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Abstract

We formulate the Schwinger-Keldysh effective field theory of hydrodynamics without
boost symmetry. This includes a spacetime covariant formulation of classical hydrody-
namics without boosts with an additional conserved particle/charge current coupled to
Aristotelian background sources. We find that, up to first order in derivatives, the theory
is characterised by the thermodynamic equation of state and a total of 29 independent
transport coefficients, in particular, 3 hydrostatic, 9 non-hydrostatic non-dissipative, and
17 dissipative. Furthermore, we study the spectrum of linearised fluctuations around
anisotropic equilibrium states with non-vanishing fluid velocity. This analysis reveals a
pair of sound modes that propagate at different speeds along and opposite to the fluid
flow, one charge diffusion mode, and two distinct shear modes along and perpendic-
ular to the fluid velocity. We present these results in a new hydrodynamic frame that
is linearly stable irrespective of the boost symmetry in place. This provides a unified
covariant stable approach for simultaneously treating Lorentzian, Galilean, and Lifshitz
fluids within an effective field theory framework and sets the stage for future studies of
non-relativistic intertwined patterns of symmetry breaking.
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1 Introduction

Hydrodynamics describes the long-wavelength collective behaviour of low-energy excitations
in a broad range of physical systems. In this regime, the dynamics is insensitive to most mi-
croscopic details and is universally captured by a set of conservation laws. The range of ap-
plicability of hydrodynamics spans widely separated scales, in particular those of quantum
gravity [1, 2], viscous electron flows [3, 4], biological fluids [5], and the dynamics of black
hole accretion disks [6], to mention only a few. Traditionally, hydrodynamics has been a phe-
nomenological field of study. One specifies the symmetry-breaking pattern; postulates a set
of currents with associated conservation laws; invokes the second law of thermodynamics
(through the positivity of the divergence of an entropy current) together with Onsager’s rela-
tions, and determines the constitutive relations in a gradient expansion [7]. While this classical
approach has been extremely successful, one expects that symmetry alone should be sufficient
to characterise the hydrodynamic regime.

Treating hydrodynamics as a bona fide thermal field theory, a more fundamental approach
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has been developed in the context of relativistic fluids in the past few years [8–10], and has
recently been adapted to Galilean-invariant fluids as well [11]. This formulation is based
on the Schwinger-Keldysh effective field theory (EFT) framework for non-equilibrium ther-
mal systems; see [12] for a review. The starting point of this EFT framework is a generating
functional from which correlation functions of hydrodynamic operators and hydrodynamic
equations of motion can be derived. In addition, the framework systematically accounts for
the effects of stochastic/thermal noise on the hydrodynamic evolution via stochastic interac-
tions. In order to describe out-of-equilibrium thermal systems, the EFT generating functional
must satisfy certain requirements, such as KMS symmetry, which lead to an emergent second
law of thermodynamics and implementation of the Onsager’s relations at the classical level, in
addition to fluctuation-dissipation constraints on the correlation functions. The main goal of
this work is to develop a Schwinger-Keldysh EFT for the hydrodynamic description of physical
systems that lack any boost symmetry, Lorentzian or Galilean, to begin with. In particular,
this covers systems which have their boost symmetry explicitly broken due to the presence
of a background medium1 or systems that do respect a boost symmetry but is not explicitly
manifest at the macroscopic level. Systems without a boost symmetry are ubiquitous in non-
Fermi liquid phases of matter such as metallic quantum critical systems [15]. Fermi-liquids
can also exhibit phases characterised by the absence of a boost symmetry, the prime example
being liquid helium-3 at sufficiently low temperatures [14].2 In the realm of classical physics,
various many-body systems in soft matter physics and biophysics [17] do not respect Galilean
boost symmetry. Common examples include models with self-propelled agents such as flocks
of birds and colonies of bacteria swimming in a medium.

In general, however, physical systems that break boost symmetry also exhibit other pat-
terns of symmetry breaking. In the context of quantum matter, spatial translations are usually
also spontaneously broken, due to the presence of the ionic lattice, or explicitly broken due
to the presence of impurities [18]. Charge density wave phases are one such example; see
also [19, 20]. In the setting of classical fluids, self-propelled agents break spacetime transla-
tions explicitly due to the presence of driving forces [21], while active liquid crystal phases
can break translations and rotations spontaneously [22]. Such situations compromise the gra-
dient expansion of hydrodynamics and thus it is important to move away from traditional
treatments and understand what are the rules of the game for building hydrodynamics models
with intertwined patterns of symmetry breaking.

Schwinger-Keldysh EFT provides a controlled framework for developing such hydrody-
namic theories and studying stochastic corrections to classical hydrodynamics. In particular,
it was shown recently in the context of isotropic relativistic fluids that stochastic corrections
break the hydrodynamic derivative expansion at third derivative order, leading to non-classical
contributions to hydrodynamic correlation functions [23]. However, such effects may possibly
appear earlier in the derivative expansion in systems with specific kinds of broken symmetries.
The work presented here considers only the case of broken boost symmetry and has a three-fold
purpose: (1) to accurately classify the transport properties of hydrodynamics without boosts
in the presence of a conserved U(1) particle-number/charge current; (2) to provide a uni-
fied field theoretic framework that can simultaneously describe Lorentzian as well as Galilean
and Lifshitz fluids,3 which can be obtained by restoring different types of boost symmetries or

1In [13,14] the case of spontaneous breaking of Lorentz boost symmetry was considered. This is distinct from
the setup considered in this paper, where the boost symmetry is explicitly broken and the respective Ward identity
is absent to begin with. This can be thought of as being accomplished by “integrating out” the medium through
which the fluid is moving.

2In the context of quantum matter, it has also been argued that electron flows in graphene may break Lorentz
invariance due to the presence of long-range Coulomb interactions [16].

3This framework could also potentially describe Carrollian-boost invariant fluids [24–26], but we have not
explored this possibility here.
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taking different scaling limits; and (3) to provide the necessary foundations for future explo-
rations addressing more complicated patterns of symmetry breaking and associated stochastic
contributions.

Several recent works have motivated this study. Earlier literature established a classical co-
variant approach to ideal fluids without boost symmetry, by coupling the fluid to Aristotelian
geometry [26]. A full treatment of one-derivative corrections was carried out in [27], but
the U(1) current responsible for particle-number/charge conservation was not introduced. A
linearised analysis of fluctuating isotropic and homogeneous configurations in charged hy-
drodynamics without boosts was done in [28]. A classification of first order transport in flat
spacetime with the additional U(1) current was undertaken in [29], but a complete analysis
of the second law constraints was not carried out. In this work, we develop further all of these
lines of research by providing a complete covariant treatment and classification of transport in
hydrodynamics without boosts within a field theoretic framework, including the presence of
a U(1) current, and consider the most general fluctuation analysis around equilibrium states
that are inherently anisotropic.

In contrast with all the previous literature, we present our results in a new hydrodynamic
frame, which we call density frame, that is linearly stable (in the sense of [30–32]) irrespective
of the boost symmetry in place (Galilean or Lorentzian), or absence thereof, and is thus better
suited for potential numerical simulations. This frame choice aligns the fluid velocity with
the flow of momentum, rather than the flow of internal energy (as in the Landau frame) or
charge/particle-number (as in the Eckart frame). Note that momentum is a reference-frame
dependent quantity. Therefore, when employed in Galilean or relativistic hydrodynamics, the
density frame will lead to a manifestly non-covariant representation of the respective consti-
tutive relations. However, the equations of motion are still manifestly covariant and boost-
invariant (up to second derivative corrections). We emphasise that hydrodynamic models,
irrespective of the hydrodynamic frame utilised to represent the constitutive relations, are not
suitable to make reliable universal predictions about gapped “high-energy” modes. In this
sense, the aforementioned linear stability (i.e. the absence of unstable gapped modes) in the
density frame is not a physical prediction of the model. It is rather a technical characteris-
tic of the model that makes it “more suitable” for setting up initial-value problems aimed at
exploring the low-energy long-wavelength physics of fluids.

This paper is organised as follows. In section 2, we introduce classical aspects of hydro-
dynamics without boost symmetry, conservation laws as well as entropy production, and the
basics of Aristotelian geometry to which these fluids couple to. In section 3, we use these
considerations in order to formulate the Schwinger-Keldysh effective field theory for these
systems. In section 4, we write down the specific Lagrangian that includes all the dissipa-
tive and non-dissipative transport coefficients that characterise the effective theory up to first
order in a gradient expansion. In section 5, we examine special limits where one recovers
Lorentzian, Galilean, and Lifshitz fluids. In section 6, we study fluctuations around generic
anisotropic equilibrium configurations and obtain explicit expressions for sound, shear, and
charge diffusion modes in a linearly stable hydrodynamic frame. Finally, we conclude with
some discussion in section 7. Appendix A is dedicated to expressing our results in the Landau
frame in order to compare with the previous literature. Appendix B provides the interaction
Lagrangian for the linearised effective field theory of hydrodynamics without boosts, which
can be used for studying stochastic contributions to hydrodynamic correlation functions.

4

https://scipost.org
https://scipost.org/SciPostPhys.11.3.054


SciPost Phys. 11, 054 (2021)

2 Classical boost-agnostic hydrodynamics

In this section, we review various aspects of classical boost-agnostic hydrodynamics. We start
with the energy, momentum, and charge/particle-number conservation equations and use the
second law of thermodynamics to derive the constitutive relations of an ideal fluid without
boost symmetry. We discuss how to introduce curved background sources into these equations
coupled to various hydrodynamic observables, which will be crucial for our subsequent dis-
cussion of the EFT framework. Following this, we outline a generic procedure to implement
the second law constraints at arbitrarily high orders in the derivative expansion using the adi-
abaticity equation. A more concrete construction of the allowed one-derivative corrections is
presented later in section 4.

2.1 Ideal hydrodynamics on flat background

2.1.1 Symmetries and conservation laws

Hydrodynamics is a theory of locally conserved quantities. One starts by outlining the complete
set of Noether currents associated with any global symmetries that the system might enjoy, and
expresses various “fluxes” in terms of the conserved “densities”, arranged in a perturbative
expansion in derivatives. For a given set of such “constitutive relations”, the time evolution
of the conserved densities is determined by their respective conservation equations. In typical
hydrodynamic systems, these conserved densities are the energy ε, momentumπi , and particle
number density n of the fluid, associated with time and space translational invariance and an
abstract internal U(1) phase shift invariance of the theory. The associated fluxes are the energy
flux εi , stress tensor τi j , and mass/particle number flux j i , with conservation equations

Energy conservation: ∂tε+ ∂iε
i = 0 ,

Momentum conservation: ∂tπ
j + ∂iτ

i j = 0 ,

Continuity equation: ∂t n+ ∂i j i = 0 . (1)

In addition, hydrodynamic systems usually feature rotational invariance and some kind of
boost invariance. Provided that the fluid does not carry an intrinsic spin density, rotational
invariance requires the orbital angular momentum density to be conserved

Angular-momentum conservation: ∂t

�

πi x j −π j x i
�

+ ∂k

�

τki x j −τk j x i
�

= τ ji −τi j , (2)

ensuring the stress tensor to be symmetric. If the theory is required to be invariant under
Galilean boosts, the center of inertia will need to be conserved

Center-of-mass conservation: ∂t

�

m n x i −πi t
�

+ ∂k

�

m jk x i −τki t
�

= m j i −πi , (3a)

where m is the constant mass per particle. This leads to the momentum density being aligned
with the mass flux πi = m j i . Similarly, we have a conserved center-of-energy in the relativistic
case

Center-of-energy conservation: ∂t

�

1
c2
ε x i −πi t

�

+ ∂k

�

1
c2
εk x i −τki t

�

=
1
c2
εi −πi , (3b)

where c is the speed of light, equating the momentum density to the energy-flux πi = εi/c2

instead.4 The paradigm of the present work is to study systems which might not necessarily
respect a boost symmetry. In this sense, we do not tie πi to either j i or εi . We will still focus on
systems respecting rotational invariance (on hydrodynamic length scales), so τi j is assumed
to be symmetric.

4Note that in the relativistic theory, we have a conserved energy momentum tensor Tµν. Momentum density
equalling the energy-flux is merely the statement that T t i = T i t .
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2.1.2 Constitutive relations and second law

The starting point of hydrodynamics is the assumption that the low-energy dynamics of the
system near thermal equilibrium is entirely governed by its conserved operators: density n,
energy density ε, and momentum density πi . Hydrodynamics is then characterised by the
most generic expressions for the fluxes j i , εi , and τi j , written in terms of the chosen variables
and their spatial derivatives, i.e.

j i[n,ε,πi ,∂i] , εi[n,ε,πi ,∂i] , τi j[n,ε,πi ,∂i] . (4)

These are known as the hydrodynamic constitutive relations. Note that the temporal deriva-
tives of various quantities are determined by eq. (1) and hence are not independent. Our
assumption of near-equilibrium allows us to arrange the constitutive relations in a derivative
expansion, truncated at a given order in derivatives according to the phenomenological sen-
sitivity required. At any given order in the derivative expansion, the constitutive relations
contain all the possible tensor structures made out of derivatives of n, ε, and πi , consistent
with symmetries, appended with arbitrary transport coefficients as a functions of n, ε, ~π2.

The hydrodynamic constitutive relations are required to respect certain phenomenological
constraints. Most important of these is the “local second law of thermodynamics” that requires
that there must exist an entropy density st and an associated flux si such that

∂ts
t + ∂is

i ≥ 0 . (5)

At the leading order in the derivative expansion, entropy density is merely given by an arbitrary
function of n, ε, and ~π2, i.e. st = s(ε, n, ~π2). Let us define intensive parameters: temperature
T (ε, n, ~π2), chemical potential µ(ε, n, ~π2), velocity ui(ε, n, ~π2), and pressure p(ε, n, ~π2) via the
thermodynamic relations: local first law of thermodynamics and Euler relation respectively

Tds = dε−µdn− uidπi , p = Ts+µn+ uiπi − ε . (6)

Due to rotational invariance, the velocity must be aligned with momentum, i.e. ui = πi/ρ,
where ρ is the momentum susceptibility. It is easy to check that

∂ts
t + ∂is

i = −
1
T2

�

εi − (ε+ p)ui
�

∂i T −
�

j i − n ui
�

∂i
µ

T
−
�

τi j −ρ uiu j − pδi j
�

∂i
u j

T
, (7)

where we have identified the entropy flux as

T si = p ui + εi −µ j i −τi ju j +O(∂ ) . (8)

We need to require that the RHS of eq. (7) is positive semi-definite for arbitrary fluid configu-
rations. At the leading order in derivatives, this leads to the ideal fluid constitutive relations

εi = (ε+ p)ui +O(∂ ) , τi j = ρ uiu j + pδi j +O(∂ ) , j i = n ui +O(∂ ) ,

si = s ui +O(∂ ) . (9)

The respective dynamics is given by substituting these into the conservation equations (1).
Note that entropy is conserved at ideal order. We can, in principle, extend this analysis to
higher orders in the derivative expansion (see [27]). We shall return to this when equipped
with more tools.

The relation s = s(ε, n, ~π2), or equivalently ε= ε(s, n, ~π2), can be understood as the micro-
canonical equation of state of the fluid and completely characterises its constitutive relations at
ideal order through the thermodynamic relations (6). We note, however, that hydrodynamics
as a physical system is better defined in the grand canonical ensemble, because a fluid element
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is allowed to freely exchange particles, energy, and momentum with its surroundings. Keeping
this in mind, we can take the fundamental dynamical fields to be T , µ, ui instead of ε, n, and
πi . In this case, the equation of state is given in terms of p(T,µ, ~u2) instead of ε(s, n, ~π2) with
the thermodynamic relations: Gibbs-Duhem relation and Euler relation respectively

dp = s dT + n dµ+πidui , ε= Ts+µn+ uiπi − p. (10)

Recall that πi = ρ ui . These relations define ε, n, and πi in terms of T , µ, and ui .

2.2 Coupling to background sources

2.2.1 Aristotelian background sources

We would like to introduce a set of Aristotelian background sources to which fluids without
boost symmetry couple to, as discussed in [27]. These are similar to the Newton-Cartan sources
prevalent in Galilean hydrodynamics, but with no Milne boost symmetry. The absence of this
symmetry, in fact, makes these sources easier to implement in an effective theory. These are
given by

Clock-form: nµ , Spatial metric: hµν , Gauge field: Aµ , (11)

where hµν is a symmetric matrix of signature (0,1, 1,1, . . .). nµ and hµν can be vaguely under-
stood as the time and space components of the relativistic spacetime metric gµν, now being
treated independently due to the lack of any boost symmetry. Since hµν is a degenerate ma-
trix, it admits a zero-eigenvector vµ, normalised as vµnµ = 1, such that vµhµν = 0. Its spatial
components v i can be identified as the velocity of a lab frame observer. This can be used to
define an “inverse spatial metric” hµν via the relations hµνnν = 0 and hµνhνλ + vµnλ = δ

µ

λ
.

Note that hµν is not the inverse of hµν. Together,

Frame velocity: vµ , Inverse spatial metric: hµν , (12)

should be understood along the same lines as the inverse metric gµν in relativistic field theories.
They are entirely fixed by the sources (11) via the conditions

vµnµ = 1 , vµhµν = 0 , hµνnν = 0 , hµνhνλ + vµnλ = δ
µ

λ
. (13)

The flat background limit is given as nµ = δt
µ, hµν = δi

µδiν, Aµ = 0, vµ = δµt , and hµν = δiµδνi .
Let d be the number of spatial dimensions. The clock-form nµ couples to the energy density

and flux εµ, the d independent components of the frame velocity vµ couple to the momentum
densityπµ (normalised as vµπµ = 0), while the remaining d(d+1)/2 independent components
of the spatial metric hµν couple to the stress tensor τµν (satisfying τµνnν = 0 and τµν = τνµ),
and finally the gauge field Aµ couples to the particle number current jµ. In terms of the non-
covariant densities and fluxes we have

εµ =

�

ε

εi

�

, πµ =

�

−vkπk/v
t

πi

�

, τµν =

�

nknlτ
kl/n2

t −nkτ
k j/nt

−nkτ
ki/nt τi j

�

, jµ =

�

n
j i

�

. (14)

We will often use πµ = hµνπν satisfying πµnµ = 0. The coupling can be denoted in terms of
the variation of an (equilibrium) effective action S describing the theory as

δS =

∫

dtdd x
p
γ

�

jµδAµ − εµδnµ −πµδvµ +
1
2
τµνδhµν

�

=

∫

dtdd x
p
γ

�

jµδAµ − εµδnµ +
�

vµπν +
1
2
τµν

�

δhµν

�

, (15)
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where γ = det(hµν + nµnν). The second line is to highlight that vµ is not an independent
source.

We require the theory to be invariant under local diffeomorphisms parametrised by arbi-
trary invertible maps x ′µ(x) and U(1) gauge transformation parametrised by Λ(x). We have
collectively denoted the spacetime coordinates xµ = (t, x i). Their action on the background
fields is defined as usual

nµ(x)→ n′µ(x
′) =

∂ xν

∂ x ′µ
nν(x) , hµν(x)→ h′µν(x

′) =
∂ xρ

∂ x ′µ
∂ xσ

∂ x ′ν
hρσ(x) ,

Aµ(x)→ A′µ(x
′) =

∂ xν

∂ x ′µ
(Aν(x) + ∂νΛ(x)) , (16)

and similarly for vµ and hµν. Under infinitesimal version of these transformations, with
x ′µ(x) = xµ + ξµ(x), the diffeomorphisms merely act as Lie derivatives

nµ→ nµ + $ξnµ , hµν→ hµν + $ξhµν , Aµ→ Aµ + $ξAµ + ∂µΛ . (17)

Implementing this on the action variation in eq. (15), we can work out the covariant conser-
vation equations

Energy conservation:
�

∇µ + F n
µλvλ

�

εµ = −vν
�

Fνµ jµ − F n
νµε

µ
�

−τµλhλν∇µvν ,

Momentum conservation:
�

∇µ + F n
µλvλ

�

(vµπν +τµν) = hνλ
�

Fλµ jµ − F n
λµε

µ
�

−πµ∇µvν ,

Continuity equation:
�

∇µ + F n
µλvλ

�

jµ = 0 . (18)

Here Fµν = 2∂[µAν] and F n
µν = 2∂[µnν] are the field strengths associated with Aµ and nµ, and

∇µ is the covariant derivative operator associated with the connection5

Γλµν = vλ∂µnν +
1
2

hλρ
�

∂µhνρ + ∂νhµρ − ∂ρhµν
�

. (19)

This connection satisfies

∇µnν =∇µhνλ = 0 , ∇λhµν = −n(µ$vhν)λ , hνλ∇µvλ =
1
2

$vhµν,

Γµµν + F n
νµvµ =

1
p
γ
∂ν
p
γ , 2Γλ[µν] = vλF n

µν . (20)

Note that this connection is torsional. In addition to torsional contributions on the left, the con-
servation of energy and momentum in eq. (18) is sourced by Lorentz force-like terms coupled
to the field strengths Fµν and F n

µν, and pseudo-force terms coupled to the covariant derivative
of the frame velocity ∇µvν.

2.2.2 Hydrodynamics on curved background

The ideal order hydrodynamic constitutive relations (9) can be coupled to background sources
naturally as

εµ = εuµ + p ~uµ +O(∂ ) , πµ = ρ ~uµ +O(∂ ) , τµν = ρ ~uµ~uν + p hµν +O(∂ ) ,

jµ = n uµ +O(∂ ) , sµ = s uµ +O(∂ ) , (21)

5In Galilean theories, it is often convenient to work with a different connection, namely

Γ̃ λ
µν
= vλ∂µnν +

1
2

hλρ
�

∂µhνρ + ∂νhµρ − ∂ρhµν
�

+ n(µFν)ρhρλ,

which is Milne boost-invariant on backgrounds with F n
µν
= 0. Since we do not have any boost invariance, we

choose to work with the simpler connection. The choice of connection has no bearing on the physical results.
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where the covariant version of various hydrodynamic observables are defined in eq. (14). We
have also taken ut = (1−uini)/nt , which is just equal to 1 on a flat background, so that the co-
variant fluid velocity uµ satisfies the normalisation condition uµnµ = 1. The velocity of the fluid
with respect to the Galilean frame is defined as ~uµ = uµ − vµ, ~uµ = hµνu

ν = hµν~u
ν, satisfying

~uµnµ = 0, ~uµvµ = 0. These constitutive relations should be understood as written in the grand
canonical ensemble characterised by a function p(T,µ, ~u2), where ~u2 = uµuνhµν = ~uµ~uνhµν,
and the thermodynamic relations (10). The structure of the constitutive relations is fixed by
the second law of thermodynamics; it can be checked that eq. (21) represents the most generic
leading derivative order constitutive relations satisfying

�

∇µ + F n
µλvλ

�

sµ =
1
p
γ
∂µ (
p
γ sµ)≥ 0 , sµ = s uµ +O(∂ ) . (22)

The equations of motion of hydrodynamics are obtained by substituting the constitutive
relations (21) into the conservation equations (18). We obtain

~uν/T2

p
γ
δB(
p
γ T2ρ)− (ε+ p)hµνδBnµ + nhµνδBAµ +ρ uσhνρδBhσρ =O(∂ 2) ,

1
p
γ
δB(
p
γ T n) =O(∂ 2) ,

1
p
γ
δB (
p
γ Ts) =O(∂ 2) . (23)

Here δB denotes a Lie derivative along uµ/T combined with a gauge-shift along (µ−uµAµ)/T .
Explicitly, we find

δBnµ = −
1
T2
∂µT −

1
T

F n
µνu

ν, δBhµν = 2hλ(µ∇ν)
uλ

T
+

uλ

T
∇λhµν ,

δBAµ = ∂µ
µ

T
−

1
T

Fµνu
ν . (24)

Note the identity for arbitrary function f (T,µ, ~u2),

1
p
γ
δB (
p
γ f ) = −

��

T
∂ f
∂ T
+µ

∂ f
∂ µ
+ 2~u2 ∂ f

∂ ~u2

�

uµ − f vµ
�

δBnµ

+
∂ f
∂ µ

uµδBAµ +
�

2
∂ f
∂ ~u2

uµuν + f hµν
�

1
2
δBhµν . (25)

There are a few lessons to be learnt from the equations of motion (23). Firstly, note that the
equations of motion can be written entirely in terms of δBnµ, δBhµν, and δBAµ. Let us say
that the background fields admit a timelike Killing vector Kµ, i.e. $K nµ = $Khµν = $KAµ = 0,
where $K denotes a Lie derivative along Kµ. Coupled to such a background, the equations of
motion admit a trivial “equilibrium solution” given by uµ/T = Kµ and µ/T = KµAµ. Secondly,
we can always eliminate any (d + 2) number of linear combinations of δBnµ, δBhµν, and
δBAµ from the higher derivative corrections to the constitutive relations using equations of
motion. This shall be useful later while writing down the set of independent one-derivative
corrections to the hydrodynamic constitutive relations.

2.2.3 Hydrodynamic frame transformations

Recall that we had defined the hydrodynamic variables ui , T , and µ using the thermodynamic
relations (6). However, these definitions are only well posed in equilibrium. Out of equilib-
rium, there is no unique notion of fluid velocity, temperature, or chemical potential. This is
important because we can always redefine these quantities with terms involving spacetime
derivatives which will vanish in equilibrium, such as

T → T +δT , µ→ µ+δµ , ui → ui +δui , (26)
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where δT , δµ, δui contain terms with at least one derivative. We can also define δuµ as the
change in the covariant fluid velocity, with nµδuµ = 0. More details on the explicit action of
these redefinitions on the hydrodynamic constitutive relations can be found in appendix A.

Often, it is convenient to work in a “hydrodynamic frame” where one imposes extra con-
straints on the derivative corrections that can enter the ideal order constitutive relations (21),
so that this freedom is exactly fixed. A natural choice is to ensure that the conserved densities:
energy, momentum, and particle number, do not obtain any corrections, by requiring

εµnµ = ε , πµ = ρ ~uµ , jµnµ = n , (27)

which we call the density frame. This frame ties the fluid velocity with the flow of momen-
tum. In the Galilean case, this is same as the “mass frame” with the fluid velocity aligned with
the flow of mass. For relativistic hydrodynamics, there are other more popular hydrodynamic
frames used in the literature, such as the Landau and Eckart frame, where the fluid velocity is
aligned with internal energy and charge flow, respectively. However these frames are known
to exhibit unphysical pathologies such as superluminal propagation and unstable modes in
the linear spectrum in a finite velocity state [30, 33–36]. By contrast, the density frame de-
fined above is always well-defined. We will return to these issues in section 6. More details
about hydrodynamic frame transformations in boost-agnostic hydrodynamics can be found in
appendix A. As it turns out, the most useful choice for us is to leave the hydrodynamic field
redefinition freedom to be unfixed for now. We shall return to it in the next subsection.

2.3 Adiabaticity equation, thermodynamic frame, and discrete symmetries

We can write down a covariant version of the second law of thermodynamics given in eq. (5)
as

�

∇µ + F n
µλvλ

�

sµ =
1
p
γ
∂µ (
p
γ sµ) = kB∆≥ 0 . (28)

Here∆ has to be a positive semi-definite quadratic form and kB is the Boltzmann constant. The
second law is imposed onshell, i.e. it is only required to be satisfied by configurations satisfying
the conservation equations (18). Nonetheless, we can convert it into a offshell statement
by adding arbitrary combinations of conservation equations. Introducing an arbitrary vector
multiplier βµ and a scalar one Λβ , we can write [37,38]

�

∇µ + F n
µλvλ

�

sµ − kBβ
ρnρ

��

∇µ + F n
µλvλ

�

εµ + . . .
�

+ kBβ
ρhρν

��

∇µ + F n
µλvλ

�

(vµπν +τµν) + . . .
�

+ kB

�

Λβ + β
ρAρ

�

�

∇µ + F n
µλvλ

�

jµ = kB∆≥ 0 , (29)

which will be satisfied offshell for some βµ and Λβ . It can be checked that the ideal fluid
constitutive relations (21) satisfy this relation for∆=O(∂ 2), provided that we choose kBβ

µ =
uµ/T +O(∂ ) and kBΛβ = (µ− uµAµ)/T +O(∂ ).

Recall that we had an immense amount of redefinition freedom on our hands in the choice
of hydrodynamic variables uµ, T , and µ that we left unfixed at the end of section 2.2.3. We
can fix this freedom by requiring the multipliers βµ, Λβ to be exactly equal to their ideal order
values with no derivative corrections

βµ =
uµ

kBT
, Λβ =

µ− uµAµ
kBT

. (30)

This is known as a thermodynamic frame. This, however, is not a complete fixing. We can
imagine performing certain redefinitions of uµ, T , µ, and by extension of βµ, Λβ , that only
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change the constitutive relations satisfying the adiabaticity equation (33) up to combinations
of conservation equations. Such redefinitions still need to be accounted for as they leave the
dynamics invariant. This can be unambiguously done following our discussion around eq. (23)
and eliminating any (d + 2) combinations among δBAµ, δBnµ, and δBhµν from the hydro-
dynamic data, leaving us with d(d + 5)/2 independent components. Note that vµvνδBhµν is
trivially zero. Different choices lead to different thermodynamic frames. Of particular interest
to us is the thermodynamic density frame, where we choose the independent data to be

hµνδBAν, hµνδBnν , hµρhνσδBhρσ . (31)

This matches up with the density frame defined in eq. (27) in the non-hydrostatic sector (i.e.
part of the constitutive relations that vanish in a hydrostatic/equilibrium configuration), but
differ substantially in the hydrostatic sector. The discussion for thermodynamic Landau frame
is presented in appendix A. In the core of this paper we will be working in the thermodynamic
density frame. The main reason for this choice is that this frame, unlike the Landau or Eckart
frames, does not exhibit unphysical instabilities in the linearised mode spectrum [30,33–36].6

This fact will be clear when studying linearised fluctuations in section 6.
Eq. (29) can be transformed into a more useful form by defining the free energy current

Nµ =
1
kB

sµ − βνnν ε
µ + vµβνπν + β

λhλντ
µν +

�

Λβ + β
ρAρ

�

jµ , (32)

which leads to the adiabaticity equation
�

∇µ + F n
µλvλ

�

Nµ = −εµδBnµ +
�

vµπν +
1
2
τµν

�

δBhµν + jµδBAµ +∆ , ∆≥ 0 . (33)

The operator δB combines a Lie derivative $β along βµ and a gauge shift along Λβ , i.e.

δBnµ = $βnµ , δBhµν = $βhµν , δBAµ = $βAµ + ∂µΛβ . (34)

This form of the second law of thermodynamics is more useful to implement on a curved
background. It can be checked that the constitutive relations (21) are the most general solution
of the adiabaticity equation (33) at the leading derivative order with∆= 0. This also justifies
their explicit form in the presence of background sources. Note that ∆ being zero at this
derivative order means that ideal fluids are non-dissipative, as we would physically expect.

Additional phenomenological requirements beyond Aristotelian symmetries, and the sec-
ond law of thermodynamics, are also usually imposed on the hydrodynamic constitutive re-
lations. Such is the case of discrete time-reversal (T), parity (P), and charge conjugation (C)
symmetries. In particular, underlying microscopic theories are often taken to respect some
kind of time-reversal symmetry, like T, PT, or CPT. Denoting the action of these symmetries
by Θ, in table 1 we provide the transformation properties of various quantities of interest un-
der these symmetries. Such symmetries are responsible for imposing Onsager’s conditions on
the hydrodynamic correlation functions (see [7]) or for requiring the constitutive relations to
be Θ-invariant in equilibrium [39–41]. These discrete symmetries will be crucial when for-
mulating the Schwinger-Keldysh EFT in the next section. This completes our brief review of
Aristotelian hydrodynamics – the explicit one-derivative order corrections will be considered
in section 4.

3 Effective field theory for boost-agnostic hydrodynamics

In this section, we discuss the Schwinger-Keldysh effective field theory for boost-agnostic hy-
drodynamics. Unlike the EFT for relativistic hydrodynamics developed over the last decade [8,

6Stability of various hydrodynamic frames in relativistic, Galilean, and Carrollian fluids was studied in [31].
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Table 1: Action of parity, time-reversal, and charge conjugation on various quantities
in classical hydrodynamics and effective field theory. In the next section we intro-
duce Schwinger-Keldysh double copies of various quantities in the effective theory,
with labels “1/2” or “r/a”, which have the same transformation properties as their
unlabelled counterparts.

C P T PT CPT

X 0, t, τ + + − − −
X i , x i , σi + − + − −

ϕ − + − − +

ui , β i , �i + − − + +
T , β t , �τ + + + + +
µ, Λβ , Λ� − + + + −

εt , nt + + + + +
εi , ni + − − + +
πi , v i + − − + +
τi j , hi j + + + + +
j t , bt − + + + −
j i , bi − − − + −

10,42–50], the EFT description of boost-agnostic hydrodynamics needs to treat time and space
directions on independent footing. A similar discussion for Galilean hydrodynamics appeared
recently in [11], where the time and space directions were indeed treated independently, but
nonetheless had to be tied down to respect the underlying Milne boost symmetry. As noted
there, Milne boosts actually make things quite hard for an effective field theorist; to make this
symmetry manifest, one needs to pass to a higher-dimensional “null-background” represen-
tation followed by a null reduction to obtain the final results. Since boost-agnostic hydrody-
namics does not worry about boosts altogether, the ensuing EFT is formally simpler than its
Galilean cousin. In fact, the following discussion is mostly a reproduction of section 5 of [11],
but with the Milne boost symmetry revoked. The lack of a symmetry does mean that many
more terms can now enter the effective action at a given derivative order that were previously
not allowed, making the boost-agnostic case structurally more richer; we will see an example
of this for one-derivative fluids in section 4.

3.1 Schwinger-Keldysh sigma model on the fluid worldvolume

In this section we introduce a worldvolume formulation of the EFT. The fluid worldvolume is a
(d + 1)-dimensional manifold endowed with coordinates σα. These coordinates can be inter-
preted as labels associated with each fluid element in the physical spacetime. The dynamical
fields living on the worldvolume are Xµs (σ) and ϕs(σ) with s = 1, 2, and are Schwinger-
Keldysh double copies of spacetime coordinates and U(1) phases of a given fluid element. We
can decompose these fields in average combinations according to Xµ1,2 = Xµr ± ħh/2 Xµa and
ϕ1,2 = ϕr ± ħh/2ϕa. The combination Xµr (σ) denotes the physical spacetime coordinates and
is akin to an embedding map, while ϕr(σ) denotes the physical U(1) phase of the fluid ele-
ments. In turn, the average combinations Xµa (σ) and ϕa(σ) encode the stochastic degrees of
freedom. The worldvolume also contains two fixed reference fields, namely, a thermal vector
field �α(σ) and a chemical shift field Λ�(σ). These additional fields define the global rest
frame and global chemical potential associated with states in global thermal equilibrium.

12

https://scipost.org
https://scipost.org/SciPostPhys.11.3.054


SciPost Phys. 11, 054 (2021)

The EFT is required to be invariant under translations and rotations of the coordinates
Xµs (σ) as well as under global U(1) shifts of the phases ϕs(σ) acting independently on the
two Schwinger-Keldysh spacetimes. In order to understand their action within the effective
field theory, one must introduce double copies of Aristotelian sources as in section 2.2.1. In
particular, associated with each Schwinger-Keldysh spacetime we have the clock forms nsµ(Xs),
degenerate spatial metrics hsµν(Xs) and gauge fields Asµ(Xs). Thus, under local Schwinger-
Keldysh spacetime diffeomorphisms and gauge transformations

Xµs (σ)→ X ′µs (Xs(σ)) , ϕs(σ)→ ϕs(σ)−Λs(Xs(σ)) , (35)

the action on the background sources is given by eq. (16). It is useful to make the symmetries
(35) manifest on the fluid worldvolume by defining pullbacks of the background sources (with
an additional gauge transformation) such that

nsα(σ) = nsµ(Xs(σ))∂αXµs (σ) , hsαβ(σ) = hsµν(Xs(σ))∂αXµs (σ)∂βX νs (σ) ,

Asα(σ) = Asµ(Xs(σ))∂αXµs (σ) + ∂αϕs(σ) . (36)

All the dependence on the dynamical and background fields in the effective theory must en-
ter via these invariants to respect Schwinger-Keldysh spacetime symmetries. This fixes the
structure of coupling between background and dynamical fields in the effective theory.

The EFT on the fluid worldvolume is required to be locally reparametrisation invariant and
invariant under local shifts of the U(1) phases ϕs(σ). In particular, under

σα→ σ′α(σ) , ϕs(σ)→ ϕs(σ) +λ(σ) , (37a)

in which the two phases shift simultaneously. The pullback of background sources,

nsα(σ)→ n′sα(σ
′) =

∂ σβ

∂ σ′α
nsβ(σ) , hsαβ(σ)→ h′sαβ(σ

′) =
∂ σγ

∂ σ′α
∂ σδ

∂ σ′β
hsγδ(σ) ,

Asα(σ)→ A′sα(σ
′) =

∂ σβ

∂ σ′α

�

Asβ(σ) + ∂βλ(σ)
�

, (37b)

transform as tensors under such reparametrisations and phase shifts while the worldvolume
fields �α(σ) and Λ�(σ) transform in the expected manner, namely

�α(σ)→ �′α(σ′) =
∂ σ′α(σ)
∂ σβ

�β(σ) , Λ�(σ)→ Λ′�(σ
′) = Λ�(σ)− �α(σ)∂αλ(σ) . (37c)

Given the transformation properties (37), it is possible to build a gauge-invariant combination
using the pullback of the gauge fields Aaα = (A1α−A2α)/ħh. On the other hand, the combination
Arα = (A1α + A2α)/2 is not gauge-invariant. As such, when considering an effective action,
Arα can only enter via the gauge-invariant combinations �αArα +Λ� and 2∂[αArβ].

It is possible to partially fix the reparametrisation freedom by choosing a set of worldvol-
ume coordinatesσα = (τ,σi) and setting �α = β0δ

α
τ as well asΛ� = β0µ0. Here, β0 = (kBT0)−1

is the (constant) inverse temperature and µ0 the (constant) chemical potential of the global
thermal state. Given these choices, we are left with residual spatial reparametrisation freedom
τ→ τ+ f (~σ) and σi → σ′i(~σ) as well as with U(1) phase shifts ϕs→ ϕs +λ(~σ) (see [11]).

The effective action S for boost-agnostic hydrodynamics is the most generic functional
made out of the background and dynamical fields, respecting the Schwinger-Keldysh space-
time symmetries (35) and the fluid worldvolume symmetries (37). Using the invariants �s =
(nsα,hsαβ ,Asα) and the reference thermal data B= (�α,Λ�), the effective action can be written
in terms of a Lagrangian density

S[�1,�2;B] =

∫

dd+1σ
p
r L[�1,�2;B] , (38)
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where we have defined r = det(nrαnrβ + hrαβ) with nrα = (n1α + n1α)/2 and hrαβ =
(h1αβ +h1αβ)/2. The Lagrangian L is a gauge-invariant scalar on the worldvolume. This form
of the action makes all the spacetime and worldvolume symmetries of the effective theory man-
ifest. However, the action is also required to obey a set of Schwinger-Keldysh requirements on
the account of describing generic thermal field theories [8,11]. These are

S∗[�1,�2;B] = −S[�2,�1;B] , (39a)

S[�,�;B] = 0 , (39b)

Im S[�1,�2;B]≥ 0 , (39c)

S[�1,�2;B] = S[�̃1, �̃2; B̃] , (39d)

where the “tilde” KMS-conjugation in eq. (39d) is defined as

ñ1α(σ) = Θh1α(σ) , ñ2α(σ) = Θn2α(σ)− iħhΘ$�n2α(σ) +O(ħh) ,

h̃1αβ(σ) = Θh1αβ(σ) , h̃2αβ(σ) = Θh2αβ(σ)− iħhΘ$�h2αβ(σ) +O(ħh) ,

Ã1α(σ) = ΘA1α(σ) , Ã2α(σ) = ΘA2α(σ)− iħhΘ$�A2α(σ)− iħhΘ∂αΛ�(σ) +O(ħh),
�̃α(σ) = Θ�α(σ) , Λ̃�(σ) = ΘΛ�(σ) . (40)

Here Θ represents a discrete symmetry transformation involving a time-flip, e.g. T, PT, or CPT.
Its action on various quantities is given in table 1. The operator $� denotes a Lie derivative
along �α. We can compactly denote these transformations as

�̃1 = Θ�1 , �̃2 = Θ�2 − iħhΘδB�2 +O(ħh) , B̃= ΘB . (41)

The operator δB combines the Lie derivative $� along �α and a gauge shift along Λ�. Here we
have focused on the KMS transformations in the statistical limit (ħh→ 0); the finite ħh quantum
versions are the same as those in the Galilean case [11].

3.2 Physical spacetime formulation

The effective theory on the fluid worldvolume can be rewritten on the physical spacetime. The
average coordinates Xµr (σ) are interpreted as an embedding map, such that the location of the
worldvolume in the physical spacetime is given by xµ = Xµr (σ). Inverting this map implies
that the worldvolume coordinates σα = σα(x) are seen as dynamical fields from the physical
spacetime point of view. Analogously, we can express all other dynamical fields living on the
worldvolume as functions of the physical spacetime coordinates, in particular, the U(1) phase
ϕr(x) = ϕr(σ(x)) and the stochastic noise fields Xµa (x) = Xµa (σ(x)) and ϕa(x) = ϕa(σ(x)).
It is useful to split the worldvolume sources (36) into average and difference combinations
n1,2α = nrα±ħh/2naα, h1,2αβ = hrαβ ±ħh/2haαβ , and A1,2α = Arα±ħh/2Aaα. Using these, one
can define worldvolume gauge-invariant pushforwards onto the physical spacetime using the
inverse map σα(x). In particular the average physical sources are given by7

Nrµ(x) = nrα(σ(x))∂µσ
α(x) = nrµ(x) +O(ħh) ,

Hrµν(x) = hrαβ(σ(x))∂µσ
α(x)∂νσ

β(x) = hrµν(x) +O(ħh) ,

Brµ(x) = Arα(σ(x))∂µσ
α(x)− ∂µϕr(x) = Arµ(x) +O(ħh) , (42a)

while the stochastic sources are defined as

Naµ(x) = naα(σ(x))∂µσ
α(x) = naµ(x) + $Xa

nrµ(x) +O(ħh) ,

Haµν(x) = haαβ(σ(x))∂µσ
α(x)∂νσ

β(x) = haµν(x) + $Xa
hrµν +O(ħh) ,

Baµ(x) = Aaα(σ(x))∂µσ
α(x) = Aaµ(x) + ∂µϕa(x) + $Xa

Arµ(x) +O(ħh) . (42b)

7Here Nr,aµ should not be confused with the free energy current Nµ in eq. (32).
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In eq. (42), we have defined the Lie derivative along Xµa (x) as $Xa
and decomposed the back-

ground fields as well into average and difference combinations such that n1,2µ = nrµ±ħh/2naµ,
h1,2µν = hrµν ± ħh/2haµν, and A1,2µ = Arµ ± ħh/2Aaµ up to leading order in ħh. These average
background fields can be identified with the classical Aristotelian background fields of sec-
tion 2.2.1. We can also identify a frame velocity vµr and inverse spatial metric hµνr on the
physical spacetime as the averages vµr = (v

µ
1 + vµ2 )/2 and hµνr = (h

µν
1 + hµν2 )/2. These satisfy

the conditions (13) at leading order in ħh.
Similarly, the hydrodynamic fields βµ(x) and Λβ(x) are obtained by pushforward of �α(σ)

and Λ�(σ) such that8

βµ(x) = �α(σ(x))∂αXµr (σ(x)) , Λβ(x) = Λ�(σ(x)) + �
α(σ(x))∂αϕr(σ(x)) . (43)

Additionally, the classical hydrodynamic fields introduced in section 2, namely, the normalised
fluid velocity uµ(x) obeying uµNrµ = 1, the local temperature T (x), and the chemical potential
µ(x) are defined as9

kBT (x) =
1

βµ(x)Nrµ(x)
, uµ(x) =

βµ(x)
βλ(x)Nrλ(x)

, µ(x) =
βµ(x)Brµ(x) +Λβ(x)

βλ(x)Nrλ(x)
,

(44)

which are gauge-invariant and do not depend on the stochastic fields.
It is necessary to make sure that the Schwinger-Keldysh spacetime symmetries (35) are

correctly implemented in the physical spacetime. This can be done by requiring the resulting
EFT to be invariant under “average” coordinate and gauge transformations using σ(x) and
ϕr(x), i.e.

xµ→ x ′µ(x) , ϕr(x)→ ϕr(x)−Λ(x) . (45a)

Under such transformations the “average” background structures and hydrodynamic fields
transform according to

Nrµ(x)→ N ′rµ(x
′) =

∂ xν

∂ x ′µ
Nrν(x) , Hrµν(x)→ H ′rµν(x

′) =
∂ xρ

∂ x ′µ
∂ xσ

∂ x ′ν
Hrρσ(x) ,

Brµ(x)→ B′rµ(x
′) =

∂ xν

∂ x ′µ
(Brν(x) + ∂νΛ(x)) ,

βµ(x)→ β ′µ(x ′) =
∂ x ′µ(σ)
∂ xν

�ν(x), Λβ(x)→ Λ′β(x
′) = Λβ(x)− βµ(x)∂µΛ(x) , (45b)

while the “difference” stochastic parts transform as

Naµν(x)→ N ′aµν(x
′) =

∂ xν

∂ x ′µ
Naν(x) , Haµν(x)→ H ′aµν(x

′) =
∂ xρ

∂ x ′µ
∂ xσ

∂ x ′ν
Haρσ(x) ,

Baµ(x)→ B′aµ(x
′) =

∂ xν

∂ x ′µ
Baν(x) . (45c)

Let us introduce the compact notation Φr,a = (Nr,aµ, Hr,aµν, Br,aµ) andB = (βµ,Λβ), which are
essentially the physical spacetime versions of �1,2 and B. In terms of these, the hydrodynamic
effective action (38) can be rewritten in physical spacetime language leading to

S[Φr ,Φa;B] =
∫

dd+1 x
p
γr L[Φr ,Φa;B] , (46)

8If we pick the frame �α(σ) = β0δ
α
τ

and Λ� = β0µ0, one obtains the physical spacetime counterparts
βµ = β0∂τX µr and Λβ = β0(µ0 + ∂τϕr).

9These definitions of the hydrodynamic fields are not boost invariant, since we are dealing with boost-agnostic
hydrodynamics. The relation to Galilean and relativistic hydrodynamic fields is presented in section 5.
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with γr = det(nrµnrν+hrµν). The action is manifestly invariant under worldvolume and phys-
ical spacetime symmetries. However, it does need to satisfy the Schwinger-Keldysh constraints

S∗[Φr ,Φa;B] = −S[Φr ,−Φa;B] , (47a)

S[Φr ,Φa = 0;B] = 0 , (47b)

Im S[Φr ,Φa;B]≥ 0 , (47c)

S[Φr ,Φa;B] = S[Φ̃r , Φ̃a;B̃] , (47d)

where the KMS conjugation follows from

Φ̃r = ΘΦr +O(ħh) , Φ̃a = ΘΦa + iΘδBΦr +O(ħh) , B̃ = ΘB +O(ħh) . (48)

The operator δB denotes a Lie derivative along βµ combined with a gauge shift along Λβ ,
i.e. δBNrµ = $βNrµ, δBHrµν = $βHrµν, and δBBrµ = $βBrµ + ∂µΛβ . As a reminder, Θ
is a discrete symmetry transformation that the theory might enjoy such as T, PT, or CPT (see
table 1). We can define the “r/a” variants of the hydrodynamic operators by varying the action
with respect to “a/r” background fields according to

δS =

∫

dd+1 x
p
γr

�

ρµr δAaµ − εµr δnaµ +
�

vµr π
ν
r +

1
2
τµνr

�

δhaµν

+ρµaδArµ − εµaδnrµ +
�

vµr π
ν
a +

1
2
τµνa

�

δhrµν

�

. (49)

The “r” operators are understood as the physical hydrodynamic observables, while the “a”
ones as the associated stochastic noise counterparts. Out-of-equilibrium thermal correlations
functions of these operators can be computed by varying the Schwinger-Keldysh generating
functional which takes the form

exp W [φr ,φa] =

∫

DX rDXaDϕrDϕa exp (iS[Φr ,Φa;B]) , (50)

where φr,a = (−nr,aµ, hr,aµν, Ar,aµ).

3.3 Schwinger-Keldysh effective action

Based upon the considerations of the previous subsection, it is possible to find the explicit
structure of the effective action entering in eq. (50). The procedure is directly analogous to
that of Galilean fluids [11]. KMS conjugation acts on the building blocks of the effective ac-
tion according to B → ΘB , Φr → ΘΦr , Φa → ΘΦa + iΘδBΦr for the hydrodynamic fields
B = (βµ,Λβ) and the invariants Φr,a = (Nr,aµ, 1/2 Hr,aµν, Br,aµ). Thus the most general effec-
tive action for hydrodynamics without boosts is given by a set of totally-symmetric multi-linear
operators Dm(◦, . . .)made out of Φr andB , allowing m number of arguments from the vector
space spanned by iδBΦr and Φa. In particular, the minimal Lagrangian for classical hydrody-
namics is given by

L=D1(Φa) + iD2(Φa,Φa+iδBΦr) +D3(Φa+
i
2δBΦr ,Φa,Φa+iδBΦr) +O(ħh) , (51)

where the Dm(◦, . . .) operators satisfy the following constraints (see [11] for more details)

D1(δBΦr) =
1
p
γr
∂µ
�p
γr N

µ
0

�

for some vector N µ
0 , (52a)

D1(Φa), D2(Φa,Φa), D3(Φa,Φa,Φa) are Θ-even , (52b)

D2(Φ,Φ)
�

�

leading order ≥ 0 for arbitrary Φ= (Nµ, 1/2 Hµν, Bµ) . (52c)
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These constraints are consistent with the second law of thermodynamics (28); see [11] for
a derivation. In the next section, we will provide the explicit form of the operators D1,2. As
we are focusing in first order corrections, we do not provide the form of D3 as this operator
contributes with second order and higher correction terms in the gradient expansion. Since in
this work we are not interested in the most generic stochastic contributions, we have skipped
the operators Dn>3 in our discussion, as these do not contribute to the classical equations of
hydrodynamics without boosts; see [23] for a detailed discussion.

4 One-derivative boost-agnostic hydrodynamics

In this section, we discuss charged boost-agnostic hydrodynamics up to first order in the deriva-
tive expansion. We start by writing down the most generic classical constitutive relations for
the system allowed by the adiabaticity equation (second law of thermodynamics) discussed
in section 2.3. We then proceed to write down the explicit effective action for one-derivative
hydrodynamics utilising the machinery from section 3. We will briefly discuss how these are
related to the more familiar constitutive relations of Galilean and relativistic hydrodynamics
in section 5. As a simple application of these results, in section 6 we study fluctuations around
an equilibrium state in boost agnostic hydrodynamics.

4.1 Classical constitutive relations

We want to work out the most generic constitutive relations that satisfy the adiabaticity equa-
tion (33), truncated at first order in the derivative expansion. Focusing on the parity-even
sector, the solutions can be classified into three classes: (1) hydrostatic (hs; Class HS) that
survive in a hydrostatic configuration, i.e. when we set δBnµ = δBhµν = δBAµ = 0; (2)
non-hydrostatic non-dissipative (nhsnd; Class D) that vanish in an hydrostatic configuration,
but do not contribute to entropy production quadratic form∆; and finally (3) dissipative (diss;
Class D) that also vanish in a hydrostatic configuration, but contribute non-trivially to entropy
production.10

4.1.1 Hydrostatic transport

The hydrostatic sector is completely characterised by the free-energy density

N = p− F0vµ∂µµ− F1vµ∂µT − F2vµ∂µ~u
2 . (53)

This is the most generic hydrostatic scalar that can be made out of the constituent fields at one-
derivative order. Here p(T,µ, ~u2) and F0,1,2(T,µ, ~u2) are arbitrary functions of zeroth order
scalars. It is easy to check that

1
p
γ
∂µ(
p
γNβµ) = 1

p
γ
δB(
p
γN )

=N
�

vµδBnµ +
1
2

hµνδBhµν

�

+
δN
δAµ

δBAµ +
δN
δnµ

δBnµ +
δN
δhµν

δBhµν

−
1
p
γ
∂µ(
p
γΘ

µ
N ) . (54)

10In the parity-odd sector, there can be additional contributions coming from global anomalies (Class A) and
transcendental anomalies (Class HV). These contributions are entirely fixed up to a few constants. See e.g. [38]
for a discussion.
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The variational derivatives have been performed at constant βµ = uµ/T andΛβ = (µ−uµAµ)/T .
Here ΘµN denotes a total derivative term generated during the Euler-Lagrange procedure.
Comparing this with eq. (33), we can read out

Nµhs =Nβµ +ΘµN , ∆hs = 0 ,

jµhs =
δN
δAµ

, ε
µ

hs = −
δN
δnµ

−N vµ , π
µ

hs = hµρnσ
δN
δhρσ

, τ
µν

hs = 2hµρhνσ
δN
δhρσ

+Nhµν .

(55)

Explicitly, we find

jµhs = n uµ −
∂ F0

∂ µ
uµvλ∂λµ+

1
p
γ
∂λ
�p
γ F0vλ

�

uµ −
∂ F1

∂ µ
uµvλ∂λT −

∂ F2

∂ µ
uµvλ∂λ~u

2 +O(∂ 2) ,

ε
µ

hs = εuµ + p ~uµ −wF0
uµvλ∂λµ+

µ
p
γ
∂λ
�p
γ F0vλ

�

uµ

−wF1
uµvλ∂λT +

T
p
γ
∂λ
�p
γ F1vλ

�

uµ −wF2
uµvλ∂λ~u

2 +
2~u2

p
γ
∂λ
�p
γ F2vλ

�

uµ +O(∂ 2) ,

π
µ

hs = ρ ~u
µ −

�

2
∂ F0

∂ ~u2
~uµvλ − F0hµλ

�

∂λµ−
�

2
∂ F1

∂ ~u2
~uµvλ − F1hµλ

�

∂λT

−
�

2
∂ F2

∂ ~u2
~uµvλ − F2hµλ

�

∂λ~u
2 +

2
p
γ
∂λ
�p
γ F2vλ

�

~uµ +O(∂ 2) ,

τ
µν

hs = ρ ~u
µ~uν + p hµν −

�

2
∂ F0

∂ ~u2
~uµ~uν + F0hµν

�

vλ∂λµ−
�

2
∂ F1

∂ ~u2
~uµ~uν + F1hµν

�

vλ∂λT

−
�

2
∂ F2

∂ ~u2
~uµ~uν + F2hµν

�

vλ∂λ~u
2 +

2
p
γ
∂λ
�p
γ F2vλ

�

~uµ~uν +O(∂ 2) , (56)

and

Θ
µ
N =

1
kBT

vµ
�

F0uλ∂λµ+ F1uλ∂λT + F2uλ∂λ~u
2
�

, (57)

where we have used the identity δB vµ = −vµvνδBnµ − hµλvνδBhλν and defined

wFi
= T

∂ Fi

∂ T
+µ

∂ Fi

∂ µ
+ 2~u2 ∂ Fi

∂ ~u2
. (58)

The readers can convince themselves that these are the most generic parity-preserving hydro-
static constitutive relations allowed by the adiabaticity equation. In the uncharged limit, that
is, when F0 = 0 and F1,2 ≡ F1,2(T, ~u2), the hydrostatic contributions (58) agree with those
in [27].11

If the underlying microscopic theory respects a discrete Θ symmetry, such as T, PT, or
CPT, this will need to be imposed on the free-energy density N . For instance, for Θ = T or
Θ = PT, all three one-derivative coefficients must vanish, i.e. F0,1,2 = 0. On the other hand
for Θ = CPT, we can only state that F0,1,2 must be odd functions of the chemical potential µ.
Note that if jµ corresponds to the particle number current, it does not make sense to discuss
CPT.

4.1.2 Non-hydrostatic non-dissipative transport

Next we have the non-hydrostatic non-dissipative transport made out of linear combinations of
δBAµ, δBnµ, and δBhµν that satisfy eq. (33) with∆nhsnd = 0. Recall that due to our thermo-
dynamic frame-fixing condition, all the dependence on these can only appear via their spatial

11The comparison requires using the identification (134) and flipping vµ→−vµ to match the conventions of [27].
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components in eq. (31). Inspecting eq. (33), it immediately follows that nµ jµnhsnd = nµε
µ

nhsnd =
π
µ

nhsnd = 0. For the remaining contributions, we find







jµnhsnd

ε
µ

nhsnd

τ
µν

nhsnd






= −kBT







0 D̄µρjε D̄µ(ρσ)jτ

−D̄ρµjε 0 D̄µ(ρσ)ετ

−D̄ρ(µν)jτ −D̄ρ(µν)ετ D̄(µν)(ρσ)ττ













δBAρ
−δBnρ
1
2δBhρσ






, (59)

where

D̄µρjε = v̄01Pµρ + s̄01ûµûρ ,

D̄µ(ρσ)jτ = 2v̄02Pµ(ρûσ) + s̄02ûµûρûσ + s̄03ûµPρσ ,

D̄µ(ρσ)ετ = 2v̄12Pµ(ρûσ) + s̄12ûµûρûσ + s̄13ûµPρσ ,

D̄(µν)(ρσ)ττ = s̄23 (û
µûνPρσ − Pµνûρûσ) . (60)

Here ûµ = ~uµ/|~u| and Pµν = hµν − ûµûν, with |~u|=
p
~u2. The transport coefficients appearing

here are arbitrary functions of T , µ, and ~u2. The coefficient matrix in eq. (59) is antisymmetric,
which ensures that there is no contribution to ∆nhsnd.

As for the discrete symmetries Θ, Onsager’s relations require that the constitutive relations
in eq. (59) are even underΘ. WithΘ = T orΘ = PT, the entire non-hydrostatic non-dissipative
sector is set to zero. On the other hand for Θ = CPT, all the transport coefficients appearing
here must be odd functions of µ.

4.1.3 Dissipative transport

The dissipative sector is quite similar to the non-hydrostatic non-dissipative sector, but with
the coefficient matrix being symmetric, leading to entropy production. We again find that
nµ jµdiss = nµε

µ

diss = π
µ

diss = 0, along with







jµdiss

ε
µ

diss

τ
µν

diss






= −kBT







Dµρj j Dµρjε Dµ(ρσ)jτ

Dρµjε Dµρεε Dµ(ρσ)ετ

Dρ(µν)jτ Dρ(µν)ετ D(µν)(ρσ)ττ













δBAρ
−δBnρ
1
2δBhρσ






, (61)

with

Dµρj j = v00Pµρ + s00ûµûρ ,

Dµρjε = v01Pµρ + s01ûµûρ ,

Dµρεε = v11Pµρ + s11ûµûρ ,

Dµ(ρσ)jτ = 2v02Pµ(ρûσ) + s02ûµûρûσ + s03ûµPρσ ,

Dµ(ρσ)ετ = 2v12Pµ(ρûσ) + s12ûµûρûσ + s13ûµPρσ ,

D(µν)(ρσ)ττ = 2t
�

Pρ(µPν)σ − 1
d−1 PµνPρσ

�

+ 4v22û(µPν)(ρûσ)

+ s22ûµûνûρûσ + s23 (P
µνûρûσ + ûµûνPρσ) + s33PµνPρσ . (62)

The associated entropy production quadratic form is given by

∆diss = kBT





δBAρ
−δBnρ
1
2δBhρσ





T



Dµρnn Dµρnε Dµ(ρσ)nπ

Dρµnε Dµρεε Dµ(ρσ)επ

Dρ(µν)nπ Dρ(µν)επ D(µν)(ρσ)ππ









δBAρ
−δBnρ
1
2δBhρσ



≥ 0 . (63)
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Imposing the positivity constraint merely requires that the dissipative coefficient matrix is
positive semi-definite. Explicitly, this leads to







s00 s01 s02 s03
s01 s11 s12 s13
s02 s12 s22 s23
s03 s13 s23 s33






≥ 0,





v00 v01 v02
v01 v11 v12
v02 v12 v22



≥ 0 , t≥ 0 , (64)

where the positive semi-definiteness of a matrix means that all its eigenvalues are positive
semi-definite.

The discrete symmetry Θ requirements here work opposite to the non-hydrostatic non-
dissipative sector. With Θ = T or Θ = PT symmetry, the dissipative sector transport coefficients
are left invariant, while with Θ = CPT symmetry, all the dissipative transport coefficients must
be even functions of µ.

Therefore, we have a total of 30 coefficients at one-derivative order: 4 hydrostatic (includ-
ing the ideal order pressure p), 9 non-hydrostatic non-dissipative, and 17 dissipative transport
coefficients. We note that this counting differs from that of [29].12 In the (uncharged) limit
in which the U(1) current is removed, we have that

F0 = v̄01 = s̄01 = v̄02 = s̄02 = s̄03 = v00 = s00 = v01 = s01 = s02 = v02 = v03 = 0 . (65)

This amounts to a total of 17 transport coefficients: 3 hydrostatic (including ideal order pres-
sure), 4 non-hydrostatic non-dissipative, and 10 dissipative transport coefficients, agreeing
with the counting of [27] when focusing in special case in which the additional U(1) is not
present. A precise comparison is given in appendix A.2.

4.1.4 Entropy current

The free-energy current associated with the one-derivative order constitutive relations above
is simply given as

Nµ =Nβµ +ΘµN . (66)

Note that there is no contribution to Nµ due to dissipative and non-dissipative non-hydrostatic
constitutive relations. Correspondingly, the entropy current is given as

sµ =N uµ

T
+ kBΘ

µ
N +

uν

T
nνε

µ − vµ
uν

T
πν −

uλ

T
hλντ

µν −
µ

T
jµ

= sµcan + sµnon-can , (67)

where

sµcan =
p
T

uµ +
uν

T
nνε

µ − vµ
uν

T
πν −

uλ

T
hλντ

µν −
µ

T
jµ , (68)

is known as the canonical entropy current, while

sµnon-can = (N − p)
uµ

T
+ kBΘ

µ
N

=
vµ

T

�

F0~u
λ∂λµ+ F1~u

λ∂λT + F2~u
λ∂λ~u

2
�

−
~uµ

T

�

F0vµ∂µµ+ F1vµ∂µT + F2vµ∂µ~u
2
�

, (69)

is known as the non-canonical part of the entropy current.

12The authors in [29] counted 9 non-dissipative transport coefficients and 20 dissipative transport coefficients.
Further discussion on this can be found in appendix A.2.
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4.2 Explicit effective action

We implement the following derivative counting in the EFT. The hydrodynamic fields βµ, Λβ
and the noise fields Xµa , ϕa are taken to be O(∂ 0). On the other hand, the average background
fields nrµ, hrµν, Arµ are treated at O(∂ 0), while their difference partners naµ, haµν, Aaµ at
O(∂ 1). In compact notation, this means that Φr , B are O(∂ 0), while Φa, δBΦr are O(∂ 1).
Note that the classical constitutive relations are given by a variational derivative of the effective
action with respect to the “a” type background fields. Therefore, the derivative order of the
effective action must be one more than that of the constitutive relations. It follows that one-
derivative hydrodynamics is entirely characterised by the operators D1(◦) truncated at one-
derivative order and D2(◦,◦) truncated at zeroth order; D3(◦,◦,◦) only contributes to two-
derivative constitutive relations and higher.

Due to eq. (52) we know that D1(◦) is the most generic operator such that D1(δBΦr) is
a total derivative. Recalling that in the statistical limit Φr = (−nrµ, 1/2 hrµν, Arµ) +O(ħh), we
see that this requirement is precisely the adiabaticity equation. The most generic solution is
therefore characterised by the adiabatic (hydrostatic + non-hydrostatic non-dissipative) con-
stitutive relations. Explicitly

D1(Φa) = jµhs+nhsndBaµ − ε
µ

hs+nhsndNaµ +
�

vµπνhs +
1
2
τ
µν

hs+nhsnd

�

Haµν . (70)

On the other hand, D2(◦,◦) needs to be most generic symmetric positive semi-definite bilinear
operator. The contribution from the same to the effective action is given as

iD2(Φa,Φa+iδBΦr) = ikBT





Baµ
−Naµ
1
2 Haµν





T






Dµρj j Dµρjε Dµ(ρσ)jτ

Dρµjε Dµρεε Dµ(ρσ)ετ

Dρ(µν)jτ Dρ(µν)ετ D(µν)(ρσ)ττ











Baρ + iδBArρ
−Naρ − iδBnrρ

1
2 Haρσ +

i
2δBhrρσ



 .

(71)
The Θ-requirements on various constitutive relations discussed in the previous subsection fol-
low from here by demanding that both D1 and D2 operators are Θ-even, in accordance with
the Schwinger-Keldysh requirements in eq. (52).

In flat spacetime, with Θ = T or Θ = PT discrete symmetry (that leads to vanishing of
hydrostatic and non-hydrostatic non-dissipative sectors), the effective Lagrangian for one-
derivative order boost-agnostic hydrodynamics takes the form

L= n∂tϕa + n ui∂iϕa − ε∂t X
t
a − (ε+ p)ui∂iX

t
a +ρ ui∂t Xai +

�

ρ u jui + pδ ji
�

∂ jXai

+ ikBT





∂iϕa
−∂iX

t
a

∂iXa j





T






Dik
j j Dik

jε Di(kl)
jτ

Dki
jε Dik

εε Di(kl)
ετ

Dk(i j)
jτ Dk(i j)

ετ D(i j)(kl)
ττ











∂kϕa +
i

kB
∂k
µ
T

−∂kX t
a −

i
kB
∂k

1
T

∂kXal +
i

kB
∂k

ul
T



 . (72)

We will use these considerations in section 6 to study linearised fluctuations.

5 Special limits

The spectrum of transport coefficients for a boost-agnostic fluid is quite rich. We have a total of
30 coefficients at one-derivative order. For a clearer picture of these coefficients, it is helpful to
make contact with the special cases of fluids respecting Galilean or Lorentz boost symmetries.
In both these instances, the spectrum only contains the thermodynamic pressure p in the hy-
drostatic sector and 3 dissipative transport coefficients: shear viscosity η, bulk viscosity ζ, and
thermal/electric conductivity κ/σ. In particular, there are no allowed one-derivative terms in
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the hydrostatic or non-hydrostatic non-dissipative sectors. We will also discuss fluids respect-
ing anisotropic Lifshitz scaling symmetry, in which case the transport coefficients reduce to: 3
hydrostatic (including pressure p), 6 non-hydrostatic non-dissipative, and 13 dissipative. The
temperature dependence of all these 22 coefficients is fixed by the scaling symmetry.

5.1 Galilean fluids

Galilean (Milne) boost symmetry acts on the background fields according to (see, e.g. [11])

nµ→ nµ, hµν→ hµν − 2n(µψν) + nµnνψ
2, Aµ→ Aµ +m

�

ψµ −
1
2

nµψ
2
�

,

vµ→ vµ +ψµ, hµν→ hµν, (73)

for arbitrary parameters ψµ satisfying ψµnµ = 0, with the definitions ψµ = hµνψ
ν, and

ψ2 = hµνψ
µψν. Here m is an arbitrary constant signifying mass per unit charge/particle.

These are essentially the rules governing how the background sources must change when we
move to a different frame of reference given by vµ→ vµ+ψµ. Using the (equilibrium) effective
action variation in eq. (15), this leads to the Milne boost Ward identity

πµ = m hµν jν. (74)

The hydrodynamic fields in the representation βµ, Λβ correspond to the local thermodynamic
frame and hence do not transform under boosts. However uµ, T , µ fields can potentially
transform, which can be derived using their definitions in eq. (30). We find

uµ→ uµ, T → T, µ→ µ+m ~uµψµ −
m
2
ψ2. (75)

It is convenient to define the boost-invariant Galilean chemical potential µgal = µ + m/2 ~u2.
All the transport coefficients in a Galilean fluid are functions of T and µgal. The equation of
state is given as p(T,µ, ~u2) = p(T,µgal). Using the thermodynamic relations (10), one then
derives

dp = s dT + n dµgal , εgal = Ts+µgaln− p , ρ = m n , (76)

where we have identified the Galilean internal energy density εgal = ε−1/2ρ ~u2. The relation
ρ = m n can be understood as the “Galilean equation of state”.

Constitutive relations for Galilean hydrodynamics in curved space-time are already known;
see for instance [11] and references therein. Their translation to the boost-agnostic representa-
tion discussed in this paper is quite straightforward because the language and hydrodynamic
frame that we have employed for boost-agnostic fluids is quite similar to the one used for
Galilean hydrodynamics. The complete set of one-derivative order constitutive relations are
given as

jµ =
ρ

m
uµ,

εµ =
�

εgal +
1
2ρ~u

2
�

uµ + p ~uµ + T2κhµνδBnν

−
�

2ηhρ(µhν)σ +
�

ζ− 2
dη
�

hµνhρσ
�

~uν
1
2

�

δBhρσ − 2~u(ρδBnσ)
�

,

πµ = ρ ~uµ,

τµν = ρ ~uµ~uν −
�

2ηhρ(µhν)σ +
�

ζ− 2
dη
�

hµνhρσ
�

~uν
1
2

�

δBhρσ − 2~u(ρδBnσ)
�

. (77)
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Note that the constitutive relations are already in the density frame (27). The mapping of ideal
order thermodynamic coefficients is already given above. At one-derivative order, we find

F0 = F1 = F2 = 0 ,

s̄01 = s̄02 = s̄03 = s̄12 = s̄13 = s̄23 = v̄01 = v̄02 = v̄12 = 0 ,

s00 = s01 = s02 = s03 = v00 = v01 = v02 = 0 ,

s22 =
s12

|~u|
= ζ+ 2 d−1

d η, s23 =
s13

|~u|
= ζ− 2

dη , s33 = ζ+
2

d(d−1)η ,

s11 = Tκ+ u2
�

ζ+ 2 d−1
d η

�

, v11 = Tκ+ u2η , v22 =
v12

|~u|
= t= η . (78)

We see that the hydrostatic and non-hydrostatic non-dissipative sectors are entirely absent.
The coefficients appearing in the charge/mass current in the dissipative sector are also absent
due to the Milne boost Ward identity (74). The remaining 10 non-zero dissipative coefficients
are determined in terms of η, ζ, and κ.

5.2 Relativistic fluids

Our generic discussion of boost-agnostic fluids is also capable of handling relativistic hydro-
dynamics. However, the discussion is considerably more involved than the Galilean case ow-
ing to the inherent non-linearity of relativistic hydrodynamics. Lorentz boost symmetry can
be imposed by requiring the theory to be invariant under the transformation of background
sources13

nµ→ nµ −
1
c2

�

ψµ −
1
2

nµψ
2
�

, hµν→ hµν − 2n(µψν) + nµnνψ
2, Aµ→ Aµ,

vµ→ vµ +ψµ, hµν→ hµν +
1
c2

�

2v(µψν) +ψµψν
�

. (79)

When implemented on the action variation (15) at the linear level, this imposes the center-of-
energy conservation by setting

πµ =
1
c2

hµνε
ν . (80)

The relativistic metric sources can be defined as

gµν = −c2nµnν + hµν , gµν = −vµvν/c2 + hµν , (81)

which are invariant under the above transformations. In particular
p
−g = c

p
γ. In relativistic

theories, one typically works with an energy-momentum tensor Tµν and charge current Jµ.
These are related to our Aristotelian quantities as

εµ = −Tµνvν , πν = nµTµρhρν , τµν = hµρTρσhσν , jµ = Jµ . (82)

It can be explicitly checked that the relativistic conservation equations ∇rel
µ Tµν = FνρJρ,

∇rel
µ Jµ = 0, where ∇rel

µ is the covariant derivative associated with gµν, reduces to the respec-
tive boost-agnostic versions stated in eq. (18). Similar to the Galilean discussion, requiring
βµ, Λβ to be invariant, we can derive the transformation of the hydrodynamic fields as

T →
T

1− 1
c2

�

~uµψµ −
1
2ψ

2
� , µ→

µ

1− 1
c2

�

~uµψµ −
1
2ψ

2
� , uµ→

uµ

1− 1
c2

�

~uµψµ −
1
2ψ

2
� .

(83)
13These can be derived using the reverse logic and noting that the relativistic metric gµν and inverse metric gµν

are invariant and related to the Aristotelian sources as in eq. (81). Milne boosts (73) follow from the Lorentz
boosts (79) by identifying Arel

µ
= mc2nµ + Agal

µ
and taking c→∞.
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We can define the relativistic versions of hydrodynamic fields according to

uµrel = γuuµ , Trel = γuT , µrel = γuµ , (84)

where γu = 1/
p

1− ~u2/c2 is the Lorentz factor. Note that gµνu
µ

relu
ν
rel = −c2. The equation of

state of a relativistic fluid is expressed as p(T,µ, ~u2) = p(Trel,µrel). We find the thermodynamic
relations

dp = sreldTrel+nreldµrel , εrel = Trelsrel+µrelnrel− p , ρ =
ε+ p

c2
=
γ2

u

c2
(εrel+ p) , (85)

where relativistic proper densities are defined as nrel = n/γu, srel = s/γu, and εrel = ε−ρ ~u2.
The “relativistic equation of state” is given as ε+ p = ρ c2.

The constitutive relations for a relativistic fluid in the Landau frame (Tµν)dissu
ν
rel =

Jµdissu
ν
rel gµν = 0, are given as (see e.g. [51])

Tµρ gρν =
1
c2
(εrel + prel)u

µ

relu
ν
rel + p gµν − Trel

�

2η∆ρ(µ∆ν)σ + (ζ− 2
dη)∆

µν∆ρσ
� 1

2
δB gρσ ,

Jµ = nrelu
µ

rel − Trelσ∆
µνδBAν . (86)

Expressing these according to the definitions (84), (85), and (82), we find

jµ = nuµ − T γuσ

�

∆̄µν + γ2
u
~u2

c2
vµvν + 2

γ2
u

c2
v(µ~uν)

�

δBAν ,

εµ =
�

εrel +ρ ~u
2
�

uµ + p ~uµ − T
�

1
c2

vµ~uα + hµα

�

~uνη
ανρσ ×

1
2

�

δBhρσ − 2~u(σ

�

δBnρ) −
1
c2

vλδBhρ)λ

�

−
2
c2
~uρ~uσvλδBnλ

�

,

πµ = ρ ~uµ −
T
c2
~uνη

µνρσ 1
2

�

δBhρσ − 2~u(σ

�

δBnρ) −
1
c2

vλδBhρ)λ

�

−
2
c2
~uρ~uσvλδBnλ

�

,

τµν = ρ ~uµ~uν + p hµν − Tηµνρσ ×
1
2

�

δBhρσ − 2~u(σ

�

δBnρ) −
1
c2

vλδBhρ)λ

�

−
2
c2
~uρ~uσvλδBnλ

�

. (87)

Here, we have defined

ηµνρσ = 2γuη∆̄
ρ(µ∆̄ν)σ + γu(ζ−

2
dη)∆̄

µν∆̄ρσ, ∆̄µν = hµν +
γ2

u

c2
~uµ~uν . (88)

In section 4, we obtained the generic constitutive relations in the boost-agnostic representa-
tion. However, these results were presented in the thermodynamic density frame and not the
Landau frame. To make contact between (87) and the explicit transport coefficients discussed
in section 4, we need to perform a frame transformation to the density frame. Before doing
this explicitly, one can already infer that

F0 = F1 = F2 = 0 ,

s̄01 = s̄02 = s̄03 = s̄12 = s̄13 = s̄23 = v̄01 = v̄02 = v̄12 = 0 ,

s01 = s11 = s12 = s13 = v01 = v11 = v12 = 0 . (89a)

These follow from the fact that relativistic fluids, like their Galilean counterparts, do not have
any transport coefficients in the hydrostatic and non-hydrostatic non-dissipative sectors at one-
derivative order. Also, certain coefficients in the dissipative sector are zero due to the Lorentz
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boost Ward identity (80). The remaining 10 coefficients are non-trivially related to η, ζ, σ
according to

s00 =
1
γu
α2

3(1−α1)
2
�

ζ+ 2 d−1
d η

�

+
1
γu
(1+α2)

2σ ,

s02 = −
(1−α1)2α3

γ2
u

�

ζ+ 2 d−1
d η

�

−
(1+α2)α2

γ2
uα3

σ ,

s03 = −(1−α1)α3

�

ζ− 2
dη
�

+ (1−α1)α1α3

�

ζ+ 2 d−1
d η

�

−
(1+α2)α2

α3
σ ,

s22 =
(1−α1)2

γ3
u

�

ζ+ 2 d−1
d η

�

+
α2

2

γ3
uα

2
3

σ ,

s23 =
(1−α1)
γu

�

ζ− 2
dη
�

−
(1−α1)α1

γu

�

ζ+ 2 d−1
d η

�

+
α2

2

γuα
2
3

σ ,

s33 = γu

�

ζ+ 2
d(d−1)η

�

− 2γuα1

�

ζ− 2
dη
�

+ γuα
2
1

�

ζ+ 2 d−1
d η

�

+ γu
α2

2

α2
3

σ ,

v00 = γuσ+ γuα
2
3η , v02 = −α3η , v22 =

η

γu
, t= γuη , (90)

where we have defined the thermodynamic coefficients

α1 = γ
2
u
~u2

c2

�

∂ p
∂ ε
+

1
|~u|

∂ p
∂ |π|

�

=
− ~u

2

c2

�

∂ p
∂ εrel
+ γun
ε+p

∂ p
∂ nrel

�

1− ~u2

c2

�

∂ p
∂ εrel
+ γun
ε+p

∂ p
∂ nrel

� ,

α2 = γ
2
u
~u2

c2

n
ε+ p

∂ p
∂ n
=

~u2

c2
γun
ε+p

∂ p
∂ nrel

1− ~u2

c2

�

∂ p
∂ εrel
+ γun
ε+p

∂ p
∂ nrel

� , α3 = γu
n|~u|
ε+ p

. (91)

Further details about this derivation can be found in appendix A.2.

5.3 Lifshitz fluids

The final example we want to consider is that of a Lifshitz fluid, which is invariant under
anisotropic scaling of spacetime coordinates t → λz t, x i → λx i . Covariantly, we can define
the Lifshitz symmetry as its action on the background sources

nµ→ λ−z nµ , hµν→ λ−2 hµν , Aµ→ Aµ,

vµ→ λz vµ , hµν→ λ2hµν . (92)

Plugging these into the variational expression eq. (15), we can derive the Lifshitz Ward identity

τµνhµν = z εµnµ , (93)

which is the covariant version of the respective identities introduced in [27, 29]. Demanding
the partition function or effective action to be invariant under this scaling leads to the scaling
behaviour of the conserved currents

εµ→ λd+2zεµ , πµ→ λdπµ , τµν→ λd+z+2τµν , jµ→ λd+z jµ . (94)

Requiring that βµ, Λβ remain invariant, results in the scaling properties of the hydrodynamic
fields

uµ→ λzuµ , T → λz T , µ→ λzµ . (95)
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Note that ~u2→ λ2z−2~u2 and ûµ→ λûµ. This implies that the scalar ratios µ/T and ~u2/T2−2/z

are scale invariant. Implementing this for ideal fluids, one can infer that the equation of state
of a Lifshitz fluid takes the form

p(T,µ, ~u2) = T d/z+1 p̂(µ/T, ~u2/T2−2z) . (96)

This leads to the thermodynamic identity

ρ ~u2 + p d = z ε , (97)

which can also be derived directly using eq. (93).
As for the one-derivative order transport coefficients, the scaling behaviour goes as

υ(T,µ, ~u2) = T wυ/z ĉ(µ/T, ~u2/T2−2z) , (98)

where the weight factor wλ for the various coefficients is given by

wυ =































































d + z for υ= p ,

d − z for υ= F0, F1 ,

d − 2z + 2 for υ= F2 ,

d − 2 for υ= v00, s00 ,

d + z − 2 for υ= v01, s01 , v̄01, s̄01,

d + 2z − 2 for υ= v11, s11 ,

d − 1 for υ= v02, s02, s03 , v̄02, s̄02, s̄03 ,

d + z − 1 for υ= v12, s12, s13 , v̄12, s̄12, s̄13,

d for υ= t,v22, s22, s23, s33, s̄23 .

(99)

We have included the ideal order pressure for completeness. However, not all of these co-
efficients are independent. Firstly, the derivative corrections must satisfy the Lifshitz Ward
identities (93). In particular, in the density frame, this implies that the non-hydrostatic cor-
rections (including both dissipative and non-hydrostatic non-dissipative) must satisfy that
τ
µν

nhshµν = 0.14 Furthermore, one-derivative scalars in the hydrostatic free energy density
(53) can only come via the scale-covariant combinations

vµ∂µ
�µ

T

�

, vµ∂µ

�

~u2

T2−2/z

�

. (100)

Similarly, all the non-hydrostatic data must appear in combinations

δBAµ , δBnµ −
z

2d
nµhρσδBhρσ , δBhµν −

1
d

hµνh
ρσδBhρσ . (101)

This leads to 8 constraints among the transport coefficients: 1 in the hydrostatic sector, 3 in
the non-hydrostatic non-dissipative sector, and 4 in the dissipative sector, namely

F1 = −2
(z − 1)~u2

z T
F2 −

µ

T
F0 ,

s̄02 = −(d − 1)s̄03 , s̄12 = −(d − 1)s̄13 , s̄23 = 0 ,

s02 = −(d − 1)s03 , s12 = −(d − 1)s13 , s22 = −(d − 1)s23 = (d − 1)2s33 . (102)

14The condition is slightly more non-trivial in the Landau frame employed in [27,29]: τµνnhshµν = z εµnhsnµ.
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In the uncharged limit (65), the total number of transport coefficients after Lifshitz scaling
agrees with that of [27]. Scale invariant Galilean fluids are compatible with z = 2 Lifshitz
symmetry. An easy way to see this is that requiring µgal = µ+m/2 ~u2 to scale homogeneously
forces us to set z = 2. The thermodynamic equation of state, in this case, leads to εgal = d/2 p.
Comparing the Galilean coefficients (78) to eq. (102) we read out that ζ = 0. Similarly, scale
invariant relativistic fluids are compatible with z = 1 isotropic scaling symmetry, since the
relativistic hydrodynamic fields in (83) should scale homogeneously. The equation of state
becomes εrel = d p, while at the one-derivative order we again find ζ = 0 by imposing the
Lifshitz constraints (102) on eq. (90).

6 Linearised fluctuations

In section 4, we determined the explicit effective action and all transport coefficients appearing
at first order in the derivative expansion for boost-agnostic fluids. In this section we study fluc-
tuations around equilibrium anisotropic states and determine the mode structure. We ignore
hydrostatic and non-hydrostatic non-dissipative contributions; these can also be systematically
switched off by imposing T or PT symmetry. We also turn off the background fields and the
resultant effective action is given in eq. (72). Additionally, for simplicity, we do not turn on all
dissipative transport coefficients but instead consider small deviations away from Galilean con-
stitutive relations. We begin by obtaining the linearised equations and later study the possible
modes in a 3+1 dimensional fluid living in flat spacetime.

6.1 Linearised equations

We want to perturb the Lagrangian (72) around an equilibrium anisotropic state with non-zero
fluid velocity ui .15 The equilibrium configuration is characterised by

τ= t , σi = x i , ϕr = 0 , X t
a = X i

a = ϕa = 0 , (103)

with constant temperature T = T0, constant chemical potential µ= µ0, and constant non-zero
spatial velocity ui = ui

0, as well as constant energy density, pressure, and charge density. In
order to understand fluctuations around this state, we consider small perturbations of the parti-
cle/charge density δn, energy density δε, momentum density δπi and the stochastic variables
δX t

a, δX i
a, and δϕa. The variation of the Lagrangian (72) under these small perturbations and

underlying assumptions becomes

δL= ϕ I
aKI

JOJ +
i
2
ϕ I

aGI Jϕ
J
a , (104)

15Ref. [27] considered the isotropic case with ui = 0.
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where we have introduced the operators

OI =









δn
δε

ûiδπi

P j
i δπ j









, ϕ I
a =









δϕa
−δX t

a
ûiδX i

a
P i

jδX j
a









,

MI
J =









| ~π| ∂ n̂
∂ n ∂̂u | ~π| ∂ n̂

∂ ε ∂̂u

�

2 ~π2 ∂ n̂
∂ ~π2 + n̂

�

∂̂u n̂ ∂̂ j

| ~π| ∂ ŵ
∂ n ∂̂u | ~π| ∂ ŵ

∂ ε ∂̂u

�

2 ~π2 ∂ ŵ
∂ ~π2 + ŵ

�

∂̂u ŵ ∂̂ j
∂ (ρ~u2+p)
∂ n ∂̂u

∂ (ρ~u2+p)
∂ ε ∂̂u 2| ~π| ∂ (ρ~u

2+p)
∂ ~π2 ∂̂u |~u|∂̂ j

∂ p
∂ n ∂̂i

∂ p
∂ ε ∂̂i 2| ~π| ∂ p

∂ ~π2 ∂̂i Pi j|~u|∂̂u









,

GI J

kBT
= −2









v00∂̂
2 + s00∂̂

2
u v01∂̂

2 + s01∂̂
2
u v02∂̂

2 + s02∂̂
2
u (v02+s03)∂̂u∂̂ j

v01∂̂
2 + s01∂̂

2
u v11∂̂

2 + s11∂̂
2
u v12∂̂

2 + s12∂̂
2
u (v12+s13)∂̂u∂̂ j

v02∂̂
2 + s02∂̂

2
u v12∂̂

2 + s12∂̂
2
u v22∂̂

2 + s22∂̂
2
u (v22+s23)∂̂u∂̂ j

(v02+s03)∂̂u∂̂i (v12+s13)∂̂u∂̂i (v22+s23)∂̂u∂̂i
�

s33+
d−3
d−1 t

�

∂̂i ∂̂ j + Pi j(t ∂̂
2 + v22∂

2
u )









,

χI J =









T∂ (µ/T )/∂ n T∂ (µ/T )/∂ ε 2T | ~π|∂ (µ/T )/∂ ~π2 0
1/T ∂ T/∂ n 1/T ∂ T/∂ ε 2/T | ~π|∂ T/∂ ~π2 0

T | ~π|∂ (T−1ρ−1)/∂ n T | ~π|∂ (T−1ρ−1)/∂ ε 2T ~π2∂ (T−1ρ−1)/∂ ~π2 + 1
ρ 0

0 0 0 P i j/ρ









−1

,

KI
J = −δJ

I ∂t −MI
J −

1
2T

GIK(χ
−1)KJ . (105)

Here we have defined n̂ = n/ρ and ŵ = (ε+ p)/ρ, and introduced the differential operators
∂̂u = ûk∂k, ∂̂ i = P i j∂ j , and ∂̂ 2 = P i j∂i∂ j . It can be explicitly checked that the susceptibility
matrix χI J is symmetric. All quantities appearing in MI

J , GI J , and χI J should be understood as
being evaluated in the equilibrium configuration; we have dropped the subscript “0” for clarity.
Varying the perturbed Lagrangian with respect to the stochastic variables ϕ I

a, one obtains the
linearised equations of motion. We will now use these to find the mode structure.

6.2 Mode structure

Since the linearised equations are given by KI
JOJ = 0, it is possible to find the dispersion

relations by looking at the zeros of det(KI
J ). In 3+1 dimensions, we find a pair of sound modes

(with a different velocity along or opposite the fluid flow), one number-density diffusion mode,
one shear mode along the fluid velocity, and another shear mode transverse to the fluid velocity.
Assuming plane-wave perturbations, in general, the modes have the following structure

ω− uiki = v±s (θ )k−
i
2
Γs(θ )k

2,

ω− uiki = −iD0(θ )k
2, ω− uiki = −iD1(θ )k

2, ω− uiki = −iD2(θ )k
2. (106)

Here θ is the angle between ui and ki , Γs(θ ) is the attenuation constant, and D0,1,2(θ ) are
diffusion constants. Explicitly, we find that the velocity of sound v±s (θ ) are the solutions of the
quadratic equation

v±s (θ )
2 + X |~u| cosθ v±s (θ ) + Y ~u2 cos2 θ + Z = 0 , (107)
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for which the functions X, Y, Z are not particularly illuminating. The general solution is given
by

v±s (θ ) =±

√

√

√

v2
s,0

�

1− |~u|2 cos2 θ

�

∂ ρ

∂ ε
+ 2ρ

∂ ρ

∂ ~π2

��

+ |~u|2 cos2 θ

�

∂ p
∂ ε
+ 2

∂ p
∂ ~π2

+
vs,1

2

�2

−
|~u|
2

cosθ vs,1 ,

(108)

where we have defined

vs,0 =

√

√∂ p
∂ n

n
ρ
+
∂ p
∂ ε

w
ρ
+ 2ρ|~u|2

∂ p
∂ ~π2

, vs,1 =
∂ ρ

∂ n
n
ρ
+
∂ ρ

∂ ε

w
ρ
−
�

1+
∂ p
∂ ε
+ 2ρ

∂ p
∂ ~π2

− 2ρ|~u|2
∂ ρ

∂ ~π2

�

.

(109)
The pair of sound modes in eq. (108) propagate with different speeds due to the presence of
a non-zero equilibrium fluid speed |~u|. The two speeds are equal if we impose the Galilean
or relativistic equations of state discussed in section 5. Hence, the distinction between the
parallel and anti-parallel sound speeds, v+s 6= v−s is an imprint of broken boost symmetry. In
the isotropic case |~u| → 0, the two sound speeds are again equal to each other and reduce to
the results of [28].

In turn, the diffusion constants D0,1(θ ) are solutions of the quadratic equation

D0,1(θ )
2 + A(θ )D0,1(θ ) + B(θ ) = 0 , (110)

for which the functions A(θ ) and B(θ ) are some cumbersome functions of the thermodynamic
variables, while the transverse shear diffusion constant D2(θ ) is simply given by

D2(θ ) =
t

ρ
+

v22 − t

ρ
cos2 θ . (111)

In order to provide an analytically tractable example of D0,1(θ ) and the attenuation constant
Γs(θ ), we consider slight departures away from the transport properties of a Galilean fluid,
characterised only by three transport coefficients at first order, namely, κ,η,ζ (see section 5).
This is still a non-trivial example because we are taking into account the modified thermody-
namics due to the absence of a boost symmetry. In this special case, we can split the attenua-
tion and diffusion constants into Galilean contributions and corrections due to the absence of
boosts in a small velocity expansion such that

Γs(θ ) = Γgal(θ ) + |~u|2Γu(θ ) , D0,1(θ ) = D0,1gal(θ ) + |~u|2D0,1u(θ ) , (112)

where, focusing on the case of θ = π/2, the Galilean contributions are given by

Γgal

�π

2

�

=
κ

ρv2
s,gal

∂ p
∂ ε

�

∂ T
∂ n

n+
∂ T
∂ ε

w
�

+
3ζ+ 4η

3ρ
, v2

s,gal =
�

∂ p
∂ n

n
ρ
+
∂ p
∂ ε

w
ρ

�

,

D0,gal

�π

2

�

=
nκ

v2
s,galρ

�

∂ p
∂ n
∂ T
∂ ε
−
∂ p
∂ ε

∂ T
∂ n

�

, D1,gal

�π

2

�

=
η

ρ
. (113)

If one imposes Galilean thermodynamics as in section 5, one obtains the diffusion and atten-
uation constants presented in [11]. On the other hand, the corrections due to the absence of
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a boost symmetry are given by

Γu

�π

2

�

= −
1

ρ3v4
s,gal

�

η
∂ p
∂ ε
ρv2

s,gal

�

∂ ρ

∂ n
n+

∂ ρ

∂ ε
w
�

+ρ2v2
s,gal

�

2η
∂ p
∂ ~π2

�

∂ ρ

∂ n
n+

∂ ρ

∂ ε
w
�

+
∂ p
∂ ε

�

Tκ
∂ ρ

∂ ε
−η

��

+ρ3v2
s,gal

�

κ
∂ p
∂ ε

∂ T
∂ ε
− 2η

∂ p
∂ ~π2

�

+ 2ρ3κ
∂ p
∂ ε

∂ p
∂ ~π2

�

∂ T
∂ n

n+
∂ T
∂ ε

w
�

�

, (114)

D0,u

�π

2

�

=− nκ

�

ηρ2v2
s,gal

�

∂ p
∂ n
∂ ρ

∂ ε
−
∂ p
∂ ε

∂ ρ

∂ n

��

T v2
s,gal
∂ ρ

∂ ε
+
∂ ρ

∂ ε

�

∂ T
∂ n

n+
∂ T
∂ ε

w
��

+ρ3v2
s,gal

�

2η
∂ p
∂ ~π2

�

∂ T
∂ n

n+
∂ T
∂ ε

w
��

∂ p
∂ n
∂ ρ

∂ ε
−
∂ p
∂ ε

∂ ρ

∂ n

�

+
∂ p
∂ ε

�

Tκ
∂ ρ

∂ ε
−η

��

∂ p
∂ ε

∂ T
∂ n
+
∂ p
∂ n
∂ T
∂ ε

�

�

+κρ4 ∂ p
∂ ε

�

∂ p
∂ n
∂ T
∂ ε
−
∂ p
∂ ε

∂ T
∂ n

��

∂ T
∂ ε

v2
s,gal + 2

∂ p
∂ ~π2

�

∂ T
∂ n

n+
∂ T
∂ ε

w
��

�

× v4
s,galρ

3
�

∂ p
∂ n

n
�

η− κρ
∂ T
∂ ε

�

+
∂ p
∂ ε

�

ηw+κρ
∂ T
∂ n

n
��−1

, (115)

D1,u

�π

2

�

=η

�

2
∂ p
∂ ~π2

Tρ
�

η
∂ ρ

∂ ε
w−ηρ + nκρ

∂ T
∂ n
∂ ρ

∂ ε
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∂ n
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�
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∂ T
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κρ
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∂ ε

�
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∂ T
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κρ

��

−ρ
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∂ T
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+ 2T

∂ ρ
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∂ T
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κρ
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Tκ
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�
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. (116)

As one can explicitly observe, the longitudinal shear diffusion constant D1(θ ) receives correc-
tions due to a non-vanishing fluid velocity, while the transverse shear diffusion constant D2(θ )
in eq. (111) does not. This is again an imprint of the broken boost symmetry.

We would like to point out that the linear mode analysis presented above has been done
at finite equilibrium fluid velocity ui = ui

0, and yet we do not encounter any additional gapped
unphysical poles in the upper-half complex ω plane. This is in contrast to the Landau and
Eckart frames typically employed in relativistic hydrodynamics, that are unstable in a finite
fluid-velocity state; see [30, 31]. This affirms that the density frame introduced in this paper
is a stable hydrodynamic frame, applicable to hydrodynamic theories with arbitrary boost
symmetry structure – Galilean, Lorentzian, or absence thereof.
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7 Outlook

The main goal of this paper was to formulate a Schwinger-Keldysh effective field theory for
hydrodynamics without boosts. The formal construction, presented in section 3, was based on
the recently developed EFT for Galilean hydrodynamics [11]. In the process of building this
EFT, we provided a spacetime covariant framework for hydrodynamics without boosts and
a rigorous offshell analysis of the independent transport coefficients together with the con-
straints that need to be satisfied for the second law of thermodynamics to hold (see eq. (64)).
An accurate counting of transport coefficients reveals that there are 4 hydrostatic coefficients
(including the ideal order pressure), 9 non-hydrostatic non-dissipative coefficients, and 17
independent dissipative transport coefficients. Thus, boost-agnostic hydrodynamics is char-
acterised by a total of 30 independent transport coefficients up to first order in a gradient
expansion.

Part of this work, specifically section 4, can also be seen as an extension of the covariant
formulation of [26, 27] to include an additional particle/charge current. In the uncharged
limit, our results agree with those of [27]. As such, we provided a general covariant frame-
work for treating simultaneously Lorentzian, Galilean, and Lifshitz fluids; the respective boost
and scaling limits were performed in section 5. In addition, we studied the general spectrum
of linear modes around an anisotropic finite-velocity state as an application of this theory
in section 6. This analysis revealed specific imprints of the absence of boost invariance that
were previously unknown. In particular, in 3+1 spacetime dimensions, we found a pair of
sounds with different velocities depending on whether the sound wave propagates along the
equilibrium fluid velocity ui

0 or opposite to it. Furthermore, the shear modes, which usually
have multiplicity 2 in Galilean or relativistic fluids, now split into a shear mode along the
fluid velocity and another transverse to it. Such imprints are clear smoking guns for potential
experimental realisations of hydrodynamic systems without boost invariance, and were not
visible when fluctuating around isotropic equilibrium states as in [28]. In relation to this, we
note that we have provided our results in a new hydrodynamic frame that is linearly stable,
irrespective of the boost symmetry in place, making the system of equations of motion and con-
stitutive relations ideal for performing numerical simulations without running into unphysical
artefacts.

Besides a unified framework that can treat different physical systems on the same footing,
one of main goals of this work was to set the stage for future non-trivial extensions. As re-
vealed in the introduction, systems of interest with broken boost symmetry exhibit intertwined
patterns of symmetry breaking that can include spontaneous/explicit translation symmetry
breaking, superfluidity, or liquid crystal phases. One of our main motivators are the hydrody-
namic theories of flocking, such as the Toner-Tu model [21]. In such settings, not only is the
boost symmetry explicitly broken, but there are also additional non-conserved driving forces
responsible for the activity that breaks the spacetime translation symmetry. As far as we are
aware, though widely used, such models lack a rigorous derivation in terms of an effective
field theory or even a complete classical understanding and characterisation of the allowed
transport. Another system of interest is that of quantum matter exhibiting charge density
wave phases [19], in which, besides the absence of a boost symmetry, spatial translations are
also typically broken explicitly and spontaneously. Schwinger-Keldysh EFT provides a route
for understanding these systems, as it offers a controlled framework for symmetry breaking,
moving away from classical hydrodynamics, and exploring its consequences (see e.g. [52] for
an ideal order non-dissipative discussion). It will also be interesting to explore the purely
non-equilibrium non-classical stochastic effects arising from the EFT analysis, such as those
reported in [23], in the context of broken boost scenarios. We leave these explorations for
future work.
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A natural extension of this work is to consider the case of spontaneous breaking of Lorentz
boost symmetry, and more generally, of Poincaré symmetry. This is directly relevant for con-
densed matter systems where a classification of phases of matter has been partially provided
in [13]. Such extension would result in a finite temperature version of the same and, as the
world is Lorentz invariant, would be highly relevant to pursue for real-world applications.

In the absence of any controlled experiment that could probe all 30 transport coefficients,
it would be interesting to understand better the phenomenology and mode structure of fluids
without a boost symmetry. To this aim, it would be relevant to understand whether holographic
models, in the spirit of [1], exhibiting explicit Lorentz boost symmetry breaking could be con-
structed. An analysis of the black hole spectrum of quasinormal modes within such models
would provide reasonable theoretical input for the equation of state and transport coefficients,
allowing to better probe the physics of these systems.
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A Frame transformations and comparison with previous works

In this appendix we discuss frame transformations in boost-agnostic hydrodynamics in detail
and discuss the translation of our results to those of [27, 29]. We give a general procedure
to convert constitutive relations in arbitrary frame to our density frame. The analysis can
equivalently be adapted to arrive at other hydrodynamic frames.

A.1 Generalities of hydrodynamic frame transformation

We know that the hydrostatic part of the constitutive relations, in particular the leading deriva-
tive order ideal fluid, can be generated from a hydrostatic generating functional. To wit, we
can start from a free energy density N and use the variational formulae

1
p
γ
δ (
p
γ p) = jµ0 δAµ − ε

µ
0δnµ +

1
2

�

2vµπν0 +τ
µν
0

�

δhµν + hµδβ
µ + n

�

δΛβ + Aµδβ
µ
�

, (117)

where “0” denotes the ideal part of the constitutive relations. Here hµ and n denote variations
with respect to hydrodynamic fields, that do not contribute if we replace δ→ δB , leading to
the adiabaticity equation. This form is particularly useful because it allows us to directly read
out the equations of motion associated with the hydrostatic part of the constitutive relations.
Employing gauge and diffeomorphism invariance of N , the equations of motion (18) can be
re-expressed as

1
p
γ
δB (
p
γn) =O(∂ 2) ,

1
p
γ
δB

�p
γhµ

�

+ nδBAµ =O(∂ 2) . (118)

This form of the equations of motion was already derived for ideal fluids in eq. (23). Note that
this is only the hydrostatic part of the equations of motion and will admit derivative corrections.
But it will be useful for us in our discussion of frame transformations. Using eq. (117), the
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equations of motion can also be expressed as

1
p
γ
δB (
p
γn) =

δ jρ0
δΛβ

δBAρ −
δε
ρ
0

δΛβ
δBnρ +

1
2

δ(2vρπσ0 +τ
ρσ
0 )

δΛβ
δBhρσ =O(∂ 2) ,

1
p
γ
δB

�p
γ (hµ + nAµ)

�

=
δ jρ0
δβµ

δBAρ −
δε
ρ
0

δβµ
δBnρ +

1
2

δ(2vρπσ0 +τ
ρσ
0 )

δβµ
δBhρσ =O(∂ 2) .

(119)

For explicit computations, it is convenient to instead work with uµ, T , µ, in terms of which we
can recast these as









1
T

δ jρ0
δ(µ/T )

1
T

δε
ρ
0

δ(µ/T )
1
T
δ(2vρπσ0+τ

ρσ
0 )

δ(µ/T )

T
δ jρ0
δT T

δε
ρ
0

δT T
δ(2vρπσ0+τ

ρσ
0 )

δT
1
T hτµ

δ jρ0
δ(uτ/T )

1
T hτµ

δε
ρ
0

δ(uτ/T )
1
T hτµ

δ(2vρπσ0+τ
ρσ
0 )

δ(uτ/T )















δBAρ
−δBnρ
1
2δBhρσ






=O(∂ 2) . (120)

We define the matrices

χ =









1
T

nλδ jλ0
δ(µ/T )

1
T

nλδε
λ
0

δ(µ/T )
1
T

δπλ0
δ(µ/T )

T
nλδ jλ0
δT T

nλδε
λ
0

δT T
δπλ0
δT

1
T hτµ

nλδ jλ0
δ(uτ/T )

1
T hτµ

nλδε
λ
0

δ(uτ/T )
1
T hτµ

δπλ0
δ(uτ/T )









, χS =









1
T

hρ
λ
δ jλ0

δ(µ/T )
1
T

hρ
λ
δελ0

δ(µ/T )
1
T
δτ

ρσ
0

δ(µ/T )

T
hρ
λ
δ jλ0
δT T

hρ
λ
δελ0
δT T

δτ
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1
T hτµ

hρ
λ
δ jλ0

δ(uτ/T )
1
T hτµ

hρ
λ
δελ0
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1
T hτµ

δτ
ρσ
0

δ(uτ/T )









.

(121)
Here χ is the same susceptibility matrix defined in section 6. Let us also define

M = χ−1χS =







ρ ∂ n̂
∂ n ~u

ρ ρ ∂ ŵ
∂ n ~u

ρ ∂ p
∂ nhρσ − ∂ ρ

∂ n ~u
ρ~uσ

ρ ∂ n̂
∂ ε ~u

ρ ρ ∂ ŵ
∂ ε ~u

ρ ∂ p
∂ εhρσ − ∂ ρ

∂ ε ~u
ρ~uσ

ρ
|~u|

∂ n̂
∂ |π| ~uµ~u

ρ + n̂hρµ
ρ
|~u|

∂ ŵ
∂ |π| ~uµ~u

ρ + ŵhρµ
~uµ
|~u|

�

∂ p
∂ |π|h

ρσ − ∂ ρ
∂ |π| ~u

ρ~uρ
�

+ 2~u(ρhσ)µ






.

(122)
Here we have used w = ε+ p, n̂ = n/ρ, and ŵ = (ε+ p)/ρ. This allows us to re-express the
equations of motion (119) as





vρδBAρ
−vρδBnρ
vρδBhρσ



= −M





δBAρ
−δBnρ
1
2δBhρσ



+O(∂ 2) . (123)

On the other hand, one-derivative order frame transformations of the hydrodynamic fields
uµ, T , and µ act as

δ







jµ

εµ

2v(µπν) +τµν






=









1
T

δ jµ0
δ(µ/T ) T

δ jµ0
δT

1
T

δ jµ0
δ(uλ/T )

1
T hλρ

δε
µ
0

δ(µ/T ) T
δε
µ
0

δT
1
T

δε
µ
0

δ(uλ/T )
1
T hλρ

δ(2vµπν0+τ
µν
0 )

δ(µ/T ) T
δ(2vµπν0+τ

µν
0 )

δT
1
T hλρ

δ(2vµπν0+τ
µν
0 )

δ(uλ/T )















Tδ(µ/T )
1
T δT

Tδ(uρ/T )






.

(124)
Using the decomposition of the constitutive relations into hydrostatic “hs” and non-hydrostatic
“nhs” pieces (where “nhs” contains both “diss” and “nhsnd”), the density frame is defined as

nµ jµnhs = nµε
µ

nhs = π
µ

nhs = 0 . (125)

Denoting the respective corrections in the generic frame with tilde, we get






Tδ(µ/T )
1
T δT

Tδ(uρ/T )






= −χ−T







nλ ̃
λ
nhs

nλε̃
λ
nhs

π̃λnhs






. (126)
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The superscript “T” denotes a transpose and “−T” an inverse transpose. The non-hydrostatic
corrections in the thermodynamic density frame can be written out explicitly as







jµnhs

ε
µ

nhs

τ
µν

nhs






=







hµ
λ
̃λnhs

hµ
λ
ε̃λnhs

τ̃
µν

nhs






−MT







nλ ̃
λ
nhs

nλε̃
λ
nhs

π̃λnhs






. (127)

To obtain a mapping between the respective transport coefficients, we need to do a final
manipulation requiring the usage of the equations of motion. We start by decomposing the
generic frame non-hydrostatic constitutive relations as







̃
µ

nhs

ε̃
µ

nhs

2v(µπ̃ν)nhs + τ̃
µν

nhs






= −kBT







C̃µρnn C̃µρnε C̃µ(ρσ)nπ

C̃µρεn C̃µρεε C̃µ(ρσ)επ

C̃ (µν)ρπn C̃ (µν)ρεπ C̃ (µν)(ρσ)ππ













δBAρ
−δBnρ
1
2δBhρσ






. (128)

Note that the coefficient matrix is asymmetric because it contains both “diss” and “nhsnd”
pieces. Let us decompose it further into space and time parts

C̃T T =





nµnρ C̃µρnn nµnρ C̃µρnε nµnρhτσC̃µ(ρσ)nπ

nµnρhτσC̃µρεn nµnρ C̃µρεε nµnρ C̃µ(ρσ)επ

nµhβνnρ C̃ (µν)ρπn nµhβνnρ C̃ (µν)ρεπ nµhβνnρhτσC̃ (µν)(ρσ)ππ



 ,

C̃TS =







nµhλρ C̃µρnn nµhλρ C̃µρnε nµhλρhτσC̃µ(ρσ)nπ

nµhλρhτσC̃µρεn nµhλρ C̃µρεε nµhλρ C̃µ(ρσ)επ

nµhβνhλρ C̃ (µν)ρπn nµhβνhλρ C̃ (µν)ρεπ nµhβνhλρhτσC̃ (µν)(ρσ)ππ






,

C̃ST =







hαµnρ C̃µρnn hαµnρ C̃µρnε hαµnρhτσC̃µ(ρσ)nπ

hαµnρhτσC̃µρεn hαµnρ C̃µρεε hαµnρ C̃µ(ρσ)επ

hαµhβνnρ C̃ (µν)ρπn hαµhβνnρ C̃ (µν)ρεπ hαµhβνnρhτσC̃ (µν)(ρσ)ππ






,

C̃SS =







hαµhλρ C̃µρnn hαµhλρ C̃µρnε hαµhλρhτσC̃µ(ρσ)nπ

hαµhλρhτσC̃µρεn hαµhλρ C̃µρεε hαµhλρ C̃µ(ρσ)επ

hαµhβνhλρ C̃ (µν)ρπn hαµhβνhλρ C̃ (µν)ρεπ hαµhβνhλρhτσC̃ (µν)(ρσ)ππ






. (129)

This explicitly results in the compact expressions






nµ ̃
µ

nhs

nµε̃
µ

nhs

π̃
µ

nhs






= −kBT C̃T T





vρδBAρ
−vρδBnρ
vρδBhρσ



− kBT C̃TS





δBAρ
−δBnρ
1
2δBhρσ



 ,





hµ
λ
̃λnhs

hµ
λ
ε̃λnhs
τ̃
µν

nhs



= −kBT C̃ST





vρδBAρ
−vρδBnρ
vρδBhρσ



− kBT C̃SS





δBAρ
−δBnρ
1
2δBhρσ



 . (130)

Plugging these into eq. (127) and using the equations of motion, we get






jµhs

ε
µ

hs

τ
µν

hs






= −kBT

�

−M
1

�T �
C̃T T C̃TS
C̃ST C̃SS

��

−M
1

�





δBAρ
−δBnρ
1
2δBhρσ



 . (131)
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All in all, the transformation from a general frame to the density frame is given by the trans-
formation of non-hydrostatic transport coefficients

C=

�

−M
1

�T �
C̃T T C̃TS
C̃ST C̃SS

��

−M
1

�

, (132)

where C is related to combinations of dissipative and non-hydrostatic non-dissipative coeffi-
cient matrices from section 4, in particular

C=







Dµρnn Dµρnε + D̄µρnε Dµ(ρσ)nπ + D̄µ(ρσ)nπ

Dµρnε − D̄ρµnε Dµρεε Dµ(ρσ)επ + D̄µ(ρσ)επ

Dµ(ρσ)nπ − D̄ρ(µν)nπ Dµ(ρσ)επ − D̄ρ(µν)επ D(µν)(ρσ)ππ + D̄(µν)(ρσ)ππ






. (133)

A.2 Landau frame

To discuss the constitutive relations in Landau frame, it is convenient to define a covariant
energy-momentum tensor [27,29] for boost-agnostic fluids

Tµν ≡ −ε
µnν + vµπν +τ

µλhλν , (134)

where πµ = hµνπ
ν. This energy-momentum tensor satisfies the conservation equations

�

∇µ + F n
µλvλ

�

Tµν = Fνµ jµ − F n
νµε

µ −
1
2
πλ$vhνλ ,

=⇒
1
p
γ
∂µ
�p
γ Tµν

�

+ εµ∂νnµ −
1
2
(vµπρ +πρvµ +τµρ)∂νhµρ = Fνµ jµ . (135)

In addition, we have the charge current jµ that still satisfies the same conservation equation as
given in eq. (18). The thermodynamic density frame that we have employed in this work can
be expressed as nµ(T

µ
ν)nhs = 0, nµ jµnhs = 0, where “nhs” collectively denotes dissipative and

non-dissipative non-hydrostatic contributions. By contrast, we can define the thermodynamic
Landau frame as (Tµν)nhsu

ν = 0, nµ jµnhs = jµ~uµ/c
2, leading to16

nµε
µ

nhs = π
µ

nhs~uµ , hµνε
ν
nhs = τ

µν

nhs~uν , nµ jµnhs =
1
c2

jµnhs~uµ . (136)

Equivalently, this amounts to working with

hµνδBAν +
1
c2
~uµvνδBAν , δBhµν − 2~u(µδBnν) , (137)

as the set of independent non-hydrostatic data.
The hydrostatic constitutive relations are still the same as section 4.1.1, but the non-

hydrostatic non-dissipative and dissipative constitutive relations in the thermodynamic Landau
frame are given as follows. Firstly, we have the non-hydrostatic non-dissipative densities





nν ̃
ν
nhsnd

nνε̃
ν
nhsnd

π̃
µ

nhsnd



= −kBT







0 1
c2

˜̄Dµρjπ ~uµ~uρ
1
c2

˜̄Dµρjπ ~uµ
− 1

c2
˜̄Dρµjπ ~uρ~uµ 0 0

− 1
c2

˜̄Dρµjπ ~uρ 0 0











vσδBAσ
−vσδBnσ
vσδBhρσ





− kBT







0 1
c2

˜̄Dµρσjτ ~uµ~uσ
1
c2

˜̄Dµρσjτ ~uµ
− ˜̄Dρµjπ ~uµ

˜̄Dµρσπτ ~uµ~uσ
˜̄Dµρσπτ ~uµ

− ˜̄Dρµjπ
˜̄Dµρσπτ ~uσ

˜̄Dµρσπτ











δBAρ
−δBnρ
1
2δBhρσ



 , (138)

16The thermodynamic Landau frame agrees with the true Landau frame used in [27, 29], defined as
Tµ
ν
uν = (ε−ρ ~u2)uµ, nµ jµ = n+ 1

c2 jµ~uµ, only in the non-hydrostatic sector. The Landau frame definition of [29]
has an arbitrary function B in the U(1) sector, which we have taken to be (1− ~u2/c2)−1. Since c is an arbitrary pa-
rameter at this stage, not having specialised to relativistic fluids, we can recover the generality of [29] by choosing
c appropriately.
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and non-hydrostatic non-dissipative fluxes





̃
µ

nhsnd
ε̃
µ

nhsnd
τ̃
µν

nhsnd



= −kBT







0 ˜̄Dµρjπ ~uρ
˜̄Dµρjπ

− 1
c2

˜̄Dρµνjτ ~uν~uρ − ˜̄Dρµνπτ ~uν~uρ − ˜̄Dρµνπτ ~uν
− 1

c2
˜̄Dρµνjτ ~uρ − ˜̄Dρµνπτ ~uρ − ˜̄Dρµνπτ











vσδBAσ
−vσδBnσ
vσδBhρσ





− kBT







0 ˜̄Dµρσjτ ~uσ
˜̄Dµρσjτ

− ˜̄Dρµνjτ ~uν
˜̄Dµνρσττ ~uν~uσ

˜̄Dµνρσττ ~uν
− ˜̄Dρµνjτ

˜̄Dµνρσττ ~uσ
˜̄Dµνρσττ











δBAρ
−δBnρ
1
2δBhρσ



 , (139)

where we have defined the transport coefficient matrices

˜̄Dµρjπ = ˜̄v01Pµρ + ˜̄s01ûµûρ ,

˜̄Dµρσjτ = 2˜̄v02Pµ(ρûσ) + ˜̄s02ûµûρûσ + ˜̄s03ûµPρσ,

˜̄Dµρσπτ = 2˜̄v12Pµ(ρûσ) + ˜̄s12ûµûρûσ + ˜̄s13ûµPρσ,
˜̄Dµνρσττ = ˜̄s23 (û

µûνPρσ − Pµνûρûσ) . (140)

On the other hand, in the dissipative sector we have the densities





nν ̃
ν
diss

nνε̃
ν
diss

π̃
µ

nhsnd



= −kBT





1
c4 D̃µρj j ~uµ~uρ

1
c2 D̃µρjπ ~uµ~uρ

1
c2 D̃µρjπ ~uµ

1
c2 D̃ρµjπ ~uµ~uρ D̃µρππ~uµ~uρ D̃µρππ~uµ

1
c2 D̃ρµjπ ~uρ D̃µρππ~uρ D̃µρππ









vσδBAσ
−vσδBnσ
vσδBhρσ





− kBT





1
c2 D̃µρj j ~uµ

1
c2 D̃µρσjτ ~uµ~uσ

1
c2 D̃µρσjτ ~uµ

D̃ρµjπ ~uµ D̃µρσπτ ~uµ~uσ D̃µρσπτ ~uµ
D̃ρµjπ D̃µρσπτ ~uσ D̃µρσπτ









δBAρ
−δBnρ
1
2δBhρσ



 , (141)

and fluxes




̃
µ

diss
ε̃
µ

diss
τ̃
µν

diss



= −kBT





1
c2 D̃µρj j ~uρ D̃µρjπ ~uρ D̃µρjπ

1
c2 D̃ρµνjτ ~uν~uρ D̃ρµνπτ ~uν~uρ D̃ρµνπτ ~uν

1
c2 D̃ρµνjτ ~uρ D̃ρµνπτ ~uρ D̃ρµνπτ









vσδBAσ
−vσδBnσ
vσδBhρσ





− kBT





D̃µρj j D̃µρσjτ ~uσ D̃µρσjτ
D̃ρµνjτ ~uν D̃µνρσττ ~uν~uσ D̃µνρσττ ~uν
D̃ρµνjτ D̃µνρσττ ~uσ D̃µνρσττ









δBAρ
−δBnρ
1
2δBhρσ



 . (142a)

The coefficient matrices in the dissipative sector are given as

D̃µρj j = ṽ00Pµρ + s̃00ûµûρ ,

D̃µρjπ = ṽ01Pµρ + s̃01ûµûρ ,

D̃µρππ = ṽ11Pµρ + s̃11ûµûρ ,

D̃µρσjτ = 2ṽ02Pµ(ρûσ) + s̃02ûµûρûσ + s̃03ûµPρσ,

D̃µρσπτ = 2ṽ12Pµ(ρûσ) + s̃12ûµûρûσ + s̃13ûµPρσ,

C̃µνρσττ = 2t̃
�

Pρ(µPν)σ − 1
d−1 PµνPρσ

�

+ 4ṽ22û(µPν)(ρûσ)

+ s̃22ûµûνûρûσ + s̃23 (P
µνûρûσ + ûµûνPρσ) + s̃33PµνPρσ . (143)

We can use the generic procedure chalked out in the previous subsection to map the ther-
modynamic Landau frame coefficients to the thermodynamic density frame used in the bulk
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of the paper. The coefficient coupling to the traceless tensor remains unchanged during the
map

t= t̃ . (144)

However, in the vector sector, we find

v00 = ṽ00 + n̂2ṽ11 − 2n̂ṽ01,

v01 = |~u|ṽ02 + n̂ŵṽ11 − n̂ṽ12|~u| − ŵṽ01,

v02 = ṽ02 + n̂|~u|ṽ11 − n̂ṽ12 − |~u|ṽ01 ,

v11 = ~u
2ṽ22 + ŵ2ṽ11 − 2ŵṽ12|~u| ,

v12 = |~u|ṽ22 + ŵ|~u|ṽ11 −
�

ŵ+ ~u2
�

ṽ12 ,

v22 = ṽ22 + ~u
2ṽ11 − 2|~u|ṽ12 ,

v̄01 = |~u|˜̄v02 − n̂˜̄v12|~u| − ŵ˜̄v01 ,

v̄02 = ˜̄v02 − n̂˜̄v12 − |~u|˜̄v01 ,

v̄12 = |~u|˜̄v22 −
�

ŵ+ ~u2
�

˜̄v12 . (145)

The mapping in the scalar sector is much messier to write down explicitly. We instead use the
matrix representation for clarity; we first isolate the scalar part of the M matrix as

M s =





| ~π| ∂ n̂
∂ n | ~π| ∂ ŵ

∂ n
∂ p
∂ n −

∂ ρ
∂ n ~u

2 ∂ p
∂ n

| ~π| ∂ n̂
∂ ε | ~π| ∂ ŵ

∂ ε
∂ p
∂ ε −

∂ ρ
∂ ε ~u

2 ∂ p
∂ ε

| ~π| ∂ n̂
∂ |π| + n̂ | ~π| ∂ ŵ

∂ |π| + ŵ ∂ p
∂ |π| −

∂ ρ
∂ |π| ~u

2 + 2|~u| ∂ p
∂ |π|



 . (146)

We define the coefficient matrices in the Landau frame

D̃s
T T =





~u2

c4 s̃00
~u2

c2 s̃01
|~u|
c2 s̃01

~u2

c2 s̃01 ~u2s̃11 |~u|s̃11
|~u|
c2 s̃01 |~u|s̃11 s̃11



 , ˜̄Ds
T T =





0 ~u2

c2
˜̄s01

|~u|
c2

˜̄s01

− ~u
2

c2
˜̄s01 0 0

− |~u|c2
˜̄s01 0 0



 ,

D̃s
TS =





|~u|
c2 s̃00

~u2

c2 s̃02
|~u|
c2 s̃02

|~u|
c2 s̃03

|~u|s̃01 ~u2s̃12 |~u|s̃12 |~u|s̃13
s̃01 |~u|s̃12 s̃12 s̃13



 , ˜̄Ds
TS =





0 ~u2

c2
˜̄s02

|~u|
c2

˜̄s02
|~u|
c2

˜̄s03
−|~u|˜̄s01 ~u2˜̄s12 |~u|˜̄s12 |~u|˜̄s13
−˜̄s01 |~u|˜̄s12 ˜̄s12 ˜̄s13



 ,

D̃s
SS =







s̃00 |~u|s̃02 s̃02 s̃03
|~u|s̃02 ~u2s̃22 |~u|s̃22 |~u|s̃23
s̃02 |~u|s̃22 s̃22 s̃23
s̃03 |~u|s̃23 s̃23 s̃33






, ˜̄Ds

SS =







0 |~u|˜̄s02 ˜̄s02 ˜̄s03
−|~u|˜̄s02 0 0 |~u|˜̄s23
−˜̄s02 0 0 ˜̄s23
−˜̄s03 −|~u|˜̄s23 −˜̄s23 0






,

(147)

and in the density frame

Ds
SS =







s00 s02 s02 s03
s02 s11 s12 s13
s02 s12 s22 s23
s03 s13 s23 s33






, D̄s

SS =







0 s̄02 s̄02 s̄03
−s̄02 0 s̄12 s̄13
−s̄02 −s̄12 0 s̄23
−s̄03 −s̄13 −s̄23 0






. (148)

The mapping is given in terms of these as

Ds
SS = D̃s

SS − (M
s)TD̃s

TS − (D̃
s
TS)

TM s + (M s)TD̃s
T T M s ,

D̄s
SS =

˜̄Ds
SS − (M

s)T ˜̄Ds
TS + (

˜̄Ds
TS)

TM s + (M s)T ˜̄Ds
T T M s . (149)
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In section 5.2, we have used this procedure to obtain the mapping for a relativistic fluid in
the Landau frame to the density frame. The transport coefficients for a relativistic fluid in the
Landau frame are given as

F0 = F1 = F2 = 0,

˜̄s01 = ˜̄s02 = ˜̄s03 = ˜̄s12 = ˜̄s13 = ˜̄s23 = ˜̄v01 = ˜̄v02 = ˜̄v12 = 0 ,

s̃00 = γ
3
uσ, s̃01 = s̃02 = s̃03 = 0,

s̃22 =
c2

|~u|
s̃12 =

c4

~u2
s̃11 = γ

5
u

�

ζ+ 2 d−1
d η

�

, s̃23 =
c2

|~u|
s̃13 = γ

3
u

�

ζ− 2
dη
�

, s̃33 = γu

�

ζ+ 2
d(d−1)η

�

,

v00 = γuσ, ṽ01 = ṽ02 = 0, ṽ22 =
c2

|~u|
ṽ12 =

c4

~u2
ṽ11 = γ

3
uη, t̃= γuη . (150)

We can use the formulas mentioned above to recover the respective transport coefficients in
the density frame reported in eq. (90). While performing the mapping, it is useful to note that
the relativistic equation of state implies the identities

∂ p
∂ ε
=

1
γ2

u

∂ p
∂ εrel
+ 2 ~u

2

c2
∂ p
∂ εrel
+ ~u2

c2
γun
ε+p

∂ p
∂ nrel

1− ~u2

c2
∂ p
∂ εrel
− ~u2

c2
γun
ε+p

∂ p
∂ nrel

,
∂ p
∂ n
=

1
γu

∂ p
∂ nrel

1− ~u2

c2
∂ p
∂ εrel
− ~u2

c2
γun
ε+p

∂ p
∂ nrel

,

∂ p
∂ π2

=
− 1
ρ

�

∂ p
∂ εrel
+ γun

2(ε+p)
∂ p
∂ nrel

�

1− ~u2

c2
∂ p
∂ εrel
− ~u2

c2
γun
ε+p

∂ p
∂ nrel

, ŵ=
ε+ p
ρ
= c2 . (151)

A.3 Comparison to previous works

The Landau frame dissipative and non-dissipative non-hydrostatic transport coefficients ap-
pearing above can be related to the ones discussed in the uncharged case in eq. (5.6) of [27]
as17

˜̄v12 = −
f NHS

|~u|
, ˜̄s12 = −

sNHS
2

|~u|
, ˜̄s13 = −

sNHS
1

|~u|
, ˜̄s23 = sNHS

3 ,

t̃= −t , ṽ11 = −
f1
~u2

, ṽ12 = −
f3
|~u|

, ṽ22 = − f2 ,

s̃11 = −
s1

~u2
, s̃12 = −

s4

|~u|
, s̃13 = −

s5

|~u|
, s̃22 = −s2 , s̃23 = −s6 , s̃33 = −s3 . (152)

9 non-hydrostatic non-dissipative and 17 dissipative coefficients reduce to 4 and 10 respec-
tively in the uncharged case, as reported by [27]. In addition, three hydrostatic coefficients
F0,1,2 reduce down to just two F1,2, as commented upon in section 4.1.1.

The comparison of our work to the analysis of [29], on the other hand, is considerably more
involved.18 Firstly, comparison with the constitutive relations, given in eq. (2.24) of [29], can
only be done in the limit c→∞ in the thermodynamic Landau frame definition in eq. (136),
or equivalently B→ 0 in eq. (2.23) in [29]. For B 6= 0, the basis of independent non-hydrostatic
data used in [29] is not compatible with the off-shell formalism because the resultant dissipa-
tion matrices in eq. (142) are asymmetric. Specialising to the c →∞ case, we can find the
mapping of the transport coefficients η̄, ζ̄, σ̄, ᾱ, γ̄, π̄, γ1,...,23 appearing in eq. (2.24) of [29]

17The dissipative coefficient t has been called t in [27] and is negative semi-definite. We use the notation t
to avoid sign confusion with our convention of positive semi-definite dissipative coefficients. The mapping of
transport coefficients with [27] requires that we flip vµ→−vµ.

18We thank the authors of [29] for aiding us in this comparison.
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to the ones introduced by us; in the non-hydrostatic non-dissipative sector we find19

˜̄s01 = γ̄−
� γ4

2T
+ γ18

�

~u2, ˜̄s02 = −|~u|
�γ12

2T
+
γ14

2T
+ γ19 +

γ20

2

�

, ˜̄s03 = −
|~u|
2

�

γ20 −
γ17

T

�

,

˜̄s12 = |~u|
�

γ2 +
γ3

2
− γ10 −

γ7

2

�

, ˜̄s13 = |~u|
�γ3

2
+ γ16

�

, ˜̄s23 = ~u
2
�γ11

2
+ γ15

�

,

˜̄v01 = γ̄, ˜̄v02 = −|~u|
�γ14

2T
+ γ22

�

, ˜̄v12 = −|~u|
�γ7

2
+ γ5

�

, (153)

and in the dissipative sector

s̃00 = σ̄−
~u2

T
γ21, s̃01 = −ᾱ+

� γ4

2T
− γ18

�

~u2 , s̃11 = π̄+ 2~u2γ1 ,

s̃02 = |~u|
�γ12

2T
+
γ14

2T
− γ19 −

γ20

2

�

, s̃03 = −
|~u|
2

�

γ20 +
γ17

T

�

,

s̃12 = |~u|
�

γ2 +
γ3

2
+ γ10 +

γ7

2

�

, s̃13 = |~u|
�γ3

2
− γ16

�

s̃23 = ζ̄+ 2
d − 1

d
η̄+ ~u2

�γ11

2
− γ15

�

, s̃33 = ζ̄+
2

d(d − 1)
η̄ ,

ṽ00 = σ̄ , ṽ01 = −ᾱ , ṽ11 = π̄ , ṽ02 = |~u|
�γ14

2T
− γ22

�

, ṽ12 = |~u|
�γ7

2
− γ5

�

,

ṽ22 = 2γ8 , s̃22 = ζ̄+ 2
d − 1

d
η̄+ ~u2(4γ8 + 2γ9 + γ11) , t̃= η̄ . (154)

The three remaining coefficients γ6−2γ5, γ13−2γ8, γ23−2γ22 from [29] do not appear in the
maps above. They will, however, get non-trivial contributions in the hydrostatic sector from
F0,1,2 in section 4.1.1. We do not perform this detailed analysis here.

The authors in [29] introduced a different set of dissipative coefficients b0,...,21 for the
entropy-production quadratic form∆ in eqs. (2.33)-(2.39), and hydrostatic coefficients c̃1,2,4,8
for the non-canonical entropy current sµnon-can in eqs. (2.30)-(2.32). The relation to the afore-
mentioned η̄, ζ̄, σ̄, ᾱ, γ̄, π̄, γ1,...,23 coefficients is presented by the authors in a companion
notebook. They also find 2 constraints

b15 = b14 , b20 + b21 = 2b19 . (155)

It should be noted that a complete analysis of the second law constraints is not provided
in [29]. It should also be noted that 9 non-dissipative non-hydrostatic coefficients, given in
eq. (2.48)-(2.56) of [29], do not show up in the non-canonical entropy current or entropy
production. To map the b0,...,21, c̃1,2,4,8 coefficients to our formalism, it is easier to work in the
thermodynamic density frame. Mapping the ∆’s in the two frameworks, we find that the 20
independent b0,...,14, b16,...,20 coefficients map to 17 dissipative coefficients

1
kBT

�

ΛT 0
0 1

�







s00 s01 s02 s03
s01 s11 s12 s13
s02 s12 s22 s23
s03 s13 s23 s33







�

Λ 0
0 1

�

=







b0 + b1~v
2 b2 + b3~v

2 b6|~v|+ b7|~v|3 + 2b8|~v| b6|~v|
b2 + b3~v

2 b4 + b5~v
2 b10|~v|+ b11|~v|3 + 2b12|~v| b10|~v|

b6|~v|+ b7|~v|3 + 2b8|~v| b10|~v|+ b11|~v|3 + 2b12|~v| 2b14 + b16 + b17~v
4 + 2b18~v

2 + 4b19~v
2 b16 + b18~v

2

b6|~v| b10|~v| b16 + b18~v
2 b16 +

2
d−1 b14






,

19The signs of the coefficients γ1, γ3, γ4 in Π0
j in eq. (2.24) of [29] are incorrect, as they violate the Landau

frame conditions. We are unable to reproduce the non-hydrostatic combinations reported in eqs. (2.48)–(2.56)
in [29].
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1
kBT
ΛT





v00 v01 v02
v01 v11 v12
v02 v12 v22



Λ=





b0 b2 b8
b2 b4 b12
b8 b12 b14 + b19~v

2



 ,

1
kBT

t= b14 , (156)

where

Λ=





−µ/T 1 0
1/T 0 0
−|~u|/T 0 1



 , (157)

is the transformation matrix arising from converting ∂i(µ/T ), ∂i(1/T ), ∂i(u j/T ) basis to ∂i T ,
∂iµ, ∂iu j basis in [29]. The comparison also leads to 3 equality constraints20

b9 = b8 , b13 = b12 , b20 = b19 , (158)

which can be thought of as arising from requiring entropy production to be non-negative. To
map the hydrostatic c̃1,2,4,8 coefficients, we note that the non-canonical entropy current from
eqs. (2.30)-(2.32) of [29] is given by

s0
non-can = c̃1uk∂k~u

2 + c̃2

�

uk∂k
µ

T
+m1∂t ~u

2
�

+ c̃4∂kuk,

si
non-can = −ui c̃1∂t ~u

2 − c̃4∂tu
i + c̃8

�

uk∂kui − ui∂kuk
�

+m2 c̃2∂tu
i + c̃2ui

�

m4uk∂k~u
2 + uk∂k

µ

T
+ (m1 +m4)∂t ~u

2 +m3∂kuk
�

, (159)

where m1,2,3,4 are some known thermodynamic parameters. This can be compared to our
eq. (69), in the absence of background fields, using the equations of motion, and up to a total-
derivative shift of the entropy current s0

non-can → s0
non-can + ∂iX

i , si
non-can → si

non-can − ∂t X
i for

some X i that leaves the divergence of the entropy current invariant. This relates 3 independent
c̃1,2,4 coefficients to 3 hydrostatic coefficients F0,1,2 according to

F0 = c̃2 − T nX − T
∂ Y
∂ µ

,

F1 = −
µ

T
c̃2 − TsX − T

∂ Y
∂ T

,

F2 = T c̃1 − T m1 c̃2 −
1
2

TρX − T
∂ Y
∂ ~u2

, (160)

where

X = 2m1 c̃2

�

1
ρ
−
~u2

ρ

∂ ρ

∂ ε
− 2~u2 ∂ ρ

∂ ~π2

�

,

Y = c̃4 − 2~u2m1 c̃2

�

1−
ε+ p
ρ

∂ ρ

∂ ε
−

n
ρ

∂ ρ

∂ n
− 2ρ~u2 ∂ ρ

∂ ~π2

�

. (161)

We also get a constraint21

c̃8 = 0. (162)

20In eq. (2.33) of [29], the authors write the dissipation matrix in terms of ∂i T , ∂iµ, and ∂iu j , however, only
the symmetric derivatives of ui are non-hydrostatic and can contribute to dissipation. This leads to the said 3
constraints.

21An easy way to understand this constraint is by noting that the contribution to entropy-divergence coupled to
c̃8 does not vanish in equilibrium, and hence must be set to zero.

40

https://scipost.org
https://scipost.org/SciPostPhys.11.3.054


SciPost Phys. 11, 054 (2021)

To summarise, [29] reports a total of 29 coefficients in the constitutive relations σ̄, ᾱ, γ̄, π̄,
γ1,...,23 (related to our formalism according to eqs. (153) and (154)). Ref. [29] also classifies
20 possibly dissipative coefficients b0,...,14, b16,...,20 in the entropy production quadratic form, 4
possibly hydrostatic coefficients c̃1,2,4,8 in the non-canonical entropy current, along with 9 non-
hydrostatic non-dissipative coefficients that do not contribute to the non-canonical entropy
current or to entropy production. The ensuing second law analysis was not performed in
[29]. Accounting for the second law, we find 3 constraints among the coefficients b’s, given
in eq. (158), and one constraint among the coefficients c̃’s, given in eq. (162). Thus, the
final number of independent transport coefficients consists of 17 dissipative, 9 non-dissipative
non-hydrostatic, and 3 hydrostatic.

B Interaction vertices

In this appendix, we record the effective Lagrangian that accounts for interactions between
hydrodynamic and stochastic degrees of freedom. Taking into account only the ideal order
part of the Lagrangian from eq. (72), and expanding to cubic order in fluctuations, we obtain
the three-point interaction Lagrangian given by

L3 =
1
2
γi

nnδn2∂iϕa +
1
2
γi
εεδε

2∂iϕa + γ
i
nεδnδε∂iϕa

+ γi j
nπδnδπi∂ jϕa + γ

i j
επδεδπi∂ jϕa + γ

i jk
ππδπiδπ j∂kϕa

−
1
2
αi

nnδn2∂iX
t
a −

1
2
αi
εεδε

2∂iX
t
a −α

i
nεδnδε∂iX

t
a

−αi j
nπδnδπi∂ jX

t
a −α

i j
επδεδπi∂ jX

t
a −α

i jk
ππδπiδπ j∂kX t

a

+
1
2
β i j

nnδn2∂ jXai +
1
2
β i j
εεδε

2∂ jXai + β
i j
nεδnδε∂ jXai

+ β i jk
nπ δnδπi ∂ jXak + β

i jk
επ δεδπi ∂ jXak + β

i jkl
ππ δπiδπ j ∂l Xak . (163)

Here we have defined the following coupling structures

γi
nn = ρ

∂ 2n̂
∂ n2

ui , γi
εε = ρ

∂ 2n̂
∂ ε2

ui , γi
nε = ρ

∂ 2n̂
∂ n∂ ε

ui ,

γi j
nπ = 2ρ2 ∂ 2n̂

∂ n∂ ~π2
uiu j +

∂ n̂
∂ n
δi j , γi j

επ = 2ρ2 ∂ 2n̂
∂ ε∂ ~π2

uiu j +
∂ n̂
∂ ε
δi j ,

γi jk
ππ = 2ρ3 ∂ 2n̂

∂ ( ~π2)2
uiu juk +ρ

∂ n̂
∂ ~π2

(δi juk + 2u(iδ j)k) ,

αi
nn = ρ

∂ 2ŵ
∂ n2

ui , αi
εε = ρ

∂ 2ŵ
∂ ε2

ui , αi
nε = ρ

∂ 2ŵ
∂ n∂ ε

ui ,

αi j
nπ = 2ρ2 ∂ 2ŵ

∂ n∂ ~π2
uiu j +

∂ ŵ
∂ n
δi j , αi j

επ = 2ρ2 ∂ 2ŵ
∂ ε∂ ~π2

uiu j +
∂ ŵ
∂ ε
δi j ,

αi jk
ππ = 2ρ3 ∂ 2ŵ

∂ ( ~π2)2
uiu juk +ρ

∂ ŵ
∂ ~π2

(δi juk + 2u(iδ j)k) ,

β i j
nn = ρ

2 ∂
2ρ−1

∂ n2
uiu j +

∂ 2p
∂ n2

δi j , β i j
εε = ρ

2 ∂
2ρ−1

∂ ε2
uiu j +

∂ 2p
∂ ε2

δi j ,

β i j
nε = ρ

2 ∂
2ρ−1

∂ n∂ ε
uiu j +

∂ 2p
∂ n∂ ε

δi j ,

(164)
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β i jk
nπ = −

2
ρ

∂ ρ

∂ n
δi( juk) + 2ρ3 ∂

2ρ−1

∂ n∂ ~π2
uiu juk + 2ρ

∂ 2p
∂ n∂ ~π2

uiδ jk ,

β i jk
επ = −

2
ρ

∂ ρ

∂ ε
δi( juk) + 2ρ3 ∂

2ρ−1

∂ ε∂ ~π2
uiu juk + 2ρ

∂ 2p
∂ ε∂ ~π2

uiδ jk,

β i jkl
ππ =

1
ρ
δikδ jl +

∂ p
∂ ~π2

δi jδkl −
∂ ρ

∂ ~π2
(4u(iδ j)(kul) +δi jukul)

+2ρ2 ∂ 2p
∂ ( ~π2)2

uiu jδkl + 2ρ4 ∂
2ρ−1

∂ ( ~π2)2
uiu jukul . (165)

This procedure can analogously be iterated to obtain higher derivative and higher-point inter-
actions (see [11] for the discussion in Galilean case). We leave the analysis of the effects of
(163) on hydrodynamic equations of motion and correlation functions to future work.
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