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Abstract

A normal metal source reservoir can load two electrons onto a double quantum dot in
the spin-triplet configuration. We show that if the drain lead of the dot is a spin-singlet
superconductor, these electrons cannot form a Cooper pair and are blockaded on the dou-
ble dot. We call this phenomenon Andreev blockade because it arises due to suppressed
Andreev reflections. We identify transport characteristics unique to Andreev blockade.
Most significantly, it occurs for any occupation of the dot adjacent to the superconductor,
in contrast with the well-studied Pauli blockade which requires odd occupations. An-
dreev blockade is lifted if quasiparticles are allowed to enter the superconducting lead,
but it should be observable in the hard gap superconductor-semiconductor devices. A re-
cent experiment tests this model and finds support for several predictions made here [1].
Andreev blockade should be considered in the design of topological quantum circuits,
hybrid quantum bits and quantum emulators.
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1 Introduction

Transport blockade phenomena are interruptions of transmission due to interactions of mul-
tiple particles. They are a testbed for new physics related to coherence or conservation of
charges, spins, photons and phonons [2–7]. The most iconic is the Coulomb blockade [8–12]
which occurs when the energy barrier due to charging prevents electrons from tunneling
through e.g. a quantum dot. Double quantum dots are known to demonstrate Pauli blockade
due to spin-triplet states. This has been thoroughly studied in a large number of platforms,
and is commonly used as an initialization and readout mechanism for quantum dot spin-based
qubits [13–15]. The realization of single and double quantum dots coupled to superconduc-
tors, with induced Andreev bound states [16–18], brings forward the question of whether
there can be blockade phenomena specific to Andreev transport?

In this manuscript, we propose a blockade that appears in transport through a double
quantum dot with at least one superconducting lead [19]. The gap in the superconductor
prevents single-particle transport through the double dot. However, transport can still take
place via the process of Andreev reflection in which two electrons from the double dot enter
the superconducting lead as a Cooper pair. We find that if the two electrons have been loaded
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in a triplet state, Andreev reflection is suppressed [20–25]. Both Pauli blockade and Andreev
blockade involve triplet states of two electrons. However, the origin of the former is the Pauli
exclusion principle that prevents electrons from passing through a dot already occupied by an
electron of the same spin. The origin of Andreev blockade is angular momentum conservation:
a pair of electrons must be in a singlet state in order to tunnel into the superconductor as
a Cooper pair, hence electrons in a triplet state have the wrong total spin. While Andreev
blockade happens at the dot-lead interface, it still requires two dots to manifest because the
system needs to be filled into a low-energy (subgap) triplet state, e.g. with one electron on each
dot (Fig. 1). We note that the device depicted in Fig. 1 has been realized experimentally and
the basic predictions of our model were confirmed [1]. Another related experiment considered
a similar setup with blockade due to spin polarization of the double dot states in high magnetic
fields [26].

The transport signatures of Andreev blockade are summarized in Fig. 2 (We introduce
the model further below and in the supplemental materials in the interest of presenting the
phenomena clearly). It is instructive to compare Andreev blockade to the well-studied Pauli
blockade for the case of a double dot with normal leads (Fig. 2(a)). First, we observe that
due to Coulomb blockade, transport is only allowed through the double dot in the vicinity
of charge degeneracy points, which at finite source-drain voltage bias transform into double-
triangle structures in the space of the two gate voltages that change the occupations of the two
dots, Vg1 vs. Vg2 (here in the units of charge occupation).

Pauli blockade leads to suppressed conductance at the (1,1)→(0,2) charge degeneracy
point, where (n,m) denote double dot occupations (Fig. 2(a)). Andreev blockade appears at
the two (1,odd)→(0,even) charge degeneracy points (Fig. 2(b)), i.e. twice as often as Pauli
blockade. Andreev blockade is only sensitive to the parity of the charging state of QD1 due to
the particle-hole symmetry in the superconductor. As in the case of Pauli blockade, changing
the source-drain bias direction changes which charge degeneracy points are blockaded (see
supplemental materials). In the case of Andreev blockade, switching the bias direction results
in the blockade to the two (1,odd)→(2,even) charge degeneracy points.

A closer comparison reveals that the conductance triangles in Andreev transport (Fig. 2(b))
are approximately twice as large as in normal transport (Fig. 2(a)). At the same time, there is
only one conductance triangle at each charge degeneracy point in Andreev transport, but two
in normal transport. Furthermore, Fig. 2(c) shows that the breakdown of Andreev blockade at
large source-drain bias is different from Pauli blockade: in Andreev blockade the source-drain
bias needs only to exceed the superconducting gap of the lead in order for breakdown to occur,
while in Pauli blockade the bias must exceed the (0,2) singlet-triplet energy (not shown) [13].

In order to understand these manifestations of the Andreev blockade, let us first consider
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Figure 1: Device schematic: Two quantum dots (labeled QD1 and QD2) are tunnel
coupled to each other and to the two leads. The left, normal metal lead supports only
single electron tunneling. The right, superconducting lead supports only Cooper pair
tunneling. The chemical potentials on the quantum dots are tuned using two gates
(labeled Vg1 and Vg2). Quantum dots are shown in the T+(1, 1) configuration, but
Andreev blockade also occurs for T0(1,1) and T−(1,1).
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Figure 2: Zero temperature charge stability diagrams comparing Pauli and Andreev
blockades. Current through the double quantum dot at fixed source-drain bias volt-
age is plotted as a function of the gate voltages Vg1 and Vg2 on the two quantum
dots. Gate voltages are in the units of dot charging energies U1 = U2 = 1. Labels
in brackets indicate the lowest energy states of the double dot. (a) Pauli blockade:
double quantum dot with two normal metal leads at low source-drain bias. ∆2 = 0,
Γ2 = 0.01, where ∆2 is the Andreev coupling in dot 2, Γ2 is the single particle tun-
neling rate between dot 2 and lead 2. (b) Andreev blockade: double quantum dot
with one normal metal lead and one superconducting lead at low source-drain bias.
∆2 = 0.25, Γ2 = 0. (c) Breakdown of Andreev blockade: when the source drain
bias exceeds the superconducting gap (which we reduce from infinite to 0.05U1 in
this plot), the conductance triangles partially reappear. ∆2 = 0.25, Γ2 = 0.01 if
|∆E| > 0.05 else 0, where ∆E is the energy difference between the initial and final
states. Other parameters used: inter-dot charging energy U12 = 0.1, source and drain
bias V1 = −V2 = 0.1, tunneling rate between dot 1 and lead 1 Γ1 = 0.01, between
dot 1 and dot 2 Γ12 = 0.024, further details in the supplemental materials.
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Figure 3: (a) Andreev transport cycle. QD1 is tuned to the 1-2 charge degeneracy
point, while QD2 is tuned to the vicinity of one of the charge degeneracy points,
such that even state is the ground state. The transport cycle consists of four charge
states depicted in the Figure. The incoherent electron tunneling processes (which
we describe using the master equation formalism) are depicted by purple arrows.
Odd parity states of QD2 are depicted as superpositions of electron and hole states
to denote the approximate particle-hole symmetry (i.e. the fact that odd → even
transition can occur via either electron addition or electron subtraction). (b) Andreev
blockade. Setup identical to panel (a) except the QD1 is tuned to the 0-1 charge
degeneracy point. Andreev blockade occurs in the last step: QD1 and QD2 both host
a spin-up electron, consequently the spin-up electron on QD1 cannot tunnel onto QD2
to make a Cooper pair.
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a single quantum dot coupled to a superconducting lead. In the absence of Andreev reflection,
the quantum dot can be in one of four states: |0〉, | ↑〉, | ↓〉, or | ↑↓〉 (corresponding to empty,
spin-up electron, spin-down electron, and doubly occupied). Conventionally, the charging
state of the dot is denoted as {0,1, 2} (where the number indicates the number of electrons on
the dot). In a quantum dot coupled to a superconductor, Andreev reflection can be functionally
understood as a process that hybridizes states in the same parity sector, meaning that in our
case it mixes the two even parity states |0〉 and | ↑↓〉. Therefore, in the presence of Andreev
reflection we switch to parity notation {even, odd} to denote the state of a quantum dot coupled
to a superconducting lead. Starting from an odd parity state we can reach an even parity state
by either adding or removing an electron. Hence, the levels of the quantum dot coupled to a
superconducting lead can be thought of as approximately particle-hole symmetric.

The mixing of the empty and doubly occupied states implies that the two charge degener-
acy points of the quantum dot nearest to the superconducting lead are equivalent. Therefore,
Andreev blockade can only be controlled by the occupancy of the quantum dot nearest to the
normal lead, which is the reason why Andreev blockade occurs twice as often as Pauli blockade.

The approximate particle-hole symmetry implies that the conductance is approximately
unchanged as the quantum dot nearest to the superconducting lead is tuned from slightly
above the charge degeneracy point to slightly below it. That is, conductance can take place
on both the particle-like and hole-like side of the charge degeneracy point. On the other
hand, the version of the device with two normal metal leads can only support conductance
on the particle-like side of the charge degeneracy point. The additional hole-like conductance
regime that is present in Andreev transport results in the approximate doubling in the size of
conductance triangles in Andreev as compared to normal transport.

The fact there is only one transport triangle at each charge degeneracy point in Andreev
transport (Fig.2(b)), while there are two in normal transport (Fig.2(a)), is a consequence
of the fact that in Andreev transport two electrons must be moved from the source to the
drain lead per transport cycle, while only one electron is moved in normal transport. Normal
charge transport cycle goes through three charging states and hence requires a triple charge
degeneracy point (i.e. a point at which three charging states become degenerate). The An-
dreev transport cycle goes through four charging states and hence requires a quadruple charge
degeneracy point. In normal transport, finite inter-dot coupling splits the quadruple charge
degeneracy point into two triple charge degeneracy points and hence the number of conduc-
tance triangles doubles resulting in characteristic hexagonal patterns of charge transport in
double quantum dot systems. On the other hand, the number of triangles in Andreev trans-
port remains unchanged as all four charging states are required for transport.

2 Andreev charge transport cycle

We use the master equation formalism to describe electron transport (see supplemental mate-
rials for details of the method). Our strategy is to begin by considering the eigenstates of QD1
and of QD2 independently. We assume weak interdot tunnel coupling so that the double dot
states are well approximated by direct products of the eigenstates of the two dots. The charge
transport cycle involves sequential incoherent transitions between QD1 and QD2 eigenstates.

To describe the quantum states of the double-dot system we use the Hamiltonian

H = H1 +H2 + U12(n1,↑ + n1,↓)(n2,↑ + n2,↓), (1)

where U12 is the inter-dot interaction strength, ni,σ is the electron number operator on dot i,

4

https://scipost.org
https://scipost.org/SciPostPhys.11.4.081


SciPost Phys. 11, 081 (2021)

(1,o)

h

e
V2

V1

N SCQD1QD2

(a) (b) (c) (d)

Fig 4: current version

0

0.2

0.4

0.6

0.8

1.0

cu
rre

nt
 [a

.u
.]

N-QD-QD-gSC, T=0 gSC-QD-QD-gSC, T=0 gSC-QD-QD-gSC, T>0

Figure 4: Interplay of Andreev and spin blockade. (a) Charge stability diagram for
a N-QD-QD-(gapless SC) system showing a transport pattern consisting of conven-
tional transport features, Andreev transport features, and a new feature indicated by
the blue arrow. The new feature is a consequence of tunneling process depicted in
(b). Γ2 = 0.01, other parameters are the same as those in Fig. 2b and 2c. (b) Tun-
neling process enabled by quasiparticles in the superconducting leads that results in
the clearing of the inter-dot triplet. (c) Charge stability diagram for a (gapless SC)-
QD-QD-(gapless SC) system. ∆1 = 0.25, other parameters are the same as those in
panel (a). (d) Same as (c) but at T = 0.05U1.

and Hi is the single dot Hamiltonian

Hi =
∑

σ

εi,σni,σ + Uini,↑ni,↓ +
�

∆ic
†
i,↑c

†
i,↓ + h.c.
�

+ eVi

∑

σ

(1− ni,σ), (2)

where εi,↑ and εi,↓ are the single-electron energies, Ui is the quantum dot charging energy,
∆i is the Andreev reflection amplitude (∆i = 0 for normal metal leads), and the operator
c†

i,↑c
†
i,↓ creates a pair of electrons on the quantum dot, and Vi is the electrochemical potential

of the lead. We use the eVi term to account for the energy of an electron as it leave the
quantum dot and enters the adjacent lead. This term is crucial for describing Andreev reflection
in which pairs of electrons coherently move between the quantum dot and the proximate
superconducting lead [27]. For the quantum dot coupled to the superconducting lead, the
eigenstates that play a role in transport are the two odd parity eigenstates (| ↑〉 and | ↓〉) and
the lower energy even parity eigenstate (|e〉) that is the superposition of the states |0〉 and
| ↑↓〉.1

Each Andreev charge transport cycle adds a Cooper pair to the superconducting lead. We
first consider a cycle without Andreev blockade (Fig. 3(a)). QD1 is tuned to the charge 1-2
degeneracy point, with the 1 state being slightly lower in energy, while QD2 is tuned to the
even-odd degeneracy point with the even state being slightly lower in energy. The transport
cycle consists of four steps: (1) an electron from the normal lead moves onto QD1; (2) an
up-spin electron moves from QD1 to QD2 resulting in QD2 being excited into the odd state;
(3) another electron from the normal lead moves onto QD1; (4) a down-spin electron from
QD1 moves to QD2 brining QD2 back to the even ground state. Crucially, the two electrons
that entered the double dot system from the left lead in steps (1) and (3) are absorbed into
the right lead as a Cooper pair in step (4).

Gating QD1 to the 0-1 charge degeneracy point results in Andreev blockade, which is illus-
trated in Fig. 3(b). The transport cycle proceeds through the same steps, but becomes stuck
at step (4) as an inter-dot triplet, that is incompatible with Andreev reflection, is formed on
step (3).

1We note that for the case with two superconducting leads, U12 induces the quantum state with even parity on
both quantum dots to become mixed, which we take into account in our numerics.
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3 Breakdown of Andreev blockade

Andreev blockade breaks down when single electrons are allowed to tunnel into the supercon-
ducting lead as quasiparticles. Quasiparticle excitations become important in two experimen-
tally relevant cases. First, at sufficiently high source-drain bias the quasiparticle states above
the superconducting gap become accessible (Fig.2(c)). Second, superconductors can have
low-energy quasiparticles due to nodes in the order parameter, vortices, or disorder. Andreev
blockade is also lifted by any spin mixing mechanism, such as due to hyperfine, spin-orbit
or electron-phonon interactions [28–30]. Since spin mixing in double dots has been studied
previously and is not specific to superconductors, here we focus on quasiparticle transport.

We model a single superconducting lead with a quasiparticle density (a gapless supercon-
ductor) using a two-lead model, following Ref. [27]. The first virtual lead describes Cooper
pair tunneling, and we model its effect on the adjacent quantum dot using Eq. (1). The second
virtual lead describes single particle transport into the superconductor, and is modeled as a
normal metal with a variable density of states. The tunneling of single electrons between the
quantum dot and the second virtual lead is assumed to be an incoherent process, which we
model at the master equation level.

Let us now consider transport in the (normal lead)-(double quantum dot)-(gapless su-
perconducting lead) setup. The subgap density of states (soft gap) is very common in ex-
periments [27]. Naively, we expect that transport can occur either through Andreev reflec-
tion or through normal single-particle transport and hence we can find the total current by
adding up the two contributions (i.e. superimposing Figs. 2(a) and (b)). Transport calcula-
tions (Fig. 4(a)) are largely consistent with this notion, for example the upper right charge
degeneracy point is no longer blockaded, and the triangles are doubled at each degeneracy
point.

However, there is also a qualitatively new feature: transport is allowed in the bottom right
corner that was blockaded both in Andreev and Pauli cases. The single electron tunneling
processes opens a pathway for clearing the inter-dot triplet state as illustrated in Fig. 4(b).
The presence of the finite density of states near the chemical potential breaks the blockade by
allowing spin-up Andreev bound state to leak out into the lead.

The zero- and finite-temperature charge stability diagrams for the case in which both leads
are gapless superconductors are depicted in Figs. 4(c) and (d). The interplay of normal and
Andreev transport results in an intermediate charge stability diagram with current at all four
charge degeneracy points. At zero temperature, the charge stability diagrams with two gapless
superconducting leads Fig. 4(c) and two normal metal leads Fig. 2(a) are clearly distinguish-
able. At finite temperature the distinction becomes blurred and in general no strong blockade
of either kind is observed. The bottom right degeneracy point still shows lower current than
the other three. Fig.4(d) closely matches recent data on double quantum dots with two gapless
superconducting leads [27], where this regime has been interpreted as Pauli blockade based
on blockade lifting due to spin-orbit interaction observed at finite field.

4 Conclusions and outlook

We have proposed a transport phenomenon that occurs in double quantum dots with a super-
conducting lead. The origin of the proposed Andreev blockade is that a low-lying triplet state
suppresses Andreev reflection because electrons from the double dot cannot tunnel into the
superconductor as a Cooper pair. The experimental consequence of Andreev blockade is the
interruption of transport at two of the four charge degeneracy points (as compared to one of
the four for Pauli blockade). Such regime has now been reported experimentally [1].
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Quantum dots coupled to superconductors are at the crossroads of several promising re-
search directions such as topological quantum computing, hybrid superconducting quantum
bits [31, 32] and quantum simulation. The key experimental technology that enabled the
search for Andreev blockade in experiment was to combine the quantum dot setup with a
hard gap superconductivity [33,34].

Proposed topological quantum computing architectures feature single and double quantum
dots for Majorana state readout [35–37]. Superconducting double dots are investigated in
the context of crossed Andreev reflection which is a key ingredient in recent parafermion
proposals [38, 39]. Finally, chains of superconducting quantum dots have been proposed as
emulators of the one-dimensional Kitaev model [40–42]. Andreev blockade phenomena may
manifest in all of the above situations and can be leveraged to enhance advanced quantum
device functionality.
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