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Abstract

Recently it was suggested that certain perturbations of integrable spin chains lead to
a weak breaking of integrability in the sense that integrability is preserved at the first
order in the coupling. Here we examine this claim using level spacing distribution. We
find that the volume dependent crossover between integrable and chaotic level spacing
statistics which marks the onset of quantum chaotic behaviour, is markedly different for
weak vs. strong breaking of integrability. In particular, for the gapless case we find that
the crossover coupling as a function of the volume L scales with a 1/L2 law for weak
breaking as opposed to the 1/L3 law previously found for the strong case.
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1 Introduction

Mean values of generalised currents in one-dimensional integrable models have attracted con-
siderable interest lately, mainly due to the recent theory of Generalised Hydrodynamics which
describes non-equilibrium dynamics at the Euler scale [1,2]. These currents express the conti-
nuity relation for conserved charges responsible for integrability, which can be exploited for a
hydrodynamic description of the ballistic flow of the quasi-particles. This description is useful
only as far as the exact mean values of the currents in local equilibrium conditions are known,
and indeed in the thermodynamic limit a simple exact formula was postulated in [1,2], which
was proven for relativistic quantum field theories [1, 3], and for the spin current of the XXZ
spin chain in [4], and the classical Toda chain in [5]. These exact results were extended to
finite volume in [6] with a proof that applies to systems including Heisenberg spin chains, the
Lieb-Liniger interacting Bose gas, and integrable quantum field theories with diagonal scatter-
ing. In [7] an algebraic construction was given for the current operators of the integrable spin
chains, which led to an alternative rigorous proof of their mean values.

Recently [8] it was discovered that these exact results are connected to the so-called long
range deformations of integrable spin chains which emerged in the context of the AdS/CFT
correspondence [9–11]. These long range spin chains are obtained as a one-parameter defor-
mation of ordinary short-range spin chains (such as the XXZ model) and preserve integrability
to each finite order in the deformation parameter g, with the interaction range growing order-
by-order. Strictly speaking, these deformations are only defined in infinite volume. In the
work [12] it was demonstrated that these long range deformations have a deep connection to
T T̄ -deformations of integrable quantum field theory [13, 14] (see also [15, 16]), by sharing
the same algebraic origin which allowed the proof of factorisation for the expectation values
of the operators which trigger the deformation of the spin chain.

It turns out that the existence of the exact formulae for the current expectation values
is implied by the following observation made in [8]: for each generalised current there is a
long range deformation such that the given current operator itself is the leading perturbing
operator. This implies that the perturbation of the spin chain by the generalised current op-
erator is integrable to the leading order in the deformation parameter g, but integrability is
generally expected to be broken at higher orders since to maintain it necessitates the inclu-
sion of progressively longer and longer range interaction terms at higher orders of g. We call
this breaking of integrability ’weak’ in distinction to ’strong’ breaking of integrability which al-
ready happens at the first order of perturbation, and where integrability cannot be maintained
by improving the perturbing operator order-by-order in g. At present it is believed that the
only two possibilities for weak integrability breaking are given by the current- and T T̄ -like
deformations, see [8–12].

The concept of weak integrability breaking is novel and it opens up new questions about
the physical behaviour of integrable and nearly integrable models. Earlier works did not make
a distinction between different forms of integrability breaking (for a recent review see [17])1,
and the physical consequences of the different types of perturbations started to emerge only
recently. For example the work [18] studied integrability breaking within the framework of
Generalised Hydrodynamics, where it was also found that the perturbations by the current
operators do not break integrability at the leading order: while a generic perturbation with
coupling λ is expected to thermalise the system on a time scale of T ∼ λ−2, this effect is
missing for the current operators on the same time scale. We also note the recent work [19]
which argues that the perturbations with weak integrability breaking actually span the tangent

1We note that while Ref. [17] also uses the expression “weak integrability breaking”, it is used in a very different
way from the present work, since there it simply means perturbation with small coupling constant, and does not
refer to a special class of perturbing operators.
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of space of integrable models within the full space of local many-body models. This is an
alternative explanation for the existence of weak integrability breaking: it arises as an effect of
following the “tangent line” instead of remaining within the submanifold of integrable models,
thus leading to much weaker effects than a perturbation which is “orthogonal” to the tangent
space.

The onset of non-integrable a.k.a. chaotic behaviour in many-body systems can be investi-
gated via the statistics of energy spectra [20–28]; in some cases even analytical results can be
obtained [29]. For integrable systems the level spacing distribution is known to follow Pois-
sonian statistics, while for non-integrable case random matrix theory predicts the so-called
Wigner-Dyson distribution whose precise form depends on the relevant random matrix en-
semble. In a finite volume, the transition between the two distributions is a smooth crossover,
with the crossover coupling going to zero in the thermodynamic limit. For systems without
a spectral gap, the crossover coupling scales as a (negative) power of the volume, with the
exponent depending whether the local degrees of freedom are interacting or not [30]; for the
case with interactions, the behaviour was determined to be L−3, irrespective of the spatial
dimensionality of the system.

In this short paper we set out to investigate the weak breaking of integrability by exploring
the level spacing statistics for the case of the spin-1/2 XXZ spin chain. We compare a known
strong integrability breaking term which introduces next-to-nearest-neighbour interactions to
the weak integrability breaking perturbation provided by the lowest non-trivial generalised
current. We start by presenting the Hamiltonian and the perturbations in Section 2, and then
turn to the results for the level spacing statistics in Section 3, where we examine the crossover
between the Poissonian distribution characteristic for integrable systems to the Wigner-Dyson
distribution signalling the breaking of integrability, as a function of the integrability breaking
coupling and the volume, and investigate the dependence of the crossover coupling on the
volume. We present our conclusions in Section 4.

2 The Hamiltonian and its perturbations

2.1 The XXZ spin chain and the current operator

The spin-1/2 XXZ spin chain of length L is defined by the Hamiltonian

HX X Z =
L
∑

i=1

�

sx
i sx

i+1 + s y
i s y

i+1 +∆sz
i sz

i+1

�

, (1)

where s j = 1
2σ

j are the spin operators with σ j denoting the Pauli matrices

σx =

�

0 1
1 0

�

σ y =

�

0 −i
i 0

�

σz =

�

1 0
0 −1

�

(2)

and periodic boundary conditions sa
L+1 ≡ sa

1 . The model has three phases controlled by the
anisotropy parameter ∆: for −1 < ∆ < 1 the spectrum is gapless, while for ∆ > 1 and
∆< −1 there is a non-zero gap. The two massive phases are physically different: for ∆< −1
the system is in a ferromagnetic Ising phase, while∆> 1 corresponds to an antiferromagnetic
Ising phase. The boundary points ∆ = ±1 are special as the U(1) symmetry of the theory
generated by the conserved charge

Sz =
L
∑

i=1

sz
i (3)

is enhanced to SU(2).
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The XXZ chain is integrable: there exists a family of local conserved quantities

Qn =
L
∑

l=1

qn,l , (4)

where n= 1, . . . , L and the charge density is supported on exactly n neighbouring sites. Their
conservation can be expressed as a continuity equation

jn,l+1 − jn,l = i
�

qn,l , HX X Z

�

, (5)

where jn,l is the conserved current corresponding to the charge Qn.
The first two charges are Q1 = Sz , and Q2 which is nothing else but the Hamiltonian

(1). These charges are related to the U(1) symmetry and time translations, and are generally
present in all the models considered in this work, including the non-integrable ones.

The first nontrivial charge corresponding to integrability of the XXZ Hamiltonian is

Q3 =
L
∑

l=1

q3,l (6)

q3,l = sx
l−1sz

l s y
l+1 − s y

l−1sz
l sx

l+1 +∆
�

−sz
l−1sx

l s y
l+1 + sz

l−1s y
l sx

l+1 − sx
l−1s y

l sz
l+1 + s y

l−1sx
l sz

l+1

�

,

with the corresponding current given by

j3,l = −
1
2

�

2∆
�

sx
l−2s y

l−1sx
l s y

l+1 + sx
l−2sz

l−1sx
l sz

l+1 + s y
l−2sx

l−1s y
l sx

l+1 + s y
l−2sz

l−1s y
l sz

l+1

+ sz
l−2sx

l−1sz
l sx

l+1 + sz
l−2s y

l−1sz
l s y

l+1 − sx
l−2s y

l−1s y
l sx

l+1 − s y
l−2sx

l−1sx
l s y

l+1

�

− 2
�

sx
l−2sz

l−1sz
l s y

l+1 + s y
l−2sz

l−1sz
l s y

l+1

�

− 2∆2
�

sz
l−2sx

l−1sx
l sz

l+1 + sz
l−2s y

l−1s y
l sz

l+1

�

−
1+∆2

4

�

sx
l−1sx

l + s y
l−1s y

l

�

−
∆

2
sz
l−1sz

l

�

.

2.2 Perturbations, norms and effective coupling

We are interested in perturbing the XXZ chain by the current

HJ = HX X Z + g3J , (7)

where

J =
L
∑

l=1

j3,l , (8)

which is supposed to break integrability only at higher order. As a benchmark to the strength
of integrability breaking, we also consider a perturbation breaking integrability by the next-
to-nearest-neighbor interaction (NNNI) term

ONNN I =
L
∑

i=1

sz
i sz

i+2 , (9)

which leads to the Hamiltonian

HNNN I = HX X Z + gN

L
∑

i=1

sz
i sz

i+2 =
L
∑

i=1

�

sx
i sx

i+1 + s y
i s y

i+1 +∆sz
i sz

i+1 + gN sz
i sz

i+2

�

. (10)

We remark that integrability breaking also affects transport properties, which was investigated
in [31] exactly for the above NNNI perturbation of the spin-1/2 XXZ chain.
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To compare the strength of integrability breaking, we introduce the effective coupling geff
of an operator O as

geff = gOnO , (11)

where gO is the coupling appearing in the Hamiltonian H = H0+ gOO, and n is defined from
the norm of the operator as the coefficient of the leading asymptotics

‖O‖2 =
p

Tr O†O (12)

as the coefficient n of the leading asymptotic term

||O||2 = nOL + ... , (13)

which is linear in the volume L due to the expression of O as the translation invariant sum
of localised terms (8,9). The advantage in parameterising the strength of the perturbation
with geff is that its value is invariant under a rescaling of the perturbing operator, and it also
facilitates the comparison of the strengths of different perturbing operators.

The norm of J depends on ∆, while that of ONNN I does not; some explicit values are
shown in Table 1. Since the perturbing operators are given as translation invariant sums over
localised interaction terms, their norm is expected to be extensive in the volume. Indeed, as
illustrated in Fig. 1, their norms change linearly with the volume, apart from some fluctuations
for J which are due to the fact that L is changed in steps of 2, while the one-site term j3,l is
localised on 4 sites. The coefficient nO can be computed by fitting a linear function to the
norm values as a function of L, and is shown in the last column of Table 1.

Table 1: The norms of the perturbing operators J and ONNN I .

L 10 12 14 16 18 20 nO

‖J‖2
∆= 0.2 0.742 1.306 1.232 1.841 1.772 2.346 0.143

∆= −1.2 2.376 3.115 3.357 4.614 4.726 6.023 0.348

∆= 1.2 2.274 3.115 3.455 4.614 4.412 6.023 0.340

‖ONNN I‖2 1.500 2.000 2.500 3.000 3.500 4.000 0.250

10 12 14 16 18 20

0

2

4

6

8

L





2

NNNI

J for Δ = 0.2

J for Δ = -1.6

J for Δ = 1.6

Figure 1: Norm of J and ONNN I as a function of the system size L in the three phases.
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3 Level spacing distribution in the XXZ chain and its perturbations

The level spacings of a given system described by a Hamiltonian H with eigenvalues λi are
defined as the differences Si = λi+1 − λi between eigenvalues ordered as a monotonically
increasing sequence λ1 ≤ λ2 ≤ . . . . The distribution of normalised level spacings si = Si/S̄
(where S̄ is the mean level spacing) is called the level spacing distribution P(s). For integrable
systems, the level spacing distribution is exponential:

P(s)I = e−s , (14)

while for non-integrable systems it is given by the Wigner-Dyson distribution, which takes the
following form for the orthogonal Gaussian ensemble2

P(s)N I =
π

2
se−

π
4 s2

. (15)

Therefore, the level spacing distribution is an explicit indicator of integrability and its breaking.
The above predictions follow from random matrix theory. For an integrable Hamiltonian,
the different levels do not interact due to the presence of higher conserved charges, and so
the distribution of eigenvalues is a Poissonian one, leading to exponential distribution of the
normalised level spacings. Breaking integrability results in level repulsion, and so small level
spacings are suppressed. When considering the spectrum as a function of a parameter such as
volume, integrability implies that levels approaching each other as a function of volume simply
cross, while in the non-integrable case they avoid each other due to level repulsion. In the
limit of infinite matrix size, the level spacing distribution changes suddenly from exponential
to Wigner-Dyson for any non-zero value of the integrability breaking coupling g.

For a spin chain of finite length, however, the Hilbert space is finite dimensional, and so the
level spacing distribution is a continuous function of the coupling, with the transition becom-
ing sharper for larger volumes [20,24]. In addition, when constructing the level spacing from
the full spectrum it is found to deviate from the random matrix prediction due to the structure
dictated by quasi-particle excitations, which is in turn due to the locality of the Hamiltonian.
This problem can be solved by constructing the level spacing distribution from the middle part
of the spectrum, for which we take the middle two-thirds of the computed levels. Further-
more, to get rid of degeneracies corresponding to trivial symmetries [32,33] the level spacing
distribution is extracted from a sector with total momentum zero, even spatial parity and a
fixed (non-zero) Sz value3. In the examples below we present the results obtained for Sz = 2;
similar results were obtained for Sz = 1 and 3.

3.1 The integrable XXZ chain

The level spacing statistics of the XXZ chain of length L = 22 in the different phases is shown in
figure 2. It can be described very well by an exponential curve, with the overall normalisation
of the distribution as the only fitting parameter.

2Due to the fact that the Hamiltonians considered here are real and symmetric, it is the orthogonal Gaussian
ensemble which is relevant here.

3Note that the Sz = 0 sector has an additional spin-flip symmetry.
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Figure 2: Level spacing statistics of the XXZ spin chain of length L = 22 for (left to
right) ∆= 0.2,1.6,−1.6 with the exponential distribution fitted (dashed red line).

3.2 Perturbed system and crossover from Poisson to Wigner-Dyson statistics

Switching on a suitably large value for the integrability breaking coupling the level spacing
distribution is changed into the Wigner-Dyson statistics characteristic of quantum chaos, as
illustrated in Fig. 3. Again, the only fitting parameter is the overall normalisation of the
distribution.

Δ = 0.2

NNNI

perturbation

0 1 2 3
0

50

100

150

200

250

300

s

P
(s
)

Δ = 0.2

Current

perturbation

0 1 2 3
0

50

100

150

200

250

300

s

P
(s
)

Figure 3: A typical level spacing distribution of a non-integrable system with the
Wigner-Dyson distribution fitted (red dashed line). The left panel shows the case of
HNNN I with L = 22 ∆= 0.2 and geff = 0.1, while the right panel belongs to HJ with
L = 22, ∆= 0.2 and geff = 0.42.

In a finite volume, varying the strength of the integrability breaking coupling leads to
a crossover between the exponential and Wigner-Dyson distributions. The crossover can be
quantified by determining the position of the maximum of the level-spacing distribution, which
moves from the origin to the position

p

2/π characteristic for the Wigner-Dyson distribution.
The normalised level spacings were sorted into bins of width 0.15 for L = 16,18, 20, and of

width 0.1 for L = 22,24. The resulting distribution was then smoothed by applying a Gaussian
filter of kernel radius r to the raw histogram to suppress fluctuations due to finite bin size, with
the choice r = 6 for lengths L = 16 and 18, and r = 4 for longer chains4. The determination
of the position of the maximum of the level spacing distribution is illustrated in Fig. 4 for a
chain of length L = 22.

4For chains with length smaller than 16 there are simply not enough level spacings to yield useful statistics.
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(a) NNNI perturbation
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(b) Current perturbation

Figure 4: Determining the dependence of the peak position on geff for the NNNI
(a) and current (b) perturbations for L = 22, ∆ = 0.2. The blue solid lines mark
the result of the Gaussian filtering and the blue markers denote the extracted peak
positions.

Note that the crossover happens at smaller couplings for the NNNI than for the current
perturbation, indicating the difference in the ‘strength’ of integrability breaking; however, the
decisive evidence eventually comes from the volume dependence considered in Subsection
3.4.
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Figure 5: The position of the peak of the level spacing distribution corresponding
to HNNN I for ∆ = 0.2 as a function of the effective coupling geff for different chain
lengths L. The dashed grey line marks x0, where 2x0 =

p

2/π is the position of the
maximum of the exact Wigner-Dyson distribution. The transition from Poissonian to
Wigner-Dyson statistics is faster for longer chains, as expected.
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Figure 6: The position of the peak of the level spacing distribution corresponding
to HJ for ∆ = 0.2 as a function of the effective coupling geff for different chain
lengths L. The dashed grey line marks x0, where 2x0 =

p

2/π is the position of the
maximum of the exact Wigner-Dyson distribution. The transition from Poissonian to
Wigner-Dyson statistics is faster for longer chains, as expected.

Results for the NNNI perturbation in the gapless phase can be seen in Fig. 5, while for the
current perturbation they are shown in Fig. 6. We remark that while the filtering facilitates
the finding of the peak, the precision of its determined location is still limited by the bin size,
leading to fluctuations in the determined peak positions which can be seen in the figures.
As expected, the crossover occurs faster for longer chains, and the data also show that it is
markedly slower for the current perturbation than for the NNNI case, supporting the idea that
the current perturbation only breaks integrability at higher orders.
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3.3 Integrability breaking and perturbation theory

To investigate the order of integrability breaking it is tempting to try and construct the level
spacing distribution for the spectrum constructed from perturbation theory in the coupling g.
However it turns out that this is not possible. Using simple first-order matrix perturbation the-
ory to compute the spectrum of the perturbed Hamiltonian, and evaluating the resulting level
spacing distribution demonstrates that it remains exponential even for the NNNI perturbation
(9), as shown in Fig. 7.
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Figure 7: Level spacing statistics of HNNN I as computed from the spectrum obtained
by first order perturbation theory for the case L = 22, ∆ = 0.2, for different values
of the coupling.

To understand the reason, consider how a level crossing is lifted by a perturbation. In our
model, the generic level crossing obtained as a function of the volume L (continued to real
values) happens between two levels. Let us consider an effective Hamiltonian description of
a generic perturbation of the corresponding two level subsystem:

�

a1(L) + g∆a1(L) gε(L)
gε(L) a2(L)− g∆a2(L)

�

, (16)

where the unperturbed energy levels are given by a1,2(L), and the functions∆a1,2(L) and ε(L)
parameterise a general integrability breaking perturbation with strength g, in the two-level
subspace. For the unperturbed Hamiltonian g = 0, the level crossing is located at the volume
L0 given by a1(L0) = a2(L0); all that happens at first order is that the level crossing is shifted
to a location given to the location L∗ which satisfies a1(L∗) + g∆a1(L∗) = a1(L∗)− g∆a2(L∗),
where L∗ can be computed as a series in g:

L∗(g) = L0 − g
∆a1(L0)−∆a1(L0)

a′1(L0)− a′2(L0)
+O

�

g2
�

. (17)

Therefore first order perturbation theory does not introduce a repulsion between levels, so the
exponential distribution is unchanged.

When extending the perturbative calculation of the level spacing statistics to second order,
the resulting energy levels turn out to be numerically unstable and no meaningful statistics
can be constructed. For the two-level system above, an exact calculation of the energy levels
shows that the off-diagonal term leads to level repulsion, which is responsible for changing
the level spacing distribution. However, a perturbative evaluation of the two nearby energy
levels results in

E1,2 = a1,2(L) + g∆a1,2(L)± g2 2ε(L)2

a1(L)− a2(L)
+O

�

g3
�

, (18)

which is unstable in the vicinity of a level crossing due to the presence of the energy difference
denominator. As a result, the order of integrability breaking cannot be deduced by considering
level spacing distribution of the spectrum obtained in perturbation theory in the coupling g.
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3.4 Volume dependence of the crossover coupling

For the system with the integrability breaking turned on, let’s define the crossover coupling
gcr as the value of the effective coupling geff for which the maximum of the intermediate
distribution is at x0, where 2x0 =

p

2/π is the position of the maximum of the exact Wigner-
Dyson distribution. The dependence of the crossover coupling on the volume L, gcr(L) is
expected to be a monotonically decreasing function. More precisely, in the gapless phase it is
expected to have a power-like behaviour gcr∝ L−α [30,34], while in the gapped phase finite
volume corrections are expected to show exponential decay in the volume (cf. Subsection
3.4.2).

Note that since the transition is a smooth crossover, other definitions of gcr are also possible
[30,34]; however, the finite size scaling is expected to be universal and therefore independent
of these details. Indeed, in the following we recover the exponent α = 3 obtained previously
for the NNNI perturbation in the gapless phase [34].

3.4.1 Gapless phase

In the following we give results obtained by carrying out the above described method for the
NNNI and current perturbations in the gapless phase, namely for ∆= 0.2.

The obtained maximum positions can be seen in figure 8 along with the parabola f (g)
fitted to the resulting points around x0. The crossover coupling is then obtained by solving
f (gcr) = x0.
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Figure 8: Obtaining gcr from the maximum positions for different effective couplings
for J (left) and NNNI perturbation (right) in the gapless phase (∆ = 0.2). The red
solid line is the parabola fitted to the red markers in the vicinity of x0 (indicated by
orange dashed line).

The gcr(L) functions obtained this way for both the NNNI and current perturbations can
be seen in figure 9, and decay with a power of the volume L. Fitting a linear function
log gcr(L) = a+ b log L results in the exponents

bJ = −1.99± 0.18 ,

bNNN I = −3.11± 0.27 . (19)

The value obtained for the NNNI case is consistent with the universal exponent −3 claimed for
integrability breaking in a gapless chain [30, 34], while the one obtained for the current per-
turbation is in agreement with the conjecture that the current perturbation breaks integrability
at higher orders in perturbation theory.
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Figure 9: The crossover scale as a function of the volume for the current (blue
markers) and NNNI perturbations (red markers) on normal (left) and log-log scale
(right) as obtained in the gapless phase (∆ = 0.2). Dashed lines correspond to the
fitted AL−3 (red) and BL−2 (blue) respectively.

3.4.2 Gapped phase

In the gapped phase, finite size scaling is expected to be exponential in volume, since the pres-
ence of finite correlation length implies exponential decay of correlations. As a result, finite
size effects on the spectrum (beyond its inevitable discretisation in finite volume) generally
decay exponentially with the volume [35,36].

The crossover coupling as a function of the volume is shown for ∆ = 1.6 in Fig. 10, and
for ∆ = −1.6 in Fig. 11. For the massive case, log gcr(L) can be fitted with a linear function
c + d L, with the following values for the coefficients d for ∆= 1.6:

dJ = −0.056± 0.014 ,

dNNN I = −0.157± 0.020 (20)

and for ∆= −1.6:

dJ = −0.063± 0.014 ,

dNNN I = −0.137± 0.043 . (21)

Again we see a marked difference between the strength of integrability breaking for the two
perturbations. The crossover coupling for the current perturbation in any given volume is an
order of magnitude larger than for the NNNI perturbation, and the coefficient d describing
its decay with the volume is also significantly smaller, again in agreement with the conjecture
that the current perturbation breaks integrability at higher orders in perturbation theory.
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Figure 10: The crossover scale as a function of the volume for the current (blue
markers) and NNNI perturbations (red markers) for∆= 1.6 (gapped phase, antifer-
romagnetic) on normal (left) and log scale (right). Dashed lines correspond to the
fitted exponentials.

●

●

●
●

●

● ●

● ●
●

16 18 20 22 24
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L

g
c
r

●

●
● ●

●

●
●

●

●

●

16 18 20 22 24

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

L

lo
g
g

c
r
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4 Conclusions

In this work we examined the crossover from integrable to chaotic behaviour for weak breaking
of integrability, defined as a perturbation of an integrable system which preserves integrability
to first order in perturbation theory. As an example we took the XXZ spin chain perturbed by
one of the currents that appear in the continuity equation for the higher conserved charges
which imply integrability, and compared it to a usual (“strong”) integrability breaking pertur-
bation which was chosen to be a next-to-nearest-neighbour interaction term (NNNI).

The tool we used was the evaluation of level spacing distribution for a finite chain using
exact diagonalisation. Since the extremal parts of the spectrum have special properties due
to locality of the Hamiltonian, they were discarded with the middle two-thirds of levels kept.
We then quantified the crossover between the integrable Poissonian and chaotic Wigner-Dyson
statistics in the form of a crossover coupling. To facilitate the comparison between different op-
erators, we rescaled their coupling constants by the operator norms (per unit volume), which
also makes the values of the couplings independent of the choice of operator normalisation.

The behaviour of the crossover coupling as a function of the volume was found to be fully
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consistent with the suggestion in [8] that the current perturbation only breaks integrability
in higher order. For any fixed volume L the crossover values of the rescaled couplings were
significantly higher for the current perturbation compared to the NNNI case, and their decay
with the volume was also significantly slower. In particular, for the gapless case while the
crossover value of the NNNI perturbation follows the 1/L3 law found previously in [34], for
the current perturbation we found a 1/L2 decay. In the massive regime the crossover coupling
decreases exponentially with the volume, but again the decay for the current perturbation was
significantly slower than for the NNNI. We note that this difference in the volume dependence
is unaffected by the rescaling with the operator norms.

The slower finite-volume crossover between exponential and Dyson-Wigner distribution
can be interpreted as a delayed onset of quantum chaos. The notion that there can be weaker
and stronger versions of quantum chaotic behaviour has recently appeared in a different con-
text related to out-of-time-ordered correlators [37]. However, the class of weak integrability
breaking perturbations considered here define a concept of “weak quantum chaos” different
from the one in [37], where instead it was related to the finite dimensionality of the local
Hilbert spaces.

Since the 1/L3 law was claimed universal for strong integrability breaking in gapless mod-
els [30, 34] (albeit without analytic support), it is tempting to speculate that the exponent
eventually depends on the order at which integrability is broken. However, as already known
and also argued for in Subsection 3.3, perturbation theory cannot be applied to examine the
crossover in the level spacing distribution if the level crossings resolved by the integrability
breaking perturbation are generic i.e. involve only two levels. It is interesting to note that in
quantum field theories obtained as perturbation of conformal field theories the crossover to
the Wigner-Dyson behaviour takes place already in the perturbative regime [38]. The essen-
tial difference with the case considered here is that for the conformal spectrum the levels are
generically multiply degenerate.

To sum up, our results strongly support the observations in [8,18] that perturbations of spin
chains by generalised currents correspond to a weak integrability breaking which only happens
at higher order in the perturbing coupling. An interesting question left open is to clarify the
dependence of the finite volume crossover behaviour, especially the exponent appearing in the
gapless case, on the order of integrability breaking.
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