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Abstract

We study the phase diagram and critical properties of quantum Ising chains with long-
range ferromagnetic interactions decaying in a power-law fashion with exponent α, in
regimes of direct interest for current trapped ion experiments. Using large-scale path
integral Monte Carlo simulations, we investigate both the ground-state and the nonzero-
temperature regimes. We identify the phase boundary of the ferromagnetic phase and
obtain accurate estimates for the ferromagnetic-paramagnetic transition temperatures.
We further determine the critical exponents of the respective transitions. Our results
are in agreement with existing predictions for interaction exponents α > 1 up to small
deviations in some critical exponents. We also address the elusive regime α < 1, where
we find that the universality class of both the ground-state and nonzero-temperature
transition is consistent with the mean-field limit at α = 0. Our work not only contributes
to the understanding of the equilibrium properties of long-range interacting quantum
Ising models, but can also be important for addressing fundamental dynamical aspects,
such as issues concerning the open question of thermalization in such models.
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1 Introduction

Systems featuring long-range interactions are central in condensed matter and statistical phys-
ics, due to both their widespread presence in nature and the wide range of characteristic phys-
ical phenomena they display, the latter often being at odds with well-known predictions and
results concerning short-range models (see, e.g, [1] for a review). Within the last decade,
the interest in quantum long-range interacting models has further surged due to the progress
in manipulating and controlling these systems at an unprecedented level [2–6]. Specifically,
these experimental platforms naturally realize long-range quantum Ising or Heisenberg mod-
els, with the possibility to engineer many-body interaction potentials decaying proportionally
to d−α as a function of distance d, ranging from van-der-Waals-like (α= 6) and dipolar inter-
actions (α= 3) in the context of Rydberg atoms [3,6], to Coulomb (α= 1) and infinite-range
(α= 0) potentials for trapped ions [2,5].

Recent experiments in such long-range interacting models have mostly centered on the
investigation of inherent dynamical phenomena, such as many-body localization [7], discrete
time crystals [8, 9], prethermalization [10], Kibble-Zurek mechanism [11, 12], or dynamical
quantum phase transitions [13,14]. Despite of recent progress [15,16] one key question has,
however, remained open: especially in the limit of small interaction exponents, it is not known
whether these long-range systems follow the fundamental principle of thermalization as ex-
pected for generic short-range models. In the first place, this obviously requires a thorough
understanding of the thermal properties of the system of interest, which have only been par-
tially explored even in paradigmatic Hamiltonians such as the one-dimensional long-range
quantum Ising model.

In particular, the ground-state properties of the latter in the case of ferromagnetic (FM) in-
teractions have been the focus of investigation via analytical and renormalization group (RG)
techniques [17–19], as well as linked-cluster expansions [20], tensor network approaches
and/or density matrix RG [21, 22], Monte Carlo methods [23] and, very recently, Stochas-
tic Series Expansion (SSE) Monte Carlo [24] investigation in the α > 1 region, demonstrating,
e.g., that the critical behavior of the model belongs to the mean-field and short-range univer-
sality class (UC) for 1 < α < 5/3 and α ≥ 3, respectively. The antiferromagnetic case has
also been intensely studied via the use of several approaches [20,24–27], with notable results
including, among others, the demonstration that the half-chain entanglement entropy displays
area-law violations in the intermediate regime 1 < α < 2 [25]. Similarly, p-wave supercon-
ductors with long-range pairing [28] have been shown to display exotic critical behavior, even
if, due to the presence of Jordan-Wigner strings, those models do in general differ from Ising
chains with similarly decaying interactions. Considerable effort has also been dedicated to the
theoretical investigation of the dynamical properties of this type of model [29–35].

Oppositely with respect to the zero-temperature case, the finite-temperature regime is still
poorly understood. Indeed, the latter has been predicted by general theoretical arguments [36]
to belong to the universality class of the corresponding classical long-range Ising model, with
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quantum effects not changing this description at the qualitative level. While this picture has
been essentially confirmed for the case α= 2 by SSE studies [37], the latter demonstrated, in
the proximity of the ground-state critical point, the presence of considerable finite-size effects
induced by strong quantum fluctuations, which all but prevent observation of the expected
classical regime even at very large system sizes.

In the light of the experimental realizations of these models discussed above, investigating
the thermal critical behavior of these Hamiltonians remains therefore of great importance, in
order to determine the role and strength of the quantum effects in perturbing the predicted
classical picture. Furthermore, (numerically) exact analysis of the finite-temperature regime
is essential to determine non-universal details such as, e.g., the position of thermal critical
points, which are influenced in a key way by quantum effects, and whose knowledge is crucial
for laboratory realizations. Such a study is of especially great interest in the extremely long-
ranged regime 0 < α < 1, which, to our knowledge, has not been the object of this kind of
investigation, and (as mentioned above) is directly realizable in trapped-ions setups.

In this work, we study both the ground-state and finite-temperature phase diagram of
the long-range FM quantum Ising model in one spatial dimension, by means of numerically
exact, large-scale Path Integral Monte Carlo simulations. We perform our calculations for two
representative values of α: namely, we choose α = 0.05 and α = 1.50, within the extremely
long-range region α < 1 and intermediate region 1 < α < 2, respectively. We employ a wide
variety of well-known finite-size scaling techniques to determine the position (i.e., the critical
points) and critical exponents of both the ground-state and finite-temperature paramagnetic
(PM)-FM transitions displayed by the model, obtaining the phase diagram displayed in Fig. 1.

We determine the critical points and critical exponents for the ground-state FM-PM tran-
sition. Our results for critical point positions and correlation length critical exponents are
in agreement with existing predictions in the literature where the latter are available (i.e.,
α= 1.50), while we encounter relatively small (∼ 7%) deviations with respect to our estimate
for the magnetization critical exponent. We then obtain accurate results for the position of the
critical points in the finite-temperature regime for several values of the interaction strength.
Concomitantly, our estimated correlation length critical exponents at α = 1.50 essentially
confirm the theoretical prediction of no qualitative deviations from the classical universality
class due to quantum fluctuations, while discrepancies (up to 10% in the strongly interacting
region) appear in the susceptibility critical exponent.

The structure of the paper is the following. Sec. 2 introduces the Hamiltonian, the numer-
ical technique employed for its study, and the finite-size scaling approaches we employed to
analyze its critical behavior. Sec. 3 discusses our obtained results on the critical behavior of
the model. Finally, in Sec. 4 we outline the conclusions of our work and offer an outlook for
future direction of research.

2 Model and methods

2.1 Hamiltonian and known results

The model analyzed in this work is described by the Hamiltonian

H = −
V

K(L)

∑

i< j

Sz
i Sz

j

rαi j
− h

∑

i

S x
i , (1)

where V > 0 is the interaction strength, i, j run over the sites 1, . . . , L of a one-dimensional
lattice with periodic boundary conditions, ri j is the distance between sites i and j, Sz

i (S x
i ) is the

component along z (x) of the spin-1/2 operator acting on site i, and K(L)≡ (L−1)−1
∑

i 6= j r−αi j
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Figure 1: Calculated phase diagram of the long-range transverse-field Ising model
in eq. (1), displaying the ground-state and finite-temperature phase boundary and
critical exponents obtained using finite-size scaling techniques. Panels (a) and (b)
correspond to α= 0.05 and α= 1.50, respectively. Here, T is the system temperature
in units of the Boltzmann constant, and V is the interaction strength in units of the
transverse field (see below). The displayed results for the effective thermal exponent
and its product with the magnetization and susceptibility critical exponent are those
obtained via data collapse (see below).

is the Kać renormalization factor. The latter ensures the existence of a proper thermodynamic
limit in the regime α≤ 1, while for α > 1 it amounts to a rescaling of the interaction strength,
and does not change the universal features of the critical behavior of the model. We remark
that the presence of this renormalization factor is directly related to how interactions with
α < 3 are engineered in trapped ions experiments. The latter exploit coupling between the
ions and collective modes of the ion chain (phonons), mediated via a single laser shined over
the full sample. Increasing the number of ions while keeping the lattice spacing constant
naturally leads to a reduced coupling strength, that translates into the fact that the energy of
the full system is still extensive - as reflected by Kać normalization. In the following, periodic
boundary conditions are taken into account following the minimum-image convention, and
h= 1 will be taken as unit of energy.

For very small interaction strength V , the ground state of the system in the thermodynamic
limit is a paramagnet, characterized by a vanishing value of the magnetization along the z
direction |mz| ≡ L−1|

∑

i Sz
i |. On the contrary, for V � 1 the system is in a FM phase, displaying

a finite |mz|. The existence of a finite-V phase transition connecting these two states can be
proven via analytical arguments (see, e.g., [17]); its UC depends strongly on the value of
the decay parameter α. Indeed, the α = 0 case, also referred to as Lipkin-Meshkov-Glick
model [38], can be described in an exact fashion at the mean-field level [39], and the PM-
FM transition has been proven to belong to the Gaussian UC in the 1 < α < 5/3 region. In
contrast, in the regime α≥ 3, the critical point belongs to the short-range UC (i.e., the one of
the FM-PM transition in the nearest-neighbor limit α→∞).

In the finite-temperature regime, generic scaling arguments [36] predict that the model
should display the same critical behavior as its classical (i.e., h = 0) counterpart, due to the
finiteness of the system size in the imaginary time dimension (see below). The critical behavior
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of the classical model has been studied via both analytical (see, e.g., [40]), RG (see, e.g., [41])
and numerical techniques (see, e.g., [42]) in the α > 1 regime. Here, the system displays a
second-order FM-PM thermal phase transition for 1 < α < 2, with the region 1 < α < 3/2
belonging to the mean-field regime, while in the point α = 2 the model undergoes a finite-
temperature transition of the BKT type, and the short-range regime is reached (i.e., no finite-
temperature transition takes place) for α > 2.

2.2 Numerical techniques and finite-size scaling

We perform our investigation of the Hamiltonian in eq. (1) via Path Integral Monte Carlo
(PIMC) [43], a numerically exact technique for the study of unfrustrated systems of bosons
and quantum spins. In this approach, one maps the features of a quantum model of interest to
those of an equivalent, higher-dimensional classical one, which is then studied via Metropo-
lis Monte Carlo simulations. The quantum-to-classical mapping described above maps the
partition function of the extended transverse-field Ising model in eq. (1) into the one of an
anisotropic extended Ising model on a rectangular lattice, via a procedure known as Suzuki-
Trotter breakup. Here, in addition to the original spatial dimension, one also considers a dis-
cretized and periodic one, known as imaginary time, which extends in the interval [0,β],
where β = 1/T is the inverse system temperature in units of the Boltzmann constant. The
number of sites M along this direction (also known as slices) is a free parameter which affects
the accuracy of the mapping: indeed, the latter is exact up to O(β/M) corrections, which
vanish in the limit M →∞.

In the spatial direction, the extended Ising model resulting from the mapping displays
the same FM long-range interactions present in the spin-spin term of the model in eq. (1),
while spin-spin couplings are nearest-neighbor in the imaginary time direction. Our PIMC
algorithm combines conventional Wolff cluster updates [44] in imaginary time with efficient
long-range cluster updates [42] in the spatial direction. The choice of these two state-of-the-
art techniques allow to accurately analyze large system sizes (up to L = 8192 sites) at low
enough temperatures (down to β = 1024) to reach the ground state regime. The Suzuki-
Trotter corrections mentioned above are kept into account by performing simulations with
increasing number of slices (up to M = 65536), until a value M = M∗ is found such that the
corresponding values of the observables of interest were determined to be identical, within
statistical error, to those obtained for M = 2M∗. The same protocol (with β in the place of
M) is adopted to ensure the T → 0 limit is reached in the investigation of the ground state
regime.

The PIMC algorithm gives us direct access to observables commuting with the Sz
i operators,

including the integer powers of |mz|. This allows us to compute quantities such as the Binder
cumulant

U =
1
2

�

3−
〈m4

z 〉
〈m2

z 〉2

�

, (2)

where 〈. . .〉 stands for statistical averaging, which is expected to converge to 1 (0) in a FM
(PM) phase [45]. We also compute the “classical” susceptibility

χ = β L
�

〈m2
z 〉 − 〈|mz|〉2

�

, (3)

which, in proximity of a finite-temperature critical point of a quantum model, approximates
well the exact functional form of the magnetic susceptibility [37].

In order to extract reliable information on the critical behavior of the model in the ther-
modynamic limit, we exploit the well known finite-size scaling (FSS) theory [45]. In this
framework, scaling relations of various quantities in terms of the correlation length ξ, which
diverges when approaching a critical point, are exploited to obtain finite-size information by
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noting that in a finite system ξ will saturate to a value O(L), where L is the system size. Fea-
tures such as the position of the critical point or the critical exponents, on which the original
scaling relations depended, can then be directly extracted via numerical fits as a function of
L. In the following section, when discussing the fitting procedures to obtain such quantities,
we will offer detailed formulae regarding FSS predictions for observables such as U and χ.

3 Results

We investigate the critical properties of the model in eq. (1) in the ground-state and finite-
temperature regime for α= 0.05 and α= 1.50.

3.1 Ground-state critical behavior

The first step in our analysis is the determination of the PM-FM critical point Vc in the ground-
state regime, which we accomplish by fitting to our numerical data for the Binder cumulant U
its expected FSS behavior. The Binder cumulant curves U(V ) for system sizes L and, e.g., 2L
are expected to cross at size-dependent points V = VU(L), which will follow (to the leading
order) the FSS scaling [24,46]

VU(L) = Vc

�

1+ aL−ω−θt
�

, (4)

where Vc is the critical point, and the effective thermal exponent θt is linked to the correlation
length critical exponent ν.

In the ground-state regime ν−1 = θt outside of the mean-field region; conversely, when
the latter is entered, corrections to the leading scaling behavior can be taken into account
[24] via the generalized expression ν−1 = (duc(α)/d)θt , where d is the dimensionality and
duc(α) = 3(α− 1)/2 is the upper critical dimension for the value of α of interest.

Comparison of eq. (4) with the predicted leading-order FSS behavior for the value of the
Binder cumulant at the VU(L)s,

U(L, VU(L)) = b+ cL−ω, (5)

allows us to obtain estimates for Vc and θt , by fitting our computed results for the crossing
features [see Fig. 2(a)] with the functional forms above.

Fig. 2(b-c) display examples of the FSS fitting procedures mentioned above; the obtained
values of the critical point and of the effective thermal exponent θt are listed in Table 1.

Table 1: Values of Vc , θt , and βm (see text) associated to the ground state
paramagnetic-ferromagnetic transition, computed via FSS analysis of the Binder cu-
mulant crossings (BC) and via data collapse of the squared magnetization m2

z (DC).

α Vc (BC) Vc (DC) θt (BC) θt (DC) 2βmθt (DC)
0.05 1.9997(4) 1.9999 0.50(7) 0.688 0.68
1.50 2.1972(7) 2.1981 0.39(6) 0.64 0.715

In order to gain more insight into the ground-state critical behavior of the model, we
perform a data collapse analysis by directly exploiting the FSS predictions for the behavior of
the squared magnetization close to a critical point [24,45],

m2
z ∼ L−2βmθt · f

�

L+θt (Vc − V )
�

V & Vc , (6)

where βm is the magnetization critical exponent, up to corrections of higher order in 1/L. This
scaling law implies that the rescaled magnetization curves ym

L ≡ m2
z (L)L

+2βmθt for different
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Figure 2: Binder cumulant scaling in the ground state regime (in all panels,
α= 1.50). Panel (a): Binder cumulant curves as a function of V for different system
sizes. Solid lines are a guide to the eye. Inset: magnification of the curve crossing
region. Panel (b): computed crossing positions VU(L) between the Binder cumulant
curves at system sizes L and 2L. The continuous line is a numerical fit to the ex-
pected FSS behavior in eq. (4). Panel (c): computed values of the Binder cumulant
at the crossing points VU(L) between system sizes L and 2L. The continuous line is
a numerical fit to the predicted FSS behavior in eq. (5).

system sizes should coincide if plotted as a function of xV
L ≡ (Vc − V ) Lθt . We perform a high-

order polynomial fit of ym
L as a function of xV

L in a window around the critical point xV
L = 0

for a wide range of candidate values of Vc , θt and βm, choosing as our final estimates for these
quantities the values which resulted in the fit with the lowest chi-square value. While it is hard
to assign a rigorous error bar to the results of a data collapse analysis, we estimate the order
of magnitude of the error on our results by performing the same fits in a considerably larger
(i.e, containing of the order of double the number of points) window around the critical point,
and taking the difference between the optimal values of Vc , θt , and βm for the two windows
as the order of their numerical uncertainty.

Our collapsed data is displayed in Fig. 3(a-b); the obtained estimates for Vc , θt and βm are
listed in Table 1. We note that the data collapse behavior takes place over a fairly wide range
of values of the rescaled order parameter xV

L , despite relatively narrow fitting windows for the
scaling behavior in eq. (6) (the intervals between dashed lines in Fig. 3). This highlights the
faithfulness of the data collapse scaling description of our numerical data, which translates to
highly reliable estimates of the critical properties of the system.

Examination of our results points out i) the remarkable agreement of the critical point
estimates obtained via the Binder cumulant FSS and the data collapse, and ii) conversely, the
incompatibility between the two estimates for the effective thermal exponent θt . Due to the
arguments mentioned above, we believe the data collapse estimates for the critical features to
be more reliable in this regard.

For α = 1.50, we find agreement for θt and deviations of the order of 7% for 2βmθt from
the independent SSE predictions in Ref. [24] which, in our notation, are θt ' 2βmθt ' 0.667.
We also find good agreement with the estimate Vc ' 0.42 (in our notation) given in [24] for
the position of the ground-state critical point, by performing a data collapse where the rescaled
interaction xV

L is replaced by
�

xV
L

�∗ ≡ L+θt (Vc − V/K(L)) (the rescaling is required since the
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Figure 3: Panel (a): data collapse of the rescaled squared magnetization ym
L as a

function of the rescaled interaction strength xV
L for α = 0.05. Panel (b): same as

panel (a) for α= 1.50. Panel (c): same as panel (b), where the data collapse rescal-
ing is performed on the Kać-factor-free rescaled interaction (see text). In all panels,
the black dashed lines enclose the interval of the independent variable within which
the data collapse scaling fit has been performed.

Kać correction factor is not employed in [24]). The resulting data collapse [see Fig. 3(c)]
yields optimal values θt ' 0.64, 2βmθt ' 0.76, and Vc ' 0.42. For α = 0.05, our estimates
for θt and 2βmθt are compatible (up to deviations of the order of 3% in θt) with the ones
corresponding to the α= 0 mean-field critical behavior, i.e., θt = 2βmθt = 2/3 [39].

3.2 Finite-temperature critical behavior

Once the boundary of the ground-state FM phase is determined, we investigate whether or
not FM order survives for T > 0, and more in general the details of the critical behavior of the
model in this regime. To this end, we perform finite-temperature calculations for fixed values
of V belonging to the FM phase in the ground state regime. We apply the FSS framework to
quantities such as the Binder cumulant and the susceptibility, computed as a function of T , to
estimate features of the temperature-driven critical behavior.

Indeed, our results for the Binder cumulant as a function of β at fixed V and different
system sizes immediately confirm the presence of a finite-temperature phase transition, as
pointed out by the appearance of the crossing behavior discussed above [see Fig. 4(a)] at size-
dependent points βU(L, V ). We determine the V -dependent critical temperatures βc(V ) and
the associated θt(V ) via fitting of the FSS relations in eqs. (4)-(5) to our computed crossing
features, with the thermal critical points βc and β taking the role of Vc and V , respectively.
If the hypothesis of essentially classical critical behavior for the finite-temperature quantum
model holds (as we argue below) one may link [47] θt to the correlation length critical expo-
nent ν via the relation ν−1 =

�

dclass
uc (α)/d

�

θt , where dclass
uc (α) = 2(α−1) is the classical upper

critical dimension.
Examples of this analysis are displayed in Fig. 4(b-c): the obtained critical parameters are

listed in Table 2. We remark here that our application of this approach encountered in some
cases strong difficulties due to significant finite-size effects in proximity of the βc(V, L). In
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Figure 6: Data collapse of the rescaled magnetic susceptibility yχL as a function of

the rescaled order parameter xβL for the values of α and V studied in this work. The

black dashed lines enclose the interval of xβL within which the data collapse scaling
fit has been performed.

particular, the relatively large numerical uncertainties on the values of the Binder cumulant
in this region led to the necessity to perform conservative estimates of the finite-size crossing
points. In turn, this prevented us in some cases from obtaining meaningful (i.e., with small
enough error bars) estimates for θt .

In order to obtain an independent estimation of our quantities of interest, we investigate
the finite-temperature behavior of the magnetic susceptibility for the same values of V selected
in our Binder cumulant analysis. At finite system size and fixed interaction strength, χ is ex-
pected to display peaks at size-dependent temperatures βχ(L, V ); the FSS framework predicts
for the latter [24,45] the leading scaling behavior

βχ(L, V ) = βc + f L−θt (7)

as a function of the system size.
Our numerical data confirm the expected behavior of χ [see Fig. 5(a)]. Fitting the FSS

functional form in eq. (7) to the computed peak positions [see Fig. 5(b) for an example] allows
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Table 2: Summary of the computed estimates for βc , θt , and γθt (see text) for the
finite-temperature transitions at our investigated values of α and V . Our results are
categorized according to the methodology employed to derive them: namely, FSS of
the Binder cumulant crossings (U), FSS of the magnetic susceptibility peak position
(χ), and data collapse of the susceptibility (χdc). Estimates marked with an asterisk
(∗) did not converge with respect to the choice of minimum size to be included in
the fitting procedure.

βc θt γθt

V U χ χdc U χ χdc χdc

α= 0.05 V = 2.5 2.2007(4) 2.23(1) 2.20 / 0.72(4)∗ 0.51 0.505
V = 3.0 1.6120(7) 1.61(1) 1.612 / 0.54(3) 0.485 0.515
V = 3.5 1.299(1) 1.303(3) 1.303 / 0.54(2) 0.49 0.523
V = 5.0 0.8474(2)∗ 0.844(2) 0.8491 0.5(1) 0.47(2) 0.50 0.524

α= 1.50 V = 2.5 3.21(1) 3.351(9) 3.229 0.49(7) 0.75(1)∗ 0.50 0.516
V = 3.0 2.109(1)∗ 2.12(1) 2.115 0.50(2) 0.48(3) 0.52 0.538
V = 3.5 1.647(6) 1.646(5) 1.650 0.5(2) 0.46(2) 0.52 0.545
V = 5.0 1.039(1) 1.035(1) 1.041 0.44(7) 0.41(1) 0.530 0.550

us to directly estimate the critical temperatures and effective thermal exponents as a function
of the interaction strength (see Table 2 for a list of results).

While also requiring conservative estimates (and therefore large error bars) for the peak
positions, due to strong finite-size effects, we found the susceptibility-based approach to be
much less sensitive to this issue than the Binder cumulant FSS discussed above. In particular,
we encountered problematic results only for V = 2.5, for both values of α considered in this
work, where our estimates were strongly dependent on the set of system sizes considered in
the fitting procedure (the reported results correspond to the fits with all sizes considered).

We finally analyze the critical properties of the model by performing a data collapse analysis
for the behavior of the magnetic susceptibility close to the finite-temperature critical points
[24,42,45],

χ ∼ L+γθt · f
�

L+θt (βc − β)
�

β ∼ βc , (8)

where γ is the susceptibility critical exponent, up to corrections of higher order in 1/L. The
analysis follows the same protocol outlined in our discussion of the ground-state regime,
with the rescaled dependent and independent variables here being yχL ≡ χ(L)L−γθt and

xβL ≡ (βc − β) Lθt , respectively.
Fig. 6 displays our collapsed data for all the values of α and V investigated in this work; the

corresponding optimal (in the sense discussed above) results for βc , θt and γ are displayed in
Table 2. As in the ground-state regime, we observe that the parameter range in which the data
collapse scaling ansatz is respected noticeably exceeds our fitting window (and vastly so, in
most cases), highlighting the accuracy of this approach in describing the critical behavior of the
model. Furthermore, this protocol does not require the estimation of size-dependent features,
sush as the curve crossings for the Binder cumulant, or the peak position for the susceptibility,
allowing us to obtain much more reliable and systematics-free results. We also note that high
degree of accuracy with which the scaling law in eq. (7) can be applied to describe the behavior
of the ”classical” susceptibility in eq. 3 is a strong indication of the goodness of the latter as an
approximation for the complete functional form of the magnetic susceptibility.

A direct analysis of the results for the critical exponents listed in Table 2 shows that our
estimates obtained via FSS of the Binder cumulant crossings, where meaningful in the sense
discussed above, are consistent within error bar with the ones obtained via susceptibility data
collapse. Concomitantly, in some points we observe differences (which remain consistently
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small, except for the point α = 1.50, V = 5.00) between the latter and the results of the
susceptibility peak position FSS for the values of V in which the latter have converged with
respect to the system sizes employed in the fitting procedure. In the points where this did not
happen, the θt result from the susceptibility peak position fit decreased, shifting towards the
data-collapse results, when smaller sizes were discarded.

According to the arguments mentioned in Sec. 2, the universality class of the T > 0 FM-
PM transition should be the same of the corresponding transition in the classical counter-
part of model eq. (1). For α = 1.50, the classical Hamiltonian is in the mean-field regime,
and RG predictions, confirmed by classical Monte Carlo calculations [42], yield the estimates
θt = γθt = 1/2. Direct comparison with our most representative and reliable results in Table 2
(i.e., the one obtained via data collapse of the magnetic susceptibility) shows that our esti-
mates for θt are in essential agreement with the classical prediction (with deviations outside
of the estimated order of magnitude of the error only appearing for V = 5.0). Compatibil-
ity between our estimate and the theoretical predictions, even for V = 5.0, is confirmed by
the results obtained via FSS of the Binder cumulant, while the susceptibility FSS estimates,
where converged, show appreciable deviations only for V = 5.0. Conversely, our estimates for
γθt show relatively consistent deviations (up to the order of 10%), which increase with the
interaction strength.

These differences with the predicted results may be in principle due to several causes,
including i) the “classical” approximation employed for the study of the susceptibility in our
analysis, or ii) genuine quantum effects which introduce deviations with respect to the pre-
dicted classical behavior. However, we find it unlikely that either (i) and/or (ii) may be the
dominant physical mechanism underlying the observed deviations, since both effects are es-
sentially quantum in nature, and are expected to become weaker for larger values of V , where
in contrast our results are more at odds with the classically predicted values. Indeed, for
higher interaction strengths quantum effects are expected to weaken, due to both the larger
value of V (in comparison to the transverse field h) and the higher temperature at which the
critical region is located. This consideration leads us to the conclusion that despite these devi-
ations (which may be caused by finite-size effects, or by higher-order corrections) the critical
behavior of the model in this regime follows the classical UC.

As in the ground-state case, we find essential compatibility with the (classical) mean-field
exponents at α = 0; in particular, we match the predicted values [39] θt = γθt = 1/2 up to
relatively small deviations (of up to 2.5%) for the latter quantity, which also become larger in
the strongly interacting regime, and are therefore likely not due to genuine quantum effects
as argued above.

4 Conclusions and outlook

We study the ground-state and finite-temperature phase diagram and critical behavior of the
long-range quantum Ising model in one spatial dimension, for values of the interaction expo-
nent parameter of direct interest for current experiments in trapped ion setups. We perform
numerically exact, large-scale PIMC simulations within both the extremely long-range region
and intermediate long-range regime, respectively, employing a wide variety of finite-size scal-
ing techniques to determine the location (i.e., the critical points) and critical exponents of both
the ground-state and finite-temperature phase transitions displayed by the model.

We determine transition points and critical exponents for the ground-state FM-PM transi-
tion. We find essential agreement with existing predictions for these quantities, where avail-
able (up to small deviations for the value of the magnetization critical exponent), and compat-
ibility of our extremely-long-range results with the fully-connected universal properties. We
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then accurately estimate the position of the critical points in the finite-temperature regime
for several values of the interaction strength. Here, our estimated critical exponents in the
intermediate-long-range region essentially confirm the theoretical prediction of classical uni-
versality. In particular, in the intermediate long-range regime our estimated correlation length
critical exponent is fully consistent with the classical predictions, while the susceptibility expo-
nent displays deviations at most up to the order of 10%. Similarly, in the extremely long-range
region we find compatibility with the (classical) mean-field universality class up to deviations
of the order of 2.5% in the value of the correlation length critical exponent. For future works,
it would be interesting to verify if some of these findings also apply to long-range p-wave
superconductors [28], that, while described by free theories, could still display some of the
phenomenology we discuss.

Beyond exploring the equilibrium phase diagram and the nature of critical points, our
work is also directly relevant for another open question appearing in the context of quan-
tum Hamiltonians with long-ranged interactions. This concerns quantum thermalization and
equilibration during coherent quantum dynamics without coupling to an environment, which
appears all but settled. In the infinitely-connected limit of α= 0 it is already well known that
thermalization does not occur [48,49]. Furthermore, numerical works close to this infinitely-
connected limit have already observed indications that thermalization could be prevented at
least on the achievable time scales [50, 51]. In order to settle this fundamental question,
the understanding of the thermal equilibrium phases and properties, to which this work con-
tributes, represents a first key step. While thermalization corresponds to ensemble equiva-
lence of the thermal ensemble with the diagonal ensemble, capturing the long-time steady
states during dynamics [52], it is also not known to which extent such long-range models ex-
hibit ensemble equivalence on a general level. This concerns for instance the equivalence of
the thermal and microcanonical ensemble, which is of central importance from the statistical
physics point of view.
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