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Abstract

In this work, we study generative adversarial networks (GANs) as a tool to learn the dis-
tribution of spin configurations and to generate samples, conditioned on external tuning
parameters or other quantities associated with individual configurations. For concrete-
ness, we focus on two examples of conditional variables—the temperature of the system
and the energy of the samples. We show that temperature-conditioned models can not
only be used to generate samples across thermal phase transitions, but also be employed
as unsupervised indicators of transitions. To this end, we introduce a GAN-fidelity mea-
sure that captures the model’s susceptibility to external changes of parameters. The pro-
posed energy-conditioned models are integrated with Monte Carlo simulations to per-
form over-relaxation steps, which break the Markov chain and reduce auto-correlations.
We propose ways of efficiently representing the physical states in our network architec-
tures, e.g., by exploiting symmetries, and to minimize the correlations between gener-
ated samples. A detailed evaluation, using the two-dimensional XY model as an exam-
ple, shows that these incorporations bring in considerable improvements over standard
machine-learning approaches. We further study the performance of our architectures
when no training data is provided near the critical region.
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1 Introduction

Generative models [1–4] aim at modelling complicated probability distributions of data in
a way that they can readily be used to generate new samples. These techniques model the
joint distribution of data, such as images of handwritten digits, and some useful quantities
associated with the data, e.g., which of the ten digits is shown. The model is then used to
generate unseen data by sampling from the learnt joint probability distribution, e.g., produce
unseen images of digits.

In physics, we often start from a Hamiltonian, an action, or just a classical configuration
energy, describing the system of interest, and, as such, formally, know the distribution of the
elementary degrees of freedom, such as the fields in a field theory or the spin configurations
in a classical spin model. Typically, one is interested in studying the behavior of these distribu-
tions as a function of tuning parameters, e.g., temperature or coupling constants, and one can
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think of them as the distribution of data conditioned on these tuning parameters. Since, how-
ever, this data is usually very high-dimensional, the essential physical properties can only be
captured by evaluating physical quantities, such as symmetry-breaking order parameters and
their susceptibilities, or non-local probes of topological properties. In most interesting cases,
their evaluation cannot be performed analytically and, hence, numerical techniques have to
be used. Among those, in particular, Monte Carlo methods, where observables are estimated
by sampling from the data, are powerful, as they, at least in principle, guarantee asymptotic
convergence to the true distribution.

Markov chain Monte Carlo (MCMC) techniques work by constructing a first order Markov
sequence where the next sample is dependent on the current sample. Unfortunately, these
methods can suffer from the problem of large thermalization times and large auto-correlation
times (especially near phase transitions), both of which increase drastically with the increase in
lattice size. For quickly generating uncorrelated samples, we need the auto-correlation time to
be small. Starting from a random configuration, for efficiently reaching the state of generating
valid samples that conform to the underlying true distribution, the thermalization time has to
be short as well.

To curtail the effect of dramatic increase of auto-correlation time near criticality, many
global update methods have been developed, which simultaneously change the variables at
many sites in a single MC update, such as Swendsen-Wang [5], Wolff [6], worm [7], loop [8,9]
and directed loop [10,11] algorithms. But these methods work only for specific types of models
and not for any generic system.

Besides several other promising applications of machine-learning methods in physics [12–
16], generative modelling techniques have been explored for enhanced generalizability and
performance. For instance, Efthymiou and Melko [17] use deep-learning-based
super-resolution techniques to produce spin configurations of larger system sizes from MCMC-
generated configurations of smaller sizes by the use of convolutional neural networks (CNNs).
The resolved configurations have thermodynamic observables that agree with Monte-Carlo cal-
culations for one and two-dimensional (2D) Ising models. Another approach is ‘self-learning
Monte Carlo’ [18–21] that, in principle, works for any generic system and applies machine-
learning-based approaches on top of MCMC to speed up the simulations and to reduce the
increase in auto-correlation time near the critical temperature. Other approaches which apply
machine-learning techniques as a supplement or alternative to MCMC are based on normal-
izing flow [22], Boltzmann machines [23–26], on reinforcement learning [27], on generative
adversarial networks (GANs) [28–33], autoencoders [34–36], and on variational autoregres-
sive networks [37–40].

So far, in most of these approaches, the underlying generative model is trained separately
for different values of the tuning parameters of the system, such as different temperatures.
But when configurations for multiple temperatures, including close to criticality, need to be
generated, either they require configurations for that corresponding temperature and training
a model again and/or the Markov chain has to be re-started altogether. For this reason, we here
explore a different and less used [31–33] strategy, which consists of learning the conditional
probability distribution of physical samples, conditioned on a (in general set of) parameter(s)
c.

One can distinguish two different types of conditional parameters relevant for physical
models: c can either be an external tuning parameter, such as temperature for a thermal
phase transition or coupling constants in a model, or a quantity that is associated with and
a unique function of each sample, such as its energy or the number of topological defects in
it. In this work, we study an example of each of the two types of c: temperature-conditioned
and energy-conditioned models. In the former case, as the name suggests, we provide tem-
perature as conditional information in the training data set (obtained via MCMC) for our
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deep-learning-based conditional generative models. Most notably, these include conditional
GANs [41], among other models employed as baselines. After training, our models are used
to generate samples at different temperatures, which are not necessarily equal to the values
of temperature in the training data set. For our energy-conditioned models, we show how
they can be integrated with MCMC and can be used for additional over-relaxation steps which
break the Markov chain and dampen auto-correlations. They are well-suited for this purpose,
as they can quickly sample configurations with energy close to the energy of the current sam-
ple in the Markov chain while being locally dissimilar. We also study the performance of these
two different applications when the training data is limited to temperatures away from the
transition. Due to the generality of our approach, we believe that the optimization strategies
for generative modeling of physical systems we discuss in this work will also be useful for the
application to experimentally generated data [33,42].

Generative models can be broadly subsumed into two categories—prescribed and im-
plicit [43]. Prescribed models are those that provide an explicit parametric specification of
the distribution of the output (data). These models typically deploy Bernoulli or Gaussian
outputs, depending on the type of data. On the other hand, implicit models directly generate
data by passing a noise vector through a deterministic function which is generally a neural
network. Implicit models can be more expressive than their prescribed counterparts but cal-
culating likelihood becomes intractable in most cases. Most of the generative models in ma-
chine learning are prescribed models as they have a notion of likelihood, are easy to optimize
and produce excellent results. But, generally, they make an assumption of independence be-
tween the parametric distribution across various pixels or lattice sites. Such assumptions in
physics can be quite restrictive as the models need to capture the correlations between lattice
sites. Prescribed models would otherwise need to estimate large co-variance matrices and en-
sure their positive-definiteness. For this reason, we expect and also confirm by our numerical
experiments that implicit generative models, in particular in the GAN framework, are more
suitable for modelling the site-to-site correlations in physical systems.

Additionally, we propose other modifications that exploit the underlying structure of the
physical systems and enhance the model’s utility. The proposed modifications can bring signif-
icant improvement in performance as compared to the prescribed models treated as baselines.
We also show that, for implicit models, maximizing the mutual information between a set
of structured latent variables and reconstructed configurations leads to maximizing a lower
bound on the entropy of the learnt distribution; this reduces the correlations among configu-
rations generated by the model and can act as an indicator of phase transitions. We evaluate
in detail the improvements in performance of the various modifications we propose. While
our approaches can be readily applied to other systems as well, we focus for concreteness in
our numerical studies on the 2D XY model, as it provides a transparent example to benchmark
these modifications and has been established as a challenging model for neural networks [44].

If the type of phase transition and the associated observable, e.g., a local order parameter,
are known, these quantities can be evaluated with the generated samples to capture the phase
transition. For instance, in case of the XY model, the finite-temperature BKT transition is asso-
ciated with the proliferation/suppression of vortices [45–48]. While we show that our genera-
tive models can indeed reproduce the expected behavior of vortices, we also demonstrate that
our trained network can be used to reveal the transition without requiring knowledge about
the underlying nature of the phase transition. This unsupervised detection of phase transitions
is another central topic of machine learning in physics. In particular, topological transitions,
such as the BKT transition, are challenging due to their non-local nature; however, the method
proposed in [49] has been demonstrated to work in a variety of different models [49–51] and
extensions [52] for symmetry-protected topological phases have been developed. We here
demonstrate that trained generative models can also be used to indicate the phase transition
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in an unsupervised way: as expected [53–56], we find that the model is particularly suscep-
tible to parameter changes in the vicinity of the transition. We quantify this by introducing a
fidelity measure constructed on the trained GAN that can be efficiently evaluated and shows
peaks in the vicinity of the phase transition.

The remainder of this paper is organized as follows. In Sec. 2, we provide an introduction
to the different generative modelling techniques we explore in this work and to the XY model.
The modifications we propose for an effective modelling of physical systems are described in
detail in Sec. 3. The numerical experiments, using the XY model as concrete example, are
presented in Sec. 4. Finally, Sec. 5 contains a brief summary.

2 Generative modelling and XY model

To establish notation and nomenclature, we first provide an introduction to the generative
machine-learning methods we use—variational autoencoders (VAEs) and GANs, as well as
their conditional extensions; we also define the 2D XY model, which is the model we use to
benchmark our machine learning approach with, and the physical quantities we study. Readers
familiar with the XY model and these generative machine-learning techniques, can skip this
section and proceed directly with Sec. 3.

2.1 Variational autoencoders

VAEs are powerful continuous latent variable models used for generative modelling of a high-
dimensional distribution over a given data set, allowing one to sample directly from the data
distribution [57]. They have shown promising results in producing unseen fake images and
audio files which are almost indistinguishable from real data, see Ref. [58] for instance. In its
standard form, a VAE consists of an encoder and a decoder. The encoder maps from data space
X to a latent space z ⊆ RD and consists of a family of distributions Qφ on z parameterized
by φ; it is typically modeled by deep neural networks. The decoder consists of a family of
distributions Pθ on X parameterized by θ . As the name implies, the encoder encodes the
semantic information present in the data into the latent space. The decoder uses the encoded
information in latent space to reconstruct the data. The overall objective is to maximize the
likelihood of the data, independently and identically distributed as P(x) =

∫

Pθ (x |z)P(z)dz,
where, x ∈ X , z ∈ z, Pθ (x |z) ∈ Pθ , and P(z) is the prior distribution, often taken as Gaussian.
The likelihood is generally intractable to compute but can be maximized by maximizing the
evidence lower bound (ELBO). The ELBO for marginal log-likelihood Pθ (x) for a data-point x
is expressed as

log Pθ (x)≥ Ez∼Qφ(z|x)[log Pθ (x |z)]− DKL[Qφ(z|x)||P(z)],

where Qφ(z|x) ∈ Qφ . The ELBO consists of 2 terms: (i) a loss term accounting for the error
in the reconstructed data and (ii) a regularizing term which makes the encoder to encode
information such that its distribution is close in Kullback-Leibler (KL) divergence, DKL, to the
prior distribution P(z).

Conditional VAE (C-VAE) is a simple extension of standard VAE, with the only difference
that the data distribution as well as the latent distribution are both conditioned by some ex-
ternal information. We illustrate the typical structure of a C-VAE in Fig. 1a. The objective is
now to maximize the likelihood conditioned on a given conditional information c. For our
purposes here of generating samples of a physical model, the “conditional information” refers
to the tuning parameters of interest in that model, such as temperature, T , ratios of exchange
interactions in spin models, and the energy of samples, which can be used for sampling of the
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(a) Conditional VAE. (b) Conditional GAN.

(c) Implicit-GAN.

Figure 1: Block-diagram representation of (a) C-VAE, (b) C-GAN, and (c), our pro-
posed method, an Implicit-GAN. We refer to the respective parts of the main text,
Sec. 2.1, Sec. 2.2, and Sec. 3.2, for a detailed description.

corresponding microcanonical ensemble or, as we will demonstrate below, decorrelate regu-
lar MCMC schemes by providing efficient overrelaxation steps. In general, c can be a multi-
component vector comprising several physical tuning parameters or quantities associated with
the individual samples.

To train the C-VAE, we again maximize the ELBO, now assuming the form

log Pθ (x |c)≥ Ez∼Qφ(z|x ,c)[log Pθ (x |z, c)]− DKL[Qφ(z|x , c)||P(z|c)].

Here, we will assume the prior distribution to be independent of c and to follow a normal
distribution with zero mean and variance 1, i.e., P(z|c) = P(z) =N (0, I).

2.2 Generative adversarial networks

GANs [59] are another powerful framework for modelling a probability distribution. In physics,
GANs have been successfully applied to many different models ranging from binary spin sys-
tems like the Ising model [29], to the Fermi-Hubbard model [33], high-energy physics [28],
cosmology [60], and material science [30]. A GAN consists of two models, a generator G(z)
and a discriminator D(x). The generator is a function G : z → X which tries to capture the
data distribution and produces samples x that closely resemble samples from the training data.
On the other hand, the discriminator is a function D : X → (0,1) which tries to estimate the
probability that a sample came from the true data distribution (true sample) rather than from
the generative model G (fake/negative sample). G tries to maximize the probability of D mak-
ing a mistake while D tries to minimize the probability of being fooled by G. The result is a
minimax game between two players, described by the value function

V (G, D) = Ex∼pData
[log D(x)] +Ez∼p(z)[log(1− D(G(z))]. (1)

The objective of this game can be expressed as minG maxD V (G, D).

Conditional GANs (C-GANs) are a simple extension [41] of standard GANs in which the
generator produces samples based on the external information c while the discriminator tries
to estimate the probability that the sample came from the true conditional data distribution
rather than from G. The associated minimax objective now becomes

min
G

max
D

V (G, D; c) =min
G

max
D

�

Ex∼pData
[log D(x; c)] +Ez∼p(z)[log(1− D(G(z; c); c)]]

�

(2)
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and we show the basic structure of a C-GAN in Fig. 1b.

2.3 2D XY model

While the methods we propose and compare in this work are more generally applicable, we
will employ one specific physical model, the classical 2D XY-spin model, to illustrate and
test the generative machine-learning methods. The XY model was chosen as it features key
challenges—compact local degrees of freedom (two-component units vectors) and non-local,
topological excitations (vortices) together with conventional excitations (spin waves)—in a
minimal setting. At the same time, it is accessible via conventional MCMC sampling schemes,
which is important for us since it allows to test the accuracy of our generative models.

More specifically, the XY model consists of two-component spins on every site i of the
lattice with fixed magnitude, which we set to 1 and, hence, are described by the unit vectors
si = (cosθi , sinθi)T , θi ∈ [0, 2π). We here consider a 2D square-lattice of size N × N and
restrict ourselves to ferromagnetic nearest-neighbor interactions, J > 0; using the latter as
unit of energy, J ≡ 1, the energy of a configuration θ = {θi} is given by

E(θ ) = −
∑

〈i, j〉

si · s j = −
∑

〈i, j〉

cos(θi − θ j), (3)

where the sum over 〈i, j〉 includes all the adjacent sites on the lattice.
The probability density of a configuration θ at a given temperature T ∈ R+ is given by

PT (θ ) =
1

Z(T )
e−

E(θ )
T , (4)

where the Boltzmann constant is set to unity and Z(T ) =
∑

θ e−
E(θ )

T is the partition function.
Thermal expectation values, 〈O〉T , of physical quantities O =O(θ ), such as mean magnetiza-
tion, m(θ ) = N−2

∑

i si(θi), or mean energy, e(θ ) = N−2E(θ ), follow from Eq. (4) as

〈O〉T =
∑

θ

O(θ )PT (θ ). (5)

In general, Eq. (5) cannot be evaluated exactly and, hence, has to be analyzed with approxi-
mate analytical techniques or numerical approaches. One of the most common ways of eval-
uating the sum in Eq. (5) numerically, proceed via MCMC sampling of configurations θ ac-
cording to the distribution PT (θ ), e.g., via the Metropolis-Hastings (MH) algorithm [61]. In
each step of the MH algorithm, a configuration θ ′ is generated from a current configuration
θ with some a priori selection probability W (θ ′|θ ). This new configuration is then accepted
with probability

WA(θ
′|θ ) =min

�

1,
W (θ |θ ′)e−E(θ ′)

W (θ ′|θ )e−E(θ )

�

. (6)

When W (·) is symmetric, i.e., W (θ |θ ′) =W (θ ′|θ ), then Eq. (6) becomes

WA(θ
′|θ ) =min(1, e−(E(θ

′)−E(θ ))). (7)

The goal of this work is to investigate how generative models can be used to generate samples
θ for efficient evaluation of the expectation values of observables in Eq. (5).

Besides the mean energy and magnetization mentioned above, we also investigate the
number of vortices in the system at a given temperature. Vortices are non-local excitations
defined by a non-zero winding, ν 6= 0, of the unit vector si on any closed path encircling
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the core of the vortex. Proliferation or suppression of vortices are the defining feature for the
finite-temperature phase transition, the BKT transition [45–48], of the 2D XY model. Studying
vortices is not only motivated by the fact that they are integral to the physics of the XY model,
but also due to their non-local, topological nature; as a consequence, one might expect that
vortices are more difficult to capture by machine-learning techniques than local excitations.

In practice, we detect vortices in samples by counting, for every site i, the angle differ-
ences in anti-clockwise sense around the (3 × 3) square centered at i. Each difference was
constrainted to lie in (−π,π] using a saw function. The “vorticity” V of a configuration θ is
the number of vortices with winding number ν= +1.

3 Proposed method

Having introduced the basic generative models, we will next discuss our proposed implementa-
tion and some additional modifications which improve the models’ performance in generating
samples. To be concrete, we will discuss them mostly in the context of the 2D XY model,
although they apply equally well to many other systems as well. These modifications are
motivated from the structure of the physical system. First, we discuss how the states are rep-
resented in both of our implementations. Then we detail the changes in the models’ structures
and training objectives. To analyze systematically how relevant the different modifications
are, we present an ablation analysis in Appendix A.

3.1 Representation of physical states

The first set of modifications concerns the representation of states. As we will see, choos-
ing a proper way of parameterizing the physical states is integral to an efficient and feasible
generative modelling.

3.1.1 Exploiting symmetries

First of all, many physical systems exhibit symmetries. Formally, this means that the energy
E(x) of any state x is the same as that of the transformed state, x ′, E(x) = E(x ′). This can
be exploited to find a more compact representation of the state: one can represent states such
that two states that are related by a symmetry have the exact same representation. Unbiased
sampling is guaranteed by randomly performing symmetry transformations on the generated
state, since E(x) = E(x ′) implies that any two symmetry-related states are equally likely.

In the case of the XY model, an important symmetry is the invariance under global rotation
of all spins,

θ −→ θ ′ = θ + θ0, θ0 ∈ R. (8a)

This symmetry allows us to reduce the dimensionality of the representation of the states from
N2 to N2 − 1. In practice, for any given state θ we choose θ0 such that

�

m(θ ′i )
�

y = N−2
∑

i

sin(θ ′i ) = 0, (8b)

i.e., describe the state by deviations of the spin orientations about a certain ‘mean-direction’
(here chosen along the x-axis). As E(θ ) for the XY model is invariant under Eq. (8a), we know
PT (θ ) = PT (θ ′,θ0) = P(θ ′)P(θ0), with uniform P(θ0). We will model P(θ ′) using a deep gen-
erative model, and sample θ0 uniformly in [0,2π). Thus, we have reduced the dimensionality
of space (the degrees of freedom of data) in which the manifold of lattice configurations is
embedded and, more importantly, made sure that the symmetries are respected exactly by our
sampling procedure.
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3.1.2 Topology of degrees of freedom

For many physical systems, the degrees of freedom on every site are compact. For instance,
for XY-spin or Heisenberg-spin models, the local configuration space is a one-dimensional or
two-dimensional sphere, respectively. In these cases, one has to be careful about choosing a
smooth representation of these spaces that respects their topology.

For the XY, the angles θi ∈ [0, 2π) have discontinuous jumps at 2π. As such, directly
using angles as input to the model does not explicitly take into account the topological and
geometrical properties of the space of XY spins. For example, an angle of 2◦ is quite similar to
358◦, and also 180◦ is not a good estimate of the mean spin orientation. The topology at each
lattice site can be taken into account by using a two-channel lattice consisting of cosines and
sines of lattice angles at both input and output of our model; this means that instead of θi , we
use the two-component unit vectors si = (cosθi , sinθi)T , as has previously been implemented
for different machine learning studies of the XY model (see, e.g., Ref. [62]).

Such a choice of input and output makes the model an implicit model. This also allows
to overcome the limitations on the model’s ability to capture correlations between lattice sites
due to independent sampling from N(µi ,σi) at each lattice site i. We use this representation
for the GAN framework. A similar extension to VAE framework makes the ELBO intractable.
While there exist approaches like that of Ref. [63] to overcome this issue, most of them are
based on adversarial training (or likelihood free inference).

3.1.3 Periodic boundary conditions

As we are interested in the bulk properties of the XY model and not in the behavior around
edges, we will assume periodic boundary conditions throughout this work. Mathematically,
this means that we replace θ(i1,i2), by θ̃(i1,i2) := θ((i1)N ,(i2)N ), where (i)N denotes i modulo N .
For the implementation with deep neural networks, we increase the size of the lattice from
N ×N to (N +2)× (N +2), keeping the middle N ×N lattice sites the same and filling the sites
at the new edges in accordance with the periodic boundary conditions. We expect that this
improves the performance of feature extracting kernels of the CNNs especially at the “edges”
of a lattice. We use this form of periodic padding on the input layer of the encoder (for VAE)
or discriminator (for GAN).

3.2 Proposed conditional models

Now, we describe the proposed implicit GAN models for lattice simulations. The ImplicitGAN
can be conditioned on temperature or on energy, which we denote as “ImplicitGAN-T " and
“ImplicitGAN-E”, respectively.

3.2.1 Minimizing output biases

As mentioned above, we propose to normalize the spin configurations such that their net mag-
netization vector m(θ ′) always points along the x-axis, see Eq. (8). But, there is nothing in
the training objective in Eq. (2) which explicitly incentivizes the network to produce configu-
rations with their magnetization to point along the x-axis. If this condition is not satisfied, it
implies that our model has developed some bias, which may be due to the model parameters
being stuck in a local minimum during training. We indeed observed that the training objec-
tive in Eq. (2) can lead to bad local optima, as discussed later in Sec. A. Thus, if we add a term
forcing the generative model to minimize the square of the y-component of the magnetization
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in a configuration we can minimize such biases. The GAN value function now becomes

Vb(G, D; c) = V (G, D; c) +λEz∼p(z);θ ′=G(z;c)

�

∑

i

sin(θ ′i )

N2

�2

, (9)

where λ ∈ R+ is a constant hyper-parameter.

3.2.2 Maximizing the output entropy

The generated samples will hardly have any practical significance if we cannot guarantee con-
vergence to the exact distribution—especially considering the fact that GANs are susceptible
to the mode-collapse problem, i.e., they might miss a subset of the modes of a multimodal
distribution of the samples. In practice, we could use the generated x as the initial configu-
ration for MCMC. But if the different samples generated by our model have high correlations
among themselves, the number of MCMC steps needed to obtain uncorrelated samples would
be large, thereby, defeating the purpose of the extra computational efforts for training the
generator. We can decrease the number of MCMC steps needed if we can reduce the initial
correlation among the different samples generated by our model.

To achieve this, we propose to additionally maximize the overall entropy (more specifi-
cally, the ‘differential entropy’) of the learnt distribution h(G(z, c)), i.e., to make the learnt
distribution more ‘diffused’, while also keeping the distribution of generated samples in close
agreement to the true distribution for all temperatures. It has been shown that, in the case
of prescribed models, the entropy-regularized loss function reduces the problem of mode-
collapse [64]. In practice, the problem is that h(x) is difficult to compute or maximize. How-
ever, we can instead maximize a lower bound on h(x) in the following way: due to the sym-
metry, I(x; c) = I(c; x), of the mutual information I , it holds

h(x) = h(c)− h(c|x) + h(x |c)
≥ h(c)− h(c|x) + h(x |c, z).

Now, h(x |c, z) = 0 for an implicit model (as opposed to prescribed models, where h(x |c, z)
may not be non-negative), because the value of x is completely determined by the value of
{c, z}. Thus,

h(x)≥ h(c)− h(c|x) = I(c; x). (10)

Here h(c) is constant because we have already specified and fixed the latent distribution of
conditional information: in the case of temperature-conditioned models, c ≡ T and P(T ) is
uniform over all temperatures in the training data. For energy-conditioned models, we have
c ≡ E with P(E) being determined by the physical system and the choice of training data.
Consequently, minimizing h(c|x) maximizes the lower bound on h(x).

Minimizing h(c|x) requires access to the posterior P(c|x). But, we can minimize an upper
bound on h(c|x) by defining an auxiliary distribution A(ĉ|x) as:

h(c|x) = −Ex[Ec∼P(c|x)[log P(c|x)]]
= −Ex[DKL(P(ĉ|x)||A(ĉ|x)) +Eĉ∼P(c|x)[log A(ĉ|x)]]
≤ −Ex[Eĉ∼P(c|x)[log A(ĉ|x)]]
= −Eĉ∼P(c)[Ex∼P(x |c)[log A(ĉ|x)]]
≡ LH(G, A). (11)
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We use an auxiliary network A to estimate c from x , i.e., maximize the probability P(ĉ = c).
Such a technique of maximizing a lower bound on mutual information in terms of an auxil-
iary distribution was previously proposed in [65]. According to Eq. (11), h(ĉ|x) can be mini-
mized by minimizing its upper bound given by LH(G, A). Note the bound becomes tight when
Ex[DKL(P(ĉ|x)||A(ĉ|x))] → 0. The modified objective, which involves the auxiliary distribu-
tion, is given by

min
G,A

max
D
{Vb(G, D; c) + γLH(G, A)}, (12)

where γ ∈ R+ is a constant hyper-parameter and Vb as in Eq. (9). Note LH(G, A) maximizes
only a lower bound on the entropy and, hence, h(x) is not guaranteed to increase. The gap
h(x |c)− h(x |c, z) = I(x; z|c) is expected to be small since, by the structure of the model, one
does not expect large mutual information between noise variables and generated samples.
Since I(x; z|c)≥ 0, the overall entropy is likely to increase in practice.

Typically, A and D are implemented as neural networks sharing most of the layers. But,
in our case, the information of c should only be given to D and not to A. Therefore, they
were employed as separate neural networks, as shown in Fig. 1c. The discriminator D tries
to predict the probability that the sample belongs to the true distribution, while the auxiliary
network A outputs a distribution over c for a given configuration. The distribution is assumed
to be Gaussian with mean and variance ĉµ and ĉσ predicted by the network A.

3.3 Unsupervised detection of phase transitions

So far, our focus has been on generating samples following Eq. (4) for the evaluation of phys-
ical observables according to Eq. (5). If we are interested in studying phase transitions and
know which observables capture the transition, e.g., a local order parameter in case of a con-
ventional, symmetry-breaking phase transition, we can simply evaluate these observables with
our generated samples. However, one of the central questions of machine learning in the con-
text of condensed matter and statistical physics is to find ways of detecting the transition with-
out “telling” the algorithm which observables are relevant. The in this sense “unsupervised”
detection of phase transitions could potentially be useful in cases where the order parameter
or topological invariant characterizing the transition are not known.

Having constructed models that can generate samples at a given value of the conditional
parameter(s) c, we here analyze whether the behavior of these models upon tuning c can
be used to infer where phase transitions take place, without requiring any knowledge about
the underlying order parameter. In line with previous works [53–56], dealing with different
machine-learning setups, we expect that our generative models are particularly susceptible
to changes in c in the vicinity of phase transitions. For ease of reading and since we explicit
study this choice in our numerical experiments, we will use c = T in the remainder of this
subsection. We reiterate, however, that our machine-learning framework is able to provide
samples subject to, in principle, arbitrary conditional constraints c. For instance, c = E will
allow studying transitions as a function of energy in a microcanonical ensemble or studying
the behavior of the system as a function of other “post-selection” conditions on the samples is
achievable as well.

The first measure we use is directly related to the one defined in previous works [53,
56] and makes use of the auxiliary network A(x) = T̂ that we implemented to estimate the
temperature from the samples x , needed to maximize the output entropy. One expects that
the expectation value Ex∼PT

[A(x)] over samples x at temperature T is approximately constant
deep inside the two phases and that it varies maximally at the transition. As such

D(T0) =
∂Ex∼PT

[A(x)]

∂ T

�

�

�

�

T=T0

≈
Ex∼PT0+∆T

[A(x)]−Ex∼PT0−∆T
[A(x)]

2∆T
(13)
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should be peaked around the critical temperature.
The second measure we introduce is unique to GANs and can be defined for any GAN

architecture, not only for the modified version with the additional auxiliary network. This
measure is analogous to the widely studied quantum fidelity, which has also been extended
to finite temperature and thermal phase transitions [66]. It is based on the idea that the
form of a state (density matrix for thermal ensembles) will change most dramatically upon
modifying a tuning parameter by a small amount (such as temperature T → T +∆T) in the
vicinity of a phase transition. This will first require a measure of similarity of two states or
ensembles. For this we will use the expectation value of D(x , T ) with x taken from some
given ensemble p′. Since D(x , T ) estimates the probability of x coming from the true thermal
ensemble, this expectation value quantifies how similar the thermal ensemble and p′ are. Since
we are interested in tuning temperature, we replace p′ by the ensemble generated by the
generator at a different temperature and, thus, define the GAN fidelity as

FGAN(T ) =
1
∆T
Ez∼p(z)[D(G(z; T ), T )− D(G(z; T ), T +∆T )]. (14)

Imagine starting in the high-temperature phase and gradually decreasing T . Once T reaches
the phase transition, the generator in the second term in Eq. (14) starts producing samples
that are not “expected” by the discriminator. Thus, the latter decreases its value, FGAN(T )
increases, and is expected to peak in the vicinity of the phase transition. We emphasize that
the GAN fidelity in Eq. (14) is defined entirely in terms of the networks and can be evaluated
very efficiently, once the networks have been trained.

3.4 Over-relaxation and models conditioned on energy

Similar to their temperature-conditioned counterparts, models conditioned on energy can also
be used to provide samples directly and to study phase transitions. However, we here focus
on a different application and discuss how energy-conditioned models can be integrated with
MCMC to accelerate lattice simulations. Inspired by Ref. [28], where the potential of non-
conditional GANs was explored as over-relaxation steps in MCMC simulations, we here propose
to use conditional GANs for this purpose. By construction, our energy-conditioned models can
provide samples with energy close to that of the current sample in the Monte-Carlo chain. As
opposed to using unconditional GANs, no in general numerically expensive pre-sampling of
the model is required to obtain samples within the desired energy range.

More specifically, the model we use here has the ImplicitGAN architecture introduced
above. As opposed to the discussion in Sec. 3.3, where we focused on temperature-conditioned
models, we here use the energy per site e(θ ) of each sample θ rather than temperature as con-
ditional input and focus on G(z, e) instead of the generalized form G(z, c).

3.4.1 General procedure

Once the models are trained we generate samples in the following way:

1. Starting from an initial configuration θ0,

2. perform nMC MCMC updates to obtain a configuration θt .

3. To implement an over-relaxation step, we use the trained model and construct a new
configuration, θ ′t , according to θ ′t = G(zt , e∗t ), where e∗t is obtained by fine-tuning the
energy of the sample to the desired value,

e∗t = arg min
e

[E(G(zt , e))− E(θt)]
2, (15)

with zt being sampled from the prior distribution P(z).
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4. Move to step 2 until enough samples are retained.

Note that, ideally, e = E(θt)/N2 would minimize Eq. (15), but this is not the case since GANs
only approximately learn the distribution (see Appendix B for a discussion). Nonetheless,
the energy of the samples produced by G(z, E/N2) are close to E and the true optimum of
Eq. (15) is expected to be in the vicinity of E(θt)/N2. This makes finding e∗t more efficient in
our energy-conditioned model.

While it was argued in Ref. [28] that the selection probability W [entering Eq. (6)] of the
GAN-based over-relaxation step is expected to be (approximately) symmetric,
W (θ |θ ′) = W (θ ′|θ ), we emphasize that this will strictly speaking not hold in general nor
exactly. For instance, GANs suffering from the mode-collapse problem will fail to lead to a
symmetric W . Nonetheless, we here assume that it holds for our trained models, which al-
lows simplifying Eq. (6) to Eq. (7) and test, in Sec. 4.5.3, whether the samples generated
from it have statistical properties close to the ground truth. The validity of this assumption is
supported empirically by the good performance of the models.

3.4.2 Solving the optimization problem

One way to solve Eq. (15) is to back-propagate the gradients through the entire generator,
keeping its weights fixed, which will be very expensive as it requires multiple forward and
backward passes over a deep neural network and the number of iterations may be very large.
Another practical problem with this approach is that in our architecture multiple copies of
conditional information are set as input to the generator. If gradient descent is used, it is
possible that it may decrease some of the values and may cause others to increase. If only a
single copy of conditional information is used during training, the GAN may completely ignore
this conditional information among relatively larger number of noise variables.

A simpler way is to solve it as a bandit optimization problem, where the only feedback
one gets is the function value f (e) = E(G(z, e)) and not the gradient. When the model is
only conditioned on energy, the bandit version of the problem is only one dimensional. Most
well-known methods existing in the literature solve this problem by constructing an unbiased
estimate of the gradient of ‘close approximation’ of f and then performing the updates from
e→ e+∆e according to gradient descent, i.e.

∆e = −α( f (et)− E(θt)) f
′(et), (16)

where α is the step size. There are several methods to obtain an estimate of the gradient for
a function f (x). Here we use a two-point feedback estimate [67],

f ′(x)≈
Eu[( f (x +δu)− f (x))u]

δ
. (17)

In Eq. (17), u ∼ N (0, I) and δ should be kept sufficiently small to obtain high accuracy,
while not too small to avoid increasing the variance of the gradient estimate. Instead of
computing the exact expectation value, we use a stochastic estimate with only a single re-
alization of u. In this way, E(G(z, e)) can be made arbitrarily close to E(θ ). In practice,
we set a threshold value ∆Ethr and the optimization will be done until a configuration with
∆E = |E(G(zt , e))− E(θ )| ≤ |∆Ethr| is found.

When considered over multiple over-relaxation steps, the problem in Eq. (15) can also be
interpreted as an online optimization problem where at time step t an agent receives a loss
function ft(e) = (E(G(e, z))− E(θt ))2 and the goal is to minimize the loss accumulated over
various time steps. In our implementation, we exploit this nature and use the optimum of
ft(·) as starting value for our iterative minimization of ft+1(·). Note that this does not induce
additional correlations in our samples since zt is sampled independently at each time step.
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4 Numerical experiments

In this section, we present a detailed study of the performance of the generative modelling
approaches outlined above, using the 2D XY model as a concrete example. We first compare the
model conditioned on temperature with certain baseline approaches that are defined below. In
the second set of experiments, we test the ability of our model to detect phase transitions in an
unsupervised way by evaluation of D(T ) and FGAN(T ) in Eqs. (13) and (14). Then we present
results for models conditioned on energy and their integration with MCMC. In the next set of
experiments, we train our models only over configurations with temperatures that are below
and above the critical temperature. We then test both classes of models over the complete
range of temperatures, i.e., investigate how well it can interpolate over unseen temperatures
near criticality.

4.1 Generation of training data

In this work, we use lattices of size N × N , where N = {8, 16}. The training data is ob-
tained using the MH algorithm for 32 uniformly spaced values of temperature T in the range
[0.05,2.05]. For each value of T , 10000 configurations are generated. Starting from a ran-
domly initialized state for each T , a sufficiently large number of configurations are rejected
initially, to account for thermalization. A configuration is included in the training data set after
every 120 MCMC steps for 8×8 and after 400 steps for 16×16 lattice, to reduce correlations
in the training data. The angle at each lattice site is scaled down linearly from [0,2π) to [0,1).
Thus each configuration is a 2D matrix with each entry between [0,1). The data is then char-
acterized by investigating the distribution of observables like magnetization m, energy E, and
vorticity V , all as a function of T . The samples generated via MCMC as well as the estimated
observables serve as the ground truth for evaluations.

4.2 Evaluation metrics

How do we know whether and to which extent the ensemble of generated configurations follow
the true distribution? To evaluate, we compute the aforementioned observables using gener-
ated samples, and compare the distribution of these observables with the distribution of those
obtained from MCMC simulations. To compare these distributions, we deploy the following
measures on the histograms of observables generated for 500 different configurations.

4.2.1 Percentage overlap (%OL)

Our first measure is %OL, which corresponds to the overlap between two histograms, each of
which is normalized to unit sum. Mathematically, the %OL of two distributions Pr and Pθ is
calculated as:

%OL(Pr , Pθ ) =
∑

i

min(Pr(i), Pθ (i)), (18)

where i is the bin index. We use 40 bins in the range [0,1] for the histogram of magnetization
and 80 bins in the range [-2,0] for energy. It is not a self-sufficient measure in the sense
that the %OL between the histograms can be quite small even though the computed values of
observables are sufficiently close to each other.

4.2.2 Earth mover distance (EMD)

The second measure of the distance between two probability distributions we use is EMD with
the following interpretation: if the distributions are thought of as two different ways of piling
up a certain amount of dirt, the EMD is the minimum cost of turning one pile into the other.
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Here, the cost is assumed to be the amount of dirt moved times the distance by which it is
moved. The EMD W (Pr , Pθ ) between two distributions Pr and Pθ of a scalar observable y is
defined as

W (Pr , Pθ ) =
∞
∑

x=−∞

�

�

�

�

x
∑

y=−∞
(Pr(y)− Pθ (y))

�

�

�

�

.

4.3 Baseline models for comparison

We perform a series of numerical experiments to test the effectiveness of the proposed meth-
ods. For comparison, we use modifications and extensions of the method of [34] as our two
baselines, which provide a reference for the performance of our proposed Implicit-GAN ap-
proach.

4.3.1 C-HG-VAE

The first baseline model we use is C-HG-VAE. It is a prescribed generative model and was
proposed in [34], referred to by them as HG-VAE. Being the (to the best of our knowledge)
only available generative model which has been designed specifically for sampling the 2D XY
model, it is the most natural starting point for us to construct a baseline model.

The C-HG-VAE employs CNNs instead of fully connected networks to account for transla-
tional symmetry of the physical system. To improve the agreement of thermodynamic observ-
ables with the ground truth, Ref. [34]modified the standard VAE loss function by additionally
including the following term:

LH = [e(θ )− e(θ̂ )]2, (19)

which involves the energies e(θ ) and e(θ̂ ) per lattice site of the ground truth (θ ) and the
generated configurations (θ̂ ), respectively. A multivariate standard normal distribution was
chosen as the prior P(z) and, during training, the input spin configuration to the encoder is
s = {θi} ∈ RN×N . For the ease of implementation with standard CNN libraries, the input
is formatted as two channels, one consisting of the spin configuration and the other consist-
ing of T . This format has also been used by AlphaGo [68]. The output of the decoder (i.e.,
reconstruction layer) is split into two terms µ andσ corresponding to the parameters of a Gaus-
sian distribution. Configurations were generated by sampling from the Gaussian N (µi ,σi),
µ ∈ RN×N ,σ ∈ RN×N , with each lattice site i distributed independently. In the abbreviation
HG-VAE, H refers to the LH term and G to the Gaussian parametric specification of the recon-
struction layer. HG-VAE generates new configurations using z sampled from the approximately
learned variational distribution Qφ(z|x) and then feeds these z to the decoder. Generating z
from Qφ(z|x) requires use of MC samples for that corresponding temperature. Hence, their
method cannot generate configurations for temperatures not in the training data. But since
our goal is to generate configurations even for temperatures for which no training data is avail-
able, we modify their method to a conditional model named C-HG-VAE by providing additional
information of temperature to both encoder and decoder. For generating new configurations,
we provide z ∼ N (0, I) and T to the decoder. T is concatenated multiple times with z so
as the decoder does not ignore this information along with multiple z. The block diagram
representation of C-HG-VAE is the same as that of the C-VAE in Fig. 1a.

4.3.2 C-GAN

As second baseline model, we use a prescribed form of a standard C-GAN, introduced in
Sec. 2.2. The C-GAN employing CNNs was trained on the space of angles to reconstruct config-
urations, given T . The input to the generator consists of T concatenated with z ∈ RN sampled

15

https://scipost.org
https://scipost.org/SciPostPhys.11.2.043


SciPost Phys. 11, 043 (2021)

from a Gaussian prior, where N is the linear lattice size. Similar to C-HG-VAE, the generator
outputs µi ∈ RN×N and σi ∈ RN×N corresponding to the parameters of a Gaussian distribu-
tion from which the configurations are sampled. The reparametrization trick [57] is used to
ensure differentiability of the network. The input of the discriminator has two channels—one
consisting of the spin configurations x and the other of T . The output of the discriminator is
a scalar distinguishing the real from the fake sample.

4.4 Proposed method: ImplicitGAN

This is the proposed implicit C-GAN approach. While all of the key components of this method
have been motivated and explained in detail in Sec. 3.2 above, we here provide a concise
summary of it:

1. The angles θi of the spins in each sample are shifted, θi → θi + θ0, such that the net
magnetization vector (m) always points in the direction corresponding to θi = 0.

2. The reconstruction layer of the generator consists of two channels [x i , yi], which we
normalize at each site as [x i , yi] → [x i , yi]/

q

x2
i + y2

i . The input of the discriminator
has 3 channels, with the first two channels consisting of cosines and sines of lattice angles
and the 3rd channel containing conditional variable, T or E.

3. To take into account the periodic boundary conditions of the lattice, we use periodic
padding of size 1 for the input layer of the discriminator.

4. To minimize the biases, Eq. (9) was used as objective function. The value of λ was
chosen to be 10 for 8× 8 and 1 for 16× 16 lattices.

5. To maximize the entropy of the generated samples, the output layer of the discriminator
now has two outputs, A(T̂ |G(z, c)) and D(x), with learning objective given in Eq. (12).
The value of γ was chosen to be 100 and 10 for 16× 16 and 8× 8 lattices, respectively.

Below, we use “ImplicitGAN-T” to refer to the situation that samples are generated by
the GAN trained conditioned on c = T . While “ImplicitGAN-E” indicates that sampling is
performed by local-update MCMC for a given T combined with over-relaxation steps with the
ImplicitGAN-E model as explained in Sec. 3.4.

Table 1: Evaluation metrics, as defined in Sec. 4.2, along with standard deviation,
computed over 500 configurations and averaged across all temperatures. Smaller
EMD and higher %OL are better. Best values are indicated in bold.

Metric Lattice size C-GAN C-HG-VAE ImplicitGAN-T
EMD 8× 8 0.358± 0.246 0.157± 0.086 0.038± 0.024

Magnetization 16× 16 0.152± 0.056 0.118± 0.028 0.041± 0.043
EMD 8× 8 0.484± 0.250 0.256± 0.063 0.022± 0.012

Energy 16× 16 0.233± 0.140 0.296± 0.060 0.010± 0.005
%OL 8× 8 29.31± 33.35 52.18± 19.15 76.69± 6.46

Magnetization 16× 16 7.97± 16.39 42.78± 17.33 67.34± 20.41
%OL 8× 8 9.43± 13.94 10.29± 5.43 68.28± 20.72

Energy 16× 16 13.64± 19.33 0.62± 0.03 65.83± 18.35
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(a) Magnetization 〈|m|〉 for (8× 8) lattice (b) Magnetization 〈|m|〉 for (16× 16) lattice

(c) Energy 〈e〉 for (8× 8) lattice (d) Energy 〈e〉 for (16× 16) lattice.

Figure 2: Expectation values (dots and lines) of observables (normalized per site)
computed from samples generated by the indicated methods as a function of tem-
perature. Shaded portions represent the standard deviation of the corresponding
observable. MC samples are taken as the ground truth; the method giving more
overlap with the ground truth is better.

4.5 Results

4.5.1 Comparison with baselines: matching observables

For comparison with baselines, the trained temperature-conditioned models described in Sec.
4.3 were tested by computing observables, namely magnetization and energy, over the gener-
ated configurations. Fig. 2 illustrates mean magnetization 〈|m|〉 and mean energy 〈e〉 values
as a function of T . We can notice that 〈|m|〉 decreases and 〈e〉 increases with T for all methods
except C-GAN. This shows that C-GAN fails completely to capture the statistics of the data it
is supposed to generate. We can also see that the distribution of ImplicitGAN-T -generated ob-
servables is much closer to the ground truth (MC) as compared to that of C-HG-VAE generated
observables. These results, with the metrics averaged across temperatures, are quantified in
Table 1. The implicit-GAN-T produces the best results over all the metrics as well as lattice
sizes. Our ablation analysis presented in Appendix A shows which of the different improve-
ments of the method were particularly crucial in enhancing the performance.

4.5.2 Detecting phase transitions

We now analyze the ability of the model to detect phase transitions by analyzing its suscepti-
bility to changes in temperature using the two measures introduced in Sec. 3.3.

We begin with D in Eq. (13) which is plotted in Fig. 3a with ∆T = 0.0625, computed
over 500 configurations produced by the generator. We observe that it exhibits peaks in the
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(a) (b) (c)

(a) D(T ) computed across vari-
ous temperatures. The peaks are
observed around the critical tem-
perature. The shaded portion is
0.950± 0.0625.

(b) FGAN(T ) computed across var-
ious temperatures.

(c) Observed vorticity for 16× 16
sites as a function of temperature.

Figure 3: Detection of BKT phase transition (a,b) directly from measures defined
in terms of the networks (unsupervised) and (c) by evaluation of the vorticity of
generated samples.

vicinity of the expected phase transition. However, there is no clear maximum, but rather a
double-peak feature. Also the finite-size scaling is opposite to what one would expect, since
the double-peak features move to larger rather than smaller temperatures with increasing N .
More dramatically, the trend does not indicate that these features approach the true location
of the transition at large N as they are further way from the BKT transition temperature for
larger N .

Due to these shortcomings of D for detecting the BKT transition in our GAN architecture,
we here focus on the second measure—the GAN-fidelity—introduced in Eq. (14) with corre-
sponding plot in Fig. 3b, using ∆T = 0.0625. For the larger system size, we here observe a
clear, isolated peak very close (at around T ≈ 0.95) to the expected transition temperature for
that system size. For the smaller system size, the peak gets broader and is also shifted to the
left. While the broadening is a natural feature of smaller N , the shift of its maximum is not the
expected finite-size scaling trend—this is similar to D, but now seems to approach the correct
value with increasing N . One reason for the unexpected trend in the peak position could be
that FGAN is more reliable for the GAN with the larger system size: we found that, at lower N ,
the discriminator is not as successful in determining fake samples (we find E[D(G(z; T ), T )]
around 0.45 for N = 8 as opposed to around 0.15 for N = 16). Note that the negative values
of FGAN at very low T are clearly unphysical and just related to the fact that the generator
underestimates the magnetization slightly at low temperatures, see Fig. 2(a,b).

Notwithstanding these issues, it is encouraging to see that we can capture the phase tran-
sition without prior knowledge of the underlying relevant observable, using the simple mea-
sure FGAN that is readily evaluated once the generative model has been trained. Further work,
however, is required to see what the advantages and limitations of this approach are and to un-
derstand the finite size scaling behavior in the XY and other models. Likely, a combination with
unsupervised clustering algorithms, e.g., that of [49], can provide additional assistance in de-
tecting phase transitions in an unsupervised way. We leave a detailed, system-size-dependent
study of these aspects for future work.

On top of being able to capture the phase transition in an unsupervised way, we are dealing
with a generative model. Consequently, in cases where we do know the physical quantity
capturing the phase transition, we can also directly compute it with the samples generate by
the networks. In the case of the 2D XY model, the transition is characterized by the suppression
(proliferation) of vortices when entering the low-temperature (high-temperature) phase. For

18

https://scipost.org
https://scipost.org/SciPostPhys.11.2.043


SciPost Phys. 11, 043 (2021)

this reason, we have computed the number of vortices as a function of temperature, both in
the generated and in the MCMC samples; as can be seen in Fig. 3c, we find good agreement.
This shows that the Implicit-GAN approach can, indeed, capture topological excitations, which
have cause problems in other applications of neural networks [44].

4.5.3 Models conditioned on energy

We next test the procedure introduced in Sec. 3.4 of using energy-conditioned models for over-
relaxation steps in the context of the 2D XY model. In terms of training and architecture, the
only difference to ImplicitGAN-T is that the prior distribution was chosen to be uniform in
[−1, 1] (instead of Gaussian) and that e(θ ) was provided as conditional information (instead
of temperature), which we have shifted by 1.0 so that its mean value is around zero over the
temperature range. The same training data, see Sec. 4.1, was used.

To solve Eq. (15), only 3 iterations according to Eq. (16) with δ = 0.075 in Eq. (17) were
performed. If the best of these 3 iterations did not yield a configuration with ∆E less than the
chosen ∆Ethr, the over-relation step was dropped. A temperature-dependent threshold ∆Ethr
linearly increasing from [1/N2, 8/N2] across 32 temperatures was used in our numerics. For
stability purposes, gradients clipping between [−0.02, 0.02] was also done.

Naturally, if only very few over-relaxation steps are performed, it will be very difficult to see
in the data whether ImplicitGAN-E biases the Monte-Carlo chain and leads to incorrect results.
For that reason, we focused our experiments on the regime where significant biases would be
apparent if they were present and performed only nM = 2N (recall N is the linear system size)
local updates in between over-relaxation steps. Nonetheless, as can be seen in Fig. 4, there
is very good agreement between the ground truth (pure MCMC simulations) and our heavily
GAN-over-relaxed simulations. As we show in Appendix B, the additional over-relaxation steps
reduce the correlations significantly between subsequent samples in the Monte-Carlo chain.

To reduce the thermalization time, the Markov chain is intialized by generating samples
from Implicit-GAN-E itself. The input e needed for the initial configuration is obtained for a
given T by a linear approximation of the energy vs. temperature curve of MC samples (Figs.
4c, 4d). Other initializations, including random initialization, give similar results, but need
higher burnout.

4.5.4 Interpolating across unseen temperatures around Tc

After having obtained architectures capable of modelling the joint distribution of spin config-
urations across temperatures, we next test whether these models can also generate samples in
the vicinity of the phase transition without having been trained on samples in that regime—a
much more challenging problem. We define the critical region as T ∈ [0.75,1.25]. Note that
the critical temperature is Tc ≈ 0.89 [69] for large system sizes, N →∞; due to logarithmic
finite-size corrections, we expect it to be larger, about 0.95, for our system sizes [44].

To test this, we trained a new ImplicitGAN model for both classes of conditional models dis-
cussed above, on the configurations for temperatures in the interval [0.05, 0.75]∪[1.25,2.05],
i.e., outside the critical region. This corresponds to a 25% reduction in training data. Then
we test our model by also interpolating for the temperatures which are not even present in the
training data.

The results are presented in Fig. 5, where all hyper-parameters were kept the same as
before. One can see that both Implicit-GAN-T and Implicit-GAN-E still capture the main ten-
dencies of the data, although the former has significantly reduced accuracy in magnetization.
The performance of the latter, however, is almost unaffected. Consequently, using GANs to
enhance MCMC simulations is even possible when no training data is provided in the critical
region.
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(a) Magnetization 〈|m|〉 for (8× 8) lattice (b) Magnetization 〈|m|〉 for (16× 16) lattice

(c) Energy 〈e〉 for (8× 8) lattice (d) Energy 〈e〉 for (16× 16) lattice

Figure 4: Comparison of energy-conditioned models integrated with MCMC and
temperature-conditioned (direct sampling) models with ground truth (MC samples).
Symbols and lines indicate average values and shaded portion the standard deviation
of the corresponding observable as a function of temperature.

5 Conclusions

In this work, we have studied different deep-learning-based approaches for generating spin
configurations. We have discussed in detail several modifications of the basic models in order
to warrant a more efficient representation of the states, that, e.g., takes into account sym-
metries of the system and the geometry of the local degrees of freedom. Furthermore, the
correlations between the samples generated by the model are shown to be reduced by incen-
tivizing our model to increase the entropy of the learnt distribution. Although the approaches
used are more generally applicable, we employed the 2D XY model to benchmark the mod-
els’ performances. To this end, samples were generated using MCMC to train the models.
MCMC was also used to provide the ground truth to compare the generated samples with.
For the latter, we investigated the histograms of relevant observables—magnetization, energy,
and vorticity. Overall, we found that implicit models perform better and, in particular, our
proposed ImplicitGAN outperforms all other machine-learning models considered.

We have focused on conditional models, which, after training, can be used to generate
configurations for in principle arbitrary values of tuning parameters—in our case temperature
and energy. We demonstrate that this can be employed for generating configurations near
criticality, even without providing training data in the vicinity of the transition. This could be
useful for circumventing or at least mitigating critical slowing down in MCMC simulations.
It also provides the perspective that, instead of storing a huge amount of samples for an in-
teresting model, one could just store (and make publicly available) a precisely trained neural
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(a) Magnetization 〈|m|〉 for (8× 8) lattice (b) Magnetization 〈|m|〉 for (16× 16) lattice

(c) Energy 〈e〉 for (8× 8) lattice (d) Energy 〈e〉 for (16× 16) lattice

Figure 5: Same as Fig. 4, but no training data was provided in the region
T ∈ [0.75, 1.25] (highlighted in yellow) in the vicinity of the transition.

network to generate samples for future use. We further hope that, when applied to experimen-
tal data, it can be used to gain insights about parameter regimes inaccessible in the lab. For
these applications, the flexibility of conditional models could prove crucial, since they allow
for a multitude of possible conditional variables associated with samples, including complex
post-selection criteria.

Finally, we have also shown that conditional models themselves can be employed to detect
phase transitions, without any prior knowledge, by investigating the networks’ susceptibility
to parameter changes. Most importantly, we propose a GAN fidelity measure FGAN that can be
readily evaluated for any trained GAN and is demonstrated to peak in the vicinity of transitions,
in analogy to the well-known quantum fidelity measure and its thermal extensions [66]. We
hope that this can supplement unsupervised clustering algorithms, such as that of Ref. [49],
for future machine-learning-based studies of phase transitions. One could also explore inter-
pretable ML models [70] to extract the crucial physical aspects, such as order parameters or
defect proliferation, underlying the phase transition. On a more general level, this illustrates
the advantages of the additional “tuning parameter” c of conditional models, which further
opens up the possibility to study phase transitions in one and the same neural network as a
function of c. One might wonder whether (and what kind of) different universality classes of
transitions can be established in conditional networks.

In the future, we are also planning to further test and refine the ImplicitGAN approach,
by applying it to other classical models and systematically studying the behavior of observ-
ables and FGAN with increasing system size. Additional directions include developing models
conditioned on system size and exploring quantum mechanical systems.
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Note added—During the final stages of the completion of this project, another work ap-
peared on arXiv [71], where a different generative ML technique is applied to the 2D XY
model. The emphasis of this work is different from ours and, in particular, does not contain
the analysis of implicit and prescribed models, the application as an over-relaxation step, nor
that of network-based unsupervised indicators (D and FGAN) of the phase transition, but in-
stead relies on the helicity modulus.

A Ablation analysis

In this appendix, we perform a detailed ablation analysis for the temperature-conditioned
models, to examine the effect of each of the components of our proposed Implicit-GAN ap-
proach, see Sec. 3 and Sec. 4.4, separately. For the sake of comparison, we average the values
of the metrics defined in Sec. 4.2 across all the temperatures used in the training data and we
name our models as

1. C-GAN: The standard prescribed C-GAN, which is also used as a baseline (Sec. 4.3).

2. C-GAN1: A standard implicit C-GAN modeling θi using the angles θi rather than the
two-component unit vectors si as input. The generator is a deterministic function of z
and outputs the angles θi .

3. C-GAN2: It is same as the C-GAN1 model but trained using si = (cosθi , sinθi) as input.
It also includes periodic padding of size 1 but the total magnetization of each sample of
the training data was not rotated to point along the x-axis.

4. C-GAN3: It is same as C-GAN2 with magnetization direction normalization as in Eq. (8).

5. C-GAN4: Same as C-GAN3 but the training objective is now modified according to
Eq. (9), in order to minimize the output bias.

6. Implicit-GAN: This is the proposed implicit C-GAN as was used in Sec. 4.4 in the main
text. It is the same as C-GAN4 but with the entropy-regularized objective of Sec. 3.2.2.

The performance of each of these models over the metrics is given in Table 2. A comparison
between C-GAN and C-GAN1 illustrates that, keeping other factors the same, implicit models
perform better than prescribed models. Accounting for the continuity of the space of angles
and the periodic boundary conditions further improves the performance as can be seen by
comparing C-GAN1 with C-GAN2. Exploiting the global spin-rotation symmetry of the XY
model brings further improvement in the agreement of the observables, as is visible from the
performance of C-GAN3. Thus, discontinuous jumps of θi at 2π and not taking into account
periodic boundary conditions and spin-rotation symmetry seem to be important factors causing
the bad performance of C-GAN1 and C-GAN2. Consistent with [34], we observed that this was
not a serious problem when (unconditioned) GANs were trained only for a single temperature.

We see that the performance of C-GAN4 is comparable to C-GAN3 for the metrics in Table 2.
However, one has to note that these metrics are not directly sensitive to whether the generator
satisfies the constraint of total magnetization pointing along the x axis,

∑

i sin(θi)/N2 = 0;
the additional term∝ λ in Eq. (9) explicitly incentivizes the generator to obey the constraint.
To test this, we compare the average values of the y-component of the magnetization, before
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Table 2: Ablation analysis: Evaluation metrics, along with standard deviation, com-
puted over 500 configurations of a 16×16 lattice, averaged across all temperatures.
Smaller EMD and higher %OL are better.

Metric EMD Mag. EMD Energy %OL Mag. %OL Energy

C-GAN 0.304±0.113 0.234±0.14 7.969±16.394 16.643±13.863
C-GAN1 0.290±0.101 0.212±0.122 20.6±21.275 18.381±8.303
C-GAN2 0.136±0.04 0.098±0.064 41.181±21.295 35.269±23.922
C-GAN3 0.071±0.075 0.034±0.028 67.068±16.092 47.25±21.815
C-GAN4 0.043±0.038 0.041±0.035 69.275±22.586 37.181±22.397
ImplicitGAN-T 0.041±0.043 0.010±0.005 67.343±20.415 65.832±18.351

(C-GAN3) and after (C-GAN4) adding the term∝ λ. Figure 6 shows a significant reduction
in the average ‘bias’, as with C-GAN4 the curves are closer to x-axis. This can be considered
as a first-order moment matching test to check whether the model learns the true distribution
of the samples, which were reprocessed according to Eq. (8). The parameter λ ≈ 1− 10 was
observed to work well. With a large value of λ(≈ 100), the average bias across temperatures
becomes small but the performance of the model over the metrics starts degrading. Hence,
there exists a trade-off between the performance and bias.

Finally, we can see in Table 2 that the performance of Implicit C-GAN, in terms of re-
producing the distribution of observables, is comparable to that of C-GAN3 and C-GAN4 for
magnetization and seems to become even better for the energy. On top of that, the key ad-
vantage of the Implicit-GAN is that it generates more uncorrelated samples as compared to
the latter. To quantify this, we measure correlations between a pair of samples, θ = {θ j} and
θ ′ = {θ ′j}, generated by our models. To this end, we introduce

κ(T ) =
1

N2

∑

j

�

�

�

�

E
�

ei(θ j−θ0)e−i(θ ′j−θ
′
0)
�

�

�

�

�

(A.1)

as our measure for the average cross-correlation. Here, θ0 =
∑

j(θ j/N
2)2π and

θ ′0 =
∑

j(θ
′
j/N

2)2π to make sure that we do not get κ ≈ 0 simply because we have exploited
the global spin-rotation symmetry, see Sec. 3.1.1. The expectation value in Eq. (A.1) is taken
with respect to the configurations generated by the models.

For instance, from C-GAN3 to Implicit-GAN, we obtain an improvement from
κ = 0.65 ± 0.38 to κ = 0.27 ± 0.2 at T = 1.5 and for N = 16. We observed a significant
reduction in cross-correlation as compared to C-GAN3 for both 8× 8 and 16× 16 lattices and
across temperatures. Nonetheless, a comparison with the ground truth (MC) still reveals an
enhanced κ in the disordered high-temperature phase, which means that the Implicit-GAN
generated samples are not perfect and do not completely explore the state space.

B Characteristics of ImplicitGAN-E

We here present more details on the properties of our ImplicitGAN-E models. As already
mentioned in Sec. 3.4, GANs learn distributions only approximately. As such, the energy of
the states generated by G(z, e), z ∼ P(z), will have energy densities only approximately equal
to e. To quantify this, we plot in Fig. 7a the I/O characteristic of our ImplicitGAN-E models, i.e.,
the distribution of E(G(z, e))/N2, z ∼ P(z), as a function of e. As can be seen, E(G(z, e))/N2

and e clearly follow each other, but systematic deviations exist. These observations show that
the use of conditional models can accelerate the search for states with the desired energy
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Figure 6: Average value of Y-component of magnetization computed over 500 con-
figurations. Due to pre-processing of the MCMC data, the curves should be close
zero.

(a) Input-Output Characteristics for (8× 8) and (16× 16) lattices respectively.

(b) Auto-correlation, as defined in Eq. (B.1), as a function of the number of local updates for 5 different
temperatures and N = 16. Solid lines are MCMC with local updates and dashed lines is MCMC with
over-relaxation.

Figure 7: Characteristics of our ImplicitGAN-E model.

significantly, as compared to regular GANs. At the same time, we also learn that fine-tuning
e to obtain the required energy with high precision via Eq. (15) is still important; otherwise,
we would obtain systematic deviations in our Markov chain.

To explicitly demonstrate that the use of ImplicitGAN-E as over-relaxation steps decreases
the correlations between samples in the Markov chain, we here compute the following auto-
correlation function:

Rm(τ) =
�

∑M−τ
i=1 mimi+τ − (M −τ)〈m〉[1,M−τ]〈m〉[τ+1,M]

〈m2〉[1,M] − 〈m〉2[1,M]

�

, (B.1)
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where mi denotes the value of |m| in the ith sample in the Markov chain and
〈m〉[ j1, j2] =

1
| j2− j1+1|

∑ j2
j= j1

m j . A plot of the auto-correlation function Rm(τ) with and with-
out the over-relaxation step is shown in Fig. 7b. Clearly, at all temperatures, the addition
of GAN-based over-relaxations steps significantly reduces the correlations of samples in the
Markov chain.
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