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Hydrodynamics of spin currents
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Abstract

We study relativistic hydrodynamics in the presence of a non vanishing spin potential.
Using a variety of techniques we carry out an exhaustive analysis, and identify the consti-
tutive relations for the stress tensor and spin current in such a setup, allowing us to write
the hydrodynamic equations of motion to second order in derivatives. We then solve the
equations of motion in a certain dynamical spin limit and in a perturbative setup and
find surprisingly good agreement with measurements of global Λ-hyperon polarization
carried out at RHIC.
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1 Introduction

The hydrodynamic behaviour of a spin current has been playing an increasingly prominent
role in a variety of physical systems ranging from heavy ion collisions to condensed matter
experiments. In particular, the recent observation of global spin polarization of the Λ and Λ
particles in heavy-ion collisions at RHIC [1,2] and the experimental realization of spin currents
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induced by vorticity in liquid metals [3] have aroused strong interest in the subject, calling for
a theoretical underpinning of hydrodynamics in the presence of a spin current.

The derivation of a complete and consistent set of constitutive relations in spin hydro-
dynamics is lacking in the literature. The main goal of this work is to provide the tools for
carrying out such an analysis and to use these tools to obtain the constitutive relations for a
parity invariant and conformal fluid to subleading order in a derivative expansion.

Recall that hydrodynamics is a universal low energy effective field theory of many body,
finite temperature systems. The equations of motion of hydrodynamics consist of local con-
servation laws (e.g., energy momentum conservation or charge conservation). The dynamical
variables are given by a temperature field T , a velocity field uµ (which we normalize such that
uµuµ = −1 in the relativistic setting we are working in), and chemical potentials associated
with other conserved charges present. In the current context angular momentum conservation
leads to a (non-)conservation equation for the spin current, which implies the existence of a
spin potential µab, i.e. the spin analog of electric chemical potential.

For a system where the only conserved charge is the spin current and energy momentum
tensor, and in the absence of anomalies, one finds

�∇µTµν =
1
2

RρσνλSρλσ − TρσKνabeρaeσ b ,

�∇λSλµν = 2T[µν] − 2Sλρ[µeν]
aeρ

bKλab ,
(1)

where we denote the vielbein by eµa and will use it to convert spacetime indices to tangent bun-
dle indices. A[αβ] =

1
2(Aαβ−Aβα), Rαβγδ is the Riemann tensor and Kµ

ab is the contorsion ten-
sor, related to the spin connection, ωµ

ab via ωµ
ab = �ωµab + Kµ

ab where
�ωµab = eν

a
�

∂µeνb +�Γ νσµeσb
�

with �Γαβγ = gαδ
�

∂(β gγ)δ −
1
2∂δgβγ

�

. That is, ringed connec-
tions and derivatives denote expressions evaluated using the Christoffel connection.

The virtue of using torsion in intermediate stages of the computation is that it allows us to
uniquely determine the spin current and stress tensor. Recall that the stress tensor and spin
current can be modified via a Belinfante-Rosenfeld transformation [4,5]. This transformation,
sometimes referred to as a pseudo gauge transformation, leads to an ambiguity in the spin
current and energy momentum tensor. Fortunately, in the presence of torsion this ambiguity is
removed, much like the ambiguity in the definition of the stress tensor is removed by defining
it via its coupling to an external metric. Of course, the torsion and curvature should be set to
zero when considering, e.g., heavy ion collisions.

To obtain the explicit form of the equations of motion for the hydrodynamic variables one
needs a set of constitutive relations whereby all the conserved charge densities (including the
energy momentum tensor) are expressed in terms of T , uµ, the relevant chemical potentials
and their derivatives. These constitutive relations must satisfy certain criteria which have
been shown to be captured by the second law of thermodynamics, at least to leading order in
a derivative expansion [6–12]. Often, such constitutive relations are expressed in terms of a
truncated expansion in derivatives of the hydrodynamic variables. As we will discuss at length
shortly, an unusual feature of hydrodynamics with a spin current is that the spin potential is
naturally associated with terms which are first order in derivatives.

In this work we compute the constitutive relations for the stress tensor Tµν and spin cur-
rent Sµαβ of a parity invariant conformal theory in 3 + 1 dimensions, in a flat, torsionless
background geometry, including all terms which contribute to the equations of motion ex-
panded to second order in derivatives. Restricting these to what we refer to as the dynamical
spin limit, we find

2

https://scipost.org
https://scipost.org/SciPostPhys.11.2.041


SciPost Phys. 11, 041 (2021)

T (µν) =ε0T 4uµuν +
1
3
ε0T 4∆µν − 2η0T 3σµν + T (µν)BR +O(∂ 2)

T−2T [µν] =∆β
[µuν]

�

`1Dασαβ + `2DαM̂αβ
�

+ `3∆
ρ[µ∆ν]σ�∇ρm̂σ + `4u[µσν]ρm̂ρ + `5u[µM̂ν]ρm̂ρ

+ `6u[µMν]ρm̂ρ + `7σ
[µ
ρ M̂ν]ρ + `8σ

[µ
ρMν]ρ + `9M̂ [µρMν]ρ

− T−2S[µν]ρ
�

aρ −
1
3
Θuρ

�

+ T−2
�

Sρρ
[µaν] −

1
3
ΘSρρ

[µuν]
�

+ T [µν]BR

T−2Sµνρ = 8ρ0uλMνρ + 2s1uλu[νm̂ρ] + 2s2uλM̂νρ + SBR
λ
νρ

(2)

with

TµνBR =
1
2
�∇λ
�

SBR
µνλ + SBR

νµλ − SBR
λνµ
�

,

SBR
λ
µν =2T3χ1∆

λ
[µuν] + 2T2χ2Mλ

[µuν] + 2σ1T2σλ[µuν]
+ 2σ2T2M̂λ

[µuν] + 2σ3T2∆λµm̂ν],

(3)

where we have decomposed the spin potential into transverse components,

µab = 2u[amb] +M ab , (4)

with maua = 0 and M abub = 0 and defined

Θ = �∇λuλ , aµ = uα�∇αuµ ,

∆µν = gµν + uµuν , Ωµν =∆µα∆νβ�∇[αuβ] ,

σµν =∆µα∆νβ�∇(αuβ) −
1
3
∆µνΘ ,

(5)

which correspond to expansion, acceleration, the transverse projector, vorticity and the shear
tensor, respectively. Calligraphic derivatives and hatted quantities are given by

Dασαβ = �∇ασαβ − 3aασ
αβ ,

DαM̂αβ = �∇αM̂αβ − aαM̂αβ ,

m̂µ = mµ − aµ ,

M̂µν = Mµν +Ωµν ,

(6)

and circular brackets denote a symmetrized decomposition of indices, viz.,
T (µν) = 1

2 (T
µν + Tνµ). A more general expression for the constitutive relations for the en-

ergy momentum tensor and spin current can be found in the main text. See (18) and the
ensuing discussion.

Adding terms of the form (3) to the stress tensor and current is usually referred to as
a Belinfante-Rosenfeld transformation. Such terms will not modify the equations of motion
and are often used to generate a symmetric stress tensor and vanishing spin current from an
asymmetric stress tensor and its associated spin current. As we will see shortly, such terms
should not be removed. While they do not contribute to the equations of motion, they do
contribute to the expectation value of the stress tensor and current. This was first remarked
on in [13].

Inserting (2) into (1) one obtains dynamical equations for the hydrodynamic variables T ,
uµ and µab which can be solved for once supplemented by initial conditions. At late times
we expect that the system reaches thermodynamic (or hydrostatic) equilibrium where the
temperature, velocity field, and spin chemical potential are fixed in terms of external forces
acting on the system. In particular, we find that in equilibrium and in the absence of torsion, the
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equilibrated spin chemical potential will be proportional to the thermal vorticity, Ωµν−2u[µaν]

as predicted in [13,14].
Spin current hydrodynamics may be relevant for the study of hyperon polarization mea-

surements in heavy ion collisions. The prediction of global spin polarization in heavy-ion
collisions, based on perturbative QCD, was initiated in [15, 16]. The first attempt to relate
spin polarization to hydrostatic vorticity can be found in [17] and [18] and has been elab-
orated on in subsequent work [19–25]. See also [24, 26, 27] for reviews. This thread was
continued by studies of entropy production in [28] and a classification of spin current sources
and hydrodynamic constitutive relations in [29]. The latter work also pioneered a holographic
study of spin transport. Other descriptions of spin hydrodynamics can be found in [30–33].
Despite these developments, a fully consistent set of constitutive relations which we derive in
this paper did not appear in previous literature.

Before attempting to apply hydrodynamics with spin currents to the study of heavy ion
collisions there are two issues that need to be addressed. The first, is whether such a hydrody-
namic description is at all relevant for the physical process at hand, and the second is whether
the hydrodynamical description of spin currents is complete. In this work we have addressed
the second issue but not the first. Nevertheless, in section 4 we carry out a simple analysis
of perturbed Bjorken flow associated with the constitutive relations (2). Using some coarse
approximations we find a simple one parameter model that nicely fits the experimental results
for hyperon polarization. See figure 1.

2 Spin current hydrostatics

In the presence of time independent sources such as an external metric or gauge field, the
fluid is expected to reach a time independent hydrostatic equilibrium configuration whereby
Euclidean correlators of the theory decay exponentially. This exponential decay implies that
momentum space correlation functions at zero frequency are analytic in the spatial momenta
implying that their associated generating function will be a local function of the background
fields. Such a generating function was computed explicitly in [6, 7]. In what follows we use
the same technique to study hydrostatically equilibrated spin current dynamics.

The sources which couple to the energy momentum tensor and spin current are the vielbein
ea
µ and spin connection ωµ

ab,

δS =

∫

d4 x |e|
�

Tµaδea
µ +

1
2

Sλabδωλ
ab
�

, (7)

where the integral is over all space dimensions and a compact Euclidean time direction with
parametric length T−1

0 . In a hydrostatic setting the sources will be time independent, viz.

£V ea
µ = 0 , £Vω

ab
µ = 0, (8)

where Vµ points in the time direction and £V denotes its associated Lie derivative (the first
equality implies that Vµ is a timelike Killing vector). The generating function for hydrodynam-
ics with a spin current will be given by a local diffeomorphism and Lorentz invariant expression
constructed out of the sources ea

µ and ωµ
ab, and the time direction Vµ.

With some prescience let us denote

T =
T0p
−V 2

, uµ =
Vµ
p
−V 2

, µab =
ωµ

abVµ
p
−V 2

. (9)

These quantities will correspond to the hydrostatic temperature, velocity field and spin poten-
tial respectively. To see this we consider the most general generating function which will lead
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to constitutive relations which contain no derivatives of the parameters (9),

ln Zid =Wid =

∫

d4 x |e|P(T, M2, m · M̃ , m2) , (10)

where M2 = 2MµνMµν and m·M̃ = mαMβγuδε
αβγδ. We will refer to a fluid whose constitutive

relations are completely determined by (10) as an ideal fluid.
The current and stress tensor associated with (10) are given by

Tαβid = εu
αuβ + P∆αβ − 2

�

∂ P
∂m2

+ 4
∂ P
∂M2

�

uαMβγmγ ,

Sλidαβ = uλραβ ,
(11a)

with

ε=− P +
∂ P
∂ T

T +
1
2
ρabµ

ab ,

ραβ =8
∂ P
∂M2

Mαβ +
∂ P

∂m · M̃

�

4m̃αβ − uαM̃β + M̃αuβ
�

− 2
∂ P
∂m2

�

uαmβ −mαuβ
�

,

(11b)

once we restrict ourselves to a flat, torsionless geometry. Here we defined
m̃αβ = −1/2εαβγδuγmδ.

There are several lessons to be learnt from (8) through (11). First, note that the identi-
fications (9) yield the expected Gibbs Duhem relations once we identify P with the pressure
and s = ∂ P/∂ T with the entropy density s. As we will show in the next section, the entropy
current Jµ = suµ is conserved for the ideal fluid, once the equations of motion are satisfied.

Second, since all sources are time independent, we find that (9) imply the hydrostatic
relations

uµKµ
ab = µab + ea

µeb
ν

�

Ωµν − 2u[µaν]
�

,

T�∇λ
µρσ

T
= Rρσλαuα − 2Kλα

[ρµσ]α ,

aµ = −
�∇µT

T
,

(12)

where R is the Riemann tensor in the presence of torsion that is expressed in terms of the
torsionless Riemann tensor as

Rρσλα =�R
ρσ
λα + 2�∇[λKα]

ρσ − 2Kλ
κ[ρKακ

σ] . (13)

The first equality in (12) has been mentioned in [21,34] in the absence of torsion. It implies
that a non vanishing spin potential must be supported by fluid vorticity or by acceleration
(or, alternatively, temperature gradients) in order to maintain thermal equilibrium. In the
absence of torsion, a non flat metric, or other external forces, the fluid will eventually settle
down to a thermally equilibrated steady state in which the velocity field and temperature are
covariantly constant. The first equality in (12) implies that the spin potential must vanish in
such an equilibrated state. Therefore, if we wish to construct a gradient expansion around an
equilibrium configuration we must count the spin potential as first order in derivatives.

Classifying the spin potential as a first order in derivatives term implies that the timelike
components of the torsion tensor, kab, are also first order in derivatives. It remains to classify
the transverse components of torsion, κν

ab = ∆µνKνab. In what follows we consider κµ
ab as
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first order in derivatives, but it should be possible to set κµ
ab to be zeroth order in derivatives

yielding torsio-hydrodynamics, an analog of magneto-hydrodynamics.
Before proceeding with higher order corrections to the ideal fluid, we remark that (12)

implies that in the absence of torsion, Mµν + Ωµν = 0 and mµ − aµ = 0. Thus, there is an
ambiguity in determining the constitutive relations (11). Of course, such an ambiguity will
be resolved once non hydrostatic corrections are taken into account. In what follows we will
consistently choose Mµν and mµ as hydrostatic variables in the absence of torsion over Ωµν

and aµ.
The hydrostatic gradient corrections to the constitutive relations can be obtained by ex-

panding the hydrostatic generating function, W , in a derivative expansion. In this work we
are interested in the equations of motion expanded to second order in derivatives. Since the
antisymmetric components of the stress tensor sources the divergence of the spin current, we
must expand the constitutive relations associated with the antisymmetric component of the
stress tensor to second order in derivatives and the remaining constitutive relations to first or-
der in derivatives. Therefore, to compute all possible corrections to the ideal fluid constitutive
relations, we must classify all possible first order in derivative scalars which can contribute
to the hydrostatic generating function, W , and all possible second order in derivative scalars
which can contribute to the antisymmetric components of the stress tensor. In order to limit
the number of such terms and also simplify future expressions we assume that the system is in-
variant under parity and also conformally invariant. A full analysis of the constitutive relations
which are not restricted by symmetry will be discussed in a future paper.

The Weyl transformation of the spin connection associated with the Christoffel connection,
�ωab
µ can be determined from the Weyl rescaling of the vielbein, ea

µ→ eφea
µ. In what follows

we will assume that the spin connection transforms in the same way as �ωµab. Alternately, that
the contorsion tensor is inert under Weyl rescalings of the metric. One can argue that if the
contorsion tensor transforms non trivially under Weyl rescalings then its transformation prop-
erties are such that a vanishing contorsion tensor is conformally equivalent to a non vanishing
one [35,36].

Using (1) we find that the change in the stress tensor and spin current due to an infinites-
imal Weyl rescaling is given by

δTµν =− 6φTµν − Sµνρ∂ρφ + Sλ
λµ∂ νφ ,

δSλµν =− 6φSλµν.
(14a)

Using (7) we find that tracelesness is replaced by

Tµµ = �∇µSλ
λµ . (14b)

We defer an extensive discussion of conformal invariance in the presence of torsion, and the
recovery of the canonical transformation laws for the stress tensor in its absence to future
work.

It follows that the transverse part of the spin potential, Mµν, transforms homogenously
under Weyl rescalings while mα does not. Thus, in a conformally invariant theory the pressure
P in (10) can depend only on T and M2. Counting M2 as second order in derivatives implies
that

ε= ε0T4 , P =
1
3
ε0T4 ,

∂ P
∂M2

= ρ0T2 , (15)

up to second order in derivative corrections.
It is now straightforward, though somewhat tedious to argue that the most general correc-

tion to W , Wh, at the order we are interested in is given by

Wh =

∫

d4 x |e|
�

χ(1)T 3κ+ 2χ(2)1 T 2κ
µν
A Mµν + 2χ(2)2 T 2KµνMµν

�

, (16)
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where χ(1) and the χ(2)j ’s are numbers, κ = uaeµbKµ
ba, κανA = uβ∆

µ[νeα]aKab
µ eβ b and

Kαβ = uµ∆αγ∆
β
δeγce

δ
d Kµ

cd . The stress tensor and spin current derived from (16) are given
by

T (µν)h =4T3χ(1)u(µmν) +O(∂ 2) ,

T [µν]h =T3χ(1)
�

2u[µmν] −Mµν
�

+ 4T2
�

χ
(2)
1 −χ

(2)
2

�

u[µMν]αmα + 2T2χ
(2)
1
�∇αMα[νuµ] ,

Sλh ab =2T3χ(1)∆λ[aub] − 4T2χ
(2)
1 Mλ

[aub] + 4T2χ
(2)
2 uλMab ,

(17)

once we set the torsion to zero.
The contribution of the term associated with χ(2)2 to the constitutive relations is identical

to that of an ideal, conformal fluid at second order in the derivative expansion. At least as far
as the antisymmetric part of the stress tensor and the spin current are concerned. Therefore,
we may, without loss of generality remove the former by an appropriate shift of the latter.

3 Spin current hydrodynamics

The remaining contributions to the stress tensor and current, Tµνr and Sλr ab contain all possible
expressions which vanish in equilibrium, are parity invariant, and satisfy (14). We find

T−3T (µν)r =−σ6σ
µν +

�

σ7 − 4χ(1)
�

u(µm̂ν) −
1
3
χ(1)Θ∆µν −χ(1)Θuµuν ,

T−2T [µν]r =T
�

σ7 − 2χ(1)
�

u[µm̂ν] + Tσ8M̂µν +∆β
[µuν]

�

λ1Dασαβ +λ2DαM̂αβ
�

+λ3∆
ρ[µ∆ν]σ�∇ρm̂σ +λ4u[µσν]ρm̂ρ +λ5u[µM̂ν]ρm̂ρ

+ (λ6 − 4χ(2)1 + 8ρ0)u
[µMν]ρm̂ρ +λ7σ

[µ
ρM̂ν]ρ +λ8σ

[µ
ρMν]ρ

+λ9M̂ [µρMν]ρ +
2
3
χ
(2)
1 MµνΘ− T−2S[µν]ρr

�

aρ −
1
3
Θuρ

�

+ T−2
�

Sρr ρ
[µaν] −

1
3
ΘSρr ρ

[µuν]
�

,

T−2Sλr ab =2σ1σ
λ
[aub] + 2σ2M̂λ

[aub] + 2σ3∆
λ
[am̂b] + 2σ4uλu[am̂b] + 2σ5uλM̂ab .

(18)

A few comments are in order. To help the reader identify the role of the various terms
in (18) we have labeled coefficients associated with first order in derivative terms by σi and
coefficients associated with second order in derivative terms by λi . While one often denotes
the shear viscosity by η we have refrained from doing so for reasons that will become clear
shortly. The χ(1) and χ(2)i dependent terms appearing in (18) have been introduced in order
to ensure that (14) are satisfied out of equilibrium. The same goes for the last two terms on
the right hand side of the expression for T [µν].

Also, we have written (18) in what is usually referred to as the Landau frame where uµ is
an eigenvector of the stress tensor with negative eigenvalue. Frame transformations offer an
additional freedom in redefining the spin potential which we avoid using at this order in the
derivative expansion. The hydrostatic stress tensor and spin current, Tµνid + Tµνh are written in
a hydrostatic frame which is more natural from the point of view of the hydrostatic partition
function.
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To further simplify (18) it is convenient to make the redefinitions

σ6 = 2η0 +χ
(1) , σ8 = η1 +χ

(1) ,

λ1 = `1 +σ1 , λ2 = `2 +σ2 ,

λ3 = `3 +σ3 , λ4 = `4 −σ3 ,

λ5 = `5 −σ3 , λ6 = `6 +σ3 , (19)

λ7 = `7 −σ1 +σ2 , λ8 = `8 − 2χ(2)1 +σ1 ,

λ9 = `9 + 2χ(2)1 −σ2 .

With these redefinitions, the terms in the spin current associated with χ(1), χ(2)1 , and σi with
i = 1, . . . , 3 reduce to Belinfante Rosenfeld terms, discussed in the introduction, and therefore
do not affect the equations of motion.

As we have stressed earlier, the constitutive relations for the antisymmetric components
of the stress tensor at order n contribute to the equations of motion at order n through the
equation of motion for the spin current. This behaviour may be contrasted with the constitutive
relations for the spin current at order n, or other components of the stress tensor at order n,
which contribute to the equations of motion at order n+ 1. This implies that the constitutive
relations associated with the coefficients σ7 and η1 contribute to the equations of motion
associated with the zero order in derivative constitutive relations for the current. Since χ(1)

doesn’t contribute to the equations of motion, this implies that non vanishing σ7 and η1 yield
the leading order equations of motion m̂µ = 0 and M̂µν = 0 at leading order in a derivative
expansion. That is, the hydrostatic values for m̂µ and M̂µν are valid at least up to second order
in derivatives. Thus, in a sense, dynamical spin can be obtained only for vanishing σ7 and η1.
In the remainder of this work we will consider the dynamical spin limit which states that

σ7 = 0 , η1 = 0 . (20)

We discuss this limit further in section 5.
Combining (11), (17), (18) and (19), removing χ(2)2 following the discussion after (17),

setting σ7 = 0 and η1 = 0, and slightly relabeling coefficients, yields (2).
We note in passing that the terms associated with σ4 and σ5 can also be packaged as a

Belinfante Rosenfeld term by adding a λ10T2uλu[µDλm̂ν] and a λ11T2uλDλM̂µν term to the
antisymmetric part of the stress tensor and then redefining λ10 = `10+

1
2σ4 and λ11 = `11+σ5

(with uλDλm̂µ = uλ�∇λ + 1
3θ m̂µ − m · m̂ + m̂ · m̂uµ and

uλDλM̂µν = uλ�∇λM̂µν + 1
3θ M̂µν + 2u[µM̂ν]λmλ − 2u[µM̂ν]λm̂λ). The reason these last two

terms don’t appear in (18) is that we have substituted those expressions with their values
under the equations of motion.

The various coefficients multiplying the tensor structures in (2), e.g., η0, are restricted by
positivity of entropy production, unitarity of retarded correlation functions or unitarity of the
Schwinger-Keldysh generating function [9–12]. In what follows we will study restrictions on
the coefficients in (2) coming from positivity of entropy production. A study of the restrictions
on coefficients via other methods is left for future work.

Following [37] we posit the existence of an entropy current JµS satisfying �∇µJµS ≥ 0 under
the equations of motion, such that for an ideal fluid JµS = suµ with s = ∂ P/∂ T . For a non ideal
fluid we take JµS = suµ+O(∂ ) where O(∂ ) denotes corrections to the entropy current coming
from explicit derivative terms appearing in the constitutive relations. Thus, the most general
entropy current we may construct, to first order in derivatives is given by

JµS = Jµc + (s1Θuµ + s2aµ + s3mµ) T2 , (21)
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where

Jµc = suµ −
uν
T

�

Tµν − Tµνid

�

−
1
2
µab

T

�

Sµab − Sµidab

�

(22)

is referred to as the canonical part of the entropy current. In a conformal theory the si are
constant.

When expanding the entropy current to first order in derivatives, the divergence of the
entropy current is a second order in derivatives scalar. It is useful to classify the latter into two
categories. The first are independent second order scalars, these are scalars which can not be
written as products of first order scalars. The second includes products of first order scalars.
All independent second order scalars appearing in the divergence of the entropy current must
vanish on account of the positivity condition. For the same reason all products of first order
scalars must arrange themselves into complete squares or vanish.

It is straightforward to show that

�∇µJµc =− �∇µ
�uν

T

�

�

Tµν − Tµνid

�

−
1
2
�∇µ

�

µab

T

�

�

Sµab − Sµidab

�

−
µab

T
Tab .

(23)

Inserting (21) into �∇µJµS ≥ 0 and using (23) we find

s1 = −χ1 , s2 = χ1 , s3 = −χ1 , η0 ≥ 0 . (24)

Let us make the following remarks. Since the spin potential is first order in derivatives the
n− 1th order spin current contributes to the nth order entropy current. Thus, the first order
entropy current can only constrain the first order energy momentum tensor and zeroth order
spin current. In practice, it constrains only η0, the shear viscosity.

To determine constraints on the first order terms in the spin current one would need to
go to second order in the entropy current. While we have not carried out such an analysis,
we note that, at least for spin-less charged fluids, all constraints from the entropy current
which imply equality type relations among transport coefficient are already implemented from
the partition function. Further, all inequality type constraints appear at leading order in the
entropy current [8].

Another somewhat unusual feature of hydrodynamics with a spin current is that the co-
efficient of the shear term in Tµν is −(η0 + χ1)T3, c.f, (19). Nevertheless, it is η0 that is
constrained to be positive which is perhaps compatible with the fact that χ1 does not enter
into the equations of motion. We have checked that positivity of η0 also follows from positivity
of the appropriate stress tensor correlator. Note that a computation of two point functions of
the stress tensor require knowledge of the expectation value of the stress tensor in the presence
of a background metric and spin connection which we have not presented here.

4 An application to heavy ion collisions

In this short letter we do not presume to carry out a full fledged analysis of heavy ion collision
experiments with possible spin currents manifesting during the short collision period. Instead,
we consider a perturbed solution to the hydrodynamic equations of motion in the presence
of spin, in the limit of dynamical spin, with an underlying Bjorken (SO(1,1)× ISO(2)× Z2)
symmetry [38]. We then attempt to relate the dependence of the spin potential on the initial
temperature to the dependence of the average hyperon polarization vector on the beam energy.
Of course, a complete analysis, which we do not carry out in this short letter, should include a
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proper treatment of initial conditions, a full hydrodynamic simulation, and a comprehensive
treatment of hadronization of the quark gluon plasma before reaching the detector.

Consider a collision of two gold ions of radii R initially moving with a relativistic velocity
directed along a Cartesian ‘z’ coordinate. Let’s assume that the fluid formed after the collision
has Bjorken symmetry, that is, it is invariant under boosts along the beam direction, transla-
tions and rotations along the ‘x ’ and ‘y ’ directions, and under z/t → −z/t. Going to a Milne
coordinate system, ds2 = −dτ2+τ2dη2+d x2+d y2 where τ=

p
t2 − z2 and η= arctanh(z/t)

are proper time and pseudo-rapidity respectively, we find that

uτ = 1, T = T0

�τ0

τ

�
1
3
−
η0

2ε0τ
, (25)

with all other components of uµ and µab vanishing, solve the equations of motion. Here T0 is
the temperature at the initial time τ0 when the fluid description is a viable one. Note that the
shear viscosity to entropy ratio, η/s, satisfies η/s = 3η0/4ε0.

Since the spin potential vanishes on account of Bjorken symmetry, let’s consider linear per-
turbations of Bjorken flow which break transverse translations and axial rotation,
T → T +

∫

d2qδTei(qx x+qy y), uµ → uµ +
∫

d2qδuµei(qx x+qy y), and
µab → µab +

∫

d2qδµabei(qx x+qy y). To mimic the experiment, we consider a peripheral col-
lision with impact parameter b along the ‘x ’ axis. Glancing beams are expected to create a
non-trivial velocity gradient in the x direction at initial proper time τ0 at which we assume
hydrodynamics becomes applicable. To this end, we consider an initial velocity profile where
δuη(τ0)∝ bqx , and other components of the perturbations to the velocity vanish. As a result,
we find that δmη, δMηx = δMηiqx and δMηy = δMηiqy are non zero while the temperature
perturbations and all other components of the spin potential vanish.

To solve the equations of motion we will use the Floerchinger-Wiedemann (FW) approxi-
mation [39], where 3η0

4ε0

1
Tτ is perturbatively small but q2τ2 3η0

4ε0

1
Tτ (with q2 = q2

x + q2
y) is finite.

In this approximation, only the leading term for the temperature in (25) becomes relevant,
the velocity field perturbations take the form

δuη = iu0 b qx τ
− 5

3 e−
9q2η0τ0
16T0ε0

�

τ
τ0

�
4
3

, (26)

and δMη and δmη are determined algebraically from δuη and its derivatives.
Presumably, the stress tensor and spin current will evolve according to hydrodynamic the-

ory from an initial Bjorken time τ0 to a final time τ f when matter hadronizes,
T (τ f ) = T f ' 150MeV . The hadrons yield is then collected by the detector which measures
its properties. Converting a hydrodynamics spin current and energy momentum tensor to a
Hadron distribution is fraught with difficulty. One often used prescription for doing so works
under the assumption that the particle distribution after hadronization follows a thermal dis-
tribution with temperature, velocity and chemical potential of the hydrodynamic configuration
leading to it [40]. Within this framework the polarization vector reads

Πα(p) = −
1
4
εαρσβ

pβ

m

∫

dΣλpλBµρσ

2
∫

dΣλpλnF
, (27)

where
∫

dΣµ is an integral over the hadronization surface, dΣµ = τδτµdηd xd y in Bjorken
coordinates, pµ is the particle momentum, m its mass, nF is the Fermi Dirac distribution and
B is an additional distributional quantity that depends on uµ and T . See, e.g., [21, 41] for
details.

It is tempting to use our solution to evaluate (27) and compare to data. However, one
should keep in mind that our hydrodynamic solution is rather simple minded, involving a
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linear perturbation on Bjorken symmetry on top of which we used the FW approximation. This
perturbation should presumably capture a non vanishing impact parameter. Realistic collisions
at mid centrality have an impact parameter of order of the nucleus size and are unlikely to
resemble Bjorken flow. They should generate a large enough vorticity for a non trivial spin
current to be generated which makes the validity of our linearized approximation somewhat
suspect. Still, we have at our disposal an analytic solution to the hydrodynamic equations of
motion with spin and it is hard to resist the temptation to compare it with the experimental
results using (27). Hence, throwing caution to the wind, and inserting the perturbed Bjorken
solution into (27), we find

Πµ(p) =

16be
−

4T4
f ε0 x2

0

9T3
0 η0τ0 u0π

3
2 T8

f x0ε
3
2
0 (`1 + `2)Erf

�√

√ 4T4
f ε0 y2

0

9T3
0 η0τ0

�

27mT
13
2

0 η
3
2
0 `2τ

13
6

0

×









−p y I (1)

0
0

I (2)









, (28)

where now x0 = R− b
2 , y0 =

Ç

R2 − b2

4 and we have integrated over the range −x0 < x < x0
and −y0 < y < y0 which approximates the area of overlap of the two colliding nuclei. The
expressions for I (n) are given by

I (n)(τ f ) =

∫

dη B (pτ)n

2x0 × 2y0 ×
∫

dηnF pτ

�

�

�

�

τ=τ f

, (29)

and Erf denotes the error function.
We are particularly interested in the dependence of the spin polarization on the initial

temperature, related to the beam energy. Making the reckless approximation that energy and
nucleons are distributed uniformly in the nucleus and that the relation between energy density
and temperature is of the form ε= ε0T4 as dictated by conformal invariance, we find

T0 =
�

2N
πR2ε0τ0

�
1
4

s
1
8
NN , (30)

where N is the number of nucleons,
p

sNN is the beam energy per nucleon, and we approxi-
mated the volume of the nucleus as πR2τ0. It is clear that each of these approximations may
be improved and upgraded, but as a preliminary order of magnitude estimate relating our
hydrodynamic solution to the polarization vector, they are good enough.

Using, ε0 = 12, T f = 150MeV , η/s = 1/4π, τ0 = 1 f m, R = 7 f m and b = 10 f m (see
[39,42–44]), we find

4T4
f ε0 x2

0

9T3
0η0τ0

'
5.1

�

sNN

GeV2

�
3
8

,

√

√

√

√

4T4
f ε0 y2

0

9T3
0η0τ0

'
5.5

�

sNN

GeV2

�
3
16

. (31)

The overall scaling of Π in terms of the energy per nucleon is of the form

Π= α

exp



− 5.1
�

sNN

GeV2

�
3
8



Erf





5.5
�

sNN

GeV2

�
3
16





�

sNN

GeV2

�
13
16

, (32)
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Figure 1: A comparison of our estimate (32) of the average hyperon polarization
(blue) to the STAR measurement [1]. Since a magnetic field was not incorporated in
our setting, we have compared our estimate to the average value of the polarization
of Λ and Λ.

where we have replaced the overall constant in (28), which depends on the undetermined
initial value for the velocity field perturbations u0, and on the coefficients `1 and `2, with α.
To compare to experiment we need to work out Πµ in the center of mass frame of the hyperon.
Such a Lorentz transformation will not affect the dependence of Πµ on sNN . Therefore, we
can attempt to fit (32) to experiment by fitting to a single parameter, α. Using the data from
[1], we find a surprisingly good fit to α = 286 ± 52. See figure 1. We emphasize that our
phenomenological analysis crucially depends on the new transport coefficients `1 and `2 in
the constitutive relations.

5 Discussion

In this paper, we initiated a fully fledged study of relativistic spin hydrodynamics. The hy-
drodynamic constitutive relations in the dynamical spin limit, relating the spin current and
the stress tensor to fluid velocity, temperature, spin potentials and their derivatives, can be
found in (2). The dynamical spin limit is one where the coefficients σ7 and η1 (c.f. (18))
associated with the antisymmetric components of the stress tensor at first order in derivatives
have been set to zero. Setting transport coefficients to zero is somewhat unusual. Often, in
order for transport to vanish there must be an underlying symmetry which ensures that the
said coefficient is trivial, or there is a physical reason for the coefficient to be irrelevant to the
dynamics. Apart from the surprisingly good fit of our model to data, as exhibited in figure 1,
we have not found a reason for σ7 and η1 to vanish. We will explore the dynamics of systems
with non vanishingσ7 and η1 in future work. For consistency, the constitutive relations for the
symmetric part of the stress tensor and spin current were expanded to first order in derivatives
while those for the antisymmetric part of the stress tensor were expanded to second order in
derivatives. This mismatch in the derivative expansion is a result of the hydrostatic equilib-
rium relation (12) between torsion, spin potential, vorticity and acceleration which implies
that the spin potential and the longitudinal component of the torsion must be first order in
derivatives.
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Regardless of the dynamical spin limit, we have for consistency, expanded the constitutive
relations for the symmetric part of the stress tensor and spin current to first order in derivatives
and for the antisymmetric part of the stress tensor to second order in derivatives. However,
in certain condensed matter systems such as graphene torsion is used as the long-wavelength
description of dislocations and disclinations in the atomic structure [45,46]. In these systems
a sensible choice might be to keep the spatial torsion at zeroth order in derivatives along with
temperature and velocity. It would be interesting to develop such a torsio-hydrodynamic the-
ory further, following the route we outlined here. Recent works [47–51] strongly suggest that
graphene, as well as certain clean Dirac and Weyl semimetals, are well described by hydrody-
namic theory which further motivates this study.

Another possible direction is to extend our results to non parity invariant and
non-conformal theories. Indeed, Bayesian analysis of heavy-ion data suggest that bulk viscos-
ity may [52, 53] or may not [54, 55] play an important role in the hydrodynamic description
of heavy ion collisions. Finally, for off-central heavy ion collisions, which is the regime where
spin hydrodynamics is most relevant, it is desirable to employ a more realistic hydrodynamic
configuration in which the rotation symmetry around the beam axis is broken. In this context,
extension of the recently introduced a hydrodynamic frame [56, 57] that allows a consistent
set of hyperbolic equations, to include spin currents is also desirable.
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