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Abstract

We consider the time evolution of local observables after an interaction quench in the
repulsive Lieb-Liniger model. The system is initialized in the ground state for vanish-
ing interaction and then time-evolved with the Lieb-Liniger Hamiltonian for large, finite
interacting strength c. We employ the Quench Action approach to express the full time
evolution of local observables in terms of sums over energy eigenstates and then de-
rive the leading terms of a 1/c expansion for several one and two-point functions as a
function of time t > 0 after the quantum quench. We observe delicate cancellations of
contributions to the spectral sums that depend on the details of the choice of represen-
tative state in the Quench Action approach and our final results are independent of this
choice. Our results provide a highly non-trivial confirmation of the typicality assump-
tions underlying the Quench Action approach.
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1 Introduction

The non-equilibrium dynamics in isolated many-particle quantum systems has attracted a great
deal of attention over the last decade [1–6]. These developments were driven by the abil-
ity to realize almost isolated many-particle quantum systems using trapped, ultra-cold atoms
and investigate their time evolution when driven out of equilibrium in exquisite detail, see
e.g. Refs [8–18]. It was realized early on that conservation laws play a crucial role in the
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late time relaxational behaviour of isolated systems [9, 19]. This implies in particular that
in the thermodynamic limit integrable systems with extensive numbers of conservation laws
will typically relax to non-thermal stationary states [20–40]. The full time evolution of local
observables in integrable models is equally interesting, but significantly harder to determine.
Early work focused on rational conformal field theories [5, 41, 42] and non-interacting mod-
els [20,43–45]. The low density regime after weak quantum quenches has been analyzed by
means of linked-cluster expansions [43,46–49] and semiclassical methods [50–52]. Arguably
the method of choice for studying the time evolution of local operators in interacting inte-
grable models is the so-called Quench-Action approach [24, 53]. To date it mostly has been
applied to determine and characterize the stationary state [27–30, 33, 35–38]. Exceptions
are Refs [47], [54] and [55], which address respectively the asymptotic late-time regimes af-
ter quenches to the sine-Gordon, Lieb-Liniger and transverse field Ising models respectively.
According to the Quench-Action approach the expectation values of local operators after a
quantum quench from an initial state |Ψ〉 are given by

lim
L→∞

〈O (t)〉= lim
L→∞

�〈Ψ |O (t)|Φs〉
2 〈Ψ|Φs〉

+
〈Φs |O (t)|Ψ〉

2 〈Φs|Ψ〉

�

. (1)

Here L denotes the system size, the so-called representative state |Φs〉 is a simultaneous eigen-
state of the Hamiltonian and of the (quasi)local [34] conservation laws I (n) of the theory under
consideration, such that it correctly reproduces the extensive parts of the expectation values
of the I (n) in the initial state

lim
L→∞

〈Ψ|I (n)|Ψ〉
L

= lim
L→∞

〈Φs|I (n)|Φs〉
L

. (2)

The structure of (1) is similar to that of response functions in equilibrium and provides a
spectral representation in terms of (normalized) energy eigenstates |n〉 by writing

〈Ψ|O (t) |Φs〉=
∑

n

〈Ψ|n〉〈n |O (0)|Φs〉 ei t(En−Es) . (3)

In practice the Quench Action approach faces two challenges:

• It requires knowledge of the overlaps 〈Ψ|n〉 between the initial state and energy eigen-
states. This is known as the “initial state problem”. To date such overlaps are known for
a number of specific examples only [56–63], but many of these are physically interesting.

• Determining the time evolution requires carrying out spectral sums like (3). Given that
these generally involve an exponentially (in system size) large number of terms this is a
formidable challenge.

In this work we focus on the second of these problems, namely how to extract the time de-
pendence of local observables after a quantum quench from the spectral representation. We
consider the case of a quantum quench to the repulsive Lieb-Liniger model, and bring to bear
strong-coupling expansion methods we recently developed in the context of equilibrium re-
sponse functions [64].

1.1 Lieb-Liniger model

We consider the Lieb-Liniger model [65–67]

H =

∫ L

0

dx
�

ψ†(x)
�

−
ħh2

2m
d2

d x2

�

ψ(x) + cψ†(x)ψ†(x)ψ(x)ψ(x)
�

, (4)
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where ψ(x) is a canonical Bose field satisfying equal-time commutation relations

[ψ(x),ψ†(y)] = δ(x − y) . (5)

In the following we set ħh= 2m= 1, impose periodic boundary conditions and restrict ourselves
to the repulsive case c > 0. For later convenience we define the local operators of interest,
namely the density operator at position x and the interaction potential

σ(x) =ψ†(x)ψ(x) ,

σ2(x) =
�

ψ†(x)
�2�
ψ(x)

�2
. (6)

The Lieb-Liniger model is solvable by the Bethe ansatz [65–67]. Its eigenfunctions can be
parametrized by N rapidity variables λ1, ...,λN that on a ring of radius L satisfy a set of quan-
tization conditions known as “Bethe equations”

λk

2π
=

Ik

L
−

1
L

N
∑

j=1

1
π

arctan
λk −λ j

c
, k = 1, . . . , N . (7)

Here Ik are integer if N is odd and half-odd integer if N is even. The corresponding eigenstate
|λλλ〉 can be written as

|λλλ〉= B(λ1)...B(λN )|0〉 , (8)

where B(λ) is a creation operator acting on a particular reference state |0〉. The eigenvalues
of the Hamiltonian and other conserved quantities are expressed in terms of the rapidities as
well. For example the energy E(λλλ) and momentum P(λλλ) read

E(λλλ) =
N
∑

i=1

λ2
i , P(λλλ) =

N
∑

i=1

λi . (9)

For c > 0 all the solutions λi to the Bethe equations are real [67].

1.2 Quench protocol and observables of interest

Following [29] we consider the following quantum quench protocol. We assume that the
system is prepared in the Bose-Einstein condensate (BEC) ground state for N particles in the
absence of interactions

|ΨBEC〉=
1

p
N !LN

∫ L

0

dx1...

∫ L

0

dxNψ
†(x1)...ψ

†(xN )|0〉 . (10)

At t = 0 we then suddenly turn on the interactions, so that for t > 0 the time evolution of the
system |Ψ(t)〉 is governed by the Hamiltonian (4)

|Ψ(t)〉= e−i tH |ΨBEC〉 . (11)

Our aim is to determine the full time evolution of a number of different observables after
the quench in the framework of the systematic 1/c-expansion developed in [64]. We have
considered the following one and two-point functions:

• One-point function of the interaction potential

〈σ2(0)〉t ≡
〈Ψ(t)|σ2(0)|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

. (12)
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• Density-density correlation function

〈σ(x)σ(0)〉t ≡
〈Ψ(t)|σ(x)σ(0)|Ψ(t)〉

〈Ψ(t)|Ψ(t)〉
. (13)

• Steady-state expectation value of the two-point function of the interaction potential

〈σ2(x ,τ)σ2(0,0)〉∞ ≡ lim
t→∞

〈Ψ(t)|σ2(x ,τ)σ2(0,0)|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉

. (14)

Here we have defined σ2(x ,τ) = eiHτσ2(x)e−iHτ. We note that we use a different
notation for the time difference τ to avoid confusion with the time t according to which
the system evolves after the quench. The analogous two-point function for the density
operator was derived in [64] up to order 1/c2.

2 Summary of results

As the derivations of our results are quite technical we start by presenting our final answers
and discuss their physical implications. All correlators are expressed in terms of distribution
functions of particles ρ(λ) and holes ρh(λ) defined as follows [29]

ρ(λ) = a(λ/c)ρh(λ) =
τ

4π
�

1+ a(λ/c)
�

da(λ/c)
dτ

, (15)

where τ= D
c and

a(x) =
2πτ

x sinh(2πx)
I1−2i x(4

p
τ)I1+2i x(4

p
τ) , (16)

with I the modified Bessel function. The particle density D is related to ρ(λ) by

D =
∫ ∞

−∞
ρ(x)dx . (17)

2.1 Relaxation of the one-point function 〈σ2(0)〉t
Our final result for the time evolution of the interaction potential σ2(0) after the quench, valid
at all finite times t > 0 and expanded in 1/c up to and including order O(c−4) is

〈σ2(0)〉t − 〈σ2(0)〉∞ =

lim
ε→0

16
c2(1+ 2D/c)

∫ ∞

0

∫ ∞

0

λ2(1− 4µ2

c2 ) cos(2t(λ2 −µ2))ρ(λ)ρh(µ)e
−εµ2

dλdµ

+O(c−5) .

(18)

The steady-state value 〈σ2(0)〉∞ has been previously calculated in [29]. From (18) the late-
time asymptotics can be straightforwardly extracted with a saddle point approximation

〈σ2(0)〉t − 〈σ2(0)〉∞ =
1
t3

π

16(1+ 2D/c)c2

�

ρ(0)ρ′′h (0)− 3ρ′′(0)ρh(0)−
8ρ(0)ρh(0)

c2

�

+O(t−4) +O(c−5) .
(19)

Here ρ′′(0) denotes the second derivative of ρ(λ) evaluated at λ = 0. The asymptotic t−3

dependence is in agreement with a previous conjecture [54]. However, our results show that

5

https://scipost.org
https://scipost.org/SciPostPhys.11.3.068


SciPost Phys. 11, 068 (2021)

this regime is reached only at rather late times when the expectation value is already negligibly
small. This is shown in Figure 1, where we plot

g2(t) =
〈σ2(0)〉t

D2
. (20)

1 2 3 4 5

0.2

0.4

0.6

0.8

t

g 2
(t
)−

g 2
(∞
)

−2 −1 0 1 2
−10

−5

0

5

log t
lo

g(
g 2
(t
)−

g 2
(∞
))

Figure 1: Left: g2(t) − g2(∞) as a function of t (blue thick line), for c = 3 and
D = 0.16. The dotted red line is the result for the leading asymptotics∝ t−3. The
inset shows the same quantities on a logarithmic scale.

Our 1/c-expansion provides us with the first few terms of an expression of the form
g2(t) =

∑∞
n=2 γ

−nan(t), where γ = c
D and the functions an(t) incorporate non-perturbative

summations of certain terms at all orders in 1/c . In order to assess the parameter range in
which the series may be convergent we consider the ratios

rn(t) =
�

�

�

an(t)
a2(t)

�

�

�

1
n−2

, n= 3, 4. (21)

In Figure 2 we plots these ratios as functions of t for c = 3 and D = 0.16. We see that both

5 10 15

2

4

6

8

t

r 3
,4
(t
)

Figure 2: r3 (resp. r4) as a function of t, in light (resp. dark) green. These ratios
give an estimate of the smallest value of γ for which the series is convergent.

ratios grow at short times, indicating that the series is not likely to be uniformly convergent
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near t = 0. Moreover, it follows from the fact that g2(0) = 1 while g2(t) =O(c−2) for all t > 0
that a resummation of the series is required to capture limit t → 0. For t § 1 the results for
r3,4(t) suggest that the series could be convergent for γ § 4. As a comparison, we recall that
the series in γ for the ground state energy density is convergent for γ > 4.527 [68].

2.2 Relaxation of the two-point function 〈σ(x)σ(0)〉t
We find that the leading contributions in the 1/c-expansion of the density-density correlation
function can be cast in the form

〈σ(x)σ(0)〉t = 〈σ(x)σ(0)〉∞

+(1+ 2D/c)2
∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ

µ
cos(x ′(µ−λ)) cos(2t(λ2 −µ2))

−
2
c

sgn (x)

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ(λ−µ)
µ

sin(x ′(λ−µ)) cos(2t(λ2 −µ2))

+
4
c

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρ(ν) F1(λ,µ,ν; x ′) cos(2t(λ2 −µ2))

+
4
c

∫ ∞

−∞
dλρ(λ)−

∫

dνρ(ν)−
∫

dµρh(µ) F2(λ,µ,ν; x ′) cos(2t(λ2 −µ2)) +O(c−2) ,

(22)

where

x ′ = x
�

1+
2D
c

�

, (23)

and

F2(λ,µ,ν; x) =
�

λ(ν−λ)
ν(µ− ν)

+
ν−λ
λ+µ

�

cos(x(ν−λ)) +
�

ν(ν−µ)
µ(λ− ν)

+
ν−µ
λ+µ

�

cos(x(ν−µ)) ,

F1(λ,µ,ν; x) =
�

λ(µ−λ)
µ(ν−µ)

+
λ(λ−µ)
µ(ν−λ)

�

cos(x(µ−λ)). (24)

Here −
∫

denotes a principal value integral defined as

−
∫

f (λ)
µ−λ

dλ≡ lim
ε→0

∫

|λ−µ|>ε

f (λ)
µ−λ

dλ . (25)

The limit c→∞ of (22) was previously computed in [29]. The density-density correlator
(22) is shown in Figs 3 and 4.

We see that for the chosen parameters D = 1 and c = 10 the effects of the O(c−1) term
are clearly visible and significantly modify the c = ∞ result. In particular the oscillatory
behaviour as a function of distance for short times becomes more pronounced for smaller
values of c. Perhaps the most striking feature of Fig. 3 is the apparent absence of any light cone
effect [42]. This can be understood by noting that (i) our initial state has an infinite correlation
length and any light cone like feature would therefore be weak; (ii) the local Hilbert space is
infinite dimensional and the dispersion relation of elementary excitations unbounded. Hence
the Lieb-Robinson bound [69] does not apply and “superluminal” effects [70] are allowed.

An alternative representation of (22) more suitable for numerical evaluations and an anal-
ysis of the x → 0 and t → 0 limits is presented in Appendix D.

The large x and t asymptotics of (22) at fixed ratio α= x
4t can be determined by a station-

ary phase approximation, which results in

〈σ(x)σ(0)〉t = (1+
2D
c )

2 π

2|t|
ρ(α′)ρh(α

′) + o(t−1) , (26)

7
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Figure 3: Density plot of 〈σ(x)σ(0)〉t (22) as a function of x , t for D = 1, c =∞
(left) and c = 10 (right). The color coding is the same for both plots.

0.5

1.0

1.5

〈σ
(x
)σ
(0
)〉

t

1 2 3 4

0.5

1.0

1.5

x

〈σ
(x
)σ
(0
)〉

t

1 2 3 4
x

1 2 3 4
x

Figure 4: Two-point function 〈σ(x)σ(0)〉t (22) as a function of x , for D = 1, c =∞
(red) and c = 10 (blue), for different values of t = 0.025,0.05, 0.1,0.2, 0.3,∞ (in
reading direction).

with α′ = x ′
4t .

2.3 Connected two-point function 〈σ2(x ,τ)σ2(0,0)〉∞,c in the stationary state

We discussed how to determine the non-equal time density-density correlation function in an
arbitrary energy eigenstate described by a root density ρ(λ) in our previous work [64]. The
results in this Section are thus valid for a generic root densityρ, the steady state one (15) being
a particular case. Applying the same method to the connected dynamical two-point function
of σ2(x) gives the following result
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〈σ2 (x ,τ)σ2 (0, 0)〉c = lim
ε→0

16
c4

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρh(µ) G(λ,µ) eiτ(λ2−µ2)+i x(µ−λ)−εµ2

dλdµ

+ lim
ε→0

16
c4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρ(λ)ρh(µ)ρ(u)ρh(v)(λ− u)2(µ− v)2

× eiτ(λ2−µ2)+i x(µ−λ)+iτ(u2−v2)+i x(v−u)−εµ2−εv2
dλdµdudv

+O(c−5) , (27)

where we have defined

G(λ,µ) =
�

E +Dλ2 − 2λP + (µ−λ)(Dλ−P)
�2

,

P =
∫ ∞

−∞
λρ(λ)dλ , E =

∫ ∞

−∞
λ2ρ(λ)dλ . (28)

The result for the connected two-point function in the stationary state reached at late times
after the quench is obtained by substituting the particle and hole densities (15) into (27) and
(28). The leading asymptotic behaviour for large x and τ with α = x

2τ kept fixed can be
obtained by a stationary phase approximation

〈σ2(x ,τ)σ2(0,0)〉c =
16π
c4|τ|

ρ(α)ρh(α)(Dα2 − 2Pα+ E)2 +O(τ−2) +O(c−5) . (29)

These results can be compared with predictions of Generalized Hydrodynamics (GHD) [71].
According to these the leading large time and distance asymptotics of connected correlations
between two local observables O1 and O2 is

〈O1(x ,τ)O2(0, 0)〉c =
∫ ∞

−∞
δ(x − veff(λ)τ)

ρ(λ)ρh(λ)
ρ(λ) +ρh(λ)

VO1(λ)VO2(λ)dλ+ o(τ−1) , (30)

where VO(λ) is the so-called hydrodynamic projection of the operator O, and veff(λ) the
effective velocity associated with the macro-state defined by the particle and hole densities
ρ(λ) and ρh(λ). The hydrodynamic projection Vσ2(λ) of σ2 has been determined in [71]

Vσ2(λ) =
2
π

∫ ∞

−∞

ρ(µ)
ρ(µ) +ρh(µ)

gdr
µ (λ)

hdr
1 (λ)

(hdr
2 (µ)h

dr
1 (λ)− hdr

1 (µ)h
dr
2 (λ))dµ . (31)

Here hn(λ) = λn−1, gµ(λ) =
µ−λ

(λ−µ)2+c2 , and the dressing operation hdr is defined by

hdr(λ) = h(λ) +
1

2π

∫ ∞

−∞

2c
c2 + (λ−µ)2

ρ(µ)
ρ(µ) +ρh(µ)

hdr(µ)dµ . (32)

We find that the asymptotics (29) agrees with this GHD prediction at leading order in 1/c.
The dynamical two-point function of σ2(x) is related to the Drude weight D and the On-

sager coefficient L by

1
2

∫ ∞

−∞
x2 [〈σ2(x ,τ)σ2(0,0)〉+ 〈σ2(x ,−τ)σ2(0, 0)〉]dx = Dτ2 +L|τ|+ o(τ) . (33)
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In contrast to the density-density correlator the two-point function of σ2(x) is expected to
exhibit diffusive behaviour, i.e. have a non-vanishing Onsager coefficient L 6= 0. Our expres-
sion for the two point function translates into the following results for D and L

D =
128π

c4

∫ ∞

−∞
λ2ρ(λ)ρh(λ)[E +Dλ2 − 2λP]2dλ+O(c−5) ,

L=O(c−5) . (34)

This shows that higher orders in the 1/c-expansion are required to determine the Onsager co-
efficient. We note that this specific result holds only for root densities ρ that decay sufficiently
fast at infinity. In the case of the steady state root density (15), because of the slow decay of
the density, the next terms in the 1/c expansion should be re-summed to yield a convergent
integral.

3 Quench Action approach and 1/c expansion

In this Section we discuss the implementation of a 1/c expansion of the Quench Action ap-
proach [24], which we will then apply to several observables of interest in the remainder of
the paper.

3.1 The Quench Action approach

The time evolution of the expectation value of any operator O can always be expressed as a
double sum over a basis of energy eigenstates

〈O〉t =
∑

λλλ,µµµ

〈ΨBEC|λλλ〉〈λλλ|O|µµµ〉〈µµµ|ΨBEC〉
〈λλλ|λλλ〉〈µµµ|µµµ〉

ei t(E(λλλ)−E(µµµ)) . (35)

Here we have assumed that 〈ΨBEC|ΨBEC〉= 1. The Quench Action approach [24] posits that one
of the two sums in (35) is completely dominated by states around a saddle point characterized
by a certain root distribution ρs that is fixed by the overlaps. This allows one to rewrite (35)
in the form

lim
L→∞

〈O〉t = lim
L→∞

1
|SL|

∑

λλλ∈SL

Re
�

∑

µµµ

〈ΨBEC|µµµ〉〈λλλ|O|µµµ〉
〈ΨBEC|λλλ〉〈µµµ|µµµ〉

ei t(E(λλλ)−E(µµµ))
�

, (36)

i.e. a generalized micro-canonical average [24,72] over a set SL of microstates corresponding
to the root density ρs. Employing typicality ideas the micro-canonical average is then replaced
by the expectation value with respect to a single “representative state” |λλλ〉 [24]

lim
L→∞

〈O〉t = lim
L→∞

Re
�

∑

µµµ

〈ΨBEC|µµµ〉〈λλλ|O|µµµ〉
〈ΨBEC|λλλ〉〈µµµ|µµµ〉

ei t(E(λλλ)−E(µµµ))
�

. (37)

We note that this last step assumes that in the thermodynamic limit (37) depends on the
representative state |λλλ〉 only through its root density ρ(λ).

3.2 “Initial data” for the quench protocol of interest

To be of practical use the representation (37) requires closed-form expressions for the overlaps
〈ΨBEC|λλλ〉. For our quench protocol an efficient representation for the overlaps was derived
in [28, 29]. Importantly, the overlaps are non-zero only for “pair” states, i.e. states whose
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rapidities are of the form −λN/2, ...,−λ1,λ1, ...,λN/2 with 0 < λ j ∀ j. We will denote a set of
positive λ j by λλλ > 0. We will use the notation λ̄̄λ̄λ = (−λλλ) ∪λλλ for such sets of rapidities. The
overlaps are then given by

〈ΨBEC|λ̄̄λ̄λ〉
Æ

〈λ̄̄λ̄λ|λ̄̄λ̄λ〉
= (−1)N/2

√

√N !
LN

√

√det G+(λλλ)
det G−(λλλ)

1
∏N/2

j=1 λ j

È

λ2
j

c2 +
1
4

, (38)

where G±(λλλ) are (N/2)× (N/2) matrices of the form

G±i j(λλλ) =δi j

�

1+
1
L

N/2
∑

k=1

2c
c2 + (λi −λk)2

+
2c

c2 + (λi +λk)2

�

−
�

1
L

2c
c2 + (λi −λ j)2

±
1
L

2c
c2 + (λi +λ j)2

�

. (39)

For our quench protocol the saddle point root distribution was determined in Ref. [29] and is
given in (15).

3.3 The 1/c expansion

Our objective is to combine the Quench Action approach to non-equilibrium dynamics (36)
with a strong coupling expansion around c =∞. A detailed exposition of the 1/c expansion
technique for dynamical correlation functions in equilibrium has been given in [64]. In the
following we recall the key steps of the method and then extend it to the out-of-equilibrium
case.

In order to facilitate the 1/c-expansion of the form factors and Bethe equations we first
fix an arbitrary, large Λ > 0 that will be sent to ∞ at the end of the calculation. We then
select an arbitrary averaging state λλλ by fixing its Bethe numbers III , impose the constraint that
∀i, |λi|< Λ, and define the following overlap-weighted spectral sum

〈O〉[λλλ],Λt ≡ Re
�

∑

µµµ
∀i, |µi |<Λ

〈ΨBEC|µµµ〉〈λλλ|O|µµµ〉
〈ΨBEC|λλλ〉〈µµµ|µµµ〉

ei t(E(λλλ)−E(µµµ))
�

. (40)

The overlap-weighted form factor can then be expanded in powers of 1/c at fixed L, III

〈ΨBEC|µµµ〉〈λλλ|O|µµµ〉
〈ΨBEC|λλλ〉〈µµµ|µµµ〉

=
∞
∑

n=0

Fn(III ,JJJ)
cn

, (41)

where JJJ denotes the Bethe numbers of µµµ. We also expand the argument of the phase

E(λλλ)− E(µµµ) =
∞
∑

n=0

En(III)− En(JJJ)
cn

, (42)

but do not expand the phase ei t(E(λλλ)−E(µµµ)) itself in powers of 1/c. The truncation of the resulting
series at a given order O(c−m) defines the m-th term of our expansion. Once this truncation has
been done, the thermodynamic limit and (if necessary) the average in (36) can be performed.
By construction, the result depends only on the root density ρ of the fixed averaging state λλλ.

Finally one would like to take the limit Λ→∞. As we will see, the thermodynamic limit
of the quantity 〈O〉[λλλ],Λt at finite Λ> 0 involves integrals of the form

In(Λ|t, x) =

∫ Λ

−Λ
µne−i tµ2+i xµdµ . (43)
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The limit Λ → ∞ of these integrals for n > 0 only exists in a distribution sense, i.e. their
integral with any smooth function of x , t has a well-defined limit when Λ→∞. The resulting
limits are denoted by In(t, x) and have been worked out in [64] for n= 0,1, 2

I1(t, x) =
x
2t

I0(x , t) ,

I2(t, x) =
�

� x
2t

�2
+

1
2i t

�

I0(x , t) ,

I0(t, x) =

∫ ∞

−∞
e−i tµ2+i xµdµ . (44)

An equivalent representation is

In(t, x) = lim
ε→0

∫ ∞

−∞
µne−i tµ2+i xµ−εµ2

dµ . (45)

The process described above provides closed-form expressions at order O(c−m) for the quan-
tities

〈O〉[ρ]t ≡ lim
Λ→∞

lim
L→∞

1
|SL|

∑

λλλ∈SL

〈O〉[λλλ],Λt . (46)

Finally, in order to obtain the out-of-equilibrium time evolution (36) this result needs to be
evaluated for the saddle point root density ρ describing the quench protocol of interest.

4 Calculation of the one-point function 〈σ2(0)〉t

In this Section we apply the Quench Action approach combined with a 1/c expansion to com-
pute the one-point function 〈σ2(0)〉t .

4.1 The form factors

In order to evaluate the expression (36), one requires a closed-form expression for the form
factors of σ2 between energy eigenstates. In the case of interest, because of the structure of
the non-vanishing overlaps with the initial state |ΨBEC〉, the states entering (36) have a pair
structure and will be denoted |λ̄̄λ̄λ〉 and |µ̄̄µ̄µ〉. Hence they have same (vanishing) momentum. In
this situation the normalized form factors have been calculated previously and read [79]

〈µµµ|σ2 (0) |λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉
=

(−i)N+1(−1)N(N−1)/2

2cLN
p

det G(λλλ)det G(µµµ)

(E(µµµ)− E(λλλ))2

N

∏

j 6=p

(V+j − V−j )

×

∏

i< j |λi −λ j|
∏

i< j |µi −µ j|
∏

i, j(λi −µ j)

√

√

√

∏

i, j

λi −λ j + ic

µi −µ j + ic
det

i, j=1,...,N

�

δi j + Ui j

�

. (47)

Here 1≤ p ≤ N is an arbitrary integer and
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V±i =
N
∏

k=1

µk −λi ± ic
λk −λi ± ic

,

U jk =
i

V+j − V−j

∏

m(µm −λ j)
∏

m 6= j(λm −λ j)

� 2c
c2 + (λ j −λk)2

−
2c

c2 + (λp −λk)2
�

+
i

V+j − V−j

2c
c2 + (λp −λk)2

,

G(λλλ)i j =δi j

�

1+
1
L

N
∑

k=1

2c
c2 + (λi −λk)2

�

−
1
L

2c
c2 + (λi −λ j)2

. (48)

4.2 1/c expansion and particle-hole excitations

Employing a saddle-point argument in (37) shows that in the limit t →∞ we have

〈O〉∞ ≡ lim
t→∞

lim
L→∞

〈O〉t = lim
L→∞

Re
〈λ̄̄λ̄λ|O|λ̄̄λ̄λ〉
〈λ̄̄λ̄λ|λ̄̄λ̄λ〉

. (49)

We use this and the pair structure of the states entering (37) to rewrite (37) as

lim
L→∞

〈O〉t = 〈O〉∞ + lim
L→∞

Re
∑

µµµ>0
µµµ 6=λλλ

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|O|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉

e2i t(E(λλλ)−E(µµµ)) . (50)

We now analyze this expression in terms of a 1/c-expansion [64].
In the c→∞ limit G± become the identity matrix and the ratio of overlaps takes a simple

form

〈ΨBEC|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉

√

√

√〈λ̄̄λ̄λ|λ̄̄λ̄λ〉
〈µ̄̄µ̄µ|µ̄̄µ̄µ〉

=
N/2
∏

j=1

λ j

µ j
+O(c−1) . (51)

Next we turn to the 1/c-expansion of the form factor. It is convenient to introduce some
shorthand notations

δE = E(µ̄̄µ̄µ)− E(λ̄̄λ̄λ) , δQn =Qn(µ̄̄µ̄µ)−Qn(λ̄̄λ̄λ) , (52)

where

Qn(λ̄̄λ̄λ) =
N
∑

k=1

λn
k . (53)

The rapidities {λi} and {µ j} are solutions to the Bethe equations (7) with Bethe numbers I j
and J j respectively. The 1/c-expansion of the rapidity differences µi −λi is given by

µi −λi =

¨

2π
L (Ji − Ii) +O(c−1) , if Ji 6= Ii

2λiδE
c3 L +O(c−4) , otherwise

. (54)

The 1/c-expansion of V±j is computed by writing

V±j = exp

� N
∑

k=1

log(1±
µk −λ j

ic
)− log(1±

λk −λ j

ic
)

�

, (55)
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and then Taylor expanding the exponential and the logarithms. For a pair state this gives

V+j − V−j =
2λ j

ic3
δE +

iλ j

c5

�

2δQ4 + 4λ2
jδE − (δE)2

�

+O(c−6) . (56)

Combining (56) and (54) we obtain that the large c limit of the matrix U is given by

U jk = −
c2

λ jδE
+O(c0) . (57)

To evaluate the determinant appearing in the form factor we use that for an invertible matrix
A and two vectors u, v we have

det(A+ uv t) = (1+ v tA−1u)det A , (58)

which implies that
det
i, j
(δi j + Ui j) =O(c2) . (59)

Let us now introduce
ν= N − |{Ii} ∩ {J j}| , (60)

i.e. the number of Bethe numbers associated with the rapidities λ̄̄λ̄λ that are distinct from the
Bethe numbers corresponding to the rapidities µ̄̄µ̄µ. Using (54) we find

∏

i< j(λi −λ j)
∏

i< j(µi −µ j)
∏

i, j(λi −µ j)
=O(c3(N−ν)) . (61)

Putting everything together it follows that

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|σ2(0)|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉

=O(c4−3ν) . (62)

This establishes that the 1/c-expansion of the spectral sum (50) corresponds to an expansion
in the number of particle-hole excitations. Since ν has to be even because of the pair structure
of the states, the leading order term for µ̄̄µ̄µ 6= λ̄̄λ̄λ is obtained for ν = 2, i.e. two particle-hole
excitations and is of order O(c−2). The next terms involve four particle-hole excitations and
contribute only at order O(c−8). Since our goal is to compute the relaxation dynamics up to
order c−4, we can restrict our analysis to two particle-hole excitations.

4.3 Two particle-hole excitations

We now fix the rapidities λλλ > 0 of the representative state and denote its Bethe numbers by
{I j}. We then consider µµµ > 0 such that the corresponding Bethe numbers J j are equal to I j
except for

Ja = Ia + n . (63)

The usual exclusion principle in the Bethe ansatz imposes that n 6= 0, Ja > 0 and ∀i = 1, ..., N ,
Ja 6= Ii . The Bethe state |µ̄µµ〉 constructed in this way is a pair state that corresponds to a two
particle-hole excitation over the representative state |λ̄λλ〉. Taking into account only such states
in the spectral sum (50) provides a 1/c-expansion up to and including O(c−4).

Taking the difference between Bethe equations for the roots µi and λi and using the pair
structure we obtain the following expansion for the positive Bethe roots with i 6= a

µi −λi =

¨ 2λi
L′c3δE − 2λi

c5 L′ (δQ4 + 2λ2
i δE) +O(c−6) , if i 6= a

2πn
L′ +

2
3c3 L′

�

N(µ3
a −λ

3
a) + 3λaδE + 6πn

L E(µ̄µµ)
�

+O(c−5) , if i = a .
(64)
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Here we have introduced the convenient notation

L′ = L
�

1+
2D
c

�

. (65)

We next turn to the 1/c-expansion of the matrix U . We choose λp = −λa, so that the first term
in U jk is O(c−1) except for j = a. This gives

U jk =δ ja
iβ

V+a − V−a

�

2c
c2 + (λa −λk)2

−
2c

c2 + (λa +λk)2

�

+
2ic

(V+j − V−j )(c
2 + (λa +λk)2)

+O(c−1) , (66)

where

β =
2πn
L′

�

1+
πn
λa L′

�

=
δE
4λa

+O(c−3) . (67)

We then employ the following identity obtained from (58)

det
j,k
(δ jk +mkδ ja + u j vk) = 1+ma +

∑

j

u j v j +
∑

j 6=a

u j

�

v jma −m j va

�

, (68)

to obtain

det(I + U) =1+
iβ

V+a − V−a

�

2
c
−

2c
c2 + 4λ2

a

�

+ i f (−λa) +
β

V+a − V−a

2c
c2 + 4λ2

a
f (λa)

−
β

V+a − V−a

2
c

f (−λa) +O(c−1) . (69)

Here we have defined

f (z) =
∑

j

1
V+j − V−j

2c
c2 + (z −λ j)2

. (70)

Using that V+k − V−k = −(V
+
j − V−j ) if λk = −λ j we have

f (z) =

�

4z
c3
−

8z3

c5
+O(c−7)

�

∑

j

λ j

V+j − V−j
+
�

−
8z
c5
+O(c−7)

�

∑

j

λ3
j

V+j − V−j
. (71)

Using (56) we then obtain the following result for the 1/c-expansion of f (z)

f (z) = z
2iN
δE

�

1+
δQ4
δE −

δE
2 − 2z2

c2

�

+O(c−3) . (72)

Noting that
δQ4

δE
=
δE
2
+ 2λ2

a +O(c−1) , (73)

we finally arrive at the following expression for the determinant appearing in the form factor

det(I + U) = −
Nc2

λaδE
+O(c−1) . (74)
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The expansion of the remaining terms in the form factor is more straightforward. We find
∏

i< j |λi −λ j|
∏

i< j |µi −µ j|
∏

i 6= j(λi −µ j)
= −4(−1)N/2

|λa(λa +
2πn
L′ )|

(2λa +
2πn
L′ )2

+O(c−3) (75)

√

√

√

∏

i, j

λi −λ j + ic

µi −µ j + ic
= 1−

NδE
2c2

+O(c−3) (76)

V+i − V−i
µi −λi

= −i L′(1+
δE
2c2
) +O(c−3) , i 6= a,−a (77)

δE = 2
2πn
L′

�

2λa +
2πn
L′

�

+O(c−3)

det G(λλλ) = det G(µµµ) =
�

1+
2D
c

�N−1

+O(c−3) . (78)

Putting everything together we obtain

〈λ̄̄λ̄λ|σ2(0)|µ̄̄µ̄µ〉
Æ

〈µ̄̄µ̄µ|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|λ̄̄λ̄λ〉
=

16|λa(λa +
2πn
L′ )|

c2 L2(1+ 2D/c)

�

1−
2
c2

�

(2πn
L )

2 + 4πn
L λa + 2λ2

a

�

�

+O(c−5) . (79)

The expansion of the ratio of the normalized overlaps is similarly straightforward

〈ΨBEC|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉

√

√

√〈λ̄̄λ̄λ|λ̄̄λ̄λ〉
〈µ̄̄µ̄µ|µ̄̄µ̄µ〉

=
λa

λa +
2πn
L′

�

1−
2
c2

�

2πn
L′

�2

−
8πn
L′c2

λa

�

+O(c−3) . (80)

Our final result for the 1/c-expansion of the summand in (36) is then

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|σ2(0)|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉

=
16λ2

a

c2 L2(1+ 2D/c)



1−
4
�

λa +
2πn

L

�2

c2



+O(c−5) . (81)

This is a regular function of λa and n and in the thermodynamic limit the sums over λa and n
can therefore be turned into integrals

〈σ2(0)〉t =〈σ2(0)〉∞ (82)

+ lim
ε→0

16

c2(1+ 2D
c )

∫ ∞

0

λ2(1− 4µ2

c2 ) cos
�

2t(λ2 −µ2)
�

ρ(λ)ρh(µ)e
−εµ2

dλdµ

+O(c−5) . (83)

We refer the reader to Section 3.3 for the ε → 0 limit. Importantly (83) depends on the
representative state only via the particle and hole densities. This shows that the typicality
assumption underlying (37) indeed holds, at least to the order of the 1/c-expansion we are
working in.

5 Calculation of the two-point function 〈σ(x)σ(0)〉t

5.1 Spectral representation

The expression (36) for the time evolution obtained within the Quench Action framework
is expected to hold for any “weak” operator [53] O, which includes σ(x)σ(0). Inserting a
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resolution of the identity between the two density operators then gives

〈σ(x)σ(0)〉t =
1
|SL|

Re
�

∑

λλλ∈SL

∑

µµµ>0

∑

ννν

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|σ(0)|ννν〉〈ννν|σ(0)|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉〈ννν|ννν〉

e2i t(E(λλλ)−E(µµµ))+i x P(ννν)
�

.

(84)
We note that the intermediate state ννν does not have to be a pair state. We now proceed as in
the case of the one-point by considering a given representative state λ̄̄λ̄λ and defining

Cλ̄̄λ̄λ(x , t) =
∑

µµµ>0

∑

ννν

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|σ(0)|ννν〉〈ννν|σ(0)|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉〈ννν|ννν〉

e2i t(E(λλλ)−E(µµµ))+i x P(ννν) . (85)

The usual typicality arguments suggest that in the thermodynamic this quantity will depend
on the representative state only via its particle and hole densities. If this holds true then the
generalized micro-canonical average in (84) can be dropped and

lim
L→∞

〈σ(x)σ(0)〉t = lim
L→∞

Cλ̄̄λ̄λ(x , t). (86)

We will see below that this is indeed the case due to rather delicate cancellations of contribu-
tions that depend on details of the representative state.

The form factors entering (85) are given by [73–78]

〈µµµ|σ (0) |λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉
=

iN+1(−1)N(N−1)/2(P(λλλ)− P(µµµ))

LN
p

det G(λλλ)det G(µµµ)

∏

i< j |λi −λ j|
∏

i< j |µi −µ j|
∏

i, j(µ j −λi)

×

√

√

√

∏

i, j

λi −λ j + ic

µi −µ j + ic

∏

j 6=p

(V+j − V−j ) det
i, j=1,...,N

�

δi j + U ′i j

�

, (87)

where

U ′jk = i
µ j −λ j

V+j − V−j

�

2c
(λ j −λk)2 + c2

−
2c

(λp −λk)2 + c2

�

∏

m 6= j

µm −λ j

λm −λ j
. (88)

5.2 Structure of the contributing “excited states”

In order to determine the order O(c−1) in our 1/c-expansion of (85) we need to know which
“excitations” ννν and µ̄̄µ̄µ will contribute to the spectral sums. Let us first remark that the limiting
value taken by 〈σ(x)σ(0)〉t when t →∞ is obtained when µ̄̄µ̄µ= λ̄̄λ̄λ in (85), as written in (49).
In order to investigate the relaxation dynamics we will thus assume from now on µ̄̄µ̄µ 6= λ̄̄λ̄λ.

We recall from [64] that the density form-factor for a one particle-hole excitation with
rapidities µµµ above a state with rapidities λλλ takes the following form at order O(c−1)

〈µµµ|σ (0) |λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉
=

1+ 2D
c

L(1+ 2
cL )

∏

i 6=a

sgn (λi −µa) sgn (λi −λa)

×
�

1+
2(µa −λa)

cL

∑

i 6=a

1
λi −µa

−
1

λi −λa

�

+O(c−2) . (89)

The product of signs in this formula arises because we chose an Algebraic Bethe Ansatz de-
scription of the eigenstates (8) that is symmetric in the rapidities λ1, ...,λN , in contrast to the
Coordinate Bethe Ansatz description which is antisymmetric. In normalized form and for zero-
momentum states, the two are related by a factor

∏

i< j sgn (λi−λ j) times a phase independent
of λi ’s [79].
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For a two particle-hole excitation where the Bethe numbers of µµµ are the same as the ones
of λλλ except for Ia, Ib, we have [64]

〈µµµ|σ (0) |λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉
=−

∏

i 6=a,b

sgn (λi −µa) sgn (λi −λa) sgn (λi −µb) sgn (λi −λb)

× sgn (λa −λb) sgn (µa −µb)

×
2

cL2

(µa +µb −λa −λb)2(λa −λb)(µa −µb)
(µa −λa)(µb −λb)(µa −λb)(µb −λa)

+O(c−2) . (90)

Form factors with a higher number of particle-hole excitations are suppressed by at least a
factor c−2 and we will ignore them in the following. We are now in a position to identify the
dominant “excitations” contributing to the spectral representation at large c.

(i) “Type I” configurations contributing at O(c0) and higher

Because of the pair structure of both λ̄̄λ̄λ and µ̄̄µ̄µ the leading order of the 1/c-expansion
is obtained with states corresponding to a two particle-hole excitation µ̄̄µ̄µ above λ̄̄λ̄λ such
that the Bethe numbers Ia,−Ia of λ̄̄λ̄λ are replaced by Ja,−Ja in µ̄̄µ̄µ. We will assume this
structure to be satisfied in the following.

Then the intermediate state ννν that provides the leading O(c0) contribution is obtained
by imposing that it is a one particle-hole excitation above both λ̄̄λ̄λ and µ̄̄µ̄µ. This implies
that the Bethe numbers of ννν have to be the same as those of λ̄̄λ̄λ with the exception of Ia
or −Ia, which is replaced by either Ja or −Ja. These contributions give the full result
in the c →∞ limit, which correspond to a quench directly from the BEC to the Tonks-
Girardeau gas [45]. However, they also incorporate c−1 corrections due to subleading
terms in the form factors.

(ii) “Type II” configurations contributing at O(c−1)

At order O(c−1) contribution arise from other terms in the spectral sum as well. One
class of terms corresponds to the case where ννν is equal to λ̄̄λ̄λ (µ̄̄µ̄µ) and corresponds to a
two particle-hole excitations above µ̄̄µ̄µ (λ̄̄λ̄λ). In this case one of the two form factors in
(85) reduces to the expectation value of σ which equals the density D, while other form
factor is of order O(c−1) since it involves states related by two particle-hole excitations.
Closer inspection of (85) reveals that these contributions cancel

D〈σ(0)〉t −D2 +D〈σ(x)〉t −D2 = 0 . (91)

Here we have used that since σ is a conserved quantity we have

〈σ(0)〉t = 〈σ(0)〉0 =D . (92)

This leaves one remaining source for O(c−1) contributions, namely when the ννν corre-
spond to a one particle-hole excitation above λ̄̄λ̄λ (µ̄̄µ̄µ) and a two particle-hole excitation
above µ̄̄µ̄µ (λ̄̄λ̄λ). As we will see below these terms give non-vanishing contributions to the
spectral sum.

5.3 Contributions arising from type I configurations

We now consider case (i) above, in which λλλ 6= µµµ and ννν corresponds to a one particle-hole
excitation above both λ̄̄λ̄λ and µ̄̄µ̄µ. We denote the corresponding contribution to (85) by C1,1

λ̄̄λ̄λ
(x , t).

These contributions are sketched in Figure 5. The four possible choices for ννν can be accounted
for by replacing the rapidity λa by µa in ννν, but allowing both λa and µa to take values between
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|λ̄̄λ̄λ〉 . . . −Ia . . . Ia . . .

|ννν〉 . . . −Ja . . . Ia . . .

|µ̄̄µ̄µ〉 . . . −Ja . . . Ja . . .

Figure 5: An example of a type I excitation. Dots indicate Bethe numbers that are the
same. We see that ννν differs from λ̄λλ by the replacement −Ia → −Ja, while µ̄µµ differs
from ννν by replacing Ia→ Ja.

−∞ and∞. At order O(c−1) the form factors entering the spectral sum are given by (89),
and the overlaps are

〈ΨBEC|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉

√

√

√〈λ̄̄λ̄λ|λ̄̄λ̄λ〉
〈µ̄̄µ̄µ|µ̄̄µ̄µ〉

=

�

�

�

�

λa

µa

�

�

�

�

+O(c−2) . (93)

Here the absolute values arise because in (38) the λ j denote by definition the positive rapidities
in λ̄̄λ̄λ only, whereas λa,µa can be either positive or negative. The signs appearing in the form
factor (89) have to be treated carefully and give rise to a factor sgn (λaµa) in the summand
in (85). The 1/c-expansion of this summand reads

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|σ(0)|ννν〉〈ννν|σ(0)|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉〈ννν|ννν〉

=
(1+ 2D/c)2

L2(1+ 2/(cL))2
λa

µa

×
�

1+
4(µa −λa)

cL

∑

i
λi 6=±λa

1
λi −µa

−
1

λi −λa
+
µa −λa

cL

�

1
λa
−

1
µa

��

+O(c−2) . (94)

This allows us to cast the corresponding contribution to (85) in the form

C1,1
λ̄̄λ̄λ
(x , t) = (1+ 2D/c)2

3
∑

a=0

Σa(x
′, t) , (95)

where

Σ0(x
′, t) =

1
L2

∑

λa∈Λ

∑

µa
µa /∈Λ

λa

µa
e2i t(λ2

a−µ
2
a)+i x ′(µa−λa) , (96)

Σ1(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

∑

λi∈Λ
λi 6=λa ,−λa

g(λa,µa)
µa(λi −µa)

, (97)

Σ2(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

∑

λi∈Λ
λi 6=λa ,−λa

g(λa,µa)
µa(λi −λa)

, (98)

Σ3(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

λa(µa −λa)
µa

�

1
λa
−

1
µa

�

e2i t(λ2
a−µ

2
a)+i x ′(µa−λa) . (99)

Here we introduced a set Λ= {λi|i = 1, ..., N/2} ∪ {−λi|i = 1, ..., N/2} and defined

g(λ,µ) = 4λ(µ−λ)e2i t(λ2−µ2)+i x ′(µ−λ) . (100)
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We recall that x ′ was defined in (23). It appears here since at order O(c−1) one has
E(λλλ)− E(µµµ) = λ2

a −µ
2
a +O(c−2) and P(ννν) = x ′(µa −λa) +O(c−2).

The contribution Σ0(x , t) can be straightforwardly turned into a principal part integral in
the thermodynamic limit, while the remaining sums can be carried out in the thermodynamic
limit using the following Lemmas.

Lemma 1. Let f (λ,µ,ν) be a regular function that grows sufficiently slowly at infinity. Then in
the thermodynamic limit we obtain

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λi

f (λa,λ j ,λi)

λi(λ j −λi)
=

∫ ∞

−∞
dλρ(λ)−

∫

dνρ(ν)−
∫

dµρ(µ)
f (λ,µ,ν)
ν(µ− ν)

+
π2ρ(0)2 −Ω(λλλ)

2

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ+O(L−1) . (101)

Here we have defined

Ω(λλλ)≡ lim
L→∞

1
L2

∑

λ∈Λ

1
λ2

. (102)

We stress that Ω(λλλ) is a quantity that in the thermodynamic limit depends on the choice of
representative state not only through the root density ρ(λ). A proof of Lemma 1 is given in
Appendix B.

Lemma 2. Let f (λ,µ,ν) be a regular function that grows sufficiently slowly at infinity. Then in
the thermodynamic limit

1
L3

∑

λa∈Λ

∑

n6=0

∑

λi∈Λ

f (λa,λi +
2πn

L ,λi)

(λi +
2πn

L )(−
2πn

L )
=

1
2π

∫ ∞

−∞
dλρ(λ)−

∫

dνρ(ν)−
∫

dµ
f (λ,µ,ν)
µ(ν−µ)

+
1

2π
ρ(0)π2

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ−Ω(λλλ)

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ+O(L−1) .

(103)

A proof of Lemma 1 is given in Appendix C.

5.3.1 First sum Σ1(x , t)

Writing out the various constraints in the summations explicitly we have

Σ1(x , t) =
1
L3

∑

λa∈Λ

∑

n6=0

∑

λi∈Λ

g(λa,λi +
2πn

L )

(λi +
2πn

L )(−
2πn

L )
−

1
L3

∑

λa∈Λ

∑

λ j∈Λ

∑

λi∈Λ
i 6= j

g(λa,λ j)

λ j(λi −λ j)

−
1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

g(λa,µa)
µa(λa −µa)

−
1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

g(λa,µa)
µa(−λa −µa)

. (104)

We note that since the states have a pair structure, N is even and the Bethe numbers are
half-odd integers, and so neither µa or λi +

2πn
L can vanish in the denominators.

The last two sums are two-dimensional sums with a prefactor 1/L3 but only simple poles
and hence vanish in the thermodynamic limit. The remaining two sums in (104) can be carried
out using Lemma 2 and Lemma 1 respectively. This gives

Σ1(x
′, t) =− 4

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ

µ
(µ−λ)ρ̃(µ)e2i t(λ2−µ2)+i x ′(µ−λ)

+
�

2Ω(λλλ)− 4π2ρ(0)
� 1

2π
−
ρ(0)

2

��

∫ ∞

−∞
λ2ρ(λ)e2i tλ2−i x ′λdλ , (105)
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where ρ̃(λ) denotes the Hilbert transform of ρ(λ) defined by

ρ̃(λ) = −
∫

ρ(ν)
λ− ν

dν . (106)

5.3.2 Second sum Σ2(x ′, t)

Writing out the constraints on the various summations explicitly we have

Σ2(x
′, t) =

1
L3

∑

λa∈Λ

∑

n

∑

λi∈Λ
λi 6=λa

g(λa, 2π(n+1/2)
L )

2π(n+1/2)
L (λi −λa)

−
1
L3

∑

λa∈Λ

∑

λ j∈Λ

∑

λi∈Λ
i 6=a

g(λa,λ j)

λ j(λi −λa)

+
1

2L3

∑

λa∈Λ

∑

µa
µa /∈Λ

g(λa,µa)
µaλa

. (107)

The third sum is a two-dimensional sum with a prefactor 1/L3 and no double poles and hence
vanishes in the thermodynamic limit. The first two sums can be turned into principal value
integrals, which gives

Σ2(x
′, t) = −4

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ

µ
(µ−λ)ρ̃(λ)e2i t(λ2−µ2)+i x ′(µ−λ) . (108)

5.3.3 Third sum Σ3(x ′, t)

The third sum is a two-dimensional sum with a prefactor 1/L3, so can contribute in the ther-
modynamic limit only if there is a double pole. It follows that

Σ3(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa /∈Λ

λ2
a

µ2
a

e2i t(λ2
a−µ

2
a)+i x ′(µa−λa) +O(L−1) . (109)

By writing out the constraint explicitly we have

Σ3(x
′, t) =

1
L3

∑

λa∈Λ

∑

n

λ2
a

(2π(n+1/2)
L )2

e2i t(λ2
a−(

2π(n+1/2)
L )2)+i x ′(

2π(n+1/2)
L −λa)

−
1
L3

∑

λa∈Λ

∑

λi∈Λ

λ2
a

λ2
i

e2i t(λ2
a−λ

2
i )+i x ′(λi−λa) . (110)

We see that the sum over λa can be turned into an integral, while the remaining sums can be
respectively carried out explicitly and expressed in terms of Ω(λλλ) (102). This gives

Σ3(x
′, t) =

�

1
4
−Ω(λλλ)

�

∫ ∞

−∞
λ2ρ(λ)e2i tλ2−i x ′λdλ+O(L−1) . (111)

5.3.4 Result

Putting everything together, we obtain the following result for the contribution of two one
particle-hole excitations to the spectral sum (85)

C1,1
λ̄̄λ̄λ
(x , t) =

(1+ 2D/c)2
∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ

µ

�

1−
4
c
(µ−λ)(ρ̃(µ)− ρ̃(λ))

�

e2i t(λ2−µ2)+i x ′(µ−λ)

+
1
c

�

1
4
− 2πρ(0) + 2π2ρ(0)2 +Ω(λλλ)

�

∫ ∞

−∞
λ2ρ(λ)e2i tλ2−i x ′λdλ . (112)
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We stress that C1,1
λ̄̄λ̄λ
(x , t) depends on the representative stateλλλ not only through the root density

ρ, but via the quantity Ω(λλλ) (102) as well.

5.4 Contributions arising from type II configurations

Let us denote by C2,1
λ̄̄λ̄λ
(x , t) the sum of contributions of type-II configurations to (85), i.e. config-

urations where ννν corresponds to a one particle-hole excitation above λ̄̄λ̄λ (µ̄̄µ̄µ) and a two particle-
hole excitation above µ̄̄µ̄µ (λ̄̄λ̄λ) respectively . There are altogether four cases:

(i) The Bethe numbers of ννν are those of λ̄̄λ̄λ except for the replacement of Ia or −Ia by Ka.
Denoting the corresponding root by νa we have the following restrictions: ∀i, µa 6= λi;
∀i, νa 6= λi; νa 6= µa,−µa.

(ii) The Bethe numbers of ννν are those of µ̄̄µ̄µ with only Ja or −Ja replaced by a Ka. Denoting
νa the corresponding root, we have the restrictions ∀i, µa 6= λi and ∀i, νa 6= λi and
νa 6= µa,−µa. Cases (i) and (ii) are sketched in Figure 6.

|λ̄̄λ̄λ〉 . . . −Ia . . . Ia . . .

|ννν〉 . . . −Ia . . . Ka . . .

|µ̄̄µ̄µ〉 . . . −Ja . . . Ja . . .

Figure 6: Cases (i) and (ii) of type II excitations.

(iii) The Bethe numbers of ννν are those of λ̄̄λ̄λ with only Ib or −Ib (b 6= a) replaced by Ja or −Ja.
The restrictions on the rapidities are λb 6= λa,−λa; ∀i, µa 6= λi .

(iv) The Bethe numbers of ννν are those of µ̄̄µ̄µ with only Ib or −Ib (b 6= a) replaced by Ia or −Ia.
The restrictions on the rapidities are λb 6= λa,−λa; ∀i, µa 6= λi . Cases (iii) and (iv) are
sketched in Figure 7.

|λ̄̄λ̄λ〉 . . . −Ia . . . Ia . . Ib . .

|ννν〉 . . . −Ia . . . Ia . . Ja . .

|µ̄̄µ̄µ〉 . . . −Ja . . . Ja . . Ib . .

Figure 7: Cases (iii) and (iv) of type II excitations.

Case (i) can be accounted for by always changing λa for νa, but allowing λa to range between
−∞ and ∞. One can also allow µa to range between −∞ and ∞ by introducing a com-
binatorial factor 1

2 . In case (ii) the same holds true with λa and µa interchanged. Case (iii)
can be accounted for by always changing λb for µa, but allowing both λb and µa to range
between −∞ and∞. One can also allow λa to range between −∞ and∞ by introducing
a combinatorial factor 1

2 . In case (iv) the same holds true with λa and µa interchanged.
In cases (i) and (ii) the product of all the signs appearing in (89) and (90) give a factor

− sgn (λaµa). In cases (iii) and (iv) they give a factor sgn (λaµa). It follows that in these four
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cases we have

〈ΨBEC|µ̄̄µ̄µ〉〈λ̄̄λ̄λ|σ(0)|ννν〉〈ννν|σ(0)|µ̄̄µ̄µ〉
〈ΨBEC|λ̄̄λ̄λ〉〈µ̄̄µ̄µ|µ̄̄µ̄µ〉〈ννν|ννν〉

e2i t(E(λλλ)−E(µµµ))+i x ′P(ννν)

=



























− 2
cL3
(νa−λa)22λa(νa+λa)
(ν2

a−µ2
a)(λ2

a−µ2
a)

e2i t(λ2
a−µ

2
a)ei x ′(νa−λa) case (i)

− 2
cL3
(νa−µa)22λ2

a(νa+µa)
(ν2

a−λ2
a)(µ2

a−λ2
a)µa

e2i t(λ2
a−µ

2
a)ei x ′(νa−µa) case (ii)

2
cL3
(λb−µa)22λ2

a(µa+λb)
(λ2

b−λ
2
a)(µ2

a−λ2
a)µa

e2i t(λ2
a−µ

2
a)ei x ′(µa−λb) case (iii)

2
cL3
(λb−λa)22λa(λb+λa)
(λ2

b−µ
2
a)(λ2

a−µ2
a)

e2i t(λ2
a−µ

2
a)ei x ′(λa−λb) case (iv)

+O(c−2) .

(113)

In order to proceed it is convenient to decompose the rational functions in (113) using

(νa −λa)22λa(νa +λa)
(ν2

a −µ2
a)(λ2

a −µ2
a)

=
νa −λa

λa +µa
+
λa − νa

µa −λa
+
λa(νa −λa)
νa(µa − νa)

+
λa(λa − νa)
νa(νa +µa)

,

(νa −µa)22λ2
a(νa +µa)

(ν2
a −λ2

a)(µ2
a −λ2

a)µa
=
νa −µa

µa +λa
+
µa − νa

λa −µa
+
νa(νa −µa)
µa(λa − νa)

+
νa(µa − νa)
µa(λa + νa)

,

(λb −µa)22λ2
a(µa +λb)

(λ2
b −λ2

a)(µ2
a −λ2

a)µa
=
µa −λb

λa −µa
+
λb −µa

λa +µa
+
λb(λb −µa)
µa(λa −λb)

+
λb(µa −λb)
µa(λa +λb)

,

(λb −λa)22λa(λb +λa)
(λ2

b −µ2
a)(λ2

a −µ2
a)

=
λa −λb

µa −λa
+
λb −λa

λa +µa
+
λa(λb −λa)
λb(µa −λb)

+
λa(λa −λb)
λb(λb +µa)

. (114)

Using (113) and (114) we can express the sum of all type-II contributions to (85) in the form

C2,1
λ̄̄λ̄λ
(x , t) =

2
c

�

−Σ′1(x
′, t)−Σ′2(x

′, t) +Σ′3(x
′, t) +Σ′4(x

′, t)
�

, (115)

where

Σ′1(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

∑

νa
νa /∈Λ

νa 6=µa ,−µa

�

νa −λa

λa +µa
+
λa(νa −λa)
νa(µa − νa)

�

e2i t(λ2
a−µ

2
a)ei x ′(νa−λa) ,

Σ′2(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

∑

νa
νa /∈Λ

νa 6=µa ,−µa

�

νa −µa

µa +λa
+
νa(νa −µa)
µa(λa − νa)

�

e2i t(λ2
a−µ

2
a)ei x ′(νa−µa) ,

Σ′3(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

∑

λb∈Λ
λb 6=λa ,−λa

�

µa −λb

λa −µa
+
λb(λb −µa)
µa(λa −λb)

�

e2i t(λ2
a−µ

2
a)ei x ′(µa−λb) ,

Σ′4(x
′, t) =

1
L3

∑

λa∈Λ

∑

µa
µa /∈Λ

∑

λb∈Λ
λb 6=λa ,−λa

�

λa −λb

µa −λa
+
λa(λb −λa)
λb(µa −λb)

�

e2i t(λ2
a−µ

2
a)ei x ′(λa−λb) . (116)

In all four contributions Σ′j(x
′, t) the respective first term only involves simple poles and there-

fore can be straightforwardly expressed in terms of principal value integrals in the thermody-
namic limit. The other terms involve two simple poles and require a more elaborate treatment.

5.4.1 First term Σ′1(x
′, t)

The contribution to Σ′1(x
′, t) involving two simple poles is of the form

SL[ f ] =
1
L3

∑

λa∈Λ

∑

µa /∈Λ

∑

νa /∈Λ
νa 6=±µa

f (λa,µa,νa)
νa(µa − νa)

, (117)
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where
f (λ,µ,ν) = λ(ν−λ)e2i t(λ2−µ2)+i x ′(ν−λ) . (118)

Resolving all the constraints, we have at leading order in 1/c

SL[ f ] =
1
L3

∑

λa∈Λ

∑

m

∑

n6=0

f (λa,λa +
2πm

L ,λa +
2π(n+m)

L )

(λa +
2π(n+m)

L )(−2πn
L )

−
1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

m 6=0

f (λa,λi +
2πm

L ,λi)

λi
2πm

L

−
1
L3

∑

λa∈Λ

∑

λ j∈Λ

∑

n6=0

f (λa,λ j ,λ j +
2πn

L )

(λ j +
2πn

L )(−
2πn

L )

+
1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λi

f (λa,λ j ,λi)

λi(λ j −λi)

+
1

2L3

∑

λa∈Λ

∑

n6=0

f (λa, 2π(n+1/2)
L ,−2π(n+1/2)

L )

(2π(n+1/2)
L )2

−
1

2L3

∑

λa∈Λ

∑

λi∈Λ

f (λa,λi ,−λi)
λ2

i

. (119)

The first two contributions can be computed by first summing over m, and then summing over
n and λi respectively, which involves one-dimensional sums with only a single simple pole. In
the thermodynamic limit they can be readily turned into principal value integrals. The fifth
and sixth terms are double sums with a factor L−3 and hence are completely dominated by
their respective double poles. They yield

1
2L3

∑

λa∈Λ

∑

n6=0

f (λa, 2π(n+1/2)
L ,−2π(n+1/2)

L )

(2π(n+1/2)
L )2

−
1

2L3

∑

λa∈Λ

∑

λi∈Λ

f (λa,λi ,−λi)
λ2

i

=
�

1
8
−
Ω(λλλ)

2

�

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ+O(L−1) . (120)

The third term is of a very similar structure to Lemma 2 (103) and can be treated analogously.
We write

1
L3

∑

λa∈Λ

∑

λ j∈Λ

∑

n6=0

f (λa,λ j ,λ j +
2πn

L )

(λ j +
2πn

L )(−
2πn

L )
=

1
L3

∑

λa∈Λ

∑

λ j∈Λ

1
λ j

∑

n

f (λa,λ j ,λ j +
2πn

L )

λ j +
2πn

L

−
1
L3

∑

λa∈Λ

∑

λ j∈Λ

1
λ j

∑

n6=0

f (λa,λ j ,λ j +
2πn

L )
2πn

L

−
1
L3

∑

λa∈Λ

∑

λ j∈Λ

f (λa,λ j ,λ j)

λ2
j

. (121)

In the thermodynamic limit this becomes

1
L3

∑

λa∈Λ

∑

λ j∈Λ

∑

n6=0

f (λa,λ j ,λ j +
2πn

L )

(λ j +
2πn

L )(−
2πn

L )
=

∫ ∞

−∞
dλρ(λ)−

∫

dµ
ρ(µ)
µ
−
∫

dν
f (λ,µ,ν)

2πν

−
∫ ∞

−∞
dλρ(λ)−

∫

dµ
ρ(µ)
µ
−
∫

dν
f (λ,µ,ν)
2π(ν−µ)

−Ω(λλλ)
∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ . (122)

The two principal values can be brought under a single principal value as in (C.3), cf. Ap-
pendix A.2. Finally the fourth term in (119) can be calculated using Lemma 1 (101). Putting

24

https://scipost.org
https://scipost.org/SciPostPhys.11.3.068


SciPost Phys. 11, 068 (2021)

everything together we then obtain

Σ′1(x
′, t) =

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρh(ν)
ν−λ
λ+µ

e2i t(λ2−µ2)+i x ′(ν−λ)

+

∫ ∞

−∞
dλρ(λ)−

∫

dνρh(ν)−
∫

dµρh(µ)
λ(ν−λ)
ν(µ− ν)

e2i t(λ2−µ2)+i x ′(ν−λ)

+
1
2

�

πρ(0)−π2ρ(0)2 − 1
4

�

∫ ∞

−∞
λ2ρ(λ)e2i tλ2−i x ′λdλ . (123)

5.4.2 Second term Σ′2(x
′, t)

The contribution to Σ′2(x
′, t) involving two simple poles is of the form

1
L3

∑

λa∈Λ

∑

µa /∈Λ

∑

νa /∈Λ
νa 6=±µa

f (λa,µa,νa)
µa(λa − νa)

=
1
L3

∑

λa∈Λ

∑

m

∑

n6=0

f (λa, 2π(m+1/2)
L ,λa +

2πn
L )

�

− 2π(m+1/2)
L

�2πn
L

−
1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

n6=0

f (λa,λi ,λa +
2πn

L )

(−λi)
2πn

L

−
1
L3

∑

λa∈Λ

∑

m

∑

λ j∈Λ
λ j 6=λa

f (λa, 2π(m+1/2)
L ,λ j)

2π(m+1/2)
L (λa −λ j)

+
1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λa

f (λa,λi ,λ j)

λi(λa −λ j)
−

1
L3

∑

λa∈Λ

∑

µa /∈Λ

� f (λa,µa,µa)
µa(λa −µa)

+
f (λa,µa,−µa)
µa(λa +µa)

�

, (124)

where
f (λ,µ,ν) = ν(ν−µ)e2i t(λ2−µ2)+i x ′(ν−µ) . (125)

The first terms on the right-hand side can all be computed by performing successive one-
dimensional sums with only a single simple pole, which allows them to be turned into prin-
cipal value integrals in the thermodynamic limit. The last term involves a two-dimensional
sum with a factor L−3 and a summand featuring only simple poles. Hence it vanishes in the
thermodynamic limit. We conclude that

Σ′2(x
′, t) =

∫ ∞

−∞
dλρ(λ)

∫ ∞

−∞
dµρh(µ)−

∫

dνρh(ν)
ν−µ
µ+λ

e2i t(λ2−µ2)+i x ′(ν−µ)

+

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρh(ν)
ν(ν−µ)
µ(λ− ν)

e2i t(λ2−µ2)+i x ′(ν−µ) +O(L−1) . (126)

5.4.3 Third term Σ′3(x
′, t)

This contribution is straightforward to deal with. After writing the sum over µa as the differ-
ence of a sum over vacancies and holes the sums over λa,b can be factorized and will involve
only single simple poles. It then follows that

Σ′3(x
′, t) =

∫ ∞

−∞
dλρ(λ)

∫ ∞

−∞
dµρh(µ)−

∫

dνρ(ν)
µ− ν
λ−µ

e2i t(λ2−µ2)+i x ′(µ−ν)

+

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρ(ν)
ν(ν−µ)
µ(λ− ν)

e2i t(λ2−µ2)+i x ′(µ−ν) +O(L−1) . (127)
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5.4.4 Fourth term Σ′4(x
′, t)

The contribution to Σ′4(x
′, t) involving two simple poles is of the form

1
L3

∑

λa∈Λ

∑

µa /∈Λ

∑

λb∈Λ

f (λa,µa,λb)
λb(µa −λb)

=
1
L3

∑

λa∈Λ

∑

n6=0

∑

λb∈Λ

f (λa,λb +
2πn

L ,λb)

λb
2πn

L

−
1
L3

∑

λa∈Λ

∑

λb∈Λ

∑

λi∈Λ
λi 6=λb

f (λa,λi ,λb)
λb(λi −λb)

, (128)

where
f (λ,µ,ν) = λ(ν−λ)e2i t(λ2−µ2)+i x ′(λ−ν) . (129)

The first sum can be straightforwardly turned into a principal value integral and the second
sum can be carried out using Lemma 1 (101). This gives

Σ′4(x
′, t) =

∫ ∞

−∞
dλρ(λ)

∫ ∞

−∞
dµρh(µ)−

∫

dνρ(ν)
λ− ν
µ−λ

e2i t(λ2−µ2)+i x ′(λ−ν)

+

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρ(ν)
λ(ν−λ)
ν(µ− ν)

e2i t(λ2−µ2)+i x ′(λ−ν)

+
π2ρ(0)2 −Ω(λλλ)

2

∫ ∞

−∞
λ2ρ(λ)e2i tλ2+i x ′λdλ . (130)

5.4.5 Result for all contributions arising from type II configurations

The combined contribution of all Σ′n(x
′, t) can be brought into a simpler form by using that

(i) the root distribution is even; (ii) at leading order in 1/c we can write

ρ(λ) +ρh(λ) =
1

2π
+O(c−1) , (131)

and (iii) for x 6= 0 we have in a distribution sense
∫ ∞

−∞
ei xνdν= 0 ,

∫ ∞

−∞
νei xνdν= 0 ,

∫ ∞

−∞

ei xν

ν
dν= iπ sgn (x) . (132)

This allows us to combine the contributions of the terms in Σ′n(x
′, t) involving only a single

simple pole into the following expression

2

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρ(ν)
ν−λ
λ+µ

cos(x ′(ν−λ))e2i t(λ2−µ2)

+2

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)−
∫

dνρ(ν)
ν−µ
λ+µ

cos(x ′(ν−µ))e2i t(λ2−µ2)

− sgn (x)

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ(λ−µ)
µ

sin(x ′(λ−µ))e2i t(λ2−µ2) . (133)

Our final result for the thermodynamic limit of all contributions to (85) arising from type II
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configurations is then

C2,1
λ̄̄λ̄λ
(x ′, t) =

4
c

∫ ∞

−∞
dλρ(λ)−

∫

dνρ(ν)−
∫

dµρh(µ) F2(λ,µ,ν; x ′) cos
�

2t(λ2 −µ2)
�

− 2
sgn (x ′)

c

∫ ∞

−∞
dλρ(λ)−

∫

dµρh(µ)
λ(λ−µ)
µ

sin(x(λ−µ))e2i t(λ2−µ2)

+
1
c

�

1
4
−πρ(0) + 2π2ρ(0)2 −Ω(λλλ)

�

∫ ∞

−∞
λ2ρ(λ)e2i tλ2−i x ′λdλ , (134)

where F2(λ,µ,ν; x ′) is the function defined in (24).
We stress that C2,1

λ̄̄λ̄λ
(x , t) depends on the representative state λλλ not only through the root

density ρ, but via the quantity Ω(λλλ) (102) as well.

5.5 Cancellation of the representative state dependence

Once both contributions (112) and (134) to the spectral sum are summed up, we observe
that the dependence on the representative state through the quantity Ω(λλλ) exactly vanishes!
This non-trivial cancellation suggests that the typicality assumption underlying (37) is indeed
correct, even though the partial contributions do carry an additional dependence on the chosen
representative state.

To arrive at the expression (22) written in the introduction, we sum up (112) and (134)
and use that at leading order in 1/c

ρ(0) =
1

2π
+O(c−1) . (135)

6 Calculation of the two-point function 〈σ2(x ,τ)σ2(0, 0)〉∞ in the
steady state

We saw in (50) that the expectation value of an observable 〈O〉t after the quench converges
when t → ∞ to 〈O〉∞ given in (49). This limit value is thus expressed as an equilibrium
expectation value of O in a representative state corresponding to the steady-state root density
ρ that is fixed by the quench protocol. An interesting question is then how to characterize the
physical properties of this steady state through its response functions.

The dynamical correlation function of an observable O in an energy eigenstate |λλλ〉 has a
spectral representation in a basis of (unnormalized) energy eigenstates |µµµ〉 of the form

〈O(x ,τ)O(0,0)〉=
∑

µµµ

|〈λλλ|O(0)|µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
eiτ(E(λλλ)−E(µµµ))+i x(P(µµµ)−P(λλλ)) . (136)

We have previously considered the case where O(x) = σ(x) in [64]. This case is quite
special as σ(x) is the density of a conserved charge. In the following we consider the case
O(x) = σ2(x). An expression for the form factors of this operator between two states of equal
momenta was presented previously in (47). To determine the dynamical two-point function
we require form factors between states with different momenta as well, which can be expressed
in the form [79]

〈µµµ|σ2(0)|λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉
=

i
6c

J(λλλ,µµµ)
(P(λλλ)− P(µµµ))2

〈µµµ|σ(0)|λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉
, (137)

where the density form factor given in (87) and

J(λλλ,µµµ) = (P(λλλ)− P(µµµ))4 − 4(P(λλλ)− P(µµµ))(Q3(λλλ)−Q3(µµµ)) + 3(E(λλλ)− E(µµµ))2 . (138)
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6.1 1/c expansion and particle-hole excitations

Let us again follow the same reasoning as in the previous sections, and investigate the leading
behaviour of the form factor when c→∞, for genericλλλ,µµµ satisfying the Bethe equations. The
simple relation (137) allows us to directly use the results of [64] for the density correlations.
Denoting ν the number of Bethe numbers of µµµ that do not appear among those of λλλ, we have

�

�

�

�

�

〈µµµ|σ2(0)|λλλ〉
p

〈λλλ |λλλ〉 〈µµµ|µµµ〉

�

�

�

�

�

2

=O(c−2ν) . (139)

Hence the 1/c expansion is also an expansion in the number of particle-hole excitations. By
restricting our analysis to O(c−4), we can focus only on one and two-particle-hole excitations.

6.2 One particle-hole excitations

We now consider a one-particle-hole excitation aboveλλλ, namely a stateµµµ such that all its Bethe
numbers are those of λλλ except for Ia which is replaced by Ia+ n. This results in constraints on
the Bethe numbers

n 6= 0 , ∀i 6= a, Ia + n 6= Ii . (140)

We then can use the results of [64] because of the simple relation (137), which always holds
since the momenta between the two states involved are necessarily different. We obtain

|〈λλλ|σ2(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

16
c4 L2

�

−E −Dλ2
a + 2λaP +

2πn
L
(P −Dλa)

�2

+O(c−5) . (141)

Interestingly, the a priori leading order O(c−2) contribution vanishes. As a result the one and
two particle-hole excitations contribute at the same order in 1/c. Since (141) does not have
poles the corresponding contribution to the spectral sum (136) is straightforward to compute
and gives the first line of (27).

6.3 Two particle-hole excitations

The other class of intermediate states contributing at order O(c−4) are two particle-hole exci-
tations, i.e. states with rapidities µµµ such that the corresponding Bethe numbers are those of
λλλ with the exception of Ia and Ib which are replaced by Ia + n and Ib respectively. The Bethe
numbers are subject to the following constraints

n, m 6= 0 ,

∀i 6= a, b, Ia + n 6= Ii , Ib +m 6= Ii ,

Ia + n 6= Ib +m ,

Ia + n 6= Ib ,

Ib +m 6= Ia . (142)

Assuming that the momenta of the two states are different, i.e. that n 6= −m, one can again
use (137) and [64] to obtain

|〈λλλ|σ2(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

16
c4 L4

(λa −λb)
2(λa −λb +

2π(n−m)
L

)2 +O(c−5) . (143)

This expression has no singularities and the corresponding contribution to the spectral sum is
straightforwardly expressed as an integral in the thermodynamic limit. This gives the second
line of (27).
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When n= −m, i.e. when the momenta of the two states are identical, we obtain from (79)
that

|〈λλλ|σ2(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=O(L−4) , (144)

and that there are no singularities in n. As in this case there are only three sums we conclude
that such contributions vanish in the thermodynamic limit.

7 Summary and Conclusions

In this work we have combined the Quench Action approach with our recently developed
1/c-expansion method for form factor sums in the Lieb-Liniger model to analyze a number of
different observables after a quantum quench starting in the ground state of a non-interacting
Bose gas. To the best of our knowledge our work is the first to obtain analytic results for
quench dynamics in a generic interacting integrable theory beyond the asymptotic late-time
regime. This program has been carried out before only for the q-boson model in the limit
q →∞ [80, 81], an interacting model that exhibits unusual simplifying features, and some
other particular situations [82–84].

Our work also uncovered a novel aspect regarding the application of typicality ideas to the
analysis of quantum quenches in integrable models. We observed that carrying out partial sum-
mations of the spectral sums in the Quench Action approach can lead to results that violate the
underlying typicality assumption and depend on details of the particular representative state
selected. In the case at hand this dependence arises from the singular behaviour of overlaps
at zero rapidity. But remarkably, we observe that this representative-state dependence cancels
out between different types of particle-hole excitations at the order in 1/c of our calculation,
yielding a significant check of typicality in an out-of-equilibrium setting. However, we are able
to construct ad hoc initial states in a free theory for which these cancellations do not occur.
This results in a failure of typicality, but this failure is weak in the sense that the problematic
representative states are rare and can be avoided through a regularization procedure. A brief
discussion of these findings is given in Appendix E.

Our work raises a number of interesting questions that should be investigated further. First,
it is important to work out higher orders in the 1/c-expansion both for dynamical response
functions and in the quench context. In particular, conjectured extensions of GHD predict that
the two-point functions of σ2(x) will exhibit diffusive behaviour [71]. This is not seen in the
leading order of the 1/c-expansion worked out here, but supposedly will appear at the next
order. Second, it should be explored how to define truncations of the spectral sum that would
be finite in the thermodynamic limit (not divergent and not exponentially small) for finite c.
Indeed, the spectral sum truncation induced by the 1/c expansion generically exhibits terms
polynomial in the system size that cross-cancel between different numbers of particle-hole ex-
citations. Third, it would be very interesting to apply our strong coupling expansion method
to dynamical correlations in other models like the Heisenberg XXZ chain [85–88]. These typi-
cally will involve bound states, and an important question is how to extend the strong coupling
expansion in order to take their contributions into account. Fourth, it would be interesting to
extend the analysis presented above to quantum quenches starting in inhomogeneous initial
states [89, 90]. Finally, we think it is important to arrive at a more complete understand-
ing of the scope and limitations for applying typicality ideas to the calculation of dynamical
correlations in and out of equilibrium.
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A Principal value integrals

In this appendix we present details on principal value integrals used in the main text and the
proofs of Lemma 1 and 2.

A.1 Double principal values

Given a function F(λ,µ,ν), we define its integral with successive double principal value as

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=

∫

dµ−
∫

dν
1

µ− ν
−
∫

dλ
F(λ,µ,ν)
λ−µ

, (A.1)

where the −
∫

symbols appearing in the right-hand side of this expression denote single principal
values defined in (25). As shown in [64], the following relations hold

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν=

∫

dν−
∫

dµ
1

µ− ν
−
∫

dλ
F(λ,µ,ν)
λ−µ

=

∫

dλ−
∫

dµ
1

λ−µ
−
∫

dν
F(λ,µ,ν)
µ− ν

=

∫

dµ−
∫

dλ
1

λ−µ
−
∫

dν
F(λ,µ,ν)
µ− ν

,

(A.2)

and

−
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= lim
ε,ε′→0

∫

|λ−µ|>ε
|µ−ν|>ε′

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν . (A.3)

The integral with simultaneous double principal value is defined by

=
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= lim
ε→0

∫

|λ−µ|>ε
|µ−ν|>ε
|λ−ν|>ε

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν . (A.4)

As shown in [64], it is related to the integral with successive double principal value through
the Poincaré-Bertrand-like formula

=
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν= −
∫

F(λ,µ,ν)
(λ−µ)(µ− ν)

dλdµdν+
π2

3

∫ ∞

−∞
F(λ,λ,λ)dλ . (A.5)

A.2 Proof of equation (C.3)

Using the identity (A.5) we obtain
∫ ∞

−∞
dλ−
∫

dµ
1
µ
−
∫

dν
F(λ,µ,ν)

ν
= −−

∫

F(λ,µ−λ,ν−λ)
(ν−λ)(λ−µ)

dλdµdν

= −=
∫

F(λ,µ−λ,ν−λ)
(ν−λ)(λ−µ)

dλdµdν+
π2

3

∫ ∞

−∞
F(λ, 0, 0)dλ ,

(A.6)

and
∫ ∞

−∞
dλ−
∫

dµ
1
µ
−
∫

dν
F(λ,µ,ν)
ν−µ

= −
∫

F(λ,µ−λ,ν−λ)
(ν−µ)(µ−λ)

dλdµdν

==
∫

F(λ,µ−λ,ν−λ)
(ν−µ)(µ−λ)

dλdµdν−
π2

3

∫ ∞

−∞
F(λ, 0, 0)dλ .

(A.7)

30

https://scipost.org
https://scipost.org/SciPostPhys.11.3.068


SciPost Phys. 11, 068 (2021)

In (C.3) the sum of these two quantities appears. The latter can be brought under a single
simultaneous principal value because the excluded regions of the integral are identical (which
is not the case of the successive principal values). Hence
∫ ∞

−∞
dλ−
∫

dµ
1
µ
−
∫

dν
F(λ,µ,ν)

ν
−
∫ ∞

−∞
dλ−
∫

dµ
1
µ
−
∫

dν
F(λ,µ,ν)
ν−µ

==
∫

F(λ,µ−λ,ν−λ)
(λ− ν)(ν−µ)

dλdµdν+
2π2

3

∫ ∞

−∞
F(λ, 0, 0)dλ

= −
∫

F(λ,µ−λ,ν−λ)
(λ− ν)(ν−µ)

dλdµdν+π2

∫ ∞

−∞
F(λ, 0, 0)dλ .

(A.8)

Using (A.2) we arrive at (C.3).

B Proof of Lemma 1 (101)

We start by adding the condition λ j 6= −λi

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λi

f (λa,λ j ,λi)

λi(λ j −λi)
=

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λi ,−λi

f (λa,λ j ,λi)

λi(λ j −λi)

−
1

2L3

∑

λa∈Λ

∑

λi∈Λ

f (λa,−λi ,λi)
λ2

i

.

(B.1)

The second sum is two-dimensional and comes with a factor L−3. Hence it is dominated by
the double pole and its thermodynamic limit reads

1
2L3

∑

λa∈Λ

∑

λi∈Λ

f (λa,−λi ,λi)
λ2

i

=
Ω(λλλ)

2

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ+O(L−1) . (B.2)

To compute the first term on the right-hand side in (B.1) we symmetrize in i, j and ±λi, j using
the pair structure of the state

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λi ,−λi

f (λa,λ j ,λi)

λi(λ j −λi)
=

1
8L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=λi ,−λi

G(λa,λ j ,λi) .
(B.3)

Here we have defined

G(λa,λ j ,λi) =
g(λa,λ j ,λi)− g(λa,−λ j ,λi)− g(λa,λ j ,−λi) + g(λa,−λ j ,−λi)

λiλ j
,

g(λa,λ j ,λi) =
λ j f (λa,λ j ,λi)−λi f (λa,λi ,λ j)

λ j −λi
. (B.4)

The right-hand side in (B.3) is a Riemann sum of a regular function without singularities,
hence converges to an integral in the thermodynamic limit

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=±λi

f (λa,λ j ,λi)

λi(λ j −λi)
=

1
8

∫∫∫ ∞

−∞
G(x , y, z) ρ(x)ρ(y)ρ(z)dxdydz +O(L−1) .

(B.5)
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To proceed, we remove from the integration region the points where |y| < ε or |z| < ε. This
incurs only an error O(ε) since the integrand is regular and allows us to split the integral into
four. We then replace y and z by y − x and z − x and use (A.3) to obtain

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=±λi

f (λa,λ j ,λi)

λi(λ j −λi)
= −

1
2
−
∫

g(x , y − x , z − x)ρ(x)ρ(y − x)ρ(z − x)
(y − x)(x − z)

dxdydz .

(B.6)
Under the successive principal value we cannot use the definition of g in terms of f and split
the integral into two since we do not necessarily have |z − y|> ε. However, we can use (A.5)
to obtain an expression in terms of a simultaneous principal value integral

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=±λi

f (λa,λ j ,λi)

λi(λ j −λi)
= −

1
2
=
∫

g(x , y − x , z − x)ρ(x)ρ(y − x)ρ(z − x)
(y − x)(x − z)

dxdydz

+
π2ρ(0)2

6

∫ ∞

−∞
f (x , 0, 0)ρ(x)dx . (B.7)

We now express g in terms of f , split the integral and swap the variables y, z in one of the two
resulting integrals to obtain

1
L3

∑

λa∈Λ

∑

λi∈Λ

∑

λ j∈Λ
λ j 6=±λi

f (λa,λ j ,λi)

λi(λ j −λi)
= =
∫

f (x , y − x , z − x)ρ(x)ρ(y − x)ρ(z − x)
(y − z)(z − x)

dxdydz

+
π2ρ(0)2

6

∫ ∞

−∞
f (x , 0, 0)ρ(x)dx . (B.8)

Finally we employ (A.5) to arrive at Eq (101).

C Proof of Lemma 2 (103)

We start by rewriting the multiple sum of interest as

1
L3

∑

λa∈Λ

∑

n6=0

∑

λi∈Λ

f (λa,λi +
2πn

L ,λi)

(λi +
2πn

L )(−
2πn

L )
= −

1
L3

∑

λa∈Λ

∑

n6=0

∑

λi∈Λ

f (λa,λi +
2πn

L ,λi)

λi
2πn

L

+
1
L3

∑

λa∈Λ

∑

n

∑

λi∈Λ

f (λa,λi +
2πn

L ,λi)

(λi +
2πn

L )λi

−
1
L3

∑

λa∈Λ

∑

λi∈Λ

f (λa,λi ,λi)
λ2

i

.

(C.1)

The first and second terms on the right-hand side can be turned into principal part integrals in
the thermodynamic limit by first summing over n and then over λi . The third sum, although
two-dimensional with a prefactor 1/L3, is not negligible in the thermodynamic limit since it
involves a double pole in λi . Its thermodynamic in fact depends on the representative state λλλ
through the quantity Ω(λλλ) defined in (102).

1
L3

∑

λa∈Λ

∑

n6=0

∑

λi∈Λ

f (λa,λi +
2πn

L ,λi)

(λi +
2πn

L )(−
2πn

L )
= −

1
2π

∫ ∞

−∞
dλρ(λ)−

∫

dν
ρ(ν)
ν
−
∫

dµ
1

µ− ν
f (λ,µ,ν)

+
1

2π

∫ ∞

−∞
dλρ(λ)−

∫

dν
ρ(ν)
ν
−
∫

dµ
1
µ

f (λ,µ,ν)−Ω(λλλ)
∫ ∞

−∞
ρ(λ) f (λ, 0, 0)dλ .

(C.2)
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The two principal values can be brought under a single principal value according to the fol-
lowing relation, proved in Appendix A.2

∫ ∞

−∞
dλρ(λ)−

∫

dµ
ρ(µ)
µ
−
∫

dν
f (λ,µ,ν)
ν

−
∫ ∞

−∞
dλρ(λ)−

∫

dµ
ρ(µ)
µ
−
∫

dν
f (λ,µ,ν)
ν−µ

=

∫ ∞

−∞
dλρ(λ)−

∫

dν−
∫

dµρ(µ)
f (λ,µ,ν)
ν(µ− ν)

+π2ρ(0)

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ . (C.3)

This gives the desired result

1
L3

∑

λa∈Λ

∑

n 6=0

∑

λi∈Λ

f (λa,λi +
2πn

L ,λi)

(λi +
2πn

L )(−
2πn

L )
=

1
2π

∫ ∞

−∞
dλρ(λ)−

∫

dνρ(ν)−
∫

dµ
f (λ,µ,ν)
µ(ν−µ)

+
1

2π
ρ(0)π2

∫ ∞

−∞
f (λ, 0, 0)ρ(λ)dλ−Ω(λλλ)

∫ ∞

−∞
ρ(λ) f (λ, 0, 0)dλ . (C.4)

D Further results on 〈σ2(x)σ2(0)〉

In this appendix we collect a number of additional results on the two-point function after our
interaction quench (22).

D.1 Alternative expression for (22)

In this section we present an alternative expression for the two-point function after the quench
(22), that is particularly useful for numerical purposes. It is based on the observation that the
first terms in the 1/c-expansion of the steady state root density (15) take the simple form

ρs(λ) =
1+ 2D

c

2π
1

�

λ

2D
h

1+
2D
c

i

�2

+ 1

+O(c−2) , (D.1)

which allows one to carry out some of the integrals in (22). To that end we introduce

Ix ,t[ f (λ)] =

∫ ∞

−∞
e−i xλ+2i tλ2

f (λ)dλ . (D.2)

We then find

〈σ(x)σ(0)〉t − 〈σ(x)σ(0)〉∞ = (1+
2D
c )

6
�D
π

�2

F0( x̄ , t̄) +
4π
c
(1+ 2D

c )
6
�D
π

�3

ReF1( x̄ , t̄) ,

(D.3)
where we have defined x̄ = 2D(1+ 2D

c )
2 x , t̄ = [2D(1+ 2D

c )]
2 t,

F0(x , t) =
�

�Ix ,t[
λ

1+λ2 ]
�

�

2
,

F1(x , t) =2
�

Ix ,t[
λ2

1+λ2 ]Ix ,t[
λ2

(1+λ2)2 ]
∗ − Ix ,t[

λ
1+λ2 ]Ix ,t[

λ3

(1+λ2)2 ]
∗
�

+ i sgn (x)
�

Ix ,t[
λ

1+λ2 ]Ix ,t[
λ2

1+λ2 ]∗ − Ix ,t[
λ2

1+λ2 ]Ix ,t[
λ

1+λ2 ]∗
�

+ 2i sgn (x)
�

Ix ,t[
λ2

1+λ2 ]Ix ,t[
λ

(1+λ2)2 ]
∗ − Ix ,t[

λ
1+λ2 ]Ix ,t[

λ2

(1+λ2)2 ]
∗
�

+ 2e−|x |
�

Ix ,t[
λ2

1+λ2 ]I0,t[
1

(1+λ2)2 ]
∗ − Ix ,t[

λ4

(1+λ2)2 ]I0,t[
1

1+λ2 ]∗
�

+ 2i sgn (x)e−|x |
�

Ix ,t[
λ3

(1+λ2)2 ]I0,t[
1

1+λ2 ]∗ − Ix ,t[
λ

1+λ2 ]I0,t[
1

(1+λ2)2 ]
∗
�

− 2e−|x |Ix ,t[
λ3

(1+λ2)2 Ht(λ)] + 2i sgn (x)e−|x |Ix ,t[
λ2

(1+λ2)2 Ht(λ)] , (D.4)
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and

Ht(λ) = −
∫

e−2i tµ2

λ−µ
dµ . (D.5)

D.2 Consistency check I: t → 0 limit

Since the expression (22) for the two-point function 〈σ(x)σ(0)〉t holds for all t > 0 it should
be possible to take the limit t → 0 and recover the order O(c−2) result for the corresponding
correlation function within the BEC state. The latter are simple

〈ΨBEC|σ(x)σ(0)|ΨBEC〉=D2 . (D.6)

In order to investigate the t → 0 limit of (22) we require an explicit expression at order O(c−2)
for its infinite time limit 〈σ(x)σ(0)〉∞. Using [64] we find

〈σ(x)σ(0)〉∞ =D2 −D2e−4D(1+2D
c )

2|x |
�

1+
16D2

c
|x |
�

+O(c−2) . (D.7)

At t = 0, all integrals appearing in (D.4) can be carried out explicitly by noting that

∫ ∞

−∞

ei xλ

(1+λ2)2
dλ=

π

2
(1+ |x |)e−|x | . (D.8)

The integrals in (D.4) can be deduced by differentiating this with respect to x . A straightfor-
ward calculation then shows that at t = 0 we indeed recover the two-point function in the
BEC state at order O(c−2)

〈σ(x)σ(0)〉t=0 =D2 +O(c−2) . (D.9)

D.3 Consistency check II: x → 0 limit

Since for x 6= 0 we have

σ(x)σ(0) =ψ†(x)ψ†(0)ψ(x)ψ(0) , (D.10)

the correlation function 〈σ(x)σ(0)〉t should approach 〈σ2(0)〉t = O(c−2) in the x → 0 limit.
Using (D.7) at x = 0 and simplifying (22) by exploiting that the root density ρ(λ) is even we
find after some calculations that indeed

lim
x→0
〈σ(x)σ(0)〉t =O(c−2) . (D.11)

D.4 Some remarks on the limit x , t → 0

As we have noted in the main text the limit t → 0 of our result for 〈σ2(0)〉t does not recover
the correct result for the expectation value of σ2 in the BEC initial state, D2. On the other
hand, we have just shown that the limit x → 0 of 〈σ(x)σ(0)〉t=0 does reduce to D2. On a
technical level it can be traced back to properties of the integral

�

�

�

�

∫ ∞

−∞

λ

1+λ2
e−i xλ+2i tλ2

dλ

�

�

�

�

2

, (D.12)

which vanishes if one first takes the limit x → 0 and then t → 0, but gives a finite result if one
takes first t → 0 and then x → 0.
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E Typicality and Quench Action method

In this Appendix we present an ad hoc initial state in a free theory for which the Quench
Action spectral sum for the out-of-equilibrium dynamics is representative state dependent. We
consider a simple tight-binding Hamiltonian on a ring

H =
L
∑

j=1

a†
j a j+1 + a†

j+1a j − 2a†
j a j , (E.1)

where a†
j , a j are fermionic creation and annihilation operators satisfying canonical anticom-

mutation relations {a j , a†
k} = δ j,k. The Hamiltonian is straightforwardly diagonalized by a

canonical transformation to Bogoliubov fermions in momentum space

H = −4
L
∑

n=1

sin2(kn/2)b
†
kn

bkn
, (E.2)

where kn =
2πn

L and {bp, b†
k} = δp,k. We denote the Bogoliubov vacuum state by |0〉. We now

consider a quantum quench where the system is initialized in a Gaussian state parametrized
by a fixed arbitrary function K(p)

|I〉=
L/2−1
∏

m=1

1
p

1+ K2(km)
exp



i
L/2−1
∑

n=1

K(kn)b
†
−kn

b†
kn



 |0〉 . (E.3)

For our purposes it is sufficient to focus on the Green’s function

G(n, t) = 〈I(t)|an+1a1|I(t)〉 . (E.4)

Since the model is free G(n, t) can be straightforwardly calculated

G(n, t) =
1

2π

∫ π

−π

iK(k)
1+ K2(k)

e8i t sin2(k/2)eikndk+O(L−1) . (E.5)

Let us now try to recover this with the Quench Action approach. The normalized overlaps of
the initial state with an eigenstate |λ̄̄λ̄λ〉=

∏

k∈λλλ b†
−k b†

k|0〉 are

〈λ̄̄λ̄λ|I〉=
∏

k∈λλλ iK(k)
∏L/2−1

n=1

p

1+ K2(kn)
, (E.6)

from which one finds the root density characterizing the non-equilibrium steady state reached
at late times after the quench

ρ(k) =
1

2π
K2(k)

1+ K2(k)
. (E.7)

The form factor of the operator of interest between two pair states λ̄̄λ̄λ, µ̄̄µ̄µ is

〈λ̄̄λ̄λ|an+1a1|µ̄̄µ̄µ〉=

¨

e2iπkn

L if µµµ= λλλ∪ {k} and k /∈ λλλ ,

0 else .
(E.8)

Let us now choose a representative pair state λλλ of the root density ρ, and write the Quench
Action spectral sum

〈λ̄̄λ̄λ|(an+1a1)(t)|I〉
〈λ̄̄λ̄λ|I〉

=
∑

µµµ

〈λ̄̄λ̄λ|an+1a1|µ̄̄µ̄µ〉
〈µ̄̄µ̄µ|I〉
〈λ̄̄λ̄λ|I〉

e2i t(E(λλλ)−E(µµµ))

=
1
L

∑

k/∈λλλ

iK(k)e8i t sin2(k/2)eikn .
(E.9)
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If K(k) is a regular function of k this sum can be turned into an integral over the density of
holes

ρh(k) =
1

2π
1

1+ K2(k)
, (E.10)

and the Quench Action approach precisely recovers the result (E.5)

lim
L→∞

〈λ̄̄λ̄λ|(an+1a1)(t)|I〉
〈λ̄̄λ̄λ|I〉

=
1

2π

∫ π

−π

iK(k)
1+ K2(k)

e8i t sin2(k/2)eikndk . (E.11)

So far we have closely followed the discussion in [24]. However, let us now consider the
following singular behaviour

K(k) =
1

km
, (E.12)

with m ≥ 1 an integer, and define a representative state |λ′λ′λ′〉 by replacing k0 ∈ λλλ by k′0.
By construction |λ′λ′λ′〉 is a micro-state that for any choice of k0, k′0 corresponds to the macro-
state with particle density ρ in the thermodynamic limit, and in particular the extensive parts
of all local conservation laws are the same for |λ′λ′λ′〉 and |λλλ〉. Let us choose k′0 finite in the
thermodynamic limit, and k0 =O(L−1). We observe that

〈λ̄̄λ̄λ|(an+1a1)(t)|I〉
〈λ̄̄λ̄λ|I〉

=
〈λ̄′̄λ′̄λ′|(an+1a1)(t)|I〉

〈λ̄′̄λ′̄λ′|I〉

+
i
L

�

K(k′0)e
8i t sin2(k′0/2)eik′0n − K(k0)e

8i t sin2(k0/2)eik0n
�

. (E.13)

This shows that the two choices of representative state lead to different results in the thermo-
dynamic limit, which generally does not even exist as K(k0)∝ Lm. This shows that for this
particular initial state a naive application of typicality ideas fails.

However, a few comments are in order. First, since ρh(k) ∼ k2m at small k, the smallest
hole in a representative state λλλ is typically of order L−1/(2m+1), and in this case the additional
terms are in fact negligible. Hence for such "typical" states, typicality ideas can be applied. This
fact is confirmed numerically by observing that when one averages (E.9) over representative
states, one indeed recovers (E.5). Second, in the problem at hand one can slightly change the
initial state by imposing for example K(k) = K(δ) for k < δ for a fixed small δ. With this
"regularisation" one obtains (E.11), which is now well-behaved and allows for the limit δ→ 0
to be taken. In this limit one recovers the expected result (E.5).
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