauge field. I(a,φ)
describes the gauge theory of a, which can contain matter fields collectively denoted by φ.
The theory can be interpreted as coupling a G gauge theory to the foliated ZN two-form gauge
field Bk (which has aZN holonomy imposed by a Lagrangian multiplier Ak), using the one-form
symmetry generated by

∮

ηk(a).
In Section 5, we study another class of model called the magnetic model, with the action

SM =
N
2π

∑

k

dAkBk +
Nqk

2π
bBk +

N
2π
(da−η(a′))b+ I(a′,φ′) , (1.4)

where a′ is a G′ = G/ZN gauge field, a is a ZN gauge field, and η ∈ H2(G′,ZN ) specifies the
extension G of G′ by ZN . qk is an integer. The part I(a′,φ′) describes a G′ gauge theory of
a′, and it can contain matter fields collectively denoted by φ′. The theory can be interpreted
as coupling a G gauge theory to the foliated ZN two-form gauge field Bk (which has a ZN
holonomy imposed by a Lagrangian multiplier Ak) using the one-form symmetry corresponding
to the ZN center of the extension G (if the extension of G′ by ZN is a central extension). The
electric and magnetic models provide the effective field theory description for the models in
e.g. [11,31,32].

Duality In Section 7, we show that there is an exact duality between the electric and mag-
netic models,

Electric:
N
2π

dAB −
N
2π

Bη(a′) + Stop(a
′) + I[a′,φ]

Magnetic:
N
2π

d eAeB +
N
2π
ebeB +

N
2π
(dea−η(ea′))eb+ Stop(ea

′) + I[ea′, eφ] , (1.5)

where (A, B), (eA, eB) describe ZN foliated two-form gauge field on a single foliation with A, eA be-
ing Lagrangian multipliers that constrain B, eB to haveZN holonomy. The ordinary gauge theory
of a′ in the electric model and ea, ea′ in the magnetic model has gauge group Gelectric, Gmagnetic,

respectively, related by Gelectric = Gmagnetic/ZN . φ, eφ collectively denote the matter fields that
couple to the Gelectric, Gmagnetic gauge theories.

5

https://scipost.org
https://scipost.org/SciPostPhys.11.2.032


SciPost Phys. 11, 032 (2021)

We remark that it is important that (A, B) and (eA, eB) are foliated gauge fields in order for
the duality to be valid. If (A, B) and (eA, eB) were replaced by non-foliated gauge fields, then
the electric model would become a Gmagnetic gauge theory, while the magnetic model would
become a Gmagnetic/ZN = Gelectric gauge theory, and since the gauge groups are different, the
duality (1.5) would no longer hold in general.5

2 Abelian foliated gauge fields

Notation and foliation To describe each foliation, we use foliation a closed (i.e. dek = 0)
one-form ek where k labels the different foliations. For example, ek = d x , d y, dz for spacetime
coordinates (t, x , y, z). We use a subscript to indicates the degree of gauge fields; i.e. up is a
p-form gauge field. We sometimes omit the subscript to simplify the notation. We use Lk to
denote a leaf of foliation k, which has codimension one. For instance, if ek = dz, then Lk is a
three-dimensional spacetime (x , y, t) at some fixed z = z0.

In the following discussion, δ(L)⊥ is a delta function one-form that has a singularity on
codimension-one leaf Lk; in other words, it is the Poincaré dual of leaf Lk.6 If we take ek = dz,
then for the leaf of foliation k at z = z0, it is δ(Lk)⊥ = δ(z − z0)dz. Denote Vk to be a
codimension-0 manifold with boundary given by a leaf of foliation k, ∂ Vk = Lk. Then δ(Vk)⊥

is a zero-form i.e. a function, which has the property dδ(Vk)⊥ = δ(Lk)⊥.7 For instance, if
ek = dz, then Vk : z < z0, and δ(Vk)⊥ = h(z − z0) is a multiple of the step function. We
will illustrate the properties of the foliated gauge fields using U(1) and ZN n-form foliated
gauge theories. We also discuss the relation between the foliated gauge field and the rank-two
symmetric tensor gauge field.

2.1 Bundles, fluxes and singularities

We will use the notation Bk to denote two-forms that satisfy Bkek = 0 (for each k), and Ak

to denote gauge field with the gauge transformation Ak → Ak + dλk + αk where αkek = 0.
Intuitively, the gauge field Ak only has components in the directions parallel to each leaf of
foliation k, while the gauge field Bk has at least one component orthogonal to the leaf of
foliation k. Related to this, Bk

p can be intuitively understood as a gauge field b′p−1 of one

lower degree (p − 1) multiplied by ek, Bk = b′p−1ek, where b′p−1 has mass dimension p and
thus it contains a degree-one delta function singularity. In the following we will describe the
continuity property of the gauge parameters and the gauge fields in more details. In Appendix
A we provide an interpretation of the singularities in the foliated field theories as summing
over defect insertions in ordinary field theories. We remark that if an ordinary non-foliated
gauge field couples to foliated gauge field, the new gauge field can have a different bundle
that has similar singularity structure, as illustrated by an example in Section 5.1.1.8

5For instance, the Gmagnetic/ZN = Gelectric ordinary gauge theory only has a subset of Wilson lines compared to
Gmagnetic ordinary gauge theory.

6For general manifold Σ, it can be defined as
∫

Σ
ω=

∫

ωδ(Σ)⊥ for any ω.
7This can be proven from the definition: for manifold Σ that satisfies Σ = ∂Σ′, for any ω we have

∫

Σ
ω=

∫

ωδ(Σ)⊥ =
∫

Σ′
dω=

∫

dωδ(Σ′)⊥ =
∫

ωdδ(Σ′)⊥. Thus δ(Σ)⊥ = dδ(Σ′)⊥.
8This is similar to the phenomenon that if an SU(2) gauge field couples to a two-form gauge field by the Z2

center one-form symmetry, the gauge bundle changes to SO(3) bundle, that is in general no longer an SU(2)
bundle.
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Foliated n-form gauge field Bk
n The gauge field satisfies Bk

nek = 0, and it can have delta
function one-form singularities δ(Lk)⊥. It has gauge transformation

Bk
n → Bk

n + dλk
n−1, λk

n−1ek = 0 , (2.1)

where the condition λk
n−1ek = 0 is replaced by dλk

0ek = 0 when n = 1. The gauge pa-
rameter λk

n−1 has gauge transformation λk
n−1 → λk

n−1 + dλk
n−2, and similarly for λk

n−2, until
λk

0→ λ
k
0+2π f k with f k locally an integer. The gauge parameter λk

n−1 can have delta function
one-form singularities δ(Lk)⊥, while the other gauge parameters of lower degree (but greater
or equal to one) can also have discontinuities δ(Vk)⊥, while the 0-form gauge parameter f k

can only have discontinuities δ(Vk)⊥.
The field strength F k

n+1 = dBk
n satisfies F k

n+1ek = 0. It is gauge invariant, and it can have
singularities δ(Lk)⊥. (Note dδ(Lk)⊥ = 0). The flux

∮

dBk
n is quantized to be a multiple of 2π

from the transition function f k, and the flux can have discontinuities δ(Vk)⊥.

Foliated n-form gauge field Ak
n The gauge field Ak

n can have discontinuities δ(Vk)⊥. For
instance, if ek = dz, then it can contain a step function h(z−z0). The gauge transformation is

Ak
n→ Ak

n + dλk
n−1 +α

k
n, αk

nek = 0 , (2.2)

where for n = 0 there is no gauge parameter αk
0 = 0. The gauge parameters also have gauge

transformations, such as λk
n−1→ λ

k
n−1+dλk

n−2, until λk
0→ λ

k
0+2π f k for f k locally an integer,

and αk
n → αk

n + dαk
n−1 with αk

n−1ek = 0 for n > 1 and dαk
0ek = 0, until αk

0 → αk
0 + 2πsk

with sk locally an integer. The gauge parameters λk
i≥1,αk

i≥1 can have singularities δ(Lk)⊥

and discontinuities δ(Vk)⊥, while λk
0, f k,αk

0, sk can only have discontinuities δ(Vk)⊥. Note in
the combination dλk

i + α
k
i+1, the singularity δ(Lk)⊥ in dλk

i can be compensated by the same
singularity in αk

i+1.
The field strength F k

n+1 = dAk
n has delta function singularities δ(Lk)⊥ and discontinuities

δ(Vk)⊥. However, it is not invariant under the gauge transformation αk
n, while ekF k

n+1 is gauge
invariant. The gauge invariant quantity ekF k

n+1 only has δ(Vk)⊥ discontinuities, but not the
singularity δ(Lk)⊥, since ekδ(Lk)⊥ = 0. The flux

∮

dAk
n is defined on n+1-dimensional closed

surfaces on leaf k for the flux to be gauge invariant. It is quantized to be a multiple of 2π from
the transition function f k, which can contain discontinuities δ(Vk)⊥. We note that due to the
discontinuities in Ak

n, F k
n+1 = dAk

n may not be closed dF k
n+1 6= 0 in the absence of operator

insertion, but it has delta function one-form singularities δ(Lk)⊥. On the other hand, the
gauge invariant quantity ekF k

n+1 is closed, since ekδ(Lk)⊥ = 0.

2.2 U(1) foliated n-form gauge theory I

We begin by studying the simplest examples of foliated gauge theories. Consider a foliated
n-form gauge field Bk

n in d spacetime dimension, which satisfies Bk
nek = 0, with the gauge

transformation Bk
n → Bk

n + dλk
n−1, where λk

n−1ek = 0 for n > 1 and dλk
0ek = 0. The action is

given by the kinetic term for the foliated gauge field:

S =
1

2g2
|dBk

n|
2 =

1
2g2

dBk
n ? dBk

n , (2.3)

where ? is the Hodge dual, and k labels the foliation. We will focus on a single foliation,
while the case with multiple foliations is given by copies of the theory with different k. We
will promote the gauge coupling g to be position-dependent, since the coupling on different
leaves can have different values. Let us analyze the symmetry and observables in the free U(1)
foliated n-form gauge theory.

7

https://scipost.org
https://scipost.org/SciPostPhys.11.2.032


SciPost Phys. 11, 032 (2021)

2.2.1 Global symmetry

U(1) electric symmetry The electric symmetry is a shift symmetry for Bk
n. If we turn on a

background (n + 1)-form Ck
E (where the subscript stands for “electric” instead of the degree

of the form), we need to replace dBk
n with dBk

n + Ck
E . To be consistent with Bk

nek = 0, Ck
E also

satisfies Ck
E ek = 0 and is therefore a foliated background gauge field. The background gauge

transformation is

Bk
n → Bk

n +λ
k
E , Ck

E → Ck
E + dλk

E , Ck
E ek = 0, λk

Eek = 0 . (2.4)

U(1) magnetic symmetry The magnetic symmetry is generated by eiθ
∮

dBk
n with parameter

θ ∈ R/Z. If we turn on a background (d − n−1)-form Ck
M for the magnetic symmetry (where

the subscript stands for “magnetic” instead of the degree of the form), the action is modified
via the coupling

dBk
n

2π
Ck

M . (2.5)

The background gauge transformation is

Ck
M → Ck

M + dλk
M +α

k , (2.6)

where αk is a (d−n−1)-form gauge field that satisfies αkek = 0. The latter condition ensures
that the coupling to Bk

n is invariant under that gauge transformation αk, using Bk
nek = 0.

Mixed anomaly If we turn on background Ck
E , the coupling to Ck

M is modified to be

dBk
n + Ck

E

2π
Ck

M , (2.7)

which is not invariant under Ck
M → Ck

M + dλk
M . Thus the electric and magnetic symmetries

have a mixed anomaly. The anomaly can be compensated by inflow from a subsystem SPT
phase in one dimension higher, with effective action

Sanom =
1

2π

∫

dCk
E Ck

M . (2.8)

2.2.2 Observables

Wilson n-surface The Wilson n-surface, ei
∫

γ
Bk

n , has nonzero support along the n-surface
swiped by integral curves of ek.9 Suppose ek = dz. Since Bk

nek = 0, the gauge field only has
components that contain dz; thus the Wilson operator extends along the z direction. 10 The
Wilson operator transforms under the electric symmetry.

The Wilson operator can end on leaves of foliation k. To see this, we note for n > 1, an
open Wilson n-surface is gauge invariant under λk

n−1 if the boundary lies on leaves of foliation
k, since λk

n−1ek = 0. For n = 1, we can parameterize Bk
1 = f δ(Lk)⊥ for some leaf Lk of

foliation k and function f ∼ f + 2π; then
∫

γ
Bk

1 = f |p where p is the intersection points of

Lk and γ, and ei
∫

Bk
1 = ei fp is invariant under f → f + 2π. We remark that the boundary of

the Wilson operator does not break the electric symmetry since the generator of the symmetry,

9For instance, if ek = d x1, then the operator can only be supported on x1, x j2 , x j3 · · · x jn directions, while it does
not receive a contribution from the part of surfaces lying on leaves of foliation k.

10If we take ek = d t, then for n= 1, the gauge field Bk
n only has the time component, and the Wilson line

∫

Bt d t
describes a static heavy charge with the mobility class of a fracton.
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which couples to Ck
E , has gauge redundancy of shift by αk with αkek = 0 and thus it is restricted

to lie on a leaf of foliation k. This implies that the generator of the electric symmetry that links
with the Wilson operator cannot be unlinked by moving the generator passing through the
boundary of the Wilson operator.

’t Hooft (d − n− 2)-surface The ’t Hooft (d − n− 2)-surface operator is defined by unit flux
on the surrounding (n + 1)-sphere,

∮

dBk
n/2π = 1. If we parametrize Bk

n =
∑

i f i
n−1δ(L

i
k)
⊥

for some collection of leaves Li
k of foliation k indexed by i and (n− 1)-form gauge fields f i

n−1
(for n= 1 they are periodic scalars f i

0 ∼ f i
0 +2π),then the flux is

∮

Sn+1 dBk
n =

∑

i

∮

d f i
n−1 with

integral over the intersection of Sn+1 and Li
k, which is generally a Sn intersection. The flux

is the sum of the flux of d f i
n−1 over Sn on the leaf around the ’t Hooft operator, which lies on

the leaf. For n = 1 and d = 4 spacetime dimension, the ’t Hooft operator describes a planon
on the leaf of foliation k, while for n = 2 the ’t Hooft operator is a monopole operator. The ’t
Hooft operator transforms under the magnetic symmetry.

2.3 U(1) foliated n-form gauge theory II

Consider an n-form gauge field Ak
n with the gauge transformation Ak

n → Ak
n + dλk

n−1 + α
k
n,

αk
nek = 0. For instance, if ek = dz and n = 1, then the gauge transformation eats the Az

component; thus we are left with only Ax , Ay , At components. If the gauge field has vanishing
local field strengths Fyz , Fxz , Fzt , then the theory is equivalent to a U(1) gauge field in 2+1d
(x , y, t). Here, we will not assume this to be the case, and thus the gauge field can have z
dependence. The action is given by the kinetic term for the foliated gauge field:

S =
1

2g2
|ekdAk

n|
2 =

1
2g2
(ekdAk

n) ? (e
kdAk

n) , (2.9)

where ? is the Hodge dual. Thus the kinetic term has contribution from the gauge field com-
ponents parallel to the leaves. The index k labels the foliation, and we will focus on a single
foliation here, while multiple foliations are multiple copies with different k. We will promote
the gauge coupling g to be position-dependent, since the coupling on different leaves can have
different values. For e = d x1, the kinetic term is proportional to

∑

µ,ν6=1

(∂µAν1,···νn
+ anti-symmetrization)(∂ µAν1,···νn + anti-symmetrization) . (2.10)

Let us analyze the symmetry and observables of free foliated n-form foliated gauge theory.

2.3.1 Global symmetry

U(1) electric symmetry The electric symmetry acts as a shift symmetry for gauge field Ak
n.

If we turn on a background (n+ 1)-form gauge field Ck
E , this replaces dAk

n by dAk
n − Ck

E . The
background gauge transformation is

Ck
E → Ck

E + dλk
n + dαk

n, Ak
n→ Ak

n +λ
k
n +α

k
n , (2.11)

where λk
nek can be nonzero.

U(1) magnetic symmetry The magnetic symmetry is generated by eiθ
∮

dAk
n with θ ∈ R/Z,

which is only well-defined on a leaf of foliation k. The background (d − n − 1)-form gauge
field Ck

M for magnetic symmetry couples to the theory as

dAk
n

2π
Ck

M , (2.12)
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where the invariance under Ak
n→ Ak

n+α
k
n implies Ck

M is a foliated (d− n−1)-form gauge field
that satisfies

Ck
M ek = 0 . (2.13)

The background gauge transformation is Ck
M → Ck

M + dλk
d−n−2, where λk

d−n−2ek = 0.

Mixed anomaly By a similar discussion as in the previous example, the electric and magnetic
symmetries have a mixed anomaly described by the subsystem SPT phase in one dimension
higher

1
2π

∫

dCk
E Ck

M . (2.14)

2.3.2 Observables

Wilson n-surface The Wilson operator ei
∮

γ
Ak

is gauge invariant under Ak
n → Ak

n + α
k
n only

when the n-surface γ is on leaf of foliation k. Thus for n= 1 it describes a planon. The Wilson
operator transforms under the electric symmetry.

’t Hooft (d−n−2)-surface The ’t Hooft operator with flux
∮

dAk
n/2π= 1 on the surrounding

n+ 1-sphere is gauge invariant when the n+ 1-sphere lies entirely on a leaf of foliation k, i.e.
when the ’t Hooft operator is transverse to a leaf of foliation k. In other words, the ’t Hooft
operator is a (d−n−3)-dimensional locus on the leaf of foliation k surrounded by the (n+1)-
sphere, and extending along the remaining kth direction. Since

∮

dAk
n, which measures the

magnetic charge, cannot move out of the leaf of foliation k, the ’t Hooft operator can be an
open ribbon operator with boundary on some leaves of foliation k.11 For n= d−3, it describes
a point operator on a leaf of foliation k at some fixed time, and it can be moved along the kth
direction.

2.3.3 Chern-Simons coupling and theta term

Let us discuss a deformation of the theory that does not change the local dynamics. We will
focus on d = 4 spacetime dimensions and n= 1.

Mixed theta term The ordinary theta angle dAk
1dAk

1 is not invariant under the gauge trans-
formation Ak

1→ Ak
1+α

k
1. On the other hand, the theory of gauge fields Ak

1, Bk
1 can have a mixed

theta term. Consider the theory
θ

4π2
dAk

1dBk
1 . (2.15)

The theta term leads to an analogue of Witten effect: the ’t Hooft line of Ak
1 becomes a dyon

with electric charge θ/2π of Bk
1 , and the ’t Hooft line of Bk

1 becomes a dyon with electric charge
θ/2π of Ak

1.

Chern-Simons term Another coupling is a Chern-Simons term on each leaf. A naive guess
for such a term is

LCS
?
=

nk

4π
Ak

1dAk
1β

k , (2.16)

11This is similar to the Wilson (d − n − 2)-surface of
∮

Bd−n−2, which can also end on leaves of foliation k, as
discussion in Section 2.2.2. As we will show in Section 2.4, the two foliated U(1) gauge theories of fields Ak

n and
Bk

d−n−2 are in fact related by electric-magnetic duality.
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where β kek = 0 and it is closed and has unit period. For instance, if ek = dz, we can take
β k = dz/lz if z ∼ z + lz is compact. However, such term is not gauge invariant due to the
discontinuity of β kdAk

1. To see this, we note that it can be written as
∫

γ

Ak
1, γ= PD(nkdAk

1β
k/4π) , (2.17)

where PD denotes the Poincaré dual. Thus it would be well-defined if and only if γ is an integral
cycle and lies on a leaf of foliation k. The last condition is satisfied since dAk

1β
k/4πek = 0, and

it is closed since dF kβ k = 0 where F k is the field strength, dF k can be nonzero with δ(Lk)⊥

singularity, but δ(Lk)⊥β k = 0. So the question is whether
∮

V nkdAk
1β

k/4π is an integer. This
is in general not the case since it can be written as

nk

2

∫

γ′∩V
β k, γ′ = PDV(dAk

1/2π) , (2.18)

where γ′ has boundary on a leaf of foliation k, since dAk
1 is not closed due to the discontinuity.

Thus for general β k that is not a delta function, the integral can be any real number. As a
consequence, the coupling cannot be gauge invariant for nk 6= 0.

On the other hand, we can consider the following well-defined Chern-Simons term
Lk

4π
Ak

1dAk
1δ(Lk)

⊥ , (2.19)

for some leaves Lk =
⋃

i L
(i)
k . This is a Chern-Simons term at level Lk on the chosen leaves.

2.4 Electric-magnetic duality for foliated U(1) gauge theory

The observables and global symmetry of the n-form foliated U(1)Maxwell theories in Section
2.2 and (d − n− 2)-form foliated U(1) Maxwell theory in Section 2.3 can be mapped to each
other, with the electric Wilson operator mapped to the magnetic ’t Hooft operator and vice
versa. We will show that the two theories are in fact dual to each other, similar to the S-duality
in ordinary U(1) gauge theory [40,41]. We will only sketch a derivation here.

For simplicity, let us take the spacetime manifold to have trivial topology, and ek = d xk.
We begin with the foliated gauge theory I, with the action

1
2g2

F k
B ? F k

B +
1

2π
(F k

B − dBk
n)C

k
M , (2.20)

where F k
B is a foliated (n+ 1)-form that satisfies F k

B ek = 0, and the Lagrangian multiplier Ck
M

has the gauge transformation Ck
M → Ck

M +α
k
M with αk

M ek = 0. Integrating out Ck
M recovers the

Maxwell term for the foliated gauge field Bn, with F k
B = dBk

n.
Alternatively, we can integrate out F k

B , which imposes12

ek(
1
g2
? F k

B +
1

2π
Ck

M ) = 0 . (2.21)

Then we find the following Lagrangian

1
2eg2
|ekCk

M |
2 −

1
2π

dBkCk
M , eg2 = −

4π2

g2
. (2.22)

Then integrating out Bk imposes Ck
M = dAk

d−n−2, and we recover the Maxwell theory for foli-
ated (d − n− 2)-form gauge field Ak

d−n−2, with the gauge coupling

eg2 = −
4π2

g2
. (2.23)

12This equation of motion also relates the gauge invariant field strengths ekdAk
d−n−2, 1

g2 ? dBk
n , where their sin-

gularity structures are related through the position-dependent gauge coupling.
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2.5 ZN foliated n-form gauge theory

Consider the following theory in d spacetime dimensions

N
2π

dAk
nBk

d−n−1 , (2.24)

where Bk
d−n−1ek = 0. The gauge transformation are

Ak
n→ Ak

n + dλk
n−1 +α

k
n, Bk

d−n−1→ Bk
d−n−1 + dλk

d−n−2 , (2.25)

where αk
nek = 0,λk

d−n−2ek = 0 (for n = d − 2, it is replaced by dλk
0ek = 0). The equations of

motion for Ak
n and Bk

d−n−1 implies that these gauge fields have ZN holonomy. They describe
ZN foliated n-form gauge theory of Ak

n or (d − n− 1)-form gauge theory of Bk
d−n−1.

2.5.1 Global symmetry

ZN electric symmetry The electric symmetry is generated by the operator ei
∮

Bk
d−n−1 . The

background (n+ 1)-form gauge field Ck
E couples to the theory by

N
2π

dAk
nBk

d−n−1 +
N
2π

Bk
d−n−1Ck

E . (2.26)

The gauge transformation is

Ck
E → Ck

E + dλk
E +α

k
n+1, Ak

n→ Ak
n+ dλk

n−1−λ
k
E +α

k
n, Bk

d−n−1→ Bk
d−n−1+ dλk

d−n−2 , (2.27)

where λk
E ,αk

n+1 are background gauge transformations.

ZN magnetic symmetry The magnetic symmetry is generated by ei
∮

Ak
n . The background

(d − n)-form gauge field Ck
M satisfies Ck

M ek = 0, and it couples as

N
2π

dAk
nBk

d−n−1 +
N
2π

Ak
nCk

M . (2.28)

The gauge transformation is

Ck
M → Ck

M + dλk
M , Bk

d−n−1→ Bk
d−n−1 −λ

k
M + dλk

d−n−2, Ak
n→ Ak

n + dλk
n−1 +α

k
n , (2.29)

where λk
M is a background gauge transformation that satisfies λk

M ek = 0.

Mixed anomaly The electric and magnetic symmetries have a mixed anomaly, described by
the SPT phase in one dimension higher

N
2π

∫

Ck
E Ck

M . (2.30)

2.5.2 Observables

The theory has operators
W = ei

∮

Ak
n , U = ei

∮

Bk
d−n−1 . (2.31)

The operator W is restricted to lie on a leaf of foliation k in order to be invariant under the
gauge transformation αk

n. For n= 1, W describes a planon. The operator W is charged under
the electric symmetry.

The operator U has ZN braiding with operator W , and it is charged under the magnetic
symmetry generated by W . U can have boundaries if each connected component of the bound-
ary lies on a leaf of the foliation k. The boundary of U does not break the magnetic symmetry,
since the generator W of the magnetic symmetry is constrained on a leaf and cannot move out
of the leaf.
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2.5.3 Ground state degeneracy

Consider a single foliation with e1 = d x1 on a spatial (d−1)-torus, with lengths li for i = 1, · · · d−1
in the x i directions. To reduce the notation, we will drop the superscript k in Ak

n, Bk
d−n−1. Let

us fix the gauge such that the time components in An, Bd−n−1 vanish. The equation of motion
from integrating out the time-component gauge fields A0,i2,···in−1

and B0, j2,··· jd−n−2
can be solved

up to a gauge transformation by

An =
∑

I={i1,i2···in}:16∈I

qI(t, x1)
∏

I

d x i

`i
, Bd−n−1 =

∑

J={ j1, j2··· jd−n−2}:1 6∈J

pJ (t, x1)
d x1

`1

∏

J

d x j

` j
.

(2.32)
∑

I={i1,i2···in}:1 6∈I sums over all subsets I of 2,3, · · · , n. The effective action is then

S =
∑

I ,J

(−1)s(I ,J)
N
2π

∫

d t
d x1

`1
∂0qI(x

1, t)pJ (x
1, t) , (2.33)

where s(I , J) = 0,1, depending on the index sets I , J . There are mn,d ≡ Cd−2
n = (d−2)!

(d−n−2)!n!
terms in the summation.

To obtain a finite ground state degeneracy, we can regularize the x1 direction by a lattice
with equal spacing Λ1, and denote L1 = `1/Λ

1. This amounts to substituting
pI(t, x1) =

∑

r=0,···L1−1 `1δ(x1− rΛ1)pr
I (t).

13 Denote qI(t, rΛ1) = qr
I (t). Then the regularized

effective action is

S =
∑

r=0,···(L1−1)

∑

I ,J

(−1)s(I ,J)
N
2π

∫

d t∂0qr
I (t)p

r
J (t) . (2.34)

For each x1 there is mn,d =
(d−2)!

(d−n−2)!n! pairs of conjugating ZN degrees of freedom, and thus
the ground state degeneracy is

GSD= N mn,d L1
= N

(d−2)!
(d−n−2)!n! L1

. (2.35)

Topological nature of ground state degeneracy Another way to understand the ground
state degeneracy is using the operators W = ei

∮

An and U = ei
∮

Bd−n−1 . Consider a single
leaf. The operator W is supported on T n for coordinates {x i : i ∈ I}. On each leaf there
are Cd−2

n = mn,d such operators, labelled by Ws with s = 0, · · ·mn,d . The “ribbon” operator
U is supported on an interval in the x1 direction, [x1

1 , x1
2], and extending along {x j : j ∈ J}

directions. We can fix x1
1 , then the interval is labelled by the “ending-leaf” at x1

2 . For each
ending-leaf there are also mn,d such operators, labelled by Us with s = 0, · · ·mn,d . Denote the
ground state without operator insertions by |0〉. Then a basis of the new ground states on each
leaf can be obtained by acting on |0〉 with a product of W wrapped on n cycles in T d−1:

|{ns}〉=
mn,d
∏

s=1

W ns
s |0〉 , (2.36)

where ns = 0, · · · , N −1. Thus there are N mn,d ground states for each leaf, and in total N mn,d L1

ground states. Alternatively, we can describe the ground states using the basis

|{ens}〉=
mn,d
∏

s=1

Uens
s |0〉 , (2.37)

13Note this is an allowed delta function singularity of the foliated gauge field Bd−n−1.
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where ens = 0, · · · , N −1, and they span the N mn,d ground states for the ending leaf at x1 = x1
2 .

Thus again we find N mn,d L1
ground states in total.

Since the operators W and U are charged under the electric and magnetic symmetries,
and the ground states transform as different eigenvalues of the symmetry, we conclude that
the electric and magnetic symmetries are spontaneously broken.

2.6 ZN ×ZN foliated gauge theory and three-loop braiding

Consider the ZN ×ZN ′ foliated two-form gauge theory theory in d = 4 spacetime dimension

N
2π

dAk
1Bk

2 +
N ′

2π
dA′k2 B′k1 , (2.38)

where the theory describes Z2
N gauge fields Ak

1 and B′k1 after integrating out the Lagrangian
multipliers Bk

2 and A′k2 . It has a surface operator corresponding to the projective representation

H2(ZN ×ZN ′ , U(1)) = Zgcd(N ,N ′), which can be denoted by S = ei lcm(N ,N ′)
2π

∮

Ak
1B′k1 with lcm(N , N ′)

the least common multiple of N , N ′. For simplicity, we only consider a single foliation k.
Let us consider the correlation function of U(Σ) = ei

∮

Σ
Bk

2 , W ′(Σ′) = ei
∮

Σ′ A
′k
2 and S(Σ′′).

Inserting U(Σ) and W ′(Σ′) implies

dAk
1 = −

2π
N
δ(Σ)⊥, dB′k1 = −

2π
N ′
δ(Σ′)⊥ , (2.39)

which can be solved as Ak
1 = −

2π
N δ(V)

⊥, B′k1 = −
2π
N ′ δ(V

′)⊥ with ∂ V = Σ, ∂ V ′ = Σ′. Then the
correlation function is given by

〈U(Σ)W ′(Σ′)S(Σ′′)〉= e
2πi

gcd(N ,N ′)Tlk(Σ,Σ′,Σ′′) , (2.40)

where Tlk(Σ,Σ′,Σ′′) =
∫

δ(V)⊥δ(V ′)⊥δ(Σ′′)⊥ with ∂ V = Σ, ∂ V ′ = Σ′ is the triple link-
ing number of the three surfaces [42]. Thus the correlation function describes a three-loop
braiding process [43] between the operator S and the magnetic surface operators U = ei

∮

Bk
2 ,

W ′ = ei
∮

A′k2 by a similar computation as in [44] (see also [45] for a discussion using lattice
model).14 In terms of the gauge fields on the leaves, the operators U , V, S have the following in-
terpretation (see Figure 1). The operator U corresponds to a string consisting of the magnetic
particle excitation in the ZN one-form gauge theories on a collection of leaves. The operator
V corresponds to the domain wall operator in the ZN ′ two-form gauge theory on the leaves.
The operator S intersects the leaves by the ZN Wilson line operator of charge lcm(N , N ′)k/N ′

for the ZN one-form gauge field on the leaves, in the kth vacuum of the ZN ′ two-form gauge
theory on the leaves.

We remark that one can also consider ZN ×ZN ×ZN Dijkgraaf-Witten theory

N
2π

dAk
1Bk

2 +
N
2π

dAk
2Bk

1 +
N
2π

dA′k1 B′k2 +
N p
(2π)2

Ak
1dA′k1 Bk

1 , (2.41)

where the first three terms describe Z3
N gauge fields Ak

1, Bk
1 , A′k1 after integrating out the La-

grangian multipliers Bk
2 , Ak

2, A′k2 . For simplicity, we take a single foliation k. By a similar com-
putation as in e.g. [47], there is three-loop braiding between the magnetic surface operators
for ZN gauge fields.

14One can show by a similar computation as in [44] that in any spacetime dimension (including 2+1d), de-
coupled untwisted ZN n-form gauge theory and m-form gauge theory has a similar correlation function involving
three operators: the magnetic operators for the n, m-form gauge theory, and the electric operator

∫

ana′m with
an, a′m being the n-form and m-form ZN gauge fields [46].

14

https://scipost.org
https://scipost.org/SciPostPhys.11.2.032


SciPost Phys. 11, 032 (2021)

m e
⟨ϕ⟩ = 1

⟨ϕ⟩ = 0

leaf

1m

Figure 1: The three loop braiding process described by the correlation function
(2.40), for N = N ′ = 2. φ = 0,1 (white and light green) label the two vacua on
the leaves of the Z2 two-form gauge theory on the leaves, separated by a domain
wall excitation (green string) which is confined to the leaves. The particles e, m are
the electric and magnetic particles of the Z2 one-form gauge theory on the leaves.
The blue string consists of an m particle everywhere it intersects a leaf. The red string
is a string that consists of an e particle excitation in the regionφ = 1 and trivial parti-
cles along the rest of the loop where φ = 0 (if the domain wall is only on a single leaf
as drawn in the figure). The three-loop braiding comes from the braiding between
e, m in the region φ = 1.

2.7 Relation with higher-rank tensor gauge field

Let us relate foliated gauge fields discussed here to hollow (i.e. off-diagonal) symmetric rank
two gauge field, which is used in the several effective field theories in the literature, e.g. [17,
22, 48, 49]15 for models with excitations of restricted mobility. The discussion is similar but
different from that in [54].

Consider a hollow (i.e. off-diagonal) symmetric rank-two tensor gauge field in d ≥ 4
spacetime dimensions

(a0, ai j), aii = 0 , (2.42)

with the gauge transformation

a0→ a0 + ∂0λ, ai j → ai j + ∂i∂ jλ, λ∼ λ+ 2π . (2.43)

We now repackage it into
Ak

0 = ∂ka0, Ak
i = aki , (2.44)

with the ordinary gauge transformation

Ak→Ak + dλk, λk ≡ ∂kλ . (2.45)

Note that the gauge parameter λk can have a delta function in the kth direction.
The gauge field Ak has dimension two instead of one. Thus we can define the two-form

gauge field
Bk

2 =Akek , (2.46)

which has the gauge transformation

Bk
2 → Bk

2 + dλk
1, λk

1 = λ
kek . (2.47)

Note the possible singularity in λk
1 from λk is consistent with the discussion in Section 2.1.

The two-form gauge field Bk
2 is a foliated two-form gauge field, which satisfies the constraint

Bk
2ek = 0. For simplicity, we can take the foliation one-forms to be ek = d xk with spatial

indices k = 1, · · · d − 1.

15Examples of field theories with non-hollow symmetric tensor gauge fields are discussed in e.g. [50–53].
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Let us verify the Dirac quantization condition of Bk
2 , i.e.

∮

dBk
2 ∈ 2πZ on three-spheres.

Since the integral can be obtained by gluing two three-disks along the equator two-sphere,
we only need to examine whether

∮

dλk
1 is a multiple of 2π on two-sphere. The integral can

be obtained by gluing two hemispheres, and thus it amounts to computing an integral on the
equator of the two-sphere

∮

ek∂kλ . (2.48)

The loop integral can again be obtained by gluing two coordinate patches, across which λ can
jump by a multiple of 2π. Thus we find

∮

dλk
1 ∈ 2π (with potential discontinuities), and Bk

satisfies the Dirac quantization condition.
Note that the symmetric tensor gauge field (a0, ai j) does not correspond to the most general

field configuration of Bk
2 . For instance, if the gauge fields are dynamical with kinetic terms

included in the action, the two theories have different dispersion relations. More precisely, the
symmetric tensor gauge fields corresponds to foliated two-form gauge field with flat two-form
gauge field

B :=
∑

k

Bk
2 =

∑

k,i

Bk
kid xkd x i =

1
2

∑

k,i

�

Bk
ki − Bi

ik

�

d xkd x i , (2.49)

where we choose the (d − 1) foliation one-forms to be ek = d xk with k = 1, 2, · · · d − 1 for
the spatial directions, and Bk

2 =
∑

i Bk
kid xkd x i . Thus locally B = dΛ where we can choose the

gauge Λk = 0, then Λ0 = a0 (for ek = d xk), Bk
ki = Bi

ik i.e. aik = aki . This shows that the two
kinds of fields will result in different physics for gapless free field models, but the same physics
for certain gapped models.

3 Twisted ZN foliated two-form gauge theory in 3+1d

Consider the theory
∑

k,l

N pkl

4π
Bk

2Bl
2 +

∑

k

N
2π

dAk
1Bk

2 , (3.1)

where Bk
2ek = 0. The gauge transformations are

Bk
2 → Bk

2 + dλk
1, Ak

1→ Ak
1 + dλk

0 +α
k −

∑

l

pklλ
l
1 , (3.2)

where αkek = 0, λk
1ek = 0 and dλk

0ek = 0. Since Bk
2Bk

2 = 0, we set pkk = 0. The equation of
motion gives N

∑

l pkl B
l + NdAk

1 = 0, NdBk
2 = 0.

We remark that the version of the theory with ordinary (i.e. not foliated) one-form and
two-form gauge fields is studied in e.g. [33–35,55], and it describes the low energy theory of
suitable Walker-Wang model with boundary Abelian anyons [38,56]. Here we will focus on the
bulk property of the foliated model. The boundary properties will be investigated elsewhere.

One way to understand the theory to take ek = d xk, and express Bk
2 = uk

1d xk. Then the
action

∑

k,l
pkl
4πBkBl =

∑

k,l
pkl
4πuk

1ul
1d xkd x l modifies the theory by inserting layers of surface

operators
∮ pkl

4πuk
1ul

1.

3.1 Global symmetry

Let us couple the theory to a two-form background gauge field Ck
E and a three-form background

gauge field Ck
M

N
2π

∑

k

Bk
2Ck

E +
N
2π

∑

k

Ak
1Ck

M . (3.3)
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The gauge field Ck
M satisfies Ck

M ek = 0, and they have the background gauge transformation
Ck

E → Ck
E + dλk

1 +α
k
2, Ck

M → Ck
M + dλk

2 with αk
2ek = 0 and λk

2ek = 0.
In particular, the magnetic symmetry transforms Bk

2 → Bk
2 − λ

k
2. Due to the coupling

∑

kl(N pkl/4π)Bk
2Bl

2, part of the magnetic symmetry is broken explicitly, and the corresponding
background is forced to be trivial. To see this, we use the equations of motion
∑

l N pkl B
l
2 + NdAk + NCk

E = 0, NdBk
2 + NCk

M = 0, which implies dCk
E =

∑

l pkl C
l
M . For in-

stance, if px y = 1, this implies that the gauge field Ck
M is forced to be trivial and that the

corresponding symmetry is broken by the topological term pkl . In general, the symmetry cor-
responding to Ck

M is Zrk
with rk = gcdl(pkl , N) := gcd(pk1, · · · , pk,k−1, pk,k+1, · · · , pk,nk

, N),
where the gcd is taken over all l.

3.2 Observables

The theory has operators

Uk = ei
∫

Σ
Bk

2 , Vk = ei
∮

∂Σ
Ak

1+i
∑

l pkl
∫

Σ
Bl

2 . (3.4)

Both Uk and Vk are surface operators with boundary ∂Σ, where each connected component of
∂Σ must lie on a leaf of the foliation k. The operators Uk, Vk have e2πi/N statistics.

The operator Vk is not a genuine line operator for pkl 6= 0. The genuine line operators that
describe a planons are integer powers of

V Kk
k = eiK

∮

∂Σ
Ak

1+iKk
∑

l pkl
∫

Σ
Bl

2 , (3.5)

where Kk = N/Lk with Lk = gcd(pkl , N), where the greatest common divisor is respect to all l.
The part

∑

l Kkpkl

∫

Σ
Bl

2 is trivial since it is a multiple of N
∫

Bl
2, and thus the operator V K only

depends on the line ∂Σ, and it is a genuine line operator on the leaf i.e. describing a planon.
The genuine line operators V K

k and Uk have braiding e2πi/Lk .
Let us consider the line operator

Wk = ei
∮ ∑

k qkAk
1 . (3.6)

Invariance under the gauge transformation Ak
1 → Ak

1 −
∑

l pklλ
l
1 constrains the line operator

to lie on the intersection of a leaf from each foliation l that satisfies
∑

k qkpkl 6= 0 mod N . If
three or more foliations satisfy that constraint, then the line operator describes a fracton. Else
if only one or two foliations satisfy

∑

k qkpkl 6= 0 mod N , then the line operator describes a
planon or lineon, respectively.

In summary, ei
∮ ∑

k qkAk
describes a particle with the mobility class of

• A planon, if only one of qk is not a multiple of N , denoted by k = km, and qkm
pkm l ∈ NZ

for l 6= km.

Thus qkm
is a multiple of N

gcdl 6=km (pkml ,N)
, where gcdl 6=km

(pkm l , N) is the greatest common

divisor of N and pkm l with all l 6= km. There are gcdl 6=km
(pkm l , N) planons.

• A lineon, if at least one of qk is a multiple of N , denote such k by k = k?, and
∑

k qkpkk? ∈ NZ.

If there are two k?, k′? such that qk? , qk′?
are a multiple of N , then for km 6= k?, k′?, either

(1) qkm
pkmk? 6∈ NZ and qkm

pkmk′?
∈ NZ, or (2) qkm

pkmk′?
6∈ NZ and qkm

pkmk? ∈ NZ.

Suppose only one of qk? is a multiple of N . Then qk1
, qk2

must be a multiple of
N

gcd(N ,pk1k? ,pk2k? )
. There are thus gcd(N , pk1k? , pk2k?)−2 of them. Suppose qk? , qk′?

are both

multiples of N . In case (1) this means qkm
6∈ N

gcd(N ,pkmk? )
Z and qkm

∈ N
gcd(N ,pkmk′?

)Z. Denote
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qkm
= m N

gcd(N ,pkmk′?
) with m ∼ m+ gcd(N , pkmk′?

), then m gcd(N , pkmk?) 6∈ gcd(N , pkmk′?
)Z,

i.e. m 6∈
gcd(N ,pkmk′?

)

gcd(N ,pkmk? ,pkmk′?
)Z. Thus there are gcd(N , pkmk′?

)− gcd(N , pkmk? , pkmk′?
) of them.

Case (2) is obtained by exchanging k? with k′?. Some of them can be obtained by fusing
planons.

• A fracton, if
∑

k qkpkl 6∈ NZ for all three l in 3+1d.

This requires at least one qk satisfies qk 6∈
N

gcdl (N ,pkl )
Z for all l 6= k. Then such k con-

tributes N −
∑

l 6=k gcdl(N , pkl) fractons.

3.3 Correlation function

The correlation function of the non-foliation version of the theory is computed in Section 7
of [47]. The discussion of the foliation version is essentially the same, except that there are
more gauge invariant operators when the support of the operator is suitably chosen, such as
on the intersection of leaves of foliations.

For instance, let us compute the correlation function for the planon e
i N

gcdl (pkl ,N)

∮

γk
Ak

, where
we insert the operator at closed loop γk on a leaf foliation k. This amounts to deforming the
action with

N
2π

�

p12B1B2 + p13B1B3 + p23B2B3
�

+
∑

k

N
2π

BkdAk +
N

gcdl(pkl , N)
Akδ(γk)

⊥ , (3.7)

where δ(γk)⊥ is the delta function three-form that restricts the spacetime integral to γk. Inte-
grating out Ak gives

dBk = −
2π

gcdl(pkl , N)
δ(γk)

⊥ . (3.8)

On R4 it can be solved using surface Σk with boundary γk as

Bk = −
2π

gcdl(pkl , N)
δ(Σk)

⊥ . (3.9)

Then substituting into the remaining action gives a trivial correlation function for these planons;
i.e. they have trivial self statistics and mutual statistics,

〈
∏

k

e
i N

gcdl (pkl ,N)

∮

γk
Ak

〉=exp
�

2πiN p12

gcd(p12, p13, N)gcd(p12, p23, N)
δ(Σ1)

⊥δ(Σ2)
⊥
�

· exp
�

2πiN p13

gcd(p12, p13, N)gcd(p13, p23, N)
δ(Σ1)

⊥δ(Σ3)
⊥
�

· exp
�

2πiN p23

gcd(p12, p23, N)gcd(p13, p23, N)
δ(Σ2)

⊥δ(Σ3)
⊥
�

= 1 .

(3.10)

We can also consider the correlation function of the planon e
i
∮

γk
Ak+

∑

l

∫

Σk
pkl B

l

, where Σkl
has boundary γk. Repeating the above steps, we find these planons have mutual statistics:

exp −
2πi
N

�

p12δ(Σ1)
⊥δ(Σ2)

⊥ + p13δ(Σ1)
⊥δ(Σ3)

⊥ + p23δ(Σ2)
⊥δ(Σ3)

⊥� . (3.11)

In other words, for the basic planons on the leaves of foliation i, j, they have mutual statistics
e−2πipi j/N .
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Consider the lineon ei
∮

η31A1−η32A2
, where η,κ are given in Figure 5,

di j = gcd(pi j , N), pi j pi j = di j mod N , ηi j = pi j
κi

di j
,

κi = lcm(di j , dik) for distinct i, j, k . (3.12)

The correlation function of the lineon can be computed in a similar way16

〈ei
∮

γ12
η31A1−η32A2

ei
∮

γ13
η21A1−η23A3

ei
∮

γ23
η12A2−η13A3

〉

= exp −
2πi
N

�

p12η31η32δ(Σ12)
⊥δ(eΣ12)

⊥ + p13η21η23δ(Σ13)
⊥δ(eΣ13)

⊥

+p23η12η13δ(Σ23)
⊥δ(eΣ23)

⊥�

· exp
2πi
N

�

p12η
31
�

(3.14)

where Σi j , eΣi j are surfaces with boundary γi j , and they can be thought of as related by pushoff
along some framing direction.

3.4 Exactly solvable Hamiltonian model

Let us construct a Hamiltonian model using a similar method as in [36] to construct a lattice
Hamiltonian model for the one-form symmetry SPT phase. The model for the two-form gauge
theory then follows from gauging the symmetry.

3.4.1 SPT phase with subsystem symmetry

Let us consider a cubic lattice and choose e1 = d x , e2 = d y, e3 = dz. After integrating out
Ak

1, which forces Bk
2 to be ZN two-form foliated gauge field, the action can be expressed in the

discrete notation as 2π
N φ4(B1, B2, B3) with (we normalize Bk = 0, 1, · · · , N − 1 mod N):17

φ4(B
1, B2, B3) = p12B1 ∪ B2 + p13B1 ∪ B3 + p23B2 ∪ B3 . (3.15)

We have
φ4(dλ

1, dλ2, dλ3) = dφ3(λ
1,λ2,λ3) , (3.16)

where
φ3(λ

1,λ2,λ3) = p12λ
1 ∪ dλ2 + p13λ

1 ∪ dλ3 + p23λ
2 ∪ dλ3 . (3.17)

A Hamiltonian model for the SPT phase with symmetry λi → λi+si is given by conjugating
the Ising paramagnet H0 = −

∑N−1
n=0

�

∑

ex
X n

ex
+
∑

X n
ey
+
∑

X n
ez

�

by e(2πi/N)
∫

φ3 , where Z , X are

the ZN clock and shift Pauli matrices satisfying X †
e ZeX e = e2πi/N Ze:

HSPT = −
N−1
∑

n=0

�∑

X n
ex

e
2πi
N

∫

φ3(λ1+neex ,λ2,λ3)−φ3(λ1,λ2,λ3)

+
∑

X n
ey

e
2πi
N

∫

φ3(λ1,λ2+neey ,λ3)−φ3(λ1,λ2,λ3)

+
∑

X n
ez

e
2πi
N

∫

φ3(λ1,λ2,λ3+neez)−φ3(λ1,λ2,λ3)
�

, (3.18)

16The equation of motion gives

B1 = η31δ(Σ12) +η21δ(Σ13), B2 = −η32δ(eΣ12) +η12δ(Σ23), B3 = −η23δ(eΣ13)−η13δ(eΣ23) . (3.13)

17For a review of cup product, see e.g. [36,57–59]
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Z−p13
1
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Z−p13
3

Zp13
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Z−p23
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Z−p12
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Zp23
2

Z−p23
2

Zp13
1

Figure 2: The Hamiltonian model (3.19) for the subsystem SPT phase, where there
are xk-type ZN degrees of freedom on the edges in the xk direction, acted upon by
Pauli matrices Xk, Yk, Zk. One subsystem symmetry is a product of X operators over
edges in the x direction that intersect a yz plane on the dual lattice. Subsystem
symmetries for xz and x y planes are similar.

where eex is the one-cochain that takes value 1 on the edge ex in the x direction and 0 otherwise,
and similarly for eey ,eez . Explicitly,

HSPT = −
N−1
∑

n=0

�∑

X n
ex

e
2πin

N

∫

p12eex∪dλ2+p13eex∪dλ3

+
∑

X n
ey

e
2πin

N

∫

p12dλ1∪eey+p23eey∪dλ3

+
∑

X n
ez

e
2πin

N

∫

p13dλ1∪eez+p23dλ2∪eez
�

. (3.19)

The Hamiltonian model is in Figure 2.

3.4.2 Gauged SSPT phase: two-form gauge theory

Next, we gauge the symmetry by introducing a gauge field described by ZN degrees of freedom
on each face, and impose the Gauss constraint

X e

∏

X o
f = 1 , (3.20)

where the product is over the faces adjacent to the edge e, and o = ±1 depends on the ori-
entation of f relative to e. We can choose a branching structure such that on the 2d plane
orthogonal to e with e pointing into the plane, the product is over two X−1

f on the upper and
left faces and two X f on the lower and right faces. For the face that shares an edge in the k
direction, we associate a two-form gauge field Bk = 0, 1, · · ·N − 1, where Zk has eigenvalue
e(2πi/N)Bk

. For the Hamiltonian to commute with the gauge constraint, we couple each term
to gauge field Bk and replace dλk with dλk + Bk. We also include a flux term to impose the
condition dBk = 0 mod N on the ground state. Then we use the Gauss constraint to gauge-fix
λk = 0. We obtain a Hamiltonian for the theory after gauging the symmetry:

Hgauged = −
N−1
∑

n=0

�∑�∏

X o
fx

�n
e

2πin
N

∫

p12eex∪B2+p13eex∪B3

+
∑�∏

X o
f y

�n
e

2πin
N

∫

p12B1∪eey+p23eey∪B3

+
∑�∏

X o
fz

�n
e

2πin
N

∫

p13B1∪eez+p23B2∪eez

+
∑

c

�∏

Zo
f

�n
�

. (3.21)
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Figure 3: Hamiltonian model for the twisted foliated ZN gauge theory. We label the
top row of excitations as eY Z , eX Z , eX Y , and the bottom row as f 1, f 2, f 3 (from left
to right). Each face has two ZN degrees of freedom: a xk − x l planar face has an
xk-type and x l -type ZN degree of freedom.

The edge and flux terms are given by summing over n = 0, · · ·N − 1 powers of the terms in
Figure 3.18

Consider general N with prime factorization N =
∏

i qri
i where each qi is prime. The

ground state degeneracy can be obtained by the method of [60,61]:19

GSD=
∏

i

q
2ri(lx+l y+lz)−ci

i (3.23)

ci = 2max(b(i)12 , b(i)23 , b(i)13) +median(b(i)12 , b(i)23 , b(i)13)

b(i)kl = ri − logqi
gcd(qri

i , pkl) .

When pkl = 0 for all k, l, this reproduces the ground state degeneracy of the theory in Section
2.5.

As a consistency check, we note that if N = mn for m, n coprime, a foliated ZN two-form
gauge field can be decomposed uniquely into foliated Zm and Zn two-form gauge fields as
Bk = mBk

Zn
+ nBk

Zm
, where the normalization is Bk = 0,1 · · ·N − 1, Bk

Zn
= 0,1 · · · , n − 1 and

Bk
Zm
= 0,1 · · · , m − 1. Then the action eiS of the ZN foliated two-form gauge field is (after

integrating out gauge field Ak
1)

exp

 

πi
N

∑

k,l

pkl B
kBl

!

= exp

 

πi
n

∑

k,l

mpkl B
k
Zn

Bl
Zn

!

exp

 

πi
m

∑

k,l

npkl B
k
Zm

Bl
Zm

!

. (3.24)

Thus the theory of (N , pkl) factorizes into the product of the theory of (n, mpkl) and (m, npkl).
This is consistent with the ground state degeneracy in (3.23).

Excitations We tabulate the kinds of excitations of Figure 3 in Table 1. An excitation of the
top row is a planon, which we label eY Z , eX Z , eX Y (from left to right). These planons can be

18The model has a Z3 rotation symmetry about the (1,1,1) direction given by:

x → y → z→ x

X1→ X2→ X3→ X1

Z1→ Z2→ Z3→ Z1 . (3.22)

19See also Appendix B of [62] for a brief review. We used the computer code in [63].
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Table 1: Excitations of Figure 3 for pkl 6≡ 0 (mod N).

Excitations Mobility

eY Z YZ-planon
eX Z XZ-planon
eX Y XY-planon

f 1 or f 2 or f 3 fracton
f 1
0 ( f

1
bx )
−1 YZ-planon

f 2
0 ( f

2
by )
−1 XZ-planon

f 3
0 ( f

3
bz )
−1 XY-planon

( f 2
bx )
η1,2 ( f 3

0 )
η1,3 X-lineon

( f 3
by )
η2,3 ( f 1

0 )
η2,1 Y-lineon

( f 1
bz )
η3,1 ( f 2

0 )
η3,2 Z-lineon

moved via the unitary action of Z operators. When pkl 6≡ 0 (mod N), which we will assume
for the remainder of this section20, any excitation of the bottom row is a fracton, which we
label f 1, f 2, f 3 (from left to right). A dipole of f 1 fractons displaced in the x-direction is a YZ-
planon; it can move along a YZ plane using the operators shown in Figure 4.21 We denote this
dipole as f 1

0 ( f
1
bx )
−1, where the subscript denotes the lattice position of the excited operator.

Combinations of fractons can also result in a lineon. For example, an X-lineon results from
η1,3 many f 3 fractons along with η1,2 many f 2 fractons displaced in the x-direction, where

ηi, j pi, j ≡ ηi,kpi,k mod N , (3.25)

for any three distinct indices i, j, k ∈ {1, 2,3}. We denote this composite as ( f 2
bx )
η1,2 ( f 3

0 )
η1,3 in

the table. These lineons can be moved via the operators shown in Figure 5.

Fusion rules We can determine a basis of fusion rules (which can be formalized using a
module [10]) for the excitations by asking which combination of excitations can fuse to the
vacuum. In other words, we ask what excitations can be created or annihilated by local opera-
tors, such as a single X or Z operator, when acting on the ground state.22 The resulting fusion
rules are shown in Table 2. These fusion rules (along with the other two sets generated by
symmetry (3.22)) are a basis that generates all possible fusion rules. From the first two rows
in Table 2, we see the fractonic behavior of f0, as moving it requires creating a planon e(X Y ).
In contrast, the last two rows show that e(Y Z) can move along a YZ plane.

3.4.3 Two-form gauge theory with N = 2, p = 1: variant of X-cube model

Consider the example N = 2, p12 = p21 = p23 = p32 = p13 = p31 = 1. The Hamiltonian is
given in Figure 6. The ground state degeneracy on a three-torus with lengths lx , l y , lz is the

20Let ( f k)n denote the fusion of n many f k, with n 6≡ 0 (mod N). If np12 ≡ np23 ≡ np13 ≡ 0 (mod N), then the
three ( f k)n for k = 1, 2,3 are all planons. If np12 6≡ 0 while np23 ≡ np13 ≡ 0 (mod N), then ( f 1)n and ( f 2)n are
lineons while ( f 3)n is a planon. If np12 6≡ 0 and np23 6≡ 0 while p13 ≡ 0 (mod N), then ( f 1)n and ( f 3)n are lineons
while ( f 2)n is a fracton. Thus, we see that each npkl 6≡ 0 (mod N) restricts the mobility of ( f k)n and ( f l)n by one
dimension each.

21Strings of the operators in Figure 4 can be used to move the planons anywhere within their plane, analogous
to how string operators move the toric code excitations around.

22The superselection sectors are obtained by modding out the set of all possible excitations by the set of trivial
excitations (i.e. excitations created or annihilated by local operators) which fuse to the vacuum.
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Table 2: Excitations of Figure 3 that can be fused to the vacuum. We only list the
excitations annihilated by acting with X1 or Z1, since the others can be obtained by
symmetry (3.22). In the second column, X (X Y )

1 is an X1 operator acting on a XY-
plaquette, and similar for the other operators.

Excitations that fuse to vacuum Annihilated by

( f 1
0 )
−1 f 1

bz

�

e(X Y )
− 1

2 bx−
1
2 by−

1
2bz

�−p13

→ 1 X (X Y )
1

f 1
0 ( f

1
by )
−1
�

e(X Z)
1
2 bx+

1
2 by+

1
2bz

�p12

→ 1 X (X Z)
1

e(Y Z)
0 (e(Y Z)

by )−1→ 1 Z (X Y )
1

e(Y Z)
0 (e(Y Z)

bz )−1→ 1 Z (X Z)
1

x

y

z

X†1

X†2

X†2

X2

X2

X†3

X3

Zp13
3

Zp12
1

Zp23
2

X†1

X1

X1

X†3

X3

Z−p122

Z−p233

Z−p131

Figure 4: Operators creating planons (as dipoles of f i excitations) that commute
with the edge terms. They have non-trivial mutual commutation relations.

same as the X-cube model:
GSD= 22lx+2l y+2lz−3 . (3.26)

Our model also has the same fusion module [10] as the X-cube model. That is, the excita-
tions can be mapped to X-cube excitations with the same fusion. Our fractons f i are mapped
as follows:

f 1
0 ←→ F

by L1
− 1

2 bx+
1
2 by−

1
2bz

f 2
0 ←→ F

bz L2
− 1

2 bx−
1
2 by+

1
2bz

(3.27)

f 3
0 ←→ F

bx L3
+ 1

2 bx−
1
2 by−

1
2bz

,

where Fr is an X-cube fracton centered at r, while L i
r is an x i-axis X-cube lineon centered at

r. Our planons e can be mapped to X-cube particles by first mapping them a pair of fractons
via the first two fusion rules in Table 2, and then applying the above mapping.
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d12 = gcd(p12, N), d13 = gcd(p13, N), d23 = gcd(p23, N)

p12p12 = d12modN, p13p13 = d13modN, p23p23 = d23modN

η12 = p12
κ1
d12
, η13 = p13

κ1
d13
, η21 = p12

κ2
d12
, η23 = p23

κ2
d23
,

κ1 = lcm(d12, d13), κ2 = lcm(d12, d23), κ3 = lcm(d13, d23)

η31 = p13
κ3
d13
, η32 = p23

κ3
d23

Figure 5: Operators creating lineons that commute with the edge terms. They sat-
isfy non-trivial commutation relations. κi = bi j pi j [see (3.25)] for any j 6= i with
j ∈ {1, 2,3}. An explicit solution for η is given below the figure.

Inequivalence to X cube model Although the ground state degeneracy and the fusion mod-
ule of the model with N = 2, pkl = 1 is the same as the X-cube model, this model is not local
unitary equivalent to the X-cube model.

This is consistent with the fact that in the mapping of fusion module (3.27), although our
planons e all commute with each other, this commutation relation is not preserved under the
mapping.

To show that the two theories are inequivalent, suppose (for contradiction) that the ground
states are equivalent to X-cube up to a local unitary transformation (and possible addition of
decoupled qubits). Then the lineon excitations (bottom three rows of Table 1) must have the
same quotient superselection sectors (QSS)23 as the X-cube lineon excitations. In order for the
QSS fusion to be consistent (i.e. pairs of fractons must fuse into lineons as in the last three rows
of Table 1), the f i fractons must have the same QSS as an X-cube fracton fused with an X-cube
x i-axis lineon. Now note that if we act with e.g. a X3 operator on a YZ-plane plaquette, then
we create f 3

0 f 3
bx eY Z

1
2 by+

1
2bz

from the vacuum; i.e. these particles fuse to the vacuum. This fusion

implies that the e planons must consist of at least two X-cube fractons24. Since the e planons
all commute with each other, this implies that the e planons must not consist of any X-cube
lineons. But that is impossible since f 3

0 has a QSS that contains an X-cube z-axis lineon, which
implies that f 3

0 f 3
bx must consist of some X-cube lineons, even though f 3

0 f 3
bx must fuse to eY Z ,

which doesn’t contain any X-cube lineons.
The possible equivalence to twisted X-cube models, such as the semionic X-cube model

[65], is left as an open question.

23The quotient superselection sector (QSS) [64] is the superselection sector that results from modding out by
all planon superselection sectors. The X-cube model has 23 = 8 different QSS, which are generated by the fracton,
x-axis lineon, and y-axis lineon.

24In the X-cube model, the fracton charge is conserved mod 2 on each plane. Since f 3 consists of an odd number
of X-cube fractons, f 3 must also have an odd charge on at least one YZ plane. Thus f 3

0 f 3
bx must have an odd charge

on at least two YZ planes. eY Z
1
2 by+

1
2 bz

must also have an odd charge on the same two planes.
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Figure 6: The edge and flux terms for the Hamiltonian model of twisted foliated Z2
two-form gauge theory. Each face in a xk − x l plane has two qubits of types xk, x l .
We label the top row of excitations as eY Z , eX Z , eX Y , and the bottom row as f 1, f 2, f 3

(from left to right).

Twisted foliated two-form gauge theory Let us compare the lattice model with the twisted
foliated two-form gauge theory,

2
2π

�

B1B2 + B1B3 + B2B3
�

+
2

2π

�

B1dA1 + B2dA2 + B3dA3
�

. (3.28)

The gauge transformation is

Bk→ Bk + dλk
1

A1→ A1 −λ2
1 −λ

3
1 + dλ1

0 +α
1
1, A2→ A2 −λ1

1 −λ
3
1 + dλ2

0 +α
2
1

A3→ A3 −λ1
1 −λ

2
1 + dλ3

0 +α
3
1 . (3.29)

The spectrum of operators is

• Fracton ei
∮

Ak
where the curve is supported on the intersection of a leaf for each foliation.

• Lineon ei
∮

Ak−Al
with k 6= l.

• Planon ei
∮

A1+i
∫

B2+B3
that describes a dipole of fractons, where the surface is a thin

ribbon.

The spectrum of particles is similar to the X-cube model, but this fracton can fuse into lineons.
Let us compute the correlation function of lineons. We insert the operators

∫

γ

�

A1 − A2
�

+

∫

γ′

�

A2 − A3
�

. (3.30)

Then integrating out Ak gives B1 = πδ(Σ)⊥, B2 = −πδ(eΣ)⊥ +πδ(eΣ′)⊥, B3 = −πδ(Σ′)⊥ with
∂Σ= ∂ eΣ= γ, ∂Σ′ = ∂ eΣ′ = γ′. The surfaces eΣ, eΣ′ have the same boundary as Σ,Σ′, and they
can be thought of as related by pushoff along some framing direction. Evaluating the rest of
the action produces

〈ei
∮

γ
A1−A2

ei
∮

γ′ A
2−A3

〉= (−1)
∫

δ(Σ)⊥δ(eΣ)⊥+δ(Σ′)⊥δ(eΣ′)⊥ · (−1)
∫

δ(Σ)⊥δ(Σ′)⊥+δ(eΣ)⊥δ(Σ′)⊥+δ(Σ)⊥δ(eΣ′)⊥ .
(3.31)

Thus the lineons have π self statistics and π mutual statistics.
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4 Electric model

Consider the theory

SE =
N
2π

∑

k

dAkBk +
N
2π

∑

k

ηk(a)B
k + Stop(A

k, a) , (4.1)

where a is a G gauge field for some finite or continuous group G, ηk ∈ H2(G,ZN ), which can
be ordinary or twisted cohomology if G has permutation action on ZN , Bk is a foliated two-
form gauge field satisfying Bkek = 0, and Ak is a one-form gauge field. The last term is the
“symmetry twist”

Stop(A
k, a) =ω(a) +

N
2π

∑

k

Akνk(a)δ(Lk)
⊥ , (4.2)

where the first term only depends on the G gauge field byω ∈ H4(G, U(1)) or some cobordism
group generalization, νk ∈ H2(G,ZN ), and δ(Lk)⊥ is the Poincaré dual of some leaf Lk of
foliation k, which is included to make this term invariant under Ak → Ak +αk with αkek = 0.
In other words, it is a topological term supported on a single leaf.

The model has the property that the equation of motion for Bk imposes dAk + ηk(a) = 0
on the leaf of foliation k, which relates the gauge fields Ak and a, and thus the name “electric
model”. Later in Section 5 we will consider another set of models that relate Bk, a, which we
call “magnetic models”. More general models are a mixture of the two kinds.

Symmetry fractionalization Let us first explore some kinematic conditions. Integrating out
Bk gives25

dAk +ηk(a) = 0 on a leaf of foliation k , (4.3)

which implies (Ak, a) describes a Hk gauge field on a leaf of foliation k given by the extension

1→ ZN → Hk→ G→ 1 , (4.4)

specified by ηk ∈ H2(G,ZN ). This implies that the operator

ei
∫

Ak
(4.5)

carries a projective representation specified by ηk under G.
Similarly, suppose Lk = 0. Then integrating out Ak implies that the operator

ei
∫

Bk
(4.6)

carries G symmetry fractionalization, i.e. a G symmetry anomaly on the world volume de-
scribed by νkδ(Lk)⊥. One way to interpret νk is that if we slice the loop created on the
boundary of ei

∫

Bk
by the leaf, then we will find a particle carrying a projective representation

described by νk.

Anomaly and symmetry response The coupling for general η and ν implies that the G
symmetry is anomalous. The anomaly is described by the SPT phase in one dimension higher
with subsystem symmetry, whose effective action is

N
2π

∫

∑

k

ηkνk(a)δ(Lk)
⊥ . (4.7)

25Since Bk satisfies the constraint Bkek = 0, the equation of motion holds up to fields vanishing on a leaf of
foliation k.
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In some cases, it can be cancelled by a local term, in which case there is no anomaly. For
instance, this is the case when G = U(1), ηk(a) = qda/N ,νk(a) = q′da/N for integers q, q′,
and the anomaly can be cancelled by qq′/N

2π adaδ(Lk)⊥. This implies that the leaf Lk of foliation
k has Hall conductance σ = qq′/N .26

For simplicity, in the following discussion we will assume

ηkνk = 0 ∈ H4(G,ZN ) , (4.8)

and thus there is no anomaly.

Gauge transformation The gauge transformation is the following. The group cocycle ηk
satisfies

ηk(g
−1ag + g−1d g)−ηk(a) = dζk(a, g) , (4.9)

and similarly for νk with ξk replacing ζk. The gauge transformation is

Ak→ Ak + dλk
0 +α

k − ζk(a, g)

Bk→ Bk + dλk
1 − ξk(a, g)β k

a→ g−1ag + g−1d g , (4.10)

where αkek = 0. We omit an anomalous transformation of a, which can be cancelled if the
anomaly free condition is imposed.

Observables If G is a global symmetry, then the gauge invariant operators are

Uk = ei
∮

Ak
, Vk = ei

∮

Bk
, (4.11)

Uk is a planon in order to be invariant under αk, and it carries a projective representation
under G. Vk does not have a constraint, although it vanishes when it is supported only on a
leaf of foliation k.

If G is a gauge group, then on each leaf of foliation k there is gauge field with gauge group
Hk given by the extension of G by ZN , specified by ηk,

1→ ZN → Hk→ G→ 1 . (4.12)

The gauge field has action ω′ ∈ H4(Hk, U(1)) given by the pullback from ω ∈ H4(G, U(1)) by
the map Hk → G. The operator Uk is decorated by a projective representation of G to form a
representation of Hk, and in general it obeys non-Abelian fusion, which results in non-Abelian
planon. By taking a combination of Uk we can obtain non-Abelian lineons and fractons.

4.1 Example: G = ZN

Consider for instance G = ZN , and ηk(a) = da/N , νk = 0:

N
2π

∑

k

dAkBk +
1

2π

∑

k

daBk +
N
2π

dab , (4.13)

where in the last term we include a Lagrangian multiplier b, which enforces a to be a ZN gauge
field. The equations of motion are NdAk + da = 0, NdBk = 0,

∑

dBk + Nd b = 0, Nda = 0.

26A similar discussion for Hall conductance is in Appendix E of [58]
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The gauge transformations are

Ak→ Ak + dλk
0 +α

k

Bk→ Bk + dλk
1

a→ a+ dλ0

b→ b+ dλ1 . (4.14)

A lattice model is derived in Appendix C.
The theory has a gauge invariant operator ei

∫

Ak
that lives on a leaf of foliation k so that

it is invariant under Ak → Ak + αk. It describes planons. The equation of motion implies that
if we take N powers of the planon ei

∮

Ak
, we will find a fully mobile particle ei

∫

a. Similarly, if
we take N power of ei

∫

b, we will find the sum ei
∫ ∑

Bk
. Explicitly,

eNi
∫

bi t d x i d t+bi j d x i d x j
= ei

∫ ∑

k Bk
kt d xkd t+Bk

ki d xkd x i
, (4.15)

where if the surface is on t, z plane, then the excitation is along z direction, whose intersection
with x , y plane can move on the plane by B3

zx , B3
z y and therefore describes a planon.

Let us compute the correlation function on R4,27

〈ei
∮

Σ
be

i
∮

γk
Ak

〉 . (4.16)

The operator insertion can be expressed using Poincaré duality as
∫

bδ(Σ)⊥ + Akδ(γk)
⊥ , (4.17)

where δ(Σ)⊥ is the Poincaré dual of Σ, given by a delta function two-form that restricts the
integration over spacetime to the surfaceΣ, and similarly δ(γk)⊥ is a delta function three-form.
Then integrating out Ak and b gives

dBk = −
2π
N
δ(γk)

⊥, da = −
2π
N
δ(Σ)⊥ , (4.18)

where the first equation can be solved on R4 as Bk = −2π
N δ(Σk)⊥ with γk = ∂Σk, and we used

dδ(Σk)⊥ = δ(γk)⊥. The remaining action evaluates to

1
2π

∫

daBk =
2π
N2

∫

δ(Σ)⊥δ(Σk)
⊥ =

2π
N2

Link(Σ,γk) , (4.19)

where Link denotes the linking number. Thus the correlation function is

〈ei
∮

Σ
be

i
∮

γk
Ak

〉= e
2πi
N2 Link(Σ,γk) . (4.20)

In particular, this implies that eiN
∮

b and eiN
∮

Ak
are non-trivial and satisfy the ZN valued

correlation function

〈eNi
∮

Σ
be

i
∮

γk
Ak

〉= 〈ei
∮

Σ
be

iN
∮

γk
Ak

〉= e
2πi
N Link(Σ,γk) . (4.21)

In the case N = 2, the theory describes the low energy theory of the hybrid toric code
layer model in [31]. We will later see that the hybrid toric code model is also described by our
magnetic theory (5.22), which we show is dual to this theory in Section 7.1.

27The computation is similar to that in [47] for non-foliated gauge fields.
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We remark that the theory with A and B replaced by ordinary one-form and two-form gauge
fields is equivalent to ordinary ZN2 gauge theory. To see this, note that integrating out A, b
allows us to rewrite the action in the discrete notation, with B, a being ZN two-cocycle and
one-cocycle: (roughly, B = N

2πBk and a = N
2πa)

2π
N

∫

B ∪ Bock(a) , (4.22)

where Bock is the Bockstein homomorphism for the short exact sequence
1 → ZN → ZN2 → ZN → 1. Then integrating out B enforces Bock(a) to be trivial, which
implies that a can be lifted to a ZN2 one-cocycle, and the theory describes an ordinary ZN2

gauge theory. In comparison, here with A and B replaced by constrained fields, the extra par-
ticle in the ZN2 gauge theory is no longer fully mobile but instead constrained to move along
a plane.

4.2 Example: G = Z2 ×Z2

Consider G = Z2 ×Z2 and N = 2, and ηk(a1a2) = a1a2, νk = 0. Then Hk = D8. The action is
given by

2
2π

∑

k

dAkBk +
2

2π2

∑

k

a1a2Bk +
2

2π
da1 b1 +

2
2π

da2 b2 . (4.23)

The equation of motion gives 2dBk = 0, 2dAk = 2
πa1a2, 2d b1 = −

2
π

∑

k a2Bk, 2d b2 =
2
π

∑

k a1Bk,
2da1 = 0,2da2 = 0.

The gauge transformations are

Ak→ Ak + dλk
0 +α

k +
1
π

a1λ
′
0 −

1
π
λ0a2

Bk→ Bk + dλk
1

a1→ a1 + dλ0

a2→ a2 + dλ′0

b1→ b1 + dλ1 +
1
π

∑

k

a2λ
k
1 −

1
π
λ′0

∑

k

Bk

b2→ b2 + dλ′1 −
1
π

∑

k

a1λ
k
1 +

1
π
λ0

∑

k

Bk . (4.24)

The operator ei
∮

Ak+ 1
π

∫

a1a2 describes the Wilson line in the two-dimensional representation
of Hk = D8, and it transforms under the center. The Wilson lines ei

∮

a1 , ei
∮

a2 , and ei
∮

a1+a2 are
the sign representations of D8, and they describe fully mobile particles. Thus two fractons can
fuse into multiple fully mobile particles, following from the fusion rule ofD8 representations.28

The invariance under Ak → Ak + αk with αkek = 0 implies
∮

Ak is a planon. Taking nonzero
linear combination of

∮

Ak1 ,
∮

Ak2 then produces a lineon
∮

A1−A2, which obeys Abelian fusion
since ηk has order 2. Taking a nonzero linear combination of

∮

Ak1 ,
∮

Ak2 ,
∮

Ak3 then produces
a fracton, which obeys non-Abelian fusion.

5 Magnetic model

Consider G gauge theory for some finite or continuous group G. We can express the G gauge
field as a G/A gauge field extended by some finite Abelian normal subgroup A ⊂ G gauge

28Another way to see this is that fusing ei
∮

Ak+ 1
π

∫

a1a2 ei
∮

Ak+ 1
π

∫

(a1+dφ1)(a2+dφ2) can produce ei
∮

a1 , ei
∮

a2 , ei
∮

a1+a2

depending on the gauge parameters φ1,φ2 = 0,π.
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field using the group extension:

1→A→ G→ G/A→ 1 . (5.1)

The G gauge field can be expressed by the pair (a, a′) with a being the A gauge field and a′

being the G/A gauge field, which are constrained to satisfy da = η(a′) for η ∈ H2(G/A,A)
specifying the extension G. In general, there can be a non-trivial permutation action of G/A
on A in the group extension, and the cohomology group is understood as generally a twisted
cohomology group. In the following we will still use d to denote the corresponding twisted
coboundary operator. Since A is a product of finite cyclic groups, without loss of generality
suppose A = ZN . Then the condition on the gauge fields can be imposed by a Lagrangian
multiplier b:

N
2π
(da−η(a′))b . (5.2)

A general Wilson line of G is described by a Wilson line of A and a projective representation
of G/A from the Mackey theory.

Next, we couple the theory to (Ak, Bk) gauge fields as

SM =
N
2π

∑

k

dAkBk +
∑

k

Nqk

2π
bBk +

N
2π
(da−η(a′))b+ Stop(a

′, Bk) , (5.3)

where we include a “symmetry twist”

Stop(a
′, Bk) =ω(a′) +

∑

kl

N pkl

4π
BkBl , (5.4)

with ω ∈ H4(G/A, U(1)), and integer pkl . We call SM the magnetic model.
Integrating out b now imposes

da = η(a′)−
∑

k

qkBk . (5.5)

Gauge transformation Denote

η(g−1a′g + g−1d g)−η(a′) = dζ(a′, g) . (5.6)

The gauge transformation is

Ak→ Ak + dλk
0 +α

k − qkλ1 −
∑

l

pklλ
l
1

Bk→ Bk + dλk
1

a→ a+ dλ0 + ζ(a
′, g)−

∑

k

qkλk
1, a′→ g−1a′g + g−1d g

b→ b+ dλ1 . (5.7)

Observables For simplicity, we will assume A is in the center of G. From (5.5) and (5.7), the
G Wilson line that transforms under the center (projective representation of G/A) transforms
by qkλk

1. Thus the gauge invariant operators include the fracton (for all three qk nonzero)

ei
∮

a , (5.8)

which is generally non-Abelian for non-Abelian G, as well as a lineon such as

ei
∮

A1−A2+i
∫ ∑

l (p1l−p2l )Bl
, (5.9)

which creates a deconfined lineon if p1l = p2l , otherwise we would need to take a power of
the above operator.
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5.1 Example: ZN X-cube model

When G =A = ZN , qk = 1, ω = 0, pkl = 0, the magnetic model describes the foliated QFT of
the ZN X-cube model in [19],29

N
2π

∑

k

dAkBk +
N
2π

∑

k

bBk +
N
2π

bda . (5.10)

The theory is studied in [19].
The magnetic model for general group (5.3) with pkl = 0 is equivalent to coupling

G = G/ZN gauge theory, with gauge fields a′, to the theory for the X-cube model, with fields
Ak, Bk, a, b.

SM = SG′(a
′)−

N
2π
η(a′)b+ SX (A

k, Bk, a, b), SG′(a
′) =ω(a′)

SX (A
k, Bk, a, b) =

N
2π

∑

k

dAkBk +
∑

k

Nqk

2π
bBk +

N
2π

dab . (5.11)

5.1.1 Singularity structure in “bulk field”

Let us use this example to illustrate that the singularity of the original “bulk fields” a and b
can change due to coupling to the foliated gauge fields (Ak, Bk).30

The equation of motion for b implies da + Bk = 0. Since Bk can have singularity δ(Lk)⊥

for some leaf Lk of foliation k, the same holds for da after coupling to Ak, Bk. After coupling
to the foliated gauge field, there these “bulk fields” now develop singularities on the leaves are
no longer the original bulk bundle. In other words, the bulk bundle changes into a new bundle
with a singularity structure specified by the coupling to the foliated gauge fields (Ak, Bk), and
there is no longer a well-defined bulk field without the novel singularity structure.

We remark that this is similar to SU(2) gauge field, when coupled to two-form gauge field
by the center one-form symmetry, becomes an SO(3) gauge field, and there is no longer a
well-defined SU(2) bundle.

5.1.2 Ground State Degeneracy

Let us calculate the ground state degeneracy of the field theory (5.10) which describes the
X-cube model. Take the foliation one-forms to be e1 = dz, e2 = d y , and e3 = dz on a T4

spacetime with lengths l0, l1, l2, l3 in the four directions.31 Then up to gauge transformations,
the equations of motion from integrating out Ak

0, Bk
0k, a0, and b0i for k = 1, 2,3 are

εi jl∂iB
k
jl = 0, ∂iA

k
j + b′i j = 0, Bk

jk − B j
k j + ∂ jak = 0, ε0i jk∂i b

′
jk = 0 . (5.12)

29Here we use a different notation from [19] and call Bk the foliated two-form gauge field Bkek = 0.
30We thank Nathan Seiberg and Shu-Heng Shao for bringing up this point.
31See also [17,22,32] for other field theory calculations of the X-cube degeneracy.
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They can be solved by

Ak
i =

∑

j=1,2,3

εi jk qk
i (t, xk)

li

Bk
ik =

1
2

pk
i (t, xk) + pi

k(t, x i)

li lk
(5.13)

ai = 0

b′i j = 0
∫

d xkqk
i (t, xk) =

∫

d xkpk
i (t, xk) = 0 when k− i ≡ 1 mod 3 , (5.14)

where i, j = 1,2, 3.
Plugging the above solution into the action yields

S =
N
2π

∑

j,k=1,2,3, j 6=k

∫ l0

0

d t

∫ lk

0

d xk

lk
pk

j (t, xk)∂0qk
j (t, xk) . (5.15)

The partition function and ground state degeneracy of the above action is divergent. In
order to obtain a finite result, we can impose a lattice regularizations in the xk direction for
each foliation with a lattice spacingΛk = lk/Lk, where Lk is the lattice length in the k direction.
This amounts to substituting

pk
i (t, xk) =

∑

r

δ(xk − rΛk)p
k
i,r(t) . (5.16)

We also denote qk
j,r(t) = qk

j (t, rΛk). Then the integral over xk is replaced by a sum in the
effective action:

S =
N
2π

∑

j,k=1,2,3: j 6=k

∫ l0

0

d t
∑

r=0,1,...,(Lk−1)

pk
j,r(t)∂0qk

j,r(t) . (5.17)

This theory has a ground state degeneracy equal to N2L1+2L2+2L3−3.

5.1.3 Comparison with twisted foliated two-form gauge theory

Let us compare the set of operators for the N = 2 theory of (5.10) describing the Z2 X-cube
model with the twisted Z2 foliated two-form gauge theory (3.1) for N = 2, pkl = 1. We will
denote the fields in (5.10) that describes the X-cube model with a tilde:

Fracton ei
∮

A1+A2+A3
v.s. ei

∮

ea

Fracton-lineon ei
∮

A1
v.s. ei

∮

ea+eA2−eA3

Lineon ei
∮

A1−A2
v.s. e

∮

eA1−eA2

Fracton dipole e
∫

Bk
v.s. ei

∫

eBk
, (5.18)

where in the last line the field is integrated over a ribbon whose boundary is the worldline of
a pair of fractons. Each pair satisfies the same fusion algebra (up to trivial surfaces such as
2
∫

Bk, 2
∫

eBk, 2
∫

eb that we ignore here). This is the field theory counterpart for the mapping
of fusion module in (3.27). However, the pairs have different statistics, and thus the two
theories are not equivalent.
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5.2 Example: G = ZN2

Consider ZN2 described by the extension of G/A= ZN by ZN . Denote the gauge field of A by
a, and G/A by a′ as before. For Stop = 0, the magnetic model is

SM =
N
2π

∑

k

dAkBk +
N
2π

∑

k

qk bBk +
N
2π

dab−
1

2π
da′b+

N
2π

da′b′ , (5.19)

where we include a Lagrangian multiplier b′ to enforce a′ to be ZN valued. The equation
of motion gives NdBk = 0, NdAk + qkN b = 0, NqkBk + Nda − da′ = 0, −d b + Nd b′ = 0,
Nda′ = 0.

We can also integrate out a′ as a Lagrangian multiplier, which imposes b = N b′ up to a
gauge transformation, and we find the following equivalent theory

S′M =
N
2π

∑

k

dAkBk +
∑

k

N2qk

2π
b′Bk +

N2

2π
dab′ , (5.20)

with the gauge transformation

Ak→ Ak + dλk
0 +α

k − Nqkλ
′
1

Bk→ Bk + dλk
1

a→ a+ dλ0 −
∑

k

qkλ
k
1

b′→ b′ + dλ′1 . (5.21)

The equations of motion are NdBk = 0, NdA+ N2qk b′ = 0, N2d b′ = 0, N2da+ N2qkBk = 0.
This theory is a special case of (3) in [19] with the substitutions Mk → N , N → N2, and
nk → Nqk. A string-membrane-net lattice model for (5.20) is given in Appendix A of [32]
with similar substitutions.

Let us study the examples qk = (0,0, 1), qk = (0, 1,1) and qk = (1, 1,1), where we consider
a single foliation, two foliations and three foliations for the foliations k with nonzero qk.

Example 1: single foliation Let us omit A1, B1, A2, B2. The theory is

N
2π

dA3B3 +
N2

2π
B3 b′ +

N2

2π
b′da . (5.22)

The theory has a planon particle e described by ei
∮

a and a loop excitation m described
by ei

∮

b′ . The N th power of the planon, eN , is described by eNi
∮

a, which can be made gauge
invariant by

eNi
∮

a+Ni
∫

B3
. (5.23)

Since N
∫

B3 is trivial, this is a genuine line operator that creates a fully mobile particle. The

N th power of the loop excitation eNi
∮

b′ can end

ei
∮

A3+Ni
∫

b′ , (5.24)

where the ending
∮

A3 lives on a leaf to be invariant under the gauge transformation
A3 → A3 + α3. If we take e3 = dz, this means it lives on the x , y, t space. Thus the opera-
tor describes a planon, denoted by mN , that moves on a leaf.

The ground state degeneracy on a three-torus can be computed similarly to Section 5.1.2,
and it can also be computed from a string-membrane-net lattice model for the foliated gauge
theory in [32] with the method of [60, 61]. For a spacial three-torus with length Lz in the z
direction measured in some lattice cutoff unit, the ground state degeneracy equals N2Lz+3.

For N = 2, the theory describes the low energy theory of the hybrid toric code layer model
in [31], and we find that the ground state degeneracy of the two theories agree.

33

https://scipost.org
https://scipost.org/SciPostPhys.11.2.032


SciPost Phys. 11, 032 (2021)

Example 2: two foliations We will omit A3, B3. The theory is

N
2π

dA1B1 + dA2B2 +
N2

2π
(B1 + B2)b′ +

N2

2π
b′da . (5.25)

The theory has a lineon, denoted by e and described by ei
∮

a, which moves along the
intersection of two leaves of foliation 1 and foliation 2. The theory also has a loop excitation
m described by ei

∮

b′ . The theory has another lineon L described by ei
∮

A1−A2
.

The N th power of e (i.e. eN ) is described by eiN
∮

a and is fully mobile since the operator

eiN
∮

a+iN
∫

(B1+B2) (5.26)

can be defined on any curve, where the surface operator N
∫

B1 + B2 is trivial. Thus it is a
genuine line operator that describes a deconfined fully mobile particle.

The N th power of the loop, described by eiN
∮

b′ , can end on a leaf of either foliation using
the gauge invariant operator

ei
∮

A1+Ni
∫

b′ , ei
∮

A2+Ni
∫

b′ . (5.27)

In general, the boundary of the surface eiN
∫

b can be patches that are locally on leaf of either
foliation, and at the intersection there is lineon ei

∮

A1−A2
. In other words, the N th power of

loop m has a lineon L at the corner when turning from the x direction to the y direction. We
denote L = mN .

The ground state degeneracy on a three-torus can be computed similarly to Section 5.1.2,
and it can also be computed from a string-membrane-net lattice model for the foliated gauge
theory in [32] with the method of [60, 61]. For a spatial three-torus with lengths Lx , L y in
the x , y directions measured in some lattice cutoff unit, the ground state degeneracy equals
N2Lx+2L y+1.

Example 3: three foliations Consider the theory

∑

k

�

N
2π

dAkBk +
N2

2π
b′Bk

�

+
N2

2π
b′da . (5.28)

The gauge invariant operators are

• The operator ei
∮

a describes a fracton.

• The N th power of fracton
eiN

∮

a+N
∫

Bk
, (5.29)

is fully mobile, where it describes a deconfined particle since the surface N
∫

Bk is triv-
ial.32

• Lineon described by ei
∮

Ak−Al
.

• Fully mobile particle described by the operator ei
∫

b′ corresponds to magnetic a flux
loop, while from the equation of motion of Bk, the N th power eiN

∫

b′ = ei
∫

dAk
can live

on open surface with boundary, where the boundary can be piecewise smooth where
each segment lies on some leaf of foliation k. At the intersection point for different
leaves k, l there is lineon ei

∮

Ak−Al
.

32We remark that in the model (3) of [19], a similar consideration implies that the rth power of the basic fracton
is fully mobile, with r = N/gcd(n1, n2, n3, N). When r 6= N it is a non-trivial fully mobile particle. This corrects an
imprecise statement in [19].
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Let us study the correlation function of the theory on R4:

〈ei
∮

Σ
b′ei

∮

γ
a〉= e(−2πi/N2)Link(γ,Σ), 〈ei

∮

γk
Ak

ei
∮

Σ
Bk
〉= e(−2πi/N)Link(γk ,Σ)

〈ei
∮

γk
Ak

ei
∮

Σ
b′〉= 1, 〈ei

∮

Σk
Bk

ei
∮

Σ
b′〉= 1, 〈ei

∮

Σk
Bk

ei
∮

γ
a〉= 1

〈ei
∮

γk
Ak

ei
∮

γ
a〉= e(2πi/N)#(Σ,Σk), ∂Σ= γ,∂Σk = γk . (5.30)

Let us compute the last correlation function in detail. The insertion of operator can be ex-
pressed using Poincaré duality as

∫

Akδ(γk)
⊥ + aδ(γ)⊥ . (5.31)

Integrating out a, Ak gives

dBk = −
2π
N
δ(γk)

⊥, d b′ = −
2π
N2
δ(γ)⊥ . (5.32)

They can be solved on R4 by

Bk = −
2π
N
δ(Σk)

⊥, b′ = −
2π
N2
δ(Σ)⊥ , (5.33)

where ∂Σ = γ,∂Σk = γk. Then evaluating the remaining action produces the correlation
function

〈ei
∮

γk
Ak

ei
∮

γ
a〉= e(2πi/N)

∫

δ(Σ)⊥δ(Σk)⊥ = e(2πi/N)#(Σ,Σk) . (5.34)

The ground state degeneracy on a three-torus can be computed similarly to Section 5.1.2,
and it can also be computed from a string-membrane-net lattice model for the foliated gauge
theory in [32] with the method of [60, 61]. For space three-torus with lengths Lx , L y in
the x , y directions measured in some lattice cutoff unit, the ground state degeneracy equals
N2Lx+2L y+2Lz .

In the case N = 2, the theory describes the low energy theory of the fractonic hybrid X-cube
model in [31], and indeed the ground state degeneracy agrees.

5.3 Example: G = ZN2 ×ZN

Consider the theory

∑

k

�

N
2π

dAkBk
�

+
N
2π

�

N b(B1 + B2) + b′(B2 + B3)
�

+
N2

2π
bda+

N
2π

b′da′ . (5.35)

The equations of motion are NdBk = 0, NdA1+N2 b = 0, NdA2+N2 b+N b′ = 0, NdA3+N b′ = 0,
N2(B1 + B2) + N2da = 0, N(B2 + B3) + Nda′ = 0, N2d b = 0, Nd b′ = 0. The gauge transfor-
mations are

A1→ A1 + dλ1
0 +α

1 − Nλ1

A2→ A2 + dλ2
0 +α

2 − Nλ1 −λ′1
A3→ A3 + dλ1

0 +α
3 −λ′1

Bk→ Bk + dλk
1

a→ a+ dλ0 −λ1
1 −λ

2
1

a′→ a′ + dλ′0 −λ
2
1 −λ

3
1

b→ b+ dλ1

b′→ b′ + dλ′1 . (5.36)
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The theory has a lineon, denoted by e, which corresponds to the operators
ei
∮

a, ei
∮

a′ , ei
∮

a+a′ . The N th power can be made gauge invariant by attaching to a trivial
surface operator N

∫

(B1 − B2), N
∫

(B2 − B3), N
∫

(B1 − B3), which makes it a fully mobile.
Thus, eN is a fully mobile particle.

The theory has a loop excitation described by ei
∮

b of order N2. The N th power can be
defined on an open surface

ei
∮

A1+iN
∫

b, ei
∮

A2−A3+iN
∫

b . (5.37)

In particular, the fracton described by

ei
∮

A1−A2+A3
(5.38)

can cut in the middle of the surface eiN
∮

b. 33

Take e1 = d x , e2 = d y, e3 = dz. The ground state degeneracy on a torus of lengths
Lx , L y , Lz along the three directions measured in some lattice cutoff lengths equals N2Lx+2L y+2Lz .
The theory with N = 2 describes the low energy theory of the lineonic hybrid X-cube model
in [31]. Indeed, the ground state degeneracy of the two theories can be found to agree.

5.3.1 An exactly solvable lattice model

Let us give an exactly solvable lattice model for the foliated gauge theory (5.35). Integrating
out Ak, a, a′ gives ZN gauge fields Bk, b′, and ZN2 gauge field b, with the action 2π

N φ4: (where
we normalize the gauge fields to be Bk, b′ = 0, 1, · · ·N −1 mod N and b = 0, 1, · · ·N2−1 mod
N2)

φ4(B
k, b, b′) = b ∪ (B1 + B2) + b′ ∪ (B2 + B3) . (5.39)

It satisfies

φ4(dλ
k, deλ, dλ′) = dφ3, φ3(λ

k, eλ,λ′) = eλ∪ (dλ1 + dλ2) +λ′ ∪ (dλ2 + dλ3) . (5.40)

A Hamiltonian for the SPT phase with shift symmetry of λk, eλ,λ′ is given by conjugating

H0 = −
∑N2−1

n=0

∑

eX n
e −

∑N−1
m=0

�

∑

X m
ek
+
∑

X ′me

�

by e
2πi
N

∫

φ3:

HSPT =−
∑

m

∑

X m
ex

e
2πi
N

∫

φ3(λ1+meex ,λ2,λ3,eλ,λ′)−φ3(λ1,λ2,λ3,eλ,λ′)

−
∑

m

∑

X ey
e

2πi
N

∫

φ3(λ1,λ2+meey ,λ3,eλ,λ′)−φ3(λ1,λ2,λ3,eλ,λ′)

−
∑

m

∑

X ez
e

2πi
N

∫

φ3(λ1,λ2,λ3+meez ,eλ,λ′)−φ3(λ1,λ2,λ3,eλ,λ′)

−
∑

n

∑

eX ee
2πi
N

∫

φ3(λk ,eλ+nee,λ′)−φ3(λk ,eλ,λ′) −
∑

m

∑

X ′ee
2πi
N

∫

φ3(λk ,eλ,λ′+mee)−φ3(λk ,eλ,λ′) .(5.41)

Explicitly,

HSPT =−
N−1
∑

m=0

�∑

X m
ex

e
2πim

N

∫

deλ∪eex +
∑

X m
ey

e
2πim

N

∫

(deλ+dλ′)∪eey +
∑

X m
ez

e
2πim

N

∫

dλ′∪eez
�

−
N2−1
∑

n=0

∑

e

eX n
e e

2πin
N

∫

ee∪(dλ1+dλ2) −
N−1
∑

m=0

∑

e

X ′me e
2πim

N

∫

ee∪(dλ2+dλ3) . (5.42)

33There is also operator ei
∮

b′ that can be defined on open surface ei
∮

A3+i
∫

b′ , so it does not correspond to non-
trivial loop.
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Figure 7: Hamiltonian model for the ZN×ZN2 magnetic model. The row with the ZN
in the front means summing over m= 0, 1, · · ·N−1 powers of such term, and similarly
the row with ZN2 in the front means summing over n= 0, 1, · · ·N2−1 powers of such
terms. The variables eX , eZ are the ZN2 analogue of Pauli X , Z matrices, while the other
variables are the ZN analogue of Pauli matrices.

After gauging the shift symmetries, the Hamiltonian model is

Hgauged =−
N−1
∑

m=0

 

∑

ex

�∏

X fx

�m
e

2πim
N

∫

b∪eex +
∑

ey

�∏

X f y

�m
e

2πim
N

∫

(b+b′)∪eey

+
∑

ez

�∏

X fz

�m
e

2πim
N

∫

b′∪eez

�

−
N2−1
∑

n=0

∑

e

�∏

eX f

�n
ee

2πin
N

∫

ee∪(B1+B2) −
N−1
∑

m=0

∑

e

�∏

X ′f
�m

e
2πim

N

∫

ee∪(B2+B3)

−
∑

ck

∏

Z fk
−
∑

c

∏

eZ f −
∑

c

∏

Z ′f . (5.43)

The faces on x i−x j plane has ZN degrees of freedom associated with Bi , B j , b′ and ZN2 degrees
of freedom associated with b′. The terms in the Hamiltonian model are shown in Figure 7.

The ground state degeneracy on a torus of lengths Lx , L y , Lz along the three directions
measured in the unit of lattice spacing can be computed using the method of [60, 61] and it
equals N2Lx+2L y+2Lz .
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5.4 Example: G = D8

Consider G as the extension of Z2 ×Z2 by A= Z2

1→ Z2→ G→ Z2 ×Z2→ 1 . (5.44)

The extension corresponds to η(a′) = a1a2 for Z2×Z2 gauge field a1, a2. The magnetic model
is described by the action

∑

k

2
2π

dAkBk +
∑

k

2
2π

bBk +
2

2π
(da−

1
π

a1a2)b+
2

2π
da1 b1 +

2
2π

da2 b2 , (5.45)

where we include Lagrangian multipliers b1 and b2 to enforce a1 and a2 to be Z2 gauge fields.
The equation of motion for b gives

2
2π

∑

k

Bk +
2

2π
(da−

1
π

a1a2) = 0 . (5.46)

Thus under the gauge transformation: Bk → Bk + dλk
B, a → a − λk.34 The theory has a

non-Abelian fracton, described by

ei
∮

γ
a− i

π

∫

Σ
a1a2 , (5.48)

where γ is the boundary ofΣ, and it lies on the intersection of the leaves for all three foliations.
It is the Wilson line in the two-dimensional representation ofD8. On the other hand, the Wilson
lines ei

∮

a1 , ei
∮

a2 and ei
∮

a1+a2 are the sign representations of D8, and they are fully mobile.
Thus two fractons can fuse into multiple fully mobile particles. The theory also has lineons,
described by ei

∮

Ak−Al
for k 6= l.35

The theory has the same spectrum as the electric model discussed in Section 4.2. In fact,
as we will discuss in Section 7, the electric and magnetic models are in fact dual to each other.

The theory also appears to have the same kind of planon, lineon, and non-abelian fracton
excitations (and no abelian fractons) as the non-abelian D4 model in [66] (see also [67]). (D4
in [66] and D8 in our work both denote the dihedral group with 8 elements.) For example,
both theories have Z2 gauge theory planons and lineons that have aπ statistic with the fracton.
We therefore conjecture that the two models describe the same physics.

We can also replace A = Z2 by other Abelian normal subgroups in D8, which produce
different theories. For each normal subgroup A, we can also include topological action for the
G/A gauge field. The discussion is straightforward, and we do not work out the details here.

34The other gauge transformations are

Ak → Ak + dλk
0 +α

k −λb

b→ b+ dλb

Bk → Bk + dλk
B +

1
π
δk,1(dλa1

a2 + a1dλa2
)

a→ a−
∑

k

λk
B +

1
π
λa1

dλa2

b1→ b1 + dλb1
−

1
π

a2λb, b2→ b2 + dλb2
+

1
π

a1λb

a1→ a1 + dλa1
, a2→ a2 + dλa2

. (5.47)

35The lineon hasπ statistics with the fracton: consider the correlation function of
∮

γ12
A1−A2 and

∮

γ
a− 1

π

∫

Σ
a1a2,

integrating out the fields gives the correlation function

exp πi

∫

(δ(Σ12)
⊥ −δ(eΣ12)

⊥)δ(Σ)⊥ , (5.49)

where ∂Σ12 = ∂ eΣ12 = γ12.
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6 Couple foliated gauge field to matter

6.1 Couple matter to foliated gauge field by one-form symmetry

Consider a theory with ZN one-form symmetry, with background denoted by B. We can couple
the theory to a ZN theory (Ak, Bk) by

B =
∑

k

ckBk , (6.1)

where ck are integers mod N . This is consistent since the theory can be coupled to a general
ZN two-form gauge field B, and thus can be coupled to Bk, which is a special two-form gauge
field.

In the electric model SE , the one-form symmetry is generated by e
2π
N

∫

ηk(a), which we cou-
pled to the gauge field Bk. In the magnetic model SM for central extension, the one-form
symmetry is the center one-form symmetry of G gauge theory.

Example: O(3) sigma model Consider a sigma model with target space M. The sigma
model can have strings, given byπ2(M), which describe the one-form symmetry of the model.36

For instance, all CPn−1 models have Z strings, i.e. U(1) one-form symmetry. We can then cou-
ple the model to (Ak, Bk). Consider the simplest case n = 2, M = S2. It is described by a unit
vector n(x) = (n1, n2, n3) ∈ R3, nI n

I = 1. Denote the skyrmion density by Q[n], which is an
integral class of degree two,

Q[n] =
1

8π
n1 · dn2 × dn3 . (6.2)

The operator exp(iα
∮

Q[n]) generates the U(1) one-form symmetry, with parameter
α ∈ R/2πZ. Then one can couple the theory to (Ak, Bk) as

S =
N
2π

∑

k

dAkBk +
∑

k

Nqk

2π
BkQ[n] +

1
g
(∂ n)2 . (6.3)

The gauging transformation Bk→ Bk+ dλk changes the coupling Nqk

2π BkQ[n] by Nqk

2π dλkQ[n],
which implies that the skyrmions, defined by

∮

Q[n] = 1 on the transverse surrounding sphere,

transforms by e
Nqk

2π

∮

λk
. Thus the gauge invariance implies that skyrmions live on a leaf of

foliation k if qk 6= 0, and if qk 6= 0 for all k then the skyrmion in this model becomes a fracton.
One the other hand, it can be made gauge invariant by attaching it to eiqk

∫

Bk
, and using the

property that N
∫

Bk is trivial, we conclude that the skyrmion is fully mobile if Q equals a
multiple of N/gcd(q1, q2, q3, N).

Example: SU(N) and PSU(N) Yang-Mills theory The SU(N) Yang-Mills theory with θ = 0
is believed to have monopole condensation and confinement. It follows that by gauging the
center one-form symmetry, PSU(N) gauge theory has deconfined ’t Hooft lines, described by
a Z2 two-form gauge theory at low energy (which is also equivalent to Z2 one-form gauge
theory). It has a new magnetic ZN one-form symmetry that transforms the ’t Hooft lines, and
gauging this one-form symmetry with suitable local counterterm recovers the confined SU(N)
gauge theory.

Let us replace the two-form gauge field by a foliated two-form gauge field. For instance, we
can define a new version of SU(N) gauge theory by coupling the PSU(N) gauge theory to the

36The non-trivial element of π2(M) gives an operator on S2 whose eigenvalue measures the charge of the lines
surround by S2. For general spacetime dimension D, the one-form symmetry is described by πD−2(M).
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foliated two-form gauge theory N
2π

∑

k dAkBk using the magnetic one-form symmetry, instead
of coupling to an ordinary two-form gauge field that would give the ordinary SU(N) gauge
theory. At low energy, the theory becomes equivalent to the low energy of the X-cube model,
where the ’t Hooft line becomes a fracton, and the new Wilson line is a lineon. Thus the theory
becomes deconfined, in contrary to the ordinary SU(N) gauge theory where all particles are
fully mobile but confined. Similarly, we can consider a new PSU(N) gauge theory by coupling
the SU(N) gauge theory to the foliated two-form gauge theory instead of ordinary two-form
gauge field, then the ’t Hooft line becomes a planon ei

∮

Ak
, while the Wilson line can end on

the surface ei
∫ ∑

Bk
and it is a confined fracton. The discussion can be generalized to include

θ angles.

6.2 Couple matter to foliated gauge field by ordinary or planar symmetry

Let us discuss some examples of coupling the foliated gauge field to matter using a symmetry
that acts on the leaves of foliation.

6.2.1 Example: magnetic model with matter

Let us discuss foliated gauge theory with a minimal coupling to matter fields:

L =
∑

k

Mk

2π

�

dAk + nk b
�

Bk +
N
2π

bda

+ g−1
1

∑

k

�

�ek(dΘk − nkφ − Ak)
�

�

2
+ g−1

2

∑

k

�

dΦk − Bk
�2

(6.4)

+ g−1
3

∑

k

�

dθ −
∑

k

mkΦ
k − a

�2

+ g−1
4 (dφ − b)2 .

Θk and θ are 0-form matter fields while Φk and φ are 1-form matter fields. The last two lines
are obtained by considering gauge transformations for each gauge field, and then replacing
each gauge parameter with a matter field that transforms the replaced gauge parameter:

Ak→ Ak + dλk
0 − nkλ1 +α

k Θk→ Θk +λk
0

Bk→ Bk + dλk
1 Φk→ Φk +λk

1 (6.5)

a→ a+ dλ0 −
∑

k

mkλ
k
1 θ → θ +λ0

b→ b+ dλ1 φ→ φ +λ1 .

When any of the g−1
i are sufficiently large, some of the gauge fields will be Higgsed by the

matter field.

6.3 Faithful symmetry on leaves

Consider independent degrees of freedom living on different foliation, acted by K×G symme-
try. Moreover, the symmetry action on foliation k has ZNk

identification: the faithful symmetry
for foliation k is

K × G
ZNk

. (6.6)

Now, let us gauge the K symmetry, which turns the theory into a K gauge theory. Then the
faithful symmetry for foliation k is

G′ = G/ZNk
. (6.7)
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While the G action leaves the theory invariant, it is important to consider the faithful symmetry
G′. For instance, by turning on a G′ background gauge field we can use discrete anomalies to
study the theory, such as in [68,69].

To describe the G′ gauge field, we can use the magnetic model. It is a G gauge field and
ZNk

foliated two-form gauge field described by (Ak, Bk). For instance, if Nk = N , then the G′

gauge field is described by
∑

k

N
2π

dAkBk +
N
2π

∑

k

bBk +
N
2π
(da−η(a′))b , (6.8)

which is the magnetic model for A= ZN , and η ∈ H2(G/ZN ,ZN ) is specified by the extension
G. A G′ background gauge field is described by classical fields Bk, a, a′ constrained to satisfy

da = η(a′)−
∑

k

Bk , (6.9)

which is enforced by integrating out Ak, b.37

For instance, consider a K = U(1) foliated gauge field A coupled to N f scalars of charge
one on a leaf. The theory has G′ = PSU(N f )× U(1) planar symmetry. The G′ symmetry has
an anomaly from a mixed anomaly between the SPU(N f ) symmetry and U(1) symmetry [68].

7 Dualities for foliated gauge theories

7.1 Example: ZN and ZN2 model

Let us begin with a simple example of duality between the electric model and magnetic model,

Electric:
N
2π

dAB +
1

2π
Bda+

N
2π

bda

Magnetic:
N
2π

d eAeB +
N2

2π
eBeb−

N2

2π
ebdea . (7.1)

Here, we only consider a single foliation. However, the duality generalizes naturally to addi-
tional foliations.

Let us start with the electric model. First, redefine a′ = a+ NA. It has the gauge transfor-
mation

a→ a+ dl, A→ A+ dλ0 +α

a′→ a′ + d(l + Nλ0) + Nα . (7.2)

The action becomes
1

2π
Bda′ +

N
2π

bda′ −
N2

2π
bdea , (7.3)

where ea = A. We can trade a′ by the ZN two-form

eB =
da′

N
, eB→ eB + dα . (7.4)

The action can be written as

N
2π

BeB +
N2

2π
beB −

N2

2π
bdea . (7.5)

37If Bk were ordinary two-form gauge field, then a can be removed by a background gauge transformation of Bk,
and the equation would imply that η(a) (the obstruction to lifting the G/ZN bundle to a G bundle) equals

∑

Bk.
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So far it is a rewriting using eB satisfying the constraint (7.4). We can relax the constraint by
introducing a Lagrangian multiplier eA, and integrating out B, which imposes eBe = 0. We end
up with the action

N
2π

d eAeB +
N2

2π
beB −

N2

2π
bdea, eBe = 0 . (7.6)

Thus we recover the magnetic model,

N
2π

dAB +
1

2π
Bda+

N
2π

bda ←→
N
2π

d eAeB +
N2

2π
eBeb−

N2

2π
ebdea . (7.7)

The operators map as

ei
∮

A ←→ ei
∮

ea

ei
∮

a ←→ eiN
∮

ea−iN
∫

eB

ei
∮

b ←→ ei
∮

eb

ei
∫

Σ
B ←→ ei

∮

∂Σ
eA+Ni

∮

Σ
eb , (7.8)

where in the last line ∂Σ is on the leaf. One can verify that the corresponding correlation
functions agree.

7.2 Duality for general group

We will show the duality can be generalized to

Electric:
N
2π

dAB −
N
2π

Bη(a′) + Stop(a
′) + I[a′,φ]

Magnetic:
N
2π

d eAeB +
N
2π
ebeB +

N
2π
(dea−η(ea′))eb+ Stop(ea

′) + I[ea′, eφ] . (7.9)

For simplicity, we focus on single foliation, and omit the superscript k in the foliated gauge
fields (Ak, Bk), (eAk, eBk). The gauge groups in the electric and magnetic models that couple
to (Ak, Bk), (eAk, eBk) are related by Gelectric = Gmagnetic/ZN , with gauge field denoted by a′ in
the electric model and ea′ in the magnetic model. In the duality (7.7), Gmagnetic = ZN2 and
Gelectric = ZN . In general, the groups can be both non-Abelian, or the electric group Gelectric is
Abelian and the magnetic group Gmagnetic is non-Abelian. In the above duality, I is a coupling
of a′ to other fields that can be gauge fields or matter fields, collectively denoted by φ, which
do not participate in the duality: a′↔ ea′, φ↔ eφ. For simplicity we will drop the I term in
the following derivation of the duality.

7.2.1 A derivation of the duality

Let us start with the magnetic model

SM =
N
2π

d eAeB +
N
2π
ebeB +

N
2π
(dea−η(ea′))eb+ Stop(ea

′) . (7.10)

The gauge transformation eB→ eB + dλ1 also transforms ea→ ea−λ1 with λ1e = 0.
Reversing the previous steps, integrating out eA imposes eB = du′/N for some u′ = u−Nea,38

and we include another foliated two-form B to impose the condition eBe = 0. Denote A = ea,
a′ = ea′; the action becomes

−
1

2π
B(du− NdA) +

1
2π
eb(du− NdA) +

N
2π
(dA−η(a′))eb+ Stop(a

′)

=
N
2π

BdA−
1

2π
Bdu+

1
2π
ebdu−

N
2π
η(a′)b+ Stop(a

′) . (7.11)

38We include ea such that u′ thus defined does not transform under λ1.
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After integrating out b, which imposes du = Nη(a′), we find the dual electric model for
Gelectric = Gmagnetic/ZN

SE =
N
2π

dAB −
N
2π

Bη(a′) + Stop(a
′) . (7.12)

In other words,

N
2π

dAB−
N
2π

Bη(a′)+Stop(a
′) ←→

N
2π

d eAeB+
N
2π
ebeB+

N
2π
(dea−η(ea′))eb+Stop(ea

′) . (7.13)

The example (7.7) corresponds to Gmagnetic = ZN2 , which gives η(a′) = da′/N , Stop = 0, and

include a Lagrangian multipliers b′,eb′ to enforce a′, ea′ to be ZN gauge fields by N
2π b′da′ on

the left hand side and N
2π
eb′dea′ on the right hand side, respectively. Then on the right hand

side, integrating out ea′ then imposes eb = Neb′, and this recovers the right hand side of (7.7).
The duality can be interpreted as follows. In the magnetic model, the gauge field (eAk, eBk)

couples to the center ZN one-form symmetry for Gmagnetic associated with
Gmagnetic/ZN = Gelectric. Gauging the one-form symmetry using ordinary ZN two-form gauge
fields would result in confined Wilson lines transformed under the center; instead, here we use
a constrained gauge field, thus the Wilson lines transformed under the center are deconfined
but have restricted mobility. These lines are ei

∮

ea. In the electric model, the gauge group is the
quotient Gmagnetic/ZN = Gelectric, and gauging the ZN one-form symmetry associated with the
quotient extends the gauge group to be Gmagnetic, which introduces new Wilson lines; here, we
couple the constrained gauge fields (Ak, Bk) to the one-form symmetry, thus the new Wilson
lines have restricted mobility. These lines are ei

∮

A. The Wilson lines with full mobility are
those of Gmagnetic/ZN = Gelectric and are the same in the two models, namely ei

∮

a′ and ei
∮

ea′ .
The “remaining” Wilson lines have restricted mobility in both models, and correspond to each
other under the duality map A↔ ea.

We remark that if we replace the foliated gauge fields by ordinary one-form and two-form
gauge fields, then the duality would not hold: the electric model would be equivalent to a
Gmagnetic gauge theory, while the magnetic model would be equivalent to Gmagnetic/ZN gauge
theory. They are in general inequivalent.

7.3 Duality for U(1) gauge theory

From the above reasoning, we can consider the following duality for foliated U(1) gauge the-
ory. The electric model is given by gauging a ZN subgroup magnetic symmetry in the foliated
U(1)/ZN gauge theory, while the magnetic model is given by gauging a ZN subgroup electric
symmetry in the foliated U(1) gauge theory. The two theories are dual. In the magnetic model,
the basic Wilson line with charge eqe 6∈ NZ becomes a planon, while Wilson line with charge
equals a multiple of N is fully mobile. In the electric model, before gauging the symmetry the
Wilson lines have charge equals a multiple of N , and they remain fully mobile after gauging the
symmetry; after gauging the ZN magnetic symmetry, there are new Wilson lines with charge
q 6∈ NZ, and they are planons.

We can also consider duality between ordinary U(1) gauge theories with matter coupled
to a foliated gauge field. For instance, take the electric model to be quantum electrody-
namics (QED) with even number N f of charge-one fermions coupled to a Zq foliated gauge
field (described by q

2πdA1B2) by the Zq ⊂ U(1) subgroup magnetic one-form symmetry [34]
η ∈ H2(U(1),Zq) = Zq. This implies that the Wilson line has 1/q charge under A1. The dual
magnetic model is given by QED with charge q fermion, coupled to a Zq foliated gauge field
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by the Zq electric one-form symmetry [34]. Denoting the U(1) gauge field by u, the duality is

Electric model: U(1)u with N f ψ of charge 1 +
q

2π
duB +

q
2π

dAB

Magnetic model: U(1)u with N f
eψ of charge q+

2q
e2
? dueB +

q
2π

d eAeB , (7.14)

where e is the gauge coupling.

Acknowledgement

We thank Xie Chen, Hotat Lam, Nathan Seiberg, Shu-Heng Shao, Wilbur Shirley, and Nathanan
Tantivasadakarn for discussions. The work of P.-S. H. is supported by the U.S. Department of
Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0011632,
and by the Simons Foundation through the Simons Investigator Award. K.S. is supported by
the Walter Burke Institute for Theoretical Physics at Caltech.

A Foliated field with singularity as defect insertion

In this note we discuss fields where the path integral sums over certain type of singularities
or discontinuities in the fields. The following is a remark on such fields. We will not make
further use of this interpretation in the rest of the note.

The path integral of such fields with singularities or discontinuities can be interpreted in
two steps. First, we sum over a field with fixed singularity. This is equivalent to the path inte-
gral over a continuous field configuration, but with a fixed defect inserted at the singularity:

Z[Σ] =

∫

DbeiS[b]UΣ . (A.1)

Next, we sum over all the possible insertions of a certain class of defects; this amounts to
summing over fields with this class of singularities. If the defect generates a symmetry, then
the defect insertion is equivalent to turning on a background B = PD(Σ) where PD denotes
the Poincaré dual, and we will denote Z[Σ] = Z[B]. Then summing over the defect insertions
is equivalent to gauging the symmetry, since additional insertion of the symmetry defect does
not change the new path integral:

Z =
∑

B

Z[B] . (A.2)

Let us give an example. Take the original field is a compact scalar φ(x , y) with x ∼ x + lx ,
y ∼ y + l y . It has shift symmetry. Then consider the discontinuous configuration

φ(x , y) = 2πh(x − x0)
y
l y
+ 2πh(y − y0)

x
lx
− 2π

x y
lx l y

, (A.3)

where x0, y0 → 0+. h(x) is the step function, h(x) = 1 for x > 0 and h(x) = 0 for x ≤ 0. It
has a transition function at x = lx and y = l y :

φ(lx , y) = φ(0, y) + 2πh(y − y0), φ(x , l y) = φ(x , 0) + 2πh(x − x0) . (A.4)

Note for an ordinary compact scalar the transition function is a constant multiple of 2π. It can
be interpreted as an ordinary compact scalar coupled to a background B for the shift symmetry,
given by

B = 2πh(y − y0)
d x
lx
+ 2πh(x − x0)

d y
l y

, (A.5)
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such that
∮

dφ =
∮

B1.

B Scalar or fermion on a leaf

B.1 Scalar on a leaf

Consider complex scalar field φk coupled to a foliated U(1) one-form gauge field Ak
1, with the

kinetic term

Skinetic =

∫

d td xd ydz
∑

k

|ek(d−iAk
1)φ

k|2 :=

∫

∑

k

ek(d+iAk
1)φ

k
∧?
�

ek(d − iAk
1)φ

k
�

. (B.1)

Note the kinetic term is invariant under the gauge transformation Ak
1→ Ak

1+α
k
1 with αk

1ek = 0.
The gauge field Ak

1 thus couples to the current

? jk = iekφ
k
∧ ?(ekdφk) + c.c. . (B.2)

The current satisfies ek ? jk = 0. For ek = dz on a flat spacetime, the current is

jk
t = iφ

k
∂tφ

k + c.c., jk
x = −iφ

k
∂xφ

k + c.c, jk
y = −iφ

k
∂yφ

k + c.c, jk
z = 0 . (B.3)

The corresponding symmetry in the free scalar theory is the subsystem planar symmetry
φk→ φkeiλ(z), or more generally ekdλ= 0.

More generally, we can include a potential V (φk) for the scalar field. The potential that

respects the symmetry takes the form V (φk) = f (φ
k
φk).

The discussion can be generalized to a real scalar ϕk, where Ak
1 is replaced by a foliated Z2

gauge field (which can be expressed as a U(1) foliated gauge field with holonomy constrained
to be 0 or π mod 2π).

Discontinuity Since Ak
1 contributes the discontinuity δ(Vk)⊥ in the kinetic term, for the ki-

netic energy to be finite, ekdφk can at most have discontinuities. Thus the scalar field φk can
have discontinuity δ(Vk)⊥.

Scalar of charge q> 1 If the scalar field has charge q, we replace Ak
1 by qAk

1. The aU(1)
foliated gauge theory with scalar of charge q has Zq electric symmetry that shifts the gauge
field by a flat Zq connection Ak

1 → Ak
1 + λ

k
1, λk

1 = dλk
0/q. We can couple the theory to back-

ground Zq two-form gauge field Ck
E using the electric symmetry. Ck

E has the background gauge
transformation

Ck
E → Ck

E + dλk
1 +α

k
2, Ak

1→ Ak
1 +λ

k
1, αk

2ek = 0 . (B.4)

We can also give the charge-q scalar a potential V (φk). If the potential is chosen such that
the scalar condenses, then the U(1) foliated gauge field Ak

1 is Higgsed to Zq. Then the low
energy theory is described by the foliated Zq gauge theory

q
2π

∑

k

dAk
1Bk

2 . (B.5)

The Higgs phase still has the Zq electric symmetry, with the background Ck
E coupled as

q
2π

∑

k Bk
2Ck

E .
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B.2 Fermion on a leaf

Consider a Dirac fermionψk coupled to foliated U(1) one-form gauge field Ak
1, with the kinetic

term
∫

∑

k

iψ
k
γek ∧ ?(ek(d − iAk

1)ψ
k) , (B.6)

where γ = γµd xµ. Note the kinetic term is invariant under Ak
1→ Ak

1 +α
k
1 with αk

1ek = 0. The
gauge field Ak

1 couples to the current

? jk =ψ
k
? (γek)ekψk . (B.7)

The current satisfies ek ? jk = 0. For instance, if ek = dz, the current is

jk
µ =ψ

k
γµψ

k for µ= 0, 1,2, jk
3 = 0 . (B.8)

The corresponding symmetry in the free fermion theory is the subsystem planar symmetry
ψk→ψkeiλ(z), or more generally ekdλ= 0.

More generally, we can include a mass term and four-fermion interactions. If the theory
has a real scalar ϕk, then we can include the Yukawa coupling

∑

k

mψ
k
ψk + r(ψ

k
γµψk)(ψ

k
γµψ

k) + r ′(ψ
k
ψk)2 + gϕkψ

k
ψk . (B.9)

Discontinuity Since Ak
1 can have discontinuity δ(Vk)⊥, for the kinetic energy to be finite,

ekdψk can at most have discontinuity δ(Vk). Thus ψk can have discontinuity δ(Vk)⊥.

C Exactly solvable Hamiltonian model for Z2 electric model

In this appendix, we construct an exactly solvable Hamiltonian model for the Z2 electric model
in (4.13). Consider a single foliation with ek = d x , and N = 2. An exactly solvable model for
the Hamiltonian can be constructed as follows. Integrating out Ak, b in (4.13) gives Z2 gauge
fields B, a coupled as

φ4(a, B) = B ∪ a ∪ a , (C.1)

where B only has nonzero components x y, xz but Byz = 0, and we use a∪ a = Sq1a, which is
da/2 for da = 0 mod 2. We have

φ4(dφ, dλ) = dφ3(φ,λ), φ3(φ,λ) = λdφ ∪ dφ . (C.2)

An exactly solvable model for the SPT phase for the symmetry that shifts φ,λ is

HSPT = −
∑

v

X v(−1)
∫

φ3(φ+ev,λ)−φ3(φ,λ) −
∑

e

X e(−1)
∫

φ3(φ,λ+ee)−φ3(φ,λ) , (C.3)

where ev is the 0-cochain that equals 1 on the vertex v and zero otherwise, and similarly ee is
the one-cochain that equals 1 on edge e and 0 otherwise. Explicitly,

HSPT = −
∑

v

X v(−1)
∫

dλ∪(ev∪dφ+dφ∪ev+ev∪dev) −
∑

e

X e(−1)
∫

ee∪dφ∪dφ . (C.4)

Next, we gauge the shift symmetry of φ,λ to obtain the gauge theory for the gauge fields
a, B. We introduce new qubits on edge and faces, acted on by Pauli matrices with a hat. We
impose the Gauss law

X v

∏

bX e = 1, X e

∏

bX f = 1 , (C.5)
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Figure 8: Hamiltonian model for the Z2 electric model. In the top row, the edges are
labelled by numbers without a prime, while the faces are labelled by numbers with
a prime. The operators in the top row only commute in the zero flux sector, which is
the ground state subspace of the bottom-right plaquette operators.

where the product is over the adjacent edges and the adjacent faces. For the Hamiltonian to
commute with the Gauss law, we replace dφ with dφ + a, and dλ with dλ+ B. Then we can
use the Gauss law to gauge fix φ,λ= 0. We also include the flux term of the gauge fields.

The resulting Hamiltonian after gauging the symmetry is

Hgauged =−
∑

v

�∏

bX e

�

(−1)
∫

B∪(ev∪a+a∪ev+ev∪dev) −
∑

e

�∏

bX f

�

(−1)
∫

ee∪a∪a

−
∑

c

∏

bZ f −
∑

f

∏

bZe . (C.6)

The vertex, edge and the flux terms of the Hamiltonian are shown in Figure 8. The operators
in the first line (top row in Figure 8) only commute in the zero flux sector, which is the ground
state subspace of the bottom-right plaquette operators

�

∑

f

∏

bZe

�

. Nevertheless, the ground
state is exactly solvable and is the simultaneous ground state of all terms in the Hamiltonian.
The Hamiltonian can be turned into a local commuting projector model by conjugating the
first term (top-left in Figure 8) by ground state projectors of the last term (bottom-right in
Figure 8).
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