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Abstract

We propose a platform for braiding Majorana non-Abelian anyons based on a het-
erostructure between a d-wave high-Tc superconductor and a quantum spin-Hall insu-
lator. It has been recently shown that such a setup for a quantum spin-Hall insulator
leads to a pair of Majorana zero modes at each corner of the sample, and thus can be
regarded as a higher-order topological superconductor. We show that upon applying a
Zeeman field in the region, these Majorana modes split in space and can be manipu-
lated for braiding processes by tuning the field and pairing phase. We show that such
a setup can achieve full braiding, exchanging, and arbitrary phase gates (including the
π/8 magic gates) of the Majorana zero modes, all of which are robust and protected
by symmetries. As many of the ingredients of our proposed platform have been real-
ized in recent experiments, our results provide a new route toward universal topological
quantum computation.
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1 Introduction

In the past two decades, topological quantum computation has attracted great interest in the
condensed matter community. They key ingredient of this idea is to encode and manipulate
quantum information using non-Abelian anyons, which are inherently non-local degrees of
freedom and are thus immune to local error at the hardware level. One of the most promising
platform for the physical realization of non-Abelian anyons is topological superconductors
that host Majorana Zero Modes (MZM) at boundaries and defects [1–8]. Adiabatic braiding
and exchange of the MZMs generate Clifford gates in a topologically protected manner [9,
10], and implementations of such operations have been studied in various platforms [11–15].
However, one drawback of the Majorana platform is that the Clifford gates are not powerful
enough to achieve universal quantum computation [16]. It is well known that additional gates
(i.e., the magic gate of a π/8 phase rotation) must be supplemented to achieve universality,
which however require non-topological operations. A number of proposals to implement the
magic gate in the Majorana platform have been put forward [17–21], most of which rely on
precise control over non-universal couplings to essentially realize an arbitrary phase rotation

2

https://scipost.org
https://scipost.org/SciPostPhys.11.5.086


SciPost Phys. 11, 086 (2021)

(a notable example of a robust magic gate using geometric decoupling was proposed in Ref.
[20,21]).

Recently, the concept of topological insulators and superconductors has been generalized
to higher-order topological insulators and superconductors [22–55]. Protected by crystalline
symmetries [39], higher-order topological superconductors host MZMs at the corners in two
spatial dimensions and Majorana modes at the hinges or vertices in three dimensions. With the
flourishing ideas on the realization of higher-order topological superconductors, it is natural
to search for new possibilities of manipulating Majorana modes using a higher-order topo-
logical superconductor. For example, in a recent work [56], the authors proposed a protocol
through the manipulation of the Zeeman field and the pairing order parameter, a full braid
(corresponding to π/2 rotations) between a pair of MZMs can be achieved (see also Ref. [57]).
In another proposal [58,59], the authors showed that the exchange of MZMs can be achieved
through a multi-step process by tuning three independent Zeeman fields, a protocol similar to
that in a T-junction of superconducting nanowires [11].

In this work, we propose a different setup in a higher-order topological superconductor
that allows for a much richer set of non-Abelian rotations in the Hilbert space of Majoranas
zero modes, including Clifford and symmetry-protected phase gates for MZMs. Our proposed
setup is based on several recent works [60, 61] showing higher-order topological supercon-
ductors can be achieved in a heterostructure involving a (first-order) topological insulator and
unconventional high-Tc superconductors coupled via superconducting proximity effect. In par-
ticular, we focus on a heterostructure between a d-wave high-Tc superconductor, for example
the Bi based cuprate Bi2Sr2CaCu2O8+δ (BSCCO) that has recently been realized in monolay-
ers [62], and a quantum spin Hall insulator, such as WTe2 [63–65]. For a d-wave cuprate
superconductor, the pairing symmetry enforces the proximity-induced gap to vanish along the
certain directions. When such a pairing gap is induced on the helical edge states of the under-
lying quantum spin Hall insulator, it creates a Majorana mass domain wall at each corner, thus
hosting two MZMs. In the context of higher-order topology, the corner Majorana modes are
protected by mirror reflection symmetries together with time-reversal symmetry and particle-
hole symmetry. The mirror symmetries pin the MZMs at high-symmetry directions, which form
a Kramers pair.

For our purposes, however, the model-specific mirror symmetries are unnecessary, and in
fact intentionally broken by external control fields, so that the corner MZMs can move along
the edge. Instead, we identify two emergent symmetries, an effective time-reversal and a chiral
(an anti-unitary charge conjugation) symmetry of the low-energy edge theory, which protect
the MZMs even when they are away from the mirror symmetric locations. Using a bosonized
edge theory, we determine the localization length and the excitation gap of the MZMs in the
presence of interaction effects, which are consistent with the celebrated Kosterlitz-Thouless
scaling for infinite systems. Interestingly, even when the spatial profiles of the MZM become
large and overlap, their degeneracy remain protected by these symmetries. These additional
emergent symmetries also circumvent a no-go theorem [66] that would have allowed local
time-reversal-invariant perturbations to spoil the universal non-Abelian Berry phases from
braiding a Kramers pair of MZMs.

The key additional ingredient in our platform is an in-plane Zeeman field. To this end,
we note that recently, heterostructures involving two dimensional ferromagnets fabricated
via molecular-beam epitaxy has already been shown [67] to realize topological superconduc-
tivity [68]. In the presence of a Zeeman field, the physical time-reversal symmetry of the
quantum spin Hall insulator is broken. However, we show that the emergent effective time-
reversal and chiral symmetries are still intact, protecting the MZMs. Since they are no longer
Kramers partners, the MZMs can split spatially. By tuning the Zeeman field, the position of
the Majorana modes can be manipulated. We show that this can be utilized to achieve vari-
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ous non-Abelian rotations within the degenerate ground state subspace. First, we show that
rotating the in-plane Zeeman field by 2π is equivalent to a full braid between the two MZMs,
which is analogous to previous proposals. Second, as the main result of this work, we demon-
strate that by taking the in-plane Zeeman field B through a “half-moon” contour in the Bx -By
plane that crosses B = 0 (see Fig. 3), one can achieve an exchange process of the two MZMs
localized in the same corner, resulting in the hallmark non-Abelian exchange statistics of the
Ising anyons. Crucially, we show that the non-Abelian Berry phase of this exchange process
is protected by the physical time-reversal symmetry broken only by the Zeeman fields, robust
against local perturbations. Additionally, we show that dual to this process, one can tune the
phase of the complex superconducting order parameter along one edge of the sample to go
through the same “half-moon” contour in the complex plane, and achieve the exchange of two
MZMs from adjacent corners. The Berry phase during this process is protected by the emer-
gent chiral symmetry. The combination of these two exchange processes realize the Clifford
gates in a qubit formed by four MZMs in two adjacent corners. Notably, a finite sample of our
setup realizes three qubits, with a set of Clifford gates available on each edge. Third, we show
that by going through a “slice of pie” contour (see Fig. 4), the Zeeman field (and analogously
the superconducting field) can perform an arbitrary phase gate of the Majorana qubit. This in-
cludes the long-sought-after “magic gate” for MZMs, crucial for universal topological quantum
computing. Remarkably, the Berry phases in this process are protected by U(1) symmetries
(which can be exact or emergent), and hence are robust against random errors as long as the
input for the phase angle is sufficiently precise.

Our proposal has several advantages. First and foremost, the high-Tc superconductor plat-
form ensures a higher operating temperature, a larger critical Zeeman field, and better local-
ization of the Majorana modes. As we mentioned, BSCCO and WTe2 are readily available 2d
materials for d-wave superconductivity and quantum spin Hall effect. In particular, WTe2 has
been demonstrated [64, 65] to have a U(1) spin axis needed for our purposes. Second, our
protocols of exchanging MZMs consist of simple manipulations of Zeeman or pairing fields,
which do not require physically moving around superconducting vortices or tuning multiple
parameters in each exchange process. Third, our setup can achieve a universal phase gate
protected by symmetries, including the π/8 magic gate, and thus holds promises for universal
topological quantum computation.

While the higher-order topological superconductor platform provides a feasible realization
of our proposal, our results are established within the framework of the universal effective field
theory description of the topological edge states, which can then be straightforwardly adapted
to other systems with the same low-energy description. For instance, we note that the corner
MZMs have been shown to exist in similar platforms with iron-based high-Tc superconduc-
tors [46,61]. In general, all of our results can be easily applied to MZMs realized at domain
walls between magnetic and superconducting regions on the edge of a quantum spin Hall
insulator.

Our analysis can also be directly extended to interacting topological phases with fractional
statistics in the bulk. We show that Z2m parafermion modes [69–73] can be realized using a
similar setup with a fractional quantum spin Hall insulator. A key difference from the Majo-
rana case is that, here there are m − 1 independent dynamical phases that accompanies the
non-Abelian Berry phases. Even though the non-Abelian phase is not topologically protected
against unitary errors, for small m it may be possible to precisely control the time of operation
to tune these dynamical phases to zero. Interestingly, evidence for parafermions have been
observed in a similar setup with fractional quantum Hall states in the presence of supercon-
ductivity [74].

The remainder of this paper is organized as follows. In Sec. 2 we describe the setup of
our proposed platform that hosts pairs of MZMs at its corners. In Sec. 3 we reformulate the
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derivation of the corner Majorana modes using a bosonized language, which enables the in-
clusion of interaction effects and a transparent interpretation of the non-Abelian Berry phases.
As the main result of this work, in Sec. 4 we show that such a setup allows symmetry pro-
tected Clifford gates and phase gates utilizing the MZMs by tuning an in-plane magnetic field
and the phase of the superconducting order parameter. In Sec. 5 we generalize our setup to
that with a fractional quantum spin Hall insulator with m 6= 1, and show that the Berry phase
accumulated using the same protocol corresponds exactly to the exchange statistics of Z2m
parafermions.

We include various details in the Appendices. In Appendix A we present an example of
a lattice model for the setup that is a higher-order topological superconductor protected by
mirror symmetries and time-reversal symmetry. In Appendices B, C, D, E, and F we present a
detailed analysis of the bosonization procedure for our setup and the non-Abelian Berry phases
we obtained in a more heuristic manner in the main text. In Appendices G and H we prove the
twofold ground state degeneracy at each corner corresponds to the Majorana doublet, from
both an operator algebra approach and ’t Hooft anomaly perspective.

2 Corner MZMs in a high-Tc superconductor platform

Our platform is based on several recent proposals [60, 61] of higher-order topological super-
conductivity realized in a heterostructure formed by a quantum spin Hall insulator (QSH) and
a high-Tc d-wave superconductor, coupled via superconducting proximity effect. As is well-
known, a single-band d-wave superconductor hosts gapless Bogoliubov quasiparticles with
Dirac dispersion along the nodal (diagonal) directions. For our purposes, the single-particle
tunneling between the d-wave superconductor and the QSH needs to be suppressed. This can
be achieved by taking advantage of the fact that the single-particle tunneling and supercon-
ducting proximity effect have distinct spatial profiles: the former effect is peaked at the nodal
direction and vanishes along the x and y directions, while for the latter it is the opposite.
Thus, single-particle tunneling can be effectively suppressed by geometrically separating the
diagonal portion QSH edge with the d-wave superconductor. We depict such a setup in Fig. 1,
in which the corner region of the d-wave SC is rounded and spatially separated from the QSH
layer. Alternatively, we note that nodeless d-wave superconductivity have been proposed for
the high-Tc monolayer superconductor FeSe/SrTiO3 [75, 76]. In addition, there are several
proposals for corner pairs of MZMs with s-wave pairing [77,78]. All of these are free from the
issue of single-particle tunneling.

For specific lattice models such a phase can be classified as a topological crystalline super-
conductor with time-reversal and mirror reflection symmetries, which we analyze in Appendix
A by applying recent results on higher-order topological phases [39]. However, as we will see
below, our analysis actually does not rely on these symmetries, and it is more general to start
with a low-energy theory describing the edge modes of a QSH, which we do below. For a full
lattice model and its higher-order topology, we refer the reader to Appendix A.

The existence of the corner Majorana pairs can be demonstrated by analyzing the boundary
states of the QSH and treating a superconducting gap∆ and a Zeeman field B as perturbations.
Consider a portion of the edge near a corner of a QSH insulator shown in Fig. 1. A low-energy
field theory model of the QSH edge consists of a right-moving fermion R(s) with spin up (in
the z-direction) and a left-moving fermion L(s)with spin down (also in the z-direction). These
operators have standard anticommutation relations, for example {R(s), R†(s′)}= δ(s−s′), and
they also obey periodic boundary conditions. The kinetic energy for this system takes the
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Figure 1: The schematics of the proposed setup between a QSH insulator and a d-
wave superconductor coupled via superconducting proximity effect. The corner of
the sample is subject to a Zeeman field and hosts two MZMs. The thick green curve
denotes the boundary of a d-wave superconductor, and the interior of the red curve
denotes the Zeeman field region.

low-energy form

H0 = −i

∫

ds
�

R†(s)∂sR(s)− L†(s)∂s L(s)
�

. (1)

Here we have assumed that both fermions have the same velocity which is set to 1. (Note that,
throughout this work, we will use s and s′ for coordinates along the edge of the 2D sample.)

The superconducting gap term, being a spin-singlet one, takes the low-energy form on the
edge

HSC =

∫

ds [∆(s)R(s)L(s) + h.c.] . (2)

Importantly, due to the d-wave pairing symmetry, the gap function is odd under mirror reflec-
tion, and when projected onto the edge, ∆(s) is an odd function (we choose the origin at the
corner). Finally, the Zeeman term is projected to the edge as

HZ =

∫

ds [BR†(s)L(s) + h.c.] , (3)

where B ≡ Bx + iBy = |B|e2iτ. The full Hamiltonian is the sum of all three of these terms,
H = H0 +HSC +HZ.

This Hamiltonian can be diagonalized in the standard way by constructing lowering op-
erators of the form Oη =

∫

d x
�

η1(s)R(s) +η2(s)R†(s) +η3(s)L(s) +η4(s)L†(s)
	

that satisfy
[H,Oη] = −EOη with a non-negative energy E ≥ 0. Indeed, imposing this relation leads to
the usual Bogoliubov-de Gennes equations for the “spinor”
η(s) = (η1(s),η2(s),η3(s),η4(s))T . Without loss of generality, taking ∆ and B as real (their
constant phases can be absorbed into the definition of R and L), we get

(iΓ1∂s +∆(s)Γ2 + BΓ13)η(s) = Eη(s) , (4)

where Γ1, Γ2, and Γ13 are 4× 4 matrices defined as

Γ1 = sz ⊗ I , (5a)

Γ2 = sy ⊗τy , (5b)

Γ13 = sx ⊗τz , (5c)

and where sx ,y,z and τx ,y,z are the Pauli matrices. We note that {Γ1, Γ2} = {Γ1, Γ13} = 0, but
[Γ2, Γ13] = 0. This means that the superconducting and ferromagnetic mass terms compete
with each other.
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To analyze this system we can use the fact that [Γ2, Γ13] = 0 to rotate to a basis in which
Γ2 and Γ13 are both diagonal. The required unitary matrix U is given by

U =
1
2







−1 −1 −1 1
−1 1 1 1
−1 −1 1 −1
1 −1 1 1






. (6)

If we define a new spinor η̃(s) via η(s) = U†η̃(s), then we find that η̃(s) satisfies
�

iΓ̃1∂s +∆(s)Γ̃2 + BΓ̃13

�

η̃(s) = Eη̃(s) , (7)

with

Γ̃1 = sx ⊗τz , (8a)

Γ̃2 = sz ⊗ I , (8b)

Γ̃13 = sz ⊗τz . (8c)

The key property of this new equation for η̃(s) is that it breaks up into two decoupled 2×2
Dirac equations with masses equal to M±(s) = ∆(s)± B. Just as in the Jackiw-Rebbi model,
a fermion zero mode is associated with each domain wall in M+(s) and M−(s), i.e., where
∆(s) = B or ∆(s) = −B (see Fig. 2). For the profile given by solid lines in Fig. 2, there is a
mass domain wall in M−(s) (marked by the blue dot to the left), and the zero-energy solution
is

η(s) =
1
2







i
−i
1
1






e−

∫ s
s0

ds′ |M−(s′)| , (9)

where s0 is the location where ∆ = B. Another MZM, located at M+(s) = 0, marked by the
blue dot to the right in Fig. 2, can be similarly obtained. It is straightforward to verify that
both solutions for Oη are Hermitian, and correspond to Majorana fermions. Therefore we find
that, for odd ∆(s), there exist a pair of MZMs separated by a length `, the length of the region
where |∆|< B. If B = 0, the two MZMs overlap in space, and form a Dirac zero mode. Indeed,
they form a Kramers doublet required by the time-reversal symmetry.

Interestingly, we note that as one tunes the Zeeman field in a given direction through zero,
the two MZMs swap positions. We can also consider an alternative configuration in which ∆
is a constant and B(s) changes sign. This is relevant for a given edge of the QSH with opposite
Zeeman field applied to the two corners it connects, which we will discuss in Sec 4.2. By
the same token, MZMs are nucleated at the nodes of ∆± B(s) = 0. These two MZMs switch
positions when∆ is tuned through zero. Later we will build upon this observation and propose
a protocol for non-Abelian braiding of the Majorana modes.

2.1 Emergent symmetries

As we discuss in Appendix A in a specific lattice model, the corner Majorana modes are pro-
tected by crystalline (mirror) symmetries of the bulk theory. However, these symmetries are
rather restrictive for manipulating of the Majoranas, and in experimental realizations of QSH
these symmetries may not be present anyway. Here we show that fortunately there are sev-
eral emergent symmetries in the edge theory that protect the MZMs and allow for additional
perturbations to be included.
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Figure 2: A spatially varying superconducting mass∆(s) (blue curve) and a constant
magnetic field B (solid red line). The dashed red line is the curve −B. For a QSH
edge with this configuration of ∆(s) and B, single Majorana fermions (represented
by the blue dots) are localized at the points where ∆(s) = B and where ∆(s) = −B.
The central region where B ≥ |∆(s)| has a length `.

The edge theory including both the pairing field ∆ and a Zeeman field B can be written in
first quantized BdG form as

H =kszτ0 +Re∆(s)syτy + Im∆(s)syτx

+ Bx sxτz + Bysyτ0, (10)

where, e.g. szτ0 := sz⊗τ0. Here sz = ±1 distinguishes two counter-propagating modes, which
transform and couple to external field like physical spin, which we will refer to as such. We
define B = (Bx , By) coupling to edge modes in such a way as the “in-plane” fields, while it is
understood that they may not lie in the plane of the two-dimensional system.

First we give the full emergent symmetries when ∆ and B are absent. There are two U(1)
subgroups: U(1)s generated by spin:

Us,φ = exp(iszτzφ/2), (11)

and U(1)c generated by charge

Uc,θ = exp(iτzθ/2). (12)

Note that Uc,2π = Us,2π = −s0τ0 is the fermion parity symmetry. The theory also enjoys a
number of discrete symmetries. It is invariant under the time-reversal symmetry

T = isy K , T H(k)T −1 = H(−k), (13)

where K is the complex conjugation. In addition, there is a chiral symmetry

C = sy , CH(k)C−1 = −H(k). (14)

As we will see in the next Section, C is an anti-unitary charge-conjugation symmetry for many-
body states. [79] The BdG Hamiltonian (10) also has a particle-hole symmetry

P = τx K , PH(k)P−1 = −H(−k), (15)

which is not a physical symmetry, but rather a redundancy of the BdG formalism.
Now we consider the full Hamiltonian (10). The in-plane Zeeman field Bx ,y breaks the spin

rotation and the time-reversal symmetries, but is invariant under the composite symmetry

T̃ ≡ Us,πT = sxτzK , (16)

which is a symmetry of (10) for a uniform phase of ∆ (taken to be real without loss of gen-
erality). Such an anti-unitary symmetry which squares to one, along with C places the edge
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theory in class BDI, which admits a Z classification, corresponding to a winding number that
equals the number of symmetry protected MZMs. Therefore, the two MZMs at a given corner
can be viewed as being protected by T̃ . In addition, we note that Us,2π = −s0τ0, the fermion
parity, is obviously still a symmetry.

In the opposite situation in which the magnitude of the unidirectional Zeeman field (say
B= Bx x̂) is spatial dependent and has a domain wall and max(B)> |∆|, two of the Majorana
modes from different corners move to the edge connecting the two corners. In this case, the
composite symmetry T̃ does not protect MZMs from different corners from hybridizing (their
winding numbers under BDI are opposite), unless additional symmetries exist. Similar to the
spin symmetry, the pairing field breaks both U(1)c and the chiral symmetry, but preserves their
combination

C̃ ≡ Uc,πC = syτz . (17)

With the composite chiral symmetry C̃, the edge theory additionally belongs to class AIII, which
admits another Z classification. Such a classification protects the two corner Majorana modes
overlapping on the edge – as can be verified from Eq. (9) and its counterpart for the other
corner, they carry opposite quantum numbers of the unitary operator C̃PT̃ = szτx .

So far we have identified the symmetries at the level of the effective BdG Hamiltonian for
the edge states. Typically some of the symmetries are not exact in the microscopic theory. For
instance, in the bulk theory of the QSH, in general due to the Rashba-type spin-orbit coupling,
the spin of edge states L(s) and R(s) may depend on momentum and on location of the edge.
However, U(1)s is realized as an emergent symmetry at low energies as long as the pairing
gap is much greater than the specific spin-orbit coupling that causes momentum and position
dependent spin texture. For the quantum spin Hall material WTe2, however, we note that
recent theoretical [64] and experimental works [65] have shown that indeed there exists a
spin axis for the edge states and a U(1)s symmetry at the microscopic level.

Similarly, while C is an exact symmetry of our lattice model for QSH in Appendix A, a
generic QSH insulator is not particle-hole symmetric. However, for the edge theory, C emerges
as an approximate symmetry as long as the chemical potential is tuned to the crossing point
of the helical edge states. For a 2d system, this can be experimentally achieved via gating.

Finally, we note that while our analysis of the emergent symmetries for a given corner
and for a given edge appear quite different within the BdG formalism, as we shall see, within
the field-theoretical approach, the treatments for a given corner and for a given edge are
completely symmetric. In fact, the T-duality of the compact free boson theory, the (1+1)d
version particle-vortex duality [80], relates the two symmetries C̃ and T̃ .

3 Corner MZMs from bosonization

We now switch to a bosonization description of the edge of a QSH insulator and the resulting
ground state degeneracy representing the MZMs in the presence of a proximity SC field. The
bosonized treatment has two advantages. First, interactions can be easily incorporated by
turning on a Luttinger parameter K 6= 1 and by generalizing to a fractional QSH (FQSH) state.
In particular, we obtain the scaling behavior of localization length of the Majorana zero modes
upon varying the Luttinger parameter. Second, the calculation of the non-Abelian Berry phases
are rather transparent in the bosonized formalism, which has an analog of the Berry phases in
a 1d lattice.

For the sake of generality, in the bosonized theory we replace the QSH insulator with a
ν= 1/m fractional quantum spin Hall (FQSH) state [81,82] and include a Luttinger parameter
K to capture interaction effects. The non-interacting QSH state we have focused on thus far
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corresponds to the special case with m = 1 and K = 1. We note that in a recent work [83],
the authors developed a similar bosonization apporach to Majorana zero modes for a non-
interacting open system.

3.1 Review of bosonization

The edge of the FQSH state with an emergent U(1)s symmetry can be described by two bosonic
fields φ↑(s) and φ↓(s) obeying the commutation relations

�

φ↑(s),∂s′φ↑(s
′)
�

=
2πi
m
δ(s− s′) , (18a)

�

φ↓(s),∂s′φ↓(s
′)
�

= −
2πi
m
δ(s− s′) , (18b)

�

φ↑(s),φ↓(s
′)
�

= 0 . (18c)

In the K-matrix formalism for edges of Chern-Simons theories, this system corresponds to the
matrix K = mσz . Both fields φ↑/↓(s) are defined to have compactification radius 2π. This
means that all physical operators must be invariant under the shift φ↑(s)→ φ↑(s) + 2π, and
likewise for φ↓(s). Then the allowed operators containing zero derivatives of these fields must
be built from exponentials of the form einφ↑/↓(s) for some integer n ∈ Z.

The charge density current, and spin operator for the edge are defined to be

ρ(s) =
1

2π

�

∂sφ↑(s) + ∂sφ↓(s)
�

,

j(s) =
1

2π

�

∂sφ↑(s)− ∂sφ↓(s)
�

,

S(s) =
1

4π

�

∂sφ↑(s)− ∂sφ↓(s)
�

. (19)

We then find that the right- and left-moving electron operators for the free fermion case are
given by

R(s) ∼
1
p
`

: e−imφ↑(s) : , (20a)

L(s) ∼
1
p
`

: eimφ↓(s) : , (20b)

where ` is the length of the system. We present the details of the bosonization dictionary in
Appendices B and C for m= 1 and in Appendix F for m 6= 1.

With this definition we find that acting with R(s) or L(s) lowers the total charge by one unit,
as expected for an operator that annihilates a single electron. In addition, the anticommutation
relation {R(s), R(s′)} = 0 (which should be obeyed by any fermionic operator) follows from
the fact that m is an odd integer.

The basic kinetic energy term for the bosonic fields φ↑/↓(s) takes the form

H0 =
1

2π

∫

ds





1
2

∑

σ=↑,↓

(∂sφσ(s))
2 + g∂sφ↑(s)∂sφ↓(s)



 . (21)

Here we have also incorporated a density-density interaction (with coupling constant g) be-
tween the spin up and spin down fermions.1 We see that g > 0 corresponds to a repulsive
interaction, while g < 0 corresponds to an attractive interaction.

1Note that 1
2π∂sφσ(s) is the density operator for excitations with spin σ ∈ {↑,↓}.
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For the domain wall configurations that we study in this paper, it is convenient to introduce
new non-chiral fields ϕ(s) and ϑ(s) defined as

ϕ(s) =
m
2

�

φ↑(s) +φ↓(s)
�

, (22a)

ϑ(s) =
1
2

�

φ↑(s)−φ↓(s)
�

, (22b)

which satisfy the commutation relation

[ϕ(s),∂x ′ϑ(s
′)] = πiδ(s− s′) . (23)

In terms of these fields we find that

ρ(s) =
1
πm
∂sϕ(s) ,

j(s) =
1
π
∂sϑ(s) ,

S(s) =
1

2π
∂sϑ(s), (24)

and that H0 can be rewritten in the form

H0 =
v

2π

∫

ds
�

1
mK
(∂sϕ(s))

2 +mK(∂sϑ(s))
2
�

, (25)

where the renormalized velocity v and Luttinger parameter K are related to the coupling con-
stant g as

v =
1
m

Æ

1− g2 , (26a)

K =

√

√1− g
1+ g

. (26b)

Note the singularity in K at g = −1 and the zeros in v and K at g = 1. In addition, we have
K < 1 for repulsive interactions and K > 1 for attractive interactions, while K = 1 in the
absence of interactions (g = 0). For later use it is convenient to combine m and K into a
modified Luttinger parameter

K ′ = mK , (27)

as it is this modified Luttinger parameter that actually appears in H0.
In this bosonized formalism, a superconducting mass term takes the form

∆R†(s)L†(s) + h.c.∝ cos [2mϑ(s) + 2ρ] , (28)

where ρ is the superconducting phase. Similarly, a ferromagnetic mass term takes the form

(Bx + iBy)R
†(s)L(s) + h.c.∝ cos [2ϕ(s) + 2τ] , (29)

where Bx + iBy = |B|e2iτ. A more rigorous derivation of the mass terms in terms of boson
fields is done using the mode expansion, as we describe below and in Appendix D.

It is instructive to see how the bosonic variables ϕ and ϑ transform under the emergent
symmetries identified in the previous section:

Us,φ : ϑ→ ϑ, ϕ→ ϕ −φ/2 ,

Uc,θ : ϕ→ ϕ, ϑ→ ϑ− θ/2 ,

T : ϑ→−ϑ, ϕ→ ϕ +π/2 ,

C : ϕ→−ϕ, ϑ→ ϑ−π/2 . (30)
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Despite their different forms for the BdG Hamiltonian, at the field theory level both C and
T are antiunitary symmetries, since each flips the sign on one of the dual fields ϑ and ϕ. In
particular C flips the sign of the charge but not the current, which is thus an anti-unitary charge
conjugation symmetry.

The composite symmetries T̃ = Us,πT and C̃ = Uc,πC now become

T̃ : ϑ→−ϑ, ϕ→ ϕ,

C̃ : ϕ→−ϕ, ϑ→ ϑ. (31)

Thus under T̃ (C̃), the Zeeman (SC) term remains invariant. Under the T-duality of the free
boson theory ϕ↔ ϑ (which is an emergent symmetry when K = 1), T̃ and C̃ are exchanged,
as well as the Zeeman and the SC terms.

In our analysis below we will mainly invoke Us,φ , T̃ for the MZMs localized at a given
corner, and due to the T-duality, the results directly carry over to the case of MZMs overlapping
on an edge.

3.2 Derivation of the corner modes

We analyze the states hosted by a corner region with Zeeman fields sandwiched between two
superconducting regions with opposite pairing gap related by the d-wave symmetry. To sim-
plify the calculations, let us fix the length of the magnetic region to be `, within which the
Zeeman field is a constant, and take the limit in which the superconducting gap |∆| →∞ in
the superconducting region and thus the ϑ at the two ends of the magnetic region are com-
pletely pinned. Without loss of generality, we take

ϑ(0) = 0 mod
π

m
, ϑ(`) =

π

2m
mod

π

m
. (32)

In the magnetic region, the Hamiltonian is given by

H =

∫ `

0

ds
¦ v

2π

�

1
mK
(∂sϕ(s))

2 +mK(∂sϑ(s))
2
�

+ b cos[2ϕ(s) + 2τ]
©

,

where b is a coupling constant induced by B. To analyze the low-energy spectrum of this
Hamiltonian it is helpful to perform a mode expansions for ϕ and ϑ:

ϕ(s) = mq−
∞
∑

n=1

e−
εn
2

p
n

cos(κn x)(bn + b†
n) , (33a)

ϑ(s) =
�

p+
1
2

�

πx
m`
+ i

∞
∑

n=1

e−
εn
2

p
n

sin(κn x)(bn − b†
n) ,

where κn =
πn
` , and where we included the dimensionless ultraviolet cutoff ε to control the

oscillator sums. Removing the cutoff corresponds to taking ε→ 0, and one can check that in
this limit the fields obey the correct commutation relations in Eq. (23) (see Appendix C.3). One
can also see that the field ϑ(s) obeys the boundary conditions from Eq. (32) with quantized
winding number p ∈ Z. Importantly, from Eq. (23) we have the commutation relation

[q, p] = i, [bn, b†
n] = 1, (34)

indicating q and p are conjugate variables. As a result of the quantization of p, q is a compact
variable with q ∼ q+ 2π.
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In the absence of the Zeeman field, the eigenstates of H0 are labeled by the winding number
p and the occupation number for a set of new quasiparticle modes:

H0 =
πvK
2m`

�

p+
1
2

�2

+ v
∑

n

κna†
nan + const. (35)

The operators {an} are related to {bn} via a Bogoliubov transformation

an = cosh(η)bn + sinh(η)b†
n , e−2η = K , (36)

which we discuss in details in Appendix D. The Fock space structure is guaranteed by T̃ sym-
metry; for example a symmetry breaking Zeeman term ∼ Bz∂xϑ term would condense the
quasiparticles in the ground state.

The Zeeman field term makes the quasiparticles massive, and further increases the quasi-
particle gap. Therefore, for low-energy states we only need to focus on the Fock vacuum sector
and consider the q and p modes. The effective Hamitonian is given by

Heff = αp̃2 − β cos(2mq+ 2τ), (37)

in which p̃ ≡ p + 1/2, and α,β are coupling constants renormalized by quasiparticle fluctua-
tions. In Appendices D and F, using a variational approximation, we derive the coefficients
for K ′ < 2, and for a strong Zeeman field within the range

B�
1
a

�a
`

�2−K ′

, (38)

where a is a short-distance cutoff, e.g., given by the underlying lattice. The results are given
by

α=
vK ′

2πm2`
,

β ∼ B
2

2−K′ a
2K′−2
2−K′ `. (39)

Using Eq. (38), it is straightforward to see that here β � α.2

The Schrödinger equation with the Hamiltonian in Eq. (37) is known as the Mathieu’s
equation [84–86], and can be viewed as the equation of motion of a single particle in a 1d
ring modeled by a periodic lattice potential. According to Bloch’s theorem, the eigenstates |ψk〉
of this Hamiltonian is labeled by lattice momenta k,3 i.e. ei πm p̃ |ψk〉 = ei πm k |ψk〉, which take
quantized values inside the Brillouin zone. The lattice constant is π/m, and thus k ∈ [−m, m).
Since p̃ takes half-integer quantized values, so does k. The offset 1/2 in the quantization of p̃ is
analogous to the effect of a magnetic flux through the lattice ring, causing a twisted boundary
condition and the same amount of offset in the lattice momenta k. Therefore, we have

k ∈ (Z+ 1/2)∩ (−m, m). (40)

Under T̃ , p̃, k→−p̃,−k. From Eqs. (24) and (33), we see that physically the tunneling current
and spin quantum numbers are directly related to the k via

J = 2S =

∫ `

0

ds
mπ
∂xϑ(s) =

k
m

mod
1
m

. (41)

2Interestingly, we note that for the free fermion case with K = 1, the prefactor β of the cosine term is actually
proportional to B2 rather than B.

3This is not to be confused with the actual lattice momenta of our QSH/d-SC system.
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The eigenstates of this Hamiltonian form energy bands labeled by the band index and
lattice momenta {k}. Each band consists of 2m states. We will focus on the lowest band.

In the limit of large ` or large B, we have β � α and the 1d lattice is in a flat-band limit.
As we show in Appendix E.1, in the limit β � α (which is the same as Eq. (38)) the bandwidth
is exponentially suppressed as

∆E ∼ const× exp
�

−
`

ξ

�

. (42)

Here the correlation length ξ for K ′ < 2 is expressed as

ξ=
√

√α

β
`∼

�

1
Ba

�
1

2−K′

a, (43)

following the familiar Kosterlitz-Thouless scaling behavior. The 2m states in the lowest band
are approximately degenerate. This is the same 2m degeneracy given by a pair of Z2m
parafermions [69–71,87–89].

In particular for m = 1, the ground state degeneracy corresponds to a pair of MZMs,
consistent with what we found using the BdG formalism. The exponential supression of the
hybridization energy of the parafermions indicates that these modes are exponentially local-
ized in space, consistent with the results we obtained for the free fermion case. Indeed, for
m= 1, K = 1 we restore the familiar result ξ∼ 1/B; see Eq. (9).

In the flat band limit β � α, the gap separating the MZMs from excited states can be ob-
tained by approximating Eq. (37) by expanding the cosine potential. We find for the excitation
gap

∆ex ∼
Æ

αβ =
p

KB(Ba)
K−1
2−K . (44)

For the free fermion system, this expression reduces to the Zeeman energy ∼ B.

In the opposite limit with B � 1
a

� a
`

�2−K ′
, the Mathieu’s equation is in the weak potential

limit, and the band dispersion is similar to that of a free particle. In particular, as B goes to
zero, the band gap closes at the BZ boundary (±1 for m = 1) and the spectrum restores the
parabolic dispersion. If either of the states in the lowest bands reside at the Brillouin zone
boundary, the MZMs will be “poisoned” by excited states.

Fortunately, in the presence of the twist boundary condition causing k ∈ Z + 1/2, the
quantized lattice momentum k do not take values at the BZ boundary, and the Majorana states
in the lowest band remain degenerate and separated from higher bands. This is consistent
with our findings in the previous Section. The size of their spatial profile is O(`). The analysis
here further shows that the excitation gap results from the quantization of lattice momentum,
and is given by

∆ex ∼ v/`. (45)

We prove the two-fold degeneracy for a general β/α more rigorously in Appendix G.
Interestingly, such a robust ground state degeneracy has been elucidated [90] from the

perspective of a mixed ’t Hooft anomaly between time-reversal symmetry (corresponding to
our generalized time-reversal T̃ ) and fermion parity symmetry ϕ→ ϕ +π (generated by our
Us,2π) of field theories with a Θ-term at Θ = π. The anomaly ensures that independent of basis
choice, one of the two classical symmetries is represented as a double cover at the quantum
level, leading to the two-fold degeneracy. The two states are related by time-reversal and differ
by fermion parity quantum numbers. We present the proof of the degeneracy in Appendices
H in a way that reveals a clear analogy with Appendix D of Ref. [90].

We end this section by noting that in the alternative configuration when the Zeeman fields
at two different corners are antiparallel, the two MZMs can be obtained in a dual bosonized
theory, related to our discussion above by ϑ↔ ϕ and T̃ ↔ C̃.
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4 Symmetry-protected quantum gates of Majorana qubits

In this Section we focus on the m = 1 case where the degenerate corner states correspond
to a pair of MZMs. As we showed in the fermionic language, these two MZMs are located at
∆(s) = ±B and switch position when the Zeeman field is flipped. We now show that when
the in-plane Zeeman field is rotated back, the full process induces an non-Abelian Berry phase
that is the same as exchanging two-dimensional MZMs (or Ising anyons). Furthermore, we
show that by tuning the Zeeman field as well as the superconducting order parameter, one can
realize all Clifford gates and universal phase gates on the ground state qubit, protected by the
emergent symmetries of the theory.

As is well-known, with a fixed fermion parity, four MZMs form a two-level system. This
is realized by two adjacent corners of the higher-order topological superconductor platform.
The Clifford gates consist of exchanging the Majorana modes both within the same corner and
across different corners, the protocol of which we discuss below.

While we use terms such as “braiding” and “exchanging” the MZMs in what follows, it
should be emphasized that they are distinct from their counterparts realized by directly moving
the anyonic excitations. For example, in our “braiding” process, the physical locations of the
MZMs are not changed, and in our “exchange” process, the MZM’s exchange locations but they
do not remain well separated during the process. More precisely, we use these terms to mean
that the resulting non-Abelian Berry phase, when protected by symmetries, is identical to those
from the braiding and exchanging anyons. In this sense our proposal is closely connected to
holonomic quantum computing [91].

4.1 Manipulating Majorana corner modes via Zeeman field

4.1.1 Full braid via 2π rotation of the Zeeman field

Before we discuss the exchange process of the Majorana modes, let us first consider an adia-
batic process involving a full 2π rotation of the in-plane Zeeman field and compute the Berry
phase. In our conventions this corresponds to keeping the magnitude B of the magnetic field
fixed while tuning the angular parameter τ from 0 to π in Eq. (37). We will show that this
correspond to a full braid of two Majoranas at a given corner.

Let |ψk(B,τ)〉 be the ground state of Heff(B,τ) with lattice momentum k. According to
Eq. (40), k = ±1/2. In other words,

eiπp̃|ψk(B,τ)〉= eiπk|ψk(B,τ)〉= ±i|ψk(B,τ)〉. (46)

In the 1d lattice interpretation, the parameter rotation angle of the Zeeman field 2τ corre-
sponds to a displacement of the periodic potential by an amount of τ, and thus the eigenstate
can be expressed via a translation operator:

|ψk(B,τ)〉 ∼ e−iτp̃|ψk(B, 0)〉. (47)

However, from Eq. (46), the right hand side is not single-valued upon a full 2π rotation (τ= π)
of the Zeeman field. For an unambiguous calculation of the Berry phase, one should choose
the phases of the states |ψk(B,τ)〉 so that these states are single-valued functions of B and τ
(defined modulo π) in the region of the parameter space that is of interest for the Berry phase
calculation.

This issue can be addressed by adding to each ground state a c-number phase factor eiτk

corresponding to their lattice momenta

|ψk(B,τ)〉= eiτke−iτp̃|ψk(B, 0)〉 . (48)
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From Eq. (46), this choice ensures that |ψk(B,τ)〉 returns to itself when we wind the Zeeman
field by 2π (translating τ by π), i.e., we have

|ψk(B,τ+π)〉= |ψk(B,τ)〉 . (49)

This is not the only possible choice, and it is well-known that the Berry phases that we obtain
are invariant under any redefinition |ψk(B,τ)〉 → |ψ̃k(B,τ)〉 = eiθk(B,τ)|ψk(B,τ)〉, provided
that the new states |ψ̃k(B,τ)〉 are also single-valued functions of B and τ in the relevant region
of the parameter space.

We now compute the Berry phases γk picked up by the states |ψk(B,τ)〉 during the 2π
rotation of the Zeeman field. The Berry phases γk are given by the standard formula

γk = i

∫ π

0

dτ 〈ψk(B,τ)|∂τ|ψk(B,τ)〉 , (50)

and so using Eqs. (48) we find that

γk = π〈ψk(B, 0)|p̃|ψk(B, 0)〉 −πk . (51)

Intuitively, the first term evaluates the average momentum of the Bloch states, and the second
term lattice momentum. As we mentioned, depending on the depth of the periodic potential
in Eq. (37) there are two important limits – the tight-binding limit (β � α) and weak periodic
potential limit (α� β). In the first limit, Bloch states are approximately a linear superposi-
tion of bound states each at a potential minimum, while in the second limit, Bloch states are
approximately plane-wave states. Therefore, heuristically we find that in former limit the aver-
age momentum 〈p̃〉 approaches zero, while in the latter 〈p̃〉 approaches the lattice momentum
k. Thus we have in the tight-binding limit,

γk = −πk, k = ±
1
2

, (52)

which can be understood as coming from “dragging” the Bloch state by a lattice constant. In
the opposite limit, the Berry phase vanishes, i.e., the lattice potential is so weak that translating
it does not induce a significant change in the wave function.

Here focus on the tight-binding limit (β � α). This is the same condition as (38), i.e.,
Ba� (a/`)2−K . In Appendix E.3 we directly compute the Berry phase for the state |ψk(B, 0)〉
using our analysis of that state based on Mathieu’s equation. There we show that the deviations
of the Berry phase from the approximate result in Eq. (52) is indeed exponentially small in
`. This result is topological, in the sense that the Berry phase does not depend on parameters
such as B and K up to exponentially small corrections.

Noting that k = ±1/2, the result in (52) matches exactly the non-Abelian Berry phases
accrued during a full 2π braiding of two MZMs. [92] We note that the full braiding of the
Majorana modes have also been proposed in a similar higher-order topological superconductor
platform in Ref. [56].

4.1.2 Single exchange via π rotation and flip of Zeeman field

We now show that owing to symmetries of the system, one can also perform a single exchange of
two Majoranas using a different adiabatic process that also involves only the external Zeeman
field. To motivate this process, recall from the previous subsection that the Berry phase for a
2π rotation of the Zeeman field within the x-y plane is equal (at large `) to the Berry phase for
a full braid (double exchange) of the fractional quasiparticles localized near the ends of the FM
region. In this subsection we show that this Berry phase, and the adiabatic process itself, can be
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split into two equal contributions in a symmetry-protected manner, such that each contribution
on its own yields the Berry phase for a single exchange of fractional quasiparticles. The Berry
phase γ̃k for this process is then given by half of the value γk for the full braid,

γ̃k = −
πk
2

, k = ±
1
2

. (53)

We find that γ̃±1/2 for the two ground states differ by π/2, and this is exactly the relative Berry
phase expected for a single exchange of two MZMs [10].

To achieve this, we consider “half-moon” paths of the Zeeman field B = (Bx , By) denoted
in Fig. 3. This path consists of a half circle from τ = 0 to τ = π/2, and a straight line
with By = 0 sweeping the B field back to the initial configuration passing through the origin.
Crucially, along the arc B must be in the tight-binding regime, i.e., Ba� (a/`)2−K . As we shall
see below, the precise shape of the arc does not matter, as long as it is in the flat-band limit.
We denote such a contour transversed counterclockwise by C′B, and its image under inversion
in the Bx − By plane, transversed clockwise, by CB”.

Let |ψk(B)〉 = |ψk(Bx , By)〉 be the ground state of the Hamiltonian in the sector with
“lattice momentum” k. In our previous notation we had Bx = B cos(2τ) and By = B sin(2τ),
and so |ψk(B)〉 can be identified with the state |ψk(B,τ)〉 that we defined in Eq. (48). The
Berry phase γk for the full 2π rotation of B can be written as the line integral

γk = i

∮

CB

dB · 〈ψk(B)|∇B|ψk(B)〉 , (54)

where CB is the circular contour of radius B centered at the origin of the Bx -By plane.
The integral expression for γk can be split into two contributions as

γk = i

∮

C′B

dB · 〈ψk(B)|∇B|ψk(B)〉+ i

∮

C”B

dB · 〈ψk(B)|∇B|ψk(B)〉

≡ γ′k + γ”k. (55)

Here γ′k and γk” are the contributions to the total Berry phase from the half-moon paths C′B
and C”B, respectively.

An important prerequisite for a well-defined Berry phase is that the system remains gapped
during the process. This is indeed true for the half-moon contour, since the ground state qubit
is always energetically separated from the excited states: on the outer arc, the corner region
is gapped by the Zeeman field (see Eq. (44)). Near the origin, the Zeeman field vanishes
but a finite size gap still exists (see Eq. (45)). In addition, in order for the dynamical phases
to cancel, the two ground states should remain degenerate, which is guaranteed by the T̃
symmetry for any value of B, including at B = 0.

Provided that the Zeeman field is the only odd component under the T symmetry (the
physical time-reversal symmetry preserved by the quantum spin Hall and d-wave supercon-
ductor; not to be confused with T̃ ), the contour C′B → −C”B under T (which reverses both
the Zeeman field and the orientation of the contour). The Berry phase is obviously odd under
time-reversal, and therefore,

γ′k − γk”=i

∮

C′B

dB · 〈ψk(B)|∇B|ψk(B)〉+ i

∮

−C”B

dB · 〈ψk(B)|∇B|ψk(B)〉

= 0. (56)

Combining Eqs. (55, 56), we see that

γ′k = γk”= γ̃k = −
πk
2

, k = ±
1
2

, (57)
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Figure 3: The “half-moon”-shaped contours C′B (blue) and C”B (red) in the Bx -By
plane. The magnetic field in the semicircle portion is in the tight-binding regime
Ba� (a/`)2−K . The Berry phase for either one of these paths is equal (up to expo-
nentially small corrections) to the known Berry phase for a single braid of fractional
quasiparticles.

Figure 4: The “slice-of-pie” countour in the Bx -By plane, which achieves a phase gate
for the two Majorana modes at a given corner. The magnetic field in the semicircle
portion is in the tight-binding regime Ba� (a/`)2−K .

precisely the Berry phase during an exchange process of the Majoranas.
Let us summarize the conditions required to have the quantized value of the Berry phase:

1. The Berry phase is robust against small deformations of the arc as long as the flat-band
condition is maintained.

2. The track of the magnetic field must be invariant under B→ −B in regions other than
Ba� (a/`)2−K and Ba� (a/`)2−K , such as parts of the straight line segment in Fig. 3.

3. The system must have the T symmetry in the absence of the Zeeman field, and the
T̃ = Us,πT symmetry in its presence. This means that the phase difference between
the two superconducting regions right outside the corner region must be π, which is
naturally realized in our setup with a d-wave superconductor.
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4.1.3 Phase gate via generic rotation of Zeeman field

In this last subsection we build on the idea of the previous subsection and show that it is
possible to obtain a continuous family of Berry phase values by taking the system along a
“slice of pie” path in the parameter space of the external magnetic field B= (Bx , By), shown in
Fig. 4. The specific path that we consider is as follows. We start with Bx = B > 0 and By = 0.
In the first part of the path we rotate the Zeeman field counterclockwise by an angle of 2θ0,
ending up at Bx = B cos(2θ0) and By = B sin(2θ0). In the second part of the path we traverse
the straight line segment from B = (B cos(2θ0), B sin(2θ0)) to the origin B = (0,0). Finally, in
the third part of the path we traverse the straight segment from the origin B = (0,0) back to
our starting point B = (B, 0). Crucially, we assume that the first part of the path, namely the
curved segment that is traversed at constant magnitude |B| = B, is taken in the tight-binding
regime. We will also assume that in the absence of B, the theory has U(1)s symmetry.

To calculate the Berry phase γk(θ0) in this process, we first consider the contribution from
the two straight line paths, CB(0) and CB(θ0). Since the only term in the system that violates
the spin rotation symmetry Us,θ in Eq. (11) is the Zeeman field, and that the two paths CB(0)
and −CB(θ0) are related by the U(1)s symmetry, the total contribution to the Berry phase along
the straight paths CB(0) + CB(θ0) is zero.

Then γk(θ0) is exactly equal to the contribution from the curved part of the path, and so

γk(θ0) = i

∫ θ0

0

dτ 〈ψk(B,τ)|∂τ|ψk(B,τ)〉 . (58)

If we evaluate this using our variational approximation in the large B regime (following the
ideas from earlier in this section), then we find the total Berry phase as

γk(θ0) = −kθ0, k = ±
1
2

. (59)

We note that this argument can also be applied to the symmetry protection for the exchange
process. The result (59) is protected by the spin-rotation symmetry U(1)s when there is no
Zeeman field.

Again let us summarize the conditions required to have the quantized value of the Berry
phase:

1. The Berry phase is robust to small deformations of the arc as long as the flat-band con-
dition is maintained.

2. In regions outside Ba� (a/`)2−K or Ba� (a/`)2−K , The tracks of magnetic field must
be precisely related by a 2θ0 rotation in the Bx − By plane.

3. The system must have U(1)s symmetry when there is no Zeeman field, and the T̃ = Us,πT
symmetry in its presence to protect the ground state degeneracy. Here it is achieved by
applying the Zeeman field in the direction perpendicular to the spin axis.

Due to the ground state degeneracy it is also possible to choose as the initial state a super-
position of k = ±1/2. In the next subsection we discuss such a situation where we choose a
different basis for initial states.

4.2 Clifford and phase gates via manipulating Majorana modes within and
across corners

In this Subsection we consider a configuration of two adjacent corners subject to antiparallel
Zeeman fields and the edge between them are gapped by SC order, which we depict in Fig. 5.
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Figure 5: A qubit formed by four MZMs from adjacent corners. By tuning the Zeeman
field B and the superconducting order∆ one can achieve symmetry protected Clifford
gates.

From Eq. (24), the tunneling current through each corner is given by Eq. (41):

J =

∫ `

0

ds
π
∂xϑ(s) =

k
m

mod
1
m

, (60)

corresponding to the fermion parity at the corner

(−)F ≡ eiπk. (61)

Since quasiparticles can tunnel between corners through the edge, only the combined fermion
parity of the two corners is conserved. For a given parity (say even), such a configuration with
two corners and one edge form a single qubit, with the two energy levels distinguished by the
parity at a given corner, which we label as

| ↑〉 ≡|k =
1
2

, k′ =
1
2
〉,

| ↓〉 ≡|k = −
1
2

, k′ = −
1
2
〉, (62)

where k and k′ are the respective lattice momenta in the two corners. With this notation, the
exchange operation in either corner leads to a Berry phase represented by

γ̃= ei πσz
4 , (63)

where σz is the Pauli matrix in the Hilbert space of (62).
To realize Clifford gates, one additionally needs to achieve the non-Abelian unitary oper-

ator
γ̄= ei πσx

4 . (64)

In Ref. [10] this can be achieved by swapping different sets of Majorana pairs. Similarly, here
we show that γ̄ is achieved by manipulating two Majorana modes across different corners.

As we discussed in Sec. 2.1, with antiparallel in-plane Zeeman fields in the two corners
the edge region is described by a theory dual to the one for the corner regions, with Majo-
rana modes protected instead by C̃ symmetry. According to (59), such a duality is simply the
usual ϑ↔ ϕ duality in bosonization. In this basis, the two states forming the qubit are then
eigenstates of

Q =

∫

edge

ds
π
∂xϕ(s), (65)

which is the fermion parity in the superconducting edge. Within the subspace of the ground
state qubit, the charge eigenstate is a superposition between the two different eigenstates for
tunneling current J , thus we can rewrite Q as (which is time-reversal invariant)

Q = | ↑〉〈↓ |+ | ↓〉〈↑ |= σx , (66)
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and its eigenstates are labeled by 〈σx〉= ±1.
In order to induce Berry phases, we can similarly design contours in the complex plane

of ∆ similar to that of B = Bx + iBy . Assuming that the system size is much larger than the
superconducting coherence length, one can tune the pairing fields for different edges inde-
pendently. Due to the ϑ↔ ϕ duality, one can straightforwardly obtain that a “half-moon”
contour leads to the non-Abelian phase given in (64). Notice here this value is topological
and protected by the dual C̃ symmetry, in which, as we showed C is an emergent symmetry
guaranteed by properly gating the sample to charge neutrality.

In addition, it is straightforward to see that the phase gate operation can be realized for
Majorana’s across different corners by taking a “slice of pie” contour (analog of that in Fig. 4)
of an angle 2ρ0 in ∆, which is protected by the U(1)c symmetry. Thus we have two types of
phase gates available, namely,

γ̃(θ0) = eiθ0σz , γ̄(ρ0) = eiρ0σx , (67)

which for θ0 = ρ0 = π/8 correspond to the magic gates [16].
We note that in Ref. [66] the authors pointed out that a qubit made out of a Kramers

doublet of MZMs can be subject to a non-Abelian Berry phase in the presence of an adiabatic
local perturbation without lifting the Kramers degeneracy, unless they carry distinct quantum
numbers. In our case at B = 0, the Majorna zero modes overlap in space and form a Kramers
pair. However, the two states associated with the corner MZMs are distinguished by their
“lattice momenta” k ∈ {−1/2,1/2} and their fractional spins (see Eq. (41)) S = ±k/2, and
hence are protected by symmetry from local perturbations.

Finally, note here that so far our platform has only involved two edge-sharing corners of
a semi-infinite sample. By simple math, a d-wave superconductor setup produces four such
corners, corresponding to three qubits (with a fixed fermion parity for the sample). With the
protocol above, one can realize a set of Clifford gates on each edge, leading to a richer set of
quantum gates in the enlarged Hilbert space.

5 Braiding parafermion modes

In Sec. 4 we have completely focused on the m= 1 case, in which the ground states are MZMs.
It is straightforward to generalize our full braid, exchange, and phase gates to a generic m.
For example, via a half-moon contour in B, we obtain

γ̃k = −
πk
2m

, k = [−m, m)∩ (Z+ 1/2) . (68)

This result is exactly the exchange statistics of Z2m parafermions. [69–71,87–89]
However, unless β � α, the 2m eigenstates in the lowest band are not degenerate. In the

half-moon contour, this indicates that on the straight line portion through B = 0 of the contour,
even though the 2m states remain separated from the other excited states, the topological Berry
phase cannot be separated from a k-dependent dynamical phase that is non-universal. The 2m
states come in m pairs, leading to m− 1 independent relative dynamical phases.

For small m, it may be possible to eliminate dynamical phases by precisely controlling the
system parameters and the duration of the exchange process such that it is a common period
for all m − 1 modes. However, the result is not topological protected against unitary errors
induced by imperfect cancelation of dynamical phases.
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6 Conclusion

In this work we have proposed a platform for topological quantum computing based on a
heterostructure between a high-Tc d-wave superconductor and a quantum spin Hall insula-
tor, which can be regarded as a higher-order topological superconductor. We demonstrated
that, via tuning the a Zeeman field applied to the corner region and the superconducting or-
der parameter, such a setup can realize non-Abelian Clifford gates of Majorana qubits that are
protected by time-reversal and charge conjugation symmetries, as well as phase gates (includ-
ing the π/8 magic gates needed for universal topological quantum computing) protected by
U(1) symmetries. Within our analysis, interaction effects and generalization to a fractional
quantum spin Hall states can naturally be incorporated.

In our proposed setup, the d-wave superconductor ensures a large critical temperature and
a large critical field, making the manipulation of Majorana’s via an external Zeeman field easier
to realize in experiments. Recent advancements in low-dimensional materials have made the
key components of the heterostructure, including d-wave superconductors (and its monolayer
version [62]), quantum spin Hall insulators [63] and two-dimensional ferromagnets [67],
readily available. Other than the specific combination of ingredients in our proposal, our the-
oretical analysis is based on low-energy effective field theories, which can be easily adapted to
other topological materials with magnetism and superconductivity. We note that recently sig-
natures of parafermions have been observed in a similar setup with a fractional quantum Hall
insulator [74]. It will be extremely interesting to see if one can demonstrate and manipulate
these non-Abelian anyons using the protocols we propose in this work.

A Lattice model for second-order topological superconductor

In this Appendix we present a lattice model for the second-order topological superconductor
given by a quantum spin Hall (QSH) insulator with a proximity effect induced d-wave super-
conudcting (d-SC) gap, given by H0 + HSC =

∫

dkΨ†(k) (H0 +HSC) (k)Ψ(k), where
Ψ† = (ψ†(k),ψ(−k)) and

H0(k) +HSC(k) = sin kx szσzτ0 + sin kys0σyτz

+ (cos kx + cos ky +m− 1)s0σxτz

+∆ sin kx sin kysyσ0τy . (69)

Here sx ,y,z denotes the spin degree of freedom, σx ,y,z is a band index, and τx ,y,z are Pauli
matrices in the Nambu space. The first three terms describes the normal state, which is a
quantum spin Hall insulator, and the last term is a pairing term of d-wave symmetry, coming
from the proximity effect with a high-Tc superconductor. The Hamiltonian has a time-reversal
symmetry given by T = isy K , diagonal mirror symmetries Ma = sxσzτy , Mb = syσyτx , and
a particle-hole symmetry P = τx K .

Such a Hamiltonian has been studied in Refs. [60,61] as a second-order topological super-
conductor protected by time-reversal symmetry and a C4 rotation symmetry. For our purposes,
we will instead rely on the mirror reflection symmetries Ma,b. Higher-order topological crys-
talline insulators and superconductors with mirror symmetries have been classified in Ref. [39]
based on a K-theory analysis by Shiozaki and Sato [93]. In our case, the reflection symmetry
anticommutes with both time-reversal and particle-hole conjugation. According to the ter-
minology in Ref. [39], it belongs to symmetry class DIIIM++ , which in terms of second-order
topology admits a Z2 classification in 2d. In the nontrivial phase symmetric corners of the
sample host a pair of MZMs that form Kramer doublet and have the same mirror eigenvalue.
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Here the Z2 classification is an intrinsic bulk property. As such, one cannot remove the Ma-
jorana doublet by modifying the boundary termination without breaking the symmetry. For
example, one can glue a 1d time-reversal invariant topological superconductor on one of the
edges, upon coupling to the bulk, this gaps out the corner Majorana doublet, but this procedure
necessarily violates mirror symmetry.

We also consider an in-plane Zeeman field, either applied throughout the bulk or only near
the corners, given by HZ =

∫

dkΨ†(k)HZ(k)Ψ(k) where

HZ =Bx sxσ0τz + Bysyσ0τ0. (70)

The Zeeman field breaks both T and Ma,b, but preserves the composite symmetry T Ma,b.
Importantly, the other Zeeman term ∼ Bzszσ0τz is odd under this action and is forbidden.
Together with the particle-hole symmetry P = τx K , the Hamiltonian H = H0 + HZ preserves
composite chiral (anti)symmetries PMa,b = szσzτz , which anticommutes with P . Such a
phase belongs to class DPM− , which also admits a Z2 classification. This indicates the MZMs
in the absence of HZ remains robust, despite time-reversal symmetry being broken. However,
as pointed out in Ref. [39], this Z2 invariant is extrinsic. In fact, as we show in the main text,
the Majorana modes can be moved (or evem removed) by symmetric boundary perturbations.

Experimentally, a d-SC/QSH heterostructure can be achieved by stacking d-wave high-Tc
superconductor BSCCO and quantum spin Hall insulator WTe2. Of course, depending material
details and the geometry of stacking, such a heterostucture may not realize the mirror sym-
metries we specified above. However, as we show in the main text, the Majorana modes can
be protected by other emergent on-site symmetries.

B Mode expansion of the bosonic fields

In this appendix we explain in more detail the mode expansions forϕ(s) and ϑ(s) that we use in
our analysis in this paper. To obtain the mode expansion for ϑ(s), we first identify a complete
set of functions of x ∈ (0,`) that also obey the boundary conditions Eq. (32), and then we
expand ϑ(s) as a series in these functions with operator-valued coefficients. We then expand
ϕ(s) in terms of a complementary set of functions (also with operator-valued coefficients) in
such a way that ϑ(s) and ϕ(s) obey the correct commutation relations.

In our case the operator-valued coefficients that appear in the mode expansions consist of
zero mode operators q and p and a set of oscillator raising and lowering operators bn and b†

n,
with n ∈ N \ {0} (i.e., we have an oscillator variable for each integer n ≥ 1). These operators
obey the standard commutation relations [q, p] = i and [bn, b†

n′] = δnn′ (with all other commu-
tators vanishing). In addition, the zero mode operator q is a compact variable and is defined
modulo 2π, while its conjugate momentum p is defined to have integer eigenvalues. This
means that the Hilbert space Hzm associated with the zero mode operators q and p is spanned
by the states |s〉, s ∈ Z, which are eigenstates of p, p|s〉= s|s〉, and with e±iq|s〉= |s±1〉. We can
also define a basis |q〉 of eigenstates of q, with 〈q|s〉= eiqs

p
2π

, and we have 〈q|q′〉 = δ2π(q− q′),

where δ2π(q− q′) =
∑

s∈Z
1

2π ei(q−q′)s is the 2π-periodic delta function.
In terms of these operators, the mode expansions for ϕ(s) and ϑ(s) take the form

ϕ(s) = mq−
∞
∑

n=1

e−
εn
2

p
n

cos(κn x)(bn + b†
n) , (71a)

ϑ(s) = (p+δ)
πx
m`
+ i

∞
∑

n=1

e−
εn
2

p
n

sin(κn x)(bn − b†
n) ,
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where κn =
πn
` . Here we have set the twist for ϑ at the two ends as a generic δ; in the setup

discussed in the main text, we have δ = 1/2. The exponential factor ε is a dimensionless
ultraviolet cutoff, which we will discuss in details for m = 1 (Appendix C) and m 6= 1 (Ap-
pendix F). We can see that this cutoff serves to control the oscillator sums at high momenta
κn. Removing the cutoff corresponds to taking a→ 0, and one can check that in this limit the
fields obey the correct commutation relations [ϑ(s),∂s′ϕ(s′)] = [ϕ(s),∂s′ϑ(s′)] = πiδ(s − s′)
(these follow from Eqs. (18) and the definition of ϕ(s) and ϑ(s) in terms of φ↑/↓(s)).

Finally, as in the main text, it is convenient to define the shifted zero mode momentum
operator p̃ via

p̃ = p+δ . (72)

This will be useful because almost all of our expressions will involve the shifted momentum p̃
instead of the original momentum p. Note that, since p is defined to have integer eigenvalues,
the eigenvalues of p̃ lie in the set Z+δ (the integers shifted by δ).

C Bosonization in the m= 1 case

In this appendix we explain how to carefully define the fermionic operators R(s) and L(s) in
terms of the bosonic fields φ↑(s) and φ↓(s) in the non-fractional case with m= 1. Specifically,
we define R(s) and L(s) as normal-ordered exponentials of φ↑(s) and φ↓(s), and with a dimen-
sionful prefactor that depends on the length `. We then show that the operators R(s) and L(s)
constructed in this way actually do obey the standard anticommutation relations of fermionic
fields.

C.1 Important identities

There are two basic identities that we will use repeatedly in the derivations in this appendix,
and so we record them here for reference. Let X and Y be any two operators such that their
commutator [X , Y ] is a c-number. Then we have

eX eY = eY eX e[X ,Y ] (73)

and
eX eY = eX+Y e

1
2 [X ,Y ] . (74)

C.2 Definition of the fermion operators

We now present the definition of the operators R(s) and L(s). We start with the mode expan-
sions for the fields φ↑(s) and φ↓(s), which take the form (recall that we take m= 1)

φ↑(s) = q+ p̃
πx
`
−
∞
∑

n=1

e−
εn
2

p
n

�

e−iκn x bn + h.c.
�

, (75a)

φ↓(s) = q− p̃
πx
`
−
∞
∑

n=1

e−
εn
2

p
n

�

eiκn x bn + h.c.
�

. (75b)

In addition, recall that κn =
πn
` and that ε= πa

` . For later use, we note here thatφ↓(s)=φ↑(−x)
(this relation actually holds for any m and not just m= 1).4

4It should be clear that there is no problem with plugging a negative value of the position coordinate into our
mode expansions for φ↑(s) and φ↓(s).
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Given these mode expansions, our definition of the fermion operators R(s) and L(s) is as
follows. First, for any operator O of the form

O = Aq+
∞
∑

n=1

Bn b†
n +

∞
∑

n=1

Cn bn + Dp , (76)

we define the normal-ordered exponential : eO : by

: eO : = eAqe
∑∞

n=1 Bn b†
n e
∑∞

n=1 Cn bn eDp . (77)

Then our definition of R(s) and L(s) is

R(s) =
eiδ πx

`

p
2`

: e−iφ↑(s) : , (78a)

L(s) =
eiδ πx

`

p
2`

: eiφ↓(s) : . (78b)

In other words, the fermionic operators R(s) and L(s) are defined in terms of normal-ordered
exponentials of φ↑(s) and φ↓(s), with an additional prefactor proportional to `−

1
2 . This prefac-

tor ensures that the fermionic operators have the correct units and anticommutation relations,
as we show below. We can also use the definition of the normal-ordered exponential to write
out these operators in more detail. For example, we find that

R(s) =
1
p

2`
e−iqexp

¨

i
∞
∑

n=1

e−
εn
2

p
n

eiκn x b†
n

«

exp

¨

i
∞
∑

n=1

e−
εn
2

p
n

e−iκn x bn

«

e−ip πx
` . (79)

We now mention a few important properties of the operators R(s) and L(s). First, these
operators, as we have defined them above, are functions of the ultraviolet cutoff a, although
we have not indicated this dependence in our notation. Later we will show that these operators
behave exactly like fermionic fields in the a→ 0 limit. We also note that, in our open geometry
(and with our choice of boundary conditions), the fields R(s) and L(s) are not independent
but are actually related by the identity

L(s) = ei πx
` R†(−x) . (80)

This identity can be derived by taking the Hermitian conjugate of our expression for R(−x),
and by using the rearrangement identity

eiqe−ip πx
` = e−ip πx

` eiqei πx
` , (81)

which can be derived using Eq. (73). For our setup, however, we will focus on the interval
(0,`), in which L and R† can be treated as independent fields.

C.3 Derivation of anticommutation relations

We now show that, in the limit ε → 0, the operators R(s) and L(s) that we defined actually
do obey the standard anticommutation relations for fermionic fields. We start by deriving the
anticommutator {R(s), R(y)} between the right-moving field at two different points x and y .
For this calculation we first define four quantities (1), (2), (3), and (4) via

(1) = e−ip πx
` , (82a)

(2) = e−iq , (82b)

(3) = exp

¨

i
∞
∑

n=1

e−
εn
2

p
n

e−iκn x bn

«

, (82c)

(4) = exp

¨

i
∞
∑

n=1

e−
εn
2

p
n

eiκn y b†
n

«

. (82d)
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Then using Eq. (73) we find that

(1)(2) = (2)(1)ei πx
` (83)

and

(3)(4) = (4)(3)e−
∑∞

n=1
e−εn

n e−iκn(x−y)

= (4)(3)eln
h

1−e−εe−i π
`
(x−y)

i

= (4)(3)
�

1− e−εe−i π` (x−y)
�

, (84)

where we used the infinite series ln(1− z) = −
∑∞

n=1 zn/n (valid for |z| < 1) to get from the
first to the second line. Putting these results together yields the formula

R(s)R(y) =
1
2`

: e−iφ↑(s)−iφ↑(y) :
�

ei πx
` − e−εei πy

`

�

. (85)

By examining the term in square brackets, which tends to ei πx
` − ei πy

` as a→ 0, we can see that

lim
a→0
{R(s), R(y)}= 0 ∀ x , y , (86)

which is the expected anticommutator for a fermionic field with itself.
Next, we consider the anticommutator of R(s) with R†(y). For this calculation we define

the operator A(s) by

A(s) =
∞
∑

n=1

e−
εn
2

p
n

eiκn x b†
n , (87)

and so

A†(s) =
∞
∑

n=1

e−
εn
2

p
n

e−iκn x bn . (88)

In terms of this operator we can rewrite R(s) and R†(y) as

R(s) =
1
p

2`
e−iqeiA(s)eiA†(s)e−ip πx

` , (89)

R†(y) =
1
p

2`
eip πy

` e−iA(y)e−iA†(y)e−iq . (90)

Then, using similar rearrangement identities as in our previous calculation (using Eq. (73)
again), we obtain the formulas

R(s)R†(y) =
1
2`

e−ip π` (x−y)eiA(s)−iA(y)eiA†(s)−iA†(y) e−i π` (x−y)

1− e−εe−i π` (x−y)
(91)

and

R†(y)R(s) =
1
2`

e−ip π` (x−y)eiA(s)−iA(y)eiA†(s)−iA†(y) 1

1− e−εei π` (x−y)
. (92)

For the anticommutator we then find the formula

{R(s), R†(y)} = e−ip π` (x−y)eiA(s)−iA(y)eiA†(s)−iA†(y)d(x − y;ε) , (93)

where we defined the function d(x − y; a) by

d(x − y;ε) =
1
2`

�

e−i π` (x−y)

1− e−εe−i π` (x−y)
+

1

1− e−εei π` (x−y)

�

. (94)
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We now examine the properties of the function d(x − y; a). For a > 0 we can expand the
denominators in d(x − y; a) as geometric series to obtain

d(x − y;ε) =
1
2`

�

e−i π` (x−y)
∞
∑

n=0

e−εne−i πn
` (x−y) +

∞
∑

n=0

e−εnei πn
` (x−y)

�

.

From this expression we can see that

lim
ε→0

d(x − y;ε) = δ2`(x − y) , (95)

where

δ2`(x − y) =
1
2`

∑

n∈Z
ei 2πn

2` (x−y) (96)

is the 2`-periodic delta function. Since this function is zero for x 6= y modulo 2`, and since
all of the prefactors from Eq. (93) are equal to 1 when x = y modulo 2`, we then find that

lim
a→0
{R(s), R†(y)}= δ2`(x − y) . (97)

Therefore we have proven that, in the limit ε → 0, the operator R(s) obeys the standard
anticommutation relations for a fermionic field operator. Since the anti-commutation relation
(97) holds down to the smallest length scales, one can identify the ultraviolet cutoff ε in the
bosonic theory as that in the fermionic theory, which is given by the lattice constant a as

ε=
πa
`

. (98)

For the left-moving field L(s), we can use our results for R(s) and the relation (80) between
L(s) and R(s) to immediately conclude that L(s) also obeys the standard anticommutation
relations for a fermionic field operator.

Finally, there is one more interesting anticommutation relation that we can obtain for our
system with open boundary conditions. Since in this case the left- and right-moving fermionic
fields are not independent, we find that, for x , y ∈ (0,`),

{R(s), L(y)} = ei πy
` {R(s), R†(−y)}

= ei πy
` δ2`(x + y)

= 0 , (99)

where the last line holds since x + y 6= 0 for x , y ∈ (0,`). For x , y ∈ (0,`) we also have

{R(s), L†(y)} = e−i πy
` {R(s), R(−y)}

= 0 . (100)

Therefore, for our system with open boundary conditions, we find that the left- and right-
moving fermionic fields already have the correct anticommutation relations, and we do not
need to include any extra Klein factors to ensure that R(s) and L(y) (and R(s) and L†(y))
anticommute.

C.4 Correlation functions in the free theory

To complete this section we present the formulas for the two-point correlation functions of
R(s) and L(s) in the free theory before adding any perturbation terms. The form of these
correlation functions will complete the demonstration that we have correctly constructed the
fermionic operators from the bosonic fields.

27

https://scipost.org
https://scipost.org/SciPostPhys.11.5.086


SciPost Phys. 11, 086 (2021)

We consider the free bosonic vacuum |0〉 that satisfies p|0〉 = 0 and bn|0〉 = 0 for all
n ∈ {1,2, 3, . . . }. Using our previous rearrangement of the product R†(y)R(s), we find that in
this state we have

〈0|R†(y)R(s)|0〉=
1
2`

1
�

1− e−εei π` (x−y)
� , (101)

and by taking the complex conjugate we find that

〈0|R†(s)R(y)|0〉=
1
2`

1
�

1− e−εe−i π` (x−y)
� . (102)

To check that this formula makes sense, we can investigate its behavior in the bulk of the
system, which corresponds to taking the limit `→∞ while keeping x − y , δ. We also hold
the ultraviolet cutoff a fixed in this limit (although it is safe to take it to zero at this point).
Then in this limit we find that

〈0|R†(s)R(y)|0〉 →
1

2π
1

[i(x − y) + a]
, (103)

which is the correct bulk correlation function of a free right-moving fermion in one spatial
dimension (with the correct normalization).

We can now do a similar calculation for the left-moving fermion. Using the relation be-
tween R(s) and L(s), we first find that

〈0|L†(s)L(y)|0〉= e−i π` (x−y)〈0|R(−x)R†(−y)|0〉 . (104)

Then, using our previous rearrangement of 〈0|R(s)R†(y)|0〉, we find that

〈0|L†(s)L(y)|0〉=
1
2`

1
�

1− e−εei π` (x−y)
� . (105)

If we now take the bulk limit then in this case we find that

〈0|L†(s)L(y)|0〉 →
1

2π
1

[−i(x − y) + a]
, (106)

which is the correct bulk correlation function of a free left-moving fermion in one spatial
dimension.

D The variational approximation

In this appendix we explain the variational approximation that we use to study the ground
states of the domain wall Hamiltonian from Eq. (33a) of Sec. 3.2 of the main text. This vari-
ational approximation leads us to an effective Hamiltonian that only involves the zero mode
operators q and p from the mode expansions of ϕ(s) and ϑ(s), and in the later appendices
we analyze this effective Hamiltonian in detail and use it to make predictions for the physical
properties of the original domain wall model.

The variational method is familiar from quantum mechanics. It allows one to obtain infor-
mation about the ground state of a system by making sufficiently clever guesses for the form
of the ground state wave function. Here we apply this method to study the ground state of
a quantum field theory, and in this setting there are additional complications associated with
divergences present in a quantum field theory without a proper cutoff. Therefore, we perform
our variational calculation for the domain wall model with a finite ultraviolet cutoff a. Then,
at the end of the calculation, we consider the system with a small but finite value of a, as
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in condensed matter systems it is sensible to keep a finite ultraviolet cutoff a (which can be
intuitively thought of as being related to the scale of the crystal lattice).

Our starting point is the full Hamiltonian for the domain wall model. We denote this
Hamiltonian by H(a) to indicate that we are working with a finite ultraviolet cutoff a > 0. As
in Sec. 2, this Hamiltonian takes the form

H(a) = H0(a)− B

∫ `

0

ds
�

R†(s)L(s) + h.c.
�

. (107)

Here, R(s) and L(s) are the fermionic operators from Eq. (78) that we constructed from the
bosonic fields φ↑(s) and φ↓(s). For simplicity we also assume that the magnetic field points
along the positive x-axis, so that τ = 0 in our previous notation. Finally, H0(a) is the part of
the Hamiltonian that contains the kinetic energy term and the density-density interactions.

To prepare for our variational approximation, we first write out the term H0(a) using our
mode expansions for ϕ(s) and ϑ(s). We find that

H0(a) =
vKπ
2`

p̃2

+
v
4

�

1
K
+ K

� ∞
∑

n=1

e−εnκn(b
†
n bn + bn b†

n)

+
v
4

�

1
K
− K

� ∞
∑

n=1

e−εnκn(bn bn + b†
n b†

n) . (108)

The oscillator part of H0(a) can be diagonalized by making a Bogoliubov transformation to
new oscillator variables an defined by

an = cosh(η)bn + sinh(η)b†
n , (109)

where the real parameter η is related to K as

e−2η = K . (110)

In terms of these new variables, we find that

H0(a) =
vKπ
2`

p̃2 +
v
2

∞
∑

n=1

e−εnκn(a
†
nan + ana†

n) .

For later use we also note the reverse Bogoliubov transformation,

bn = cosh(η)an − sinh(η)a†
n , (111)

which allows us to express bn in terms of an and a†
n.

As we mentioned in the main text, the Zeeman term ∼ B
∫

R† L gaps out the region and
makes the oscillator modes massive. To find a suitable trial state for the oscillator part of the
Hilbert space, an additional Bogoliubov transformation is needed. To this end we introduce
yet another set of oscillator variables, which we denote by ãn (with Hermitian conjugates ã†

n).
These will be related to the an oscillators via the Bogoliubov transformation

an = cosh(ζn)ãn − sinh(ζn)ã
†
n , (112)
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where we have allowed the parameter ζn ∈ R that determines the transformation to depend
on the index n. Using these new variables, we can rewrite H0(a) in the form

H0(a) =
vKπ
2`

p̃2

+
v
2

∞
∑

n=1

e−εnκn cosh(2ζn)(ã
†
nãn + ãnã†

n)

−
v
2

∞
∑

n=1

e−εnκn sinh(2ζn)(ãnãn + ã†
nã†

n) . (113)

We also find that bn is related to ãn via the relation

bn = cosh(η+ ζn)ãn − sinh(η+ ζn)ã
†
n , (114)

which follows from identities for the hyperbolic trigonometric functions.
We now discuss our choice of variational trial state. Let |0,ζ〉 be the Fock vacuum state

annihilated by all the ãn,
ãn|0,ζ〉= 0 ∀ n . (115)

Note also that, as we are now working in terms of the ãn oscillator variables, the full Hilbert
space Htot of our domain wall model is equal to the tensor product

Htot =Hzm ⊗HF , (116)

where HF is the Fock space generated by the action of the raising operators ã†
n on the Fock

vacuum |0,ζ〉, and Hzm is the Hilbert space for the zero modes (q and p act within Hzm).
The trial ground state |Ψ〉 that we consider respects the tensor product structure of the Hilbert
space and it takes the tensor product form

|Ψ〉= |ψ〉 ⊗ |0,ζ〉 , (117)

where |ψ〉 is a state in the zero mode Hilbert space Hzm and |0,ζ〉 is the Fock vacuum for the
ãn variables.

The nontrivial part of our variational calculation is the problem of finding the parameters
ζn and the zero mode state |ψ〉 ∈Hzm that minimize the energy expectation value 〈Ψ|H(a)|Ψ〉.
In fact, we will not carry out this optimization procedure completely on the ζn parameters.
Instead, we will use a heuristic argument to obtain the behavior of the energy expectation
value with the correct choice of ζn.

To proceed with the variational calculation we need to compute the expectation value
〈Ψ|H(a)|Ψ〉 and then consider this expectation value in the small a limit. We now present this
calculation, omitting many of the details since the required manipulations are similar to the
ones we used in Appendix C to prove the bosonization formulas. For the kinetic term we find
that

〈Ψ|H0(a)|Ψ〉=
vKπ
2`
〈ψ|p̃2|ψ〉+

v
2

∞
∑

n=1

e−εnκn cosh(2ζn) , (118)

where the second term here is the vacuum energy for the ãn oscillators. For the Zeeman term
we find that

〈Ψ|R†(s)L(s)|Ψ〉=
1
2

f (x; a;ζ)〈ψ|ei2q|ψ〉 , (119)

where the function f (x; a;ζ) is given by

f (x; a;ζ) =
1
`

1
1− e−ε

�

1− e−ε−i 2πx
`

1− e−ε+i 2πx
`

�
1
2

ei 2πx
` e−

∑∞
n=1

e−εn
n e−2(η+ζn)(1+cos(2κn x)) . (120)
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We note that the summation in the exponent of the last factor

∞
∑

n=1

e−εn

n
e−2(η+ζn) (121)

is logarithmical, with the series effectively truncated by the factors e−εn and e−2ζn . The first
factor e−εn, with ε = πa/`, is a ultraviolet cutoff for the mode number, n ® `/a. The second
factor e−2ζn , on the other hand, is due to the quasiparticle mass gap∆Z induced by the Zeeman
field B. Obviously we have

∆Z = B for free fermions, (122)

but in general∆Z is renormalized by interactions and is a parameter determined by the choice
of {ζn}. The e−2ζn factor effectively serves as an infrared cutoff for the mode number n, as for
high enough modes κn�∆Z the effect of the Zeeman field can be neglected. This means that
the correct choice of ζn sets a lower limit of summation, n¦∆Z`. Therefore in the regime

a� 1/∆Z � `, (123)

the following summation can be approximated by

∞
∑

n=1

e−εn

n
e−2(η+ζn) ≈ −K ln(∆Z a), (124)

where we have used Eq. (110). Plugging (124) into (120) we obtain

f (x; a;ζ) =∆K
Z aK−1 f0(x; a;ζ), (125)

where f0 is a well-behaved O(1) function. With this choice, we then define an energy scale β
via

β = B

∫ `

0

ds f (x; a;ζ) , (126)

and we find that at small a we have an extensive behavior

β ∼ B∆K
Z aK−1`. (127)

For a free fermion system with K=1, this energy is ∼ B2`. Using these results, we can now
complete our calculation of 〈Ψ|H(a)|Ψ〉. We find that

〈Ψ|H(a)|Ψ〉= α〈ψ|p̃2|ψ〉 − β〈ψ| cos(2q)|ψ〉 , (128)

where the coefficients α and β are given by

α =
vKπ
2`

, (129a)

β ∼ B∆K
Z aK−1` , (129b)

and we have omitted the c-number vacuum energy term for the ãn oscillators. This result tells
us that for our variational approximation the zero mode state |ψ〉 should be chosen to be the
lowest energy state of the effective zero mode Hamiltonian

Heff = αp̃2 − β cos(2q). (130)
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We notice that in the limit β � α, this Hamiltonian describes an approximate harmonic
oscillator, with energy level spacing given by ∼

p

αβ . These energy levels form a Fock space
of zero modes, now with mass ∼

p

αβ . We can identify the mass scale of the former zero
modes with that of the oscillator modes:

∆Z ∼
Æ

αβ . (131)

Self-consistency between Eqs. (129) and (131) fixes the scale of ∆Z as

∆Z ∼ B (Ba)
K−1
2−K . (132)

Notably, we indeed recover ∆Z = B for the free fermion case K = 1. With Eq. (132), the
condition (123) translates to

1
a

�a
`

�2−K
� B�

1
a

, (133)

which requires K < 2. For K ≥ 2 a separate variational ansatz is needed, which we postpone to
future studies. As a sanity check, we see that the condition β � α we needed is precisely one
of the conditions in Eq. (133). We note that the condition K < 2 is consistent with Kosterlitz
renormalization group results on the sine-Gordon model in infininte spacetime, under which
the cosine term is a relevant perturbation.

We can rewrite the parameters α and β as

α =
vKπ
2`

, (134a)

β ∼ B
2

2−K a
2K−2
2−K `. (134b)

As we discuss in the next appendix, Heff is closely related to Mathieu’s equation, and so
we can use known results on that equation to study Heff and solve our variational problem. In
that appendix we present error estimates for various quantities, and those error estimates are
exponentially small in `. The key to obtaining that scaling for the error estimates is the fact
that the parameters α and β in Heff satisfy the relation

λ2 ≡
β

α
∼ B

2
2−K a

2K−2
2−K `2 . (135)

It is convenient to define a correlation length such that λ∝ `/ξ, and we have

ξ/a ∼
�

1
Ba

�
1

2−K

, (136)

which diverges at K → 2 obeying the familiar Kosterlitz-Thouless scaling behavior.
The full Hamiltonian H(a) and the effective Hamiltonian Heff both have a Z2 symmetry

generated by the operator eiπp (the symmetry is Z2 because p has integer eigenvalues). This
means that the Hilbert space of the domain wall model is broken up into two different sectors,
where the states in each sector have opposite eigenvalues (±1) of eiπp. It also means that we
should carry out our variational calculation separately in each sector to study the ground state
of the Hamiltonian within each sector.

We can gain a more physical understanding of this Z2 symmetry by noting that eiπp is
proportional to the parity eiπS of the total spin S in the FM region, since S is given explicitly
by

S =
1

2π

∫ `

0

ds
�

∂sφ↑(s)− ∂sφ↓(s)
�

= p+δ

= p̃ . (137)
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From a physical point of view this makes sense since the spin parity eiπS commutes with the
Hamiltonian in the FM region. Therefore in what follows it is convenient for us to label the
two sectors of the Hilbert space by a “lattice momentum” k ∈ [−1, 1) ∩ (Z + δ), such that
any given state is an eigenstate of eiπp̃ with eigenvalue eiπk.5 Note that, since p has integer
eigenvalues, there are only two such values of k in the set [−1, 1)∩ (Z+ δ). For example, in
the case of δ = 1

2 , which is our main interest, we have k ∈ {−1
2 , 1

2}.
Our variational method can be used to study the lowest energy states of H(a) with all

possible eigenvalues of eiπp̃ (i.e., all possible values of the lattice momentum k). In partic-
ular, we are interested in estimating the energy splitting between the lowest energy states
of H(a) with different eiπp̃ eigenvalues. We therefore define separate variational trial states
|Ψk〉= |ψk〉⊗|0,ζ〉 for each allowed value of k, where |ψk〉 should be chosen to be the ground
state of Heff in the sector of Hzm with eiπp̃ = eiπk.

Let Ek be the energy of the ground state |ψk〉 of Heff in the sector with eiπp̃ = eiπk,

Heff|ψk〉= Ek|ψk〉 , eiπp̃|ψk〉= eiπk|ψk〉 , (138)

and let k1 and k2 be the two allowed values of k in the set [−1, 1)∩ (Z+ δ). Our variational
estimate for the energy splitting ∆E between the ground states of the domain wall model in
the sectors with eiπp̃ = eiπk1 and eiπp̃ = eiπk2 is then given by

∆E ≈
�

�

�

�

〈Ψk1
|H(a)|Ψk1

〉 − 〈Ψk2
|H(a)|Ψk2

〉
�

�

�

�

= |Ek1
− Ek2

| . (139)

In the next appendix we use known results on Mathieu’s differential equation to show that
|Ek1
− Ek2

| is exponentially small in `. Then our variational approximation predicts that the
ground states of the domain wall model with different eiπp̃ eigenvalues are very nearly degen-
erate for large `. In addition, for the special case where δ = 1

2 , which is our main interest in
this paper, we show in Appendices G and H that the full domain wall Hamiltonian H(a) has
an additional discrete symmetry that guarantees that every eigenstate of H(a) has a partner
with the exact same energy, and so the ground state of of H(a) is exactly degenerate for any `
(not just approximately degenerate for large `).

E Results from the variational approximation (Mathieu’s equation)

In this appendix we present our main results on the domain wall model that we described in
Sec. 3.2. We first apply known mathematical results on Mathieu’s equation to understand the
ground states of the effective zero mode Hamiltonian Heff. We then use these results in our
variational approximation to obtain nontrivial predictions for certain properties of the domain
wall model, including the finite-size splitting of the nearly degenerate ground states (when
δ 6= 1/2 – there is an exact degeneracy at δ = 1

2 that we discuss in Appendices G and H),
the correlation functions of the fermionic operators, and the Berry phase for certain adiabatic
processes involving the external magnetic field.

E.1 Bound on |Ek1
− Ek2

| for Heff and estimate of the splitting ∆E

We first explain how known results on Mathieu’s differential equation can be used to bound the
difference |Ek1

−Ek2
| between the energies of the lowest energy states of Heff in the two sectors

with different eiπp̃ eigenvalue. We start by explaining the relation between Heff and Mathieu’s

5Note that k should lie in [−1, 1) because this is the first Brillouin zone for a lattice with lattice spacing equal
to π.
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differential equation. We first note that, by construction, p has integer eigenvalues. It follows
from this that all states in the zero mode Hilbert space Hzm are invariant under the action of
ei2πp, which is the operator that translates q by 2π, ei2πpqe−i2πp = q+2π. Therefore, if |ψ〉 is
any state in Hzm, then its wave function ψ(q) = 〈q|ψ〉 is 2π-periodic in q, ψ(q+ 2π) =ψ(q).
Next, as we discussed in the previous appendix, Heff also commutes with the operator eiπp that
translates q by π, eiπpqe−iπp = q+π. Accordingly, all eigenstates of Heff can be chosen to be
eigenstates of eiπp, as we have discussed (and we actually labeled states by their eigenvalue
of the closely related operator eiπp̃).

Let |ψ〉 be an eigenstate of Heff with energy E. Then the wave function ψ(q) satisfies the
Schrodinger equation

α

�

−i
d
dq
+δ

�2

ψ(q)− β cos(2q)ψ(q) = Eψ(q) , (140)

where p has become the differential operator −i d
dq . If we define a new wave function χ(q) by

ψ(q) = e−iδqχ(q) , (141)

then we find that χ(q) satisfies

−αχ”(q)− β cos(2q)χ(q) = Eχ(q) , (142)

where χ ′(q) = dχ(q)
dq . This equation can be brought into the standard form of Mathieu’s equa-

tion by dividing through by α 6= 0 to obtain

−χ”(q)−λ2 cos(2q)χ(q) = Eχ(q) , (143)

where we remind λ2 = β/α and E = E/α. In addition, the 2π-periodicity ofψ(q) implies that
χ(q) obeys the periodicity condition

χ(q+ 2π) = ei2πδχ(q) . (144)

To apply known results from the study of the Mathieu’s equation, we need to study the be-
havior of χ(q) under translations byπ, which is the period of the potential cos(2q) that appears
in the equation. This behavior will depend on the eigenvalue of a given state under the action
of the operator eiπp. In particular, for a state |ψk〉 that satisfies eiπp|ψk〉= eiπ(k−δ)|ψk〉 (so that
eiπp̃|ψk〉= eiπk|ψk〉), we find that the corresponding function χk(q) = eiδqψk(q) = eiδq〈q|ψk〉
satisfies the periodicity condition

χk(q+π) = eiδ(q+π)ψk(q+π)

= eiπkχk(q) , (145)

and this simple relation explains why we chose to label our states by their eigenvalue of eiπp̃

instead of their eigenvalue of eiπp.
It is known from Floquet theory (similar to Bloch’s theorem from condensed matter phys-

ics), that the spectrum of the Mathieu operator− d2

dq2−λ2 cos(2q) is divided into distinct energy
bands. In addition, the eigenfunctions within each energy band are labeled by a wave number
k ∈ [−1,1), which corresponds to the Brillouin zone of a one-dimensional lattice with period
π. An eigenfunction χk(q) characterized by the wave number k obeys exactly the periodicity
condition from Eq. (145). From this we see that the lowest energy state of Heff in the sector
with eiπp̃ = eiπk corresponds exactly to the eigenfunction labeled by k within the lowest band
of the spectrum of − d2

dq2 − λ2 cos(2q). Therefore, the energy splitting |Ek1
− Ek2

| between the

two lowest energy states of Heff with different eiπp̃ eigenvalues is certainly less than α times
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the width |W0(λ)| of the lowest band of the Mathieu operator − d2

dq2 −λ2 cos(2q) (we multiply
by α because E = αE).

An asymptotic formula for the width |W0(λ)| at large λ was obtained in Ref. [84] (see also
Ref. [85] for a convenient summary of the properties of the spectrum of the Mathieu operator).
It takes the form6

|W0(λ)|=
2

19
4

π
1
2

λ
3
2 e−λ

p
8
�

1+O(λ−
1
2 )
�

. (146)

The key feature of this formula is the factor of e−λ
p

8. The presence of this factor implies that,
when λ is large, the width |W0(λ)| of the lowest band is exponentially small in λ. Now for our
model (which we obtained from our variational approximation), this means that the splitting
|Ek1
− Ek2

| is exponentially small in `,

|Ek1
− Ek2

|® constant× e−
`
ξ , (147)

where ξ ≡ λ
p

8 is the correlation length given by Eq. (136)). Thus, our variational approxi-
mation predicts that for large ` the energy splitting∆E of the two ground states in our domain
wall model is exponentially small in the length ` of the FM region. For the free fermion case
with K = 1, the correlation length is given by ξ∼ 1/B, consistent with the decaying behavior
from solving the Dirac equation with a mass domain wall.

Finally, we close this section by noting that the case we are most interested in in this paper
is the special case where δ = 1

2 . In Appendices G and H we will show that in this case the two
ground states of our domain wall model are exactly degenerate, and not just approximately
degenerate as we have predicted here for a general δ.

E.2 Approximate form of χk(q) at large λ

For the Berry phase calculation later in this appendix we will need to understand the form of
the eigenfunctions χk(q) of the Mathieu operator in the limit of large λ (we referred to this
as the “tight-binding” limit in the main text). Therefore, in this subsection we review some
known facts about χk(q) in this limit.

When λ is large, the eigenfunctions of the Mathieu operator in its lowest band are well-
approximated by a weighted sum of Gaussians localized in each valley of the cos(2q) potential
(see the proof of Theorem 1 in Ref. [86]). These approximate eigenfunctions can be con-
structed as follows. We first expand cos(2q) to order q2 about its minimum at q = 0 and study
the resulting approximate Mathieu operator near q = 0. Up to a constant, we find the operator
− d2

dq2 + 2λ2q2, and it is well-known that the lowest energy eigenfunction of this operator is a
Gaussian of the form

χ0(q) =

�

λ
p

2
π

�
1
4

e−
λp
2

q2

, (148)

where we have chosen the coefficient so that
∫∞
−∞ dq |χ0(q)|2 = 1.

Let χk(q) be the eigenfunction in the lowest band of the Mathieu operator and obeying the
periodicity condition χk(q + π) = eikπχk(q). At large λ, this eigenfunction is given approxi-
mately by the periodic sum

χk(q) =
1
p

2

∑

n∈Z
eiknπχ0(q− nπ) , (149)

6In Ref. [84] the bandwidth |W0(λ)| was denoted by |B0(λ)|, but we use |W0(λ)| here to avoid confusion with
the magnetic field in our problem.
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which contains all translations of χ0(q) by integer multiples of π, with the translation by nπ
accompanied by the k-dependent phase factor eiknπ. The factor of

p
2 is included here so that

χk(q) obeys the normalization condition7

∫ 2π

0

dq χk(q)χk(q) = 1+O(e−
π2

2
p

2
λ) , (150)

where the integral is restricted to [0, 2π) because this is the physical range of q in our prob-
lem. To understand the error estimate here, note that the overlap of χ0(q) and χ0(q − d) is
exponentially small in λ,

∫ ∞

−∞
dq χ0(q)χ0(q− d) = e−

d2

2
p

2
λ . (151)

This means that the dominant contribution to
∫ 2π

0 dq χk(q)χk(q) comes from the overlap be-
tween Gaussians in the same position, while the overlap between Gaussians that are offset by
some amount accounts for the error term. The smallest possible offset is equal to the period
π of the cos(2q) potential, and so the error estimate in our expression for

∫ 2π
0 dq χk(q)χk(q)

follows from taking d = π in Eq. (151). Finally, for later use we remind the reader that for
our model the parameter λ is proportional to ξ/`, where the correlation length ξ was defined
in Eq. (136).

E.3 Calculating the Berry phase γk

We now calculate the Berry phase γk in Eq. (51) using properties of the eigenstates of our
effective zero mode Hamiltonian Heff. To simplify the notation we denote |ψk(B, 0)〉 by |ψk〉
in what follows.

To start, we note that 〈ψk|p̃|ψk〉= 〈ψk|p|ψk〉+δ, and so we focus on evaluating 〈ψk|p|ψk〉.
For this matrix element we have

〈ψk|p|ψk〉= −i

∫ 2π

0

dq ψk(q)
d
dq
ψk(q)

= −δ
∫ 2π

0

dq |χk(q)|2 − i

∫ 2π

0

dq χk(q)
d
dq
χk(q) , (152)

where we remind the reader that ψk(q) = e−iδqχk(q). We then use the approximate form
(149) of the wave functions χk(q) at large ` (more precisely, at large λ) to find that

∫ 2π

0

dq |χk(q)|2 = 1+O(e−
π2
8
`
ξ ) (153)

and

−i

∫ 2π

0

dq χk(q)
d
dq
χk(q) = O(e−

π2
8
`
ξ ) , (154)

where the error terms on these estimates come from the calculation of the overlap of two
shifted Gaussians (recall Eq. (151)). Therefore our final result is that

〈ψk|p|ψk〉= −δ+O(e−
π2
8
`
ξ ) , (155)

7In our problem the original wave functions are defined for q ∈ [0, 2π). This explains our extra factor of
p

2
as compared with Ref. [86], where the wave functions were normalized for integration over one period of the
periodic potential (which is π in our case).
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and so we find that the Berry phase γk is given (within our variational approximation) by

γk = −kπ+O(e−
π2
8
`
ξ ) . (156)

The most interesting aspect of our result for γk is that, for `� ξ, the Berry phase is equal
to the topological value

γk,top = −kπ , (157)

up to corrections that are exponentially small in the length ` (which is also the separation
between the fractional quasiparticles at the ends of the FM region). These exponentially small
corrections to topological Berry phases are always expected in finite size systems, but they are
very rarely calculated explicitly. Our ability to capture these corrections here is a significant
demonstration of the power of our variational method.

F Generalization to m 6= 1

In this appendix we briefly explain the generalization of our results to the fractional case of
m > 1 (i.e., a domain wall configuration at the boundary of a fractional quantum spin Hall
system). Recall from Appendix C that in the m = 1 case we were able to precisely construct
bosonized fermion operators R(s) and L(s) that obey the correct anticommutation relations of
fermion field operators. In contrast to that result, in the m > 1 case we are not aware of a
precise construction of bosonized fermion operators R(s) and L(s) that exactly obey the correct
anticommutation relations. One possible guess in this case is to define R(s) and L(s) via

R(s) =
eiδ πx

`

p
2`

: e−imφ↑(s) : , (158a)

L(s) =
eiδ πx

`

p
2`

: eimφ↓(s) : . (158b)

With these definitions one still finds that {R(s), R(y)} = 0 and {L(s), L(y)} = 0. However, the
other anticommutators no longer exactly match the expected answer for fermionic operators.
For example, in the limit of ε→ 0, {R(s), R†(y)} 6= δ2`(x− y) but is instead equal to some more
complicated distribution.8 Heuristically, the deviation between {R(s), R†(y)} and δ2`(x− y) is
due to a short length scale of the strongly interacting system above which interacting fermion
systems develops topological order, which we can identify as the ultraviolet cutoff ε in the
mode expansion (71) of the boson fields.

Because of this issue, in this appendix only we adopt a less precise (but commonly used)
definition of the bosonized fermion operators. Specifically, we define R(s) and L(s) via

R(s) ∼
1
p

2a
e−imφ↑(s) , (159a)

L(s) ∼
1
p

2a
eimφ↓(s) , (159b)

where we have not used any normal-ordering prescription, and where we used the ultraviolet
cutoff a (instead of the infrared cutoff `) to obtain the correct dimensions. Loosely speaking,
using this definition we have {R(s), R†(0)}= 0 if x 6= 0,
and {R(s), R†(0)} ∼ 1/a→∞, similar to a δ-function.

8This fact about the bosonized fermion operators in the fractional case does not seem to be widely known. At
least, we are not aware of any discussion of it in the literature.
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We again carry out a variational calculation using a trial state |Ψ〉 = |ψ〉 ⊗ |0,ζ〉, where
ζ= (ζ1,ζ2, . . . ) is again chosen so that the expectation value of the magnetic field term in the
state |Ψ〉 is extensive. In particular, in this case we find that

〈Ψ|R†(s)L(s)|Ψ〉 ∼
1
2

fm(x; a;ζ)〈ψ|ei2mq|ψ〉 , (160)

where the function fm(x; a;ζ) is given by

fm(x; a;ζ) =
1
a

ei πmx
` e

i
m

∑∞
n=1

e−εn
n sin(2κn x)

× e−
∑∞

n=1
e−εn

n e−2(η′+ζn)(1+cos(2κn x)) , (161)

where now
e−2η′ = K ′ ≡ mK . (162)

Since the first line in Eq. (161) is equal to 1/a times a pure phase factor (i.e., a complex
number of unit modulus), we find that by performing the summation in the exponent of the
last factor of Eq. (161) with the same variational scheme in Appendix D,

fm(x; a;ζ) =∆K ′
Z aK ′−1 fm,0(x; a;ζ), (163)

where fm,0(x; a;ζ) is an order one quantity. This result is very similar to the m= 1 case from
Appendix D, with the important difference that K is replaced by K ′ = mK .

In this way we find that |ψ〉 should again be chosen to be the ground state of an effective
zero mode Hamiltonian, and in this case this zero mode Hamiltonian takes the form

Heff = αp̃2 − β cos(2mq) . (164)

Following the self-consistency relation in Appendix D, we have

α =
vK ′π

2`
, (165a)

β ∼ B
2

2−K′ a
2K′−2
2−K′ `. (165b)

We see that we again have α∝ 1
` and β∝ `, and so we again have

λ2 =
β

α
∝ `2 . (166)

The main difference between the analysis in this case and the analysis in the m = 1 case is
that Heff (and the full domain wall Hamiltonian H(a)) have a Z2m symmetry instead of a Z2

symmetry. This symmetry is generated by the operator ei πp
m , and it can again be related to the

conservation of the parity of the spin S in the FM region. Indeed, in this case we have

S =
1

2π

∫ `

0

ds
�

∂sφ↑(s)− ∂sφ↓(s)
�

=
p̃
m

, (167)

and the Hamiltonian commutes with eiπS = ei πp̃
m . The Hilbert space of the model breaks up

into sectors labeled by the different eigenvalues of the Z2m symmetry operator, and for our

convenience we choose to label the different sectors by their eigenvalue of eiπS = ei πp̃
m , which

involves the shifted momentum operator p̃.

Consider the sector of the Hilbert space characterized by ei πp̃
m = ei πk

m , where k takes on one
of the 2m values in the set {−m+δ, . . . ,−1+δ,δ, . . . , m− 1+δ}. Our variational approxi-
mation for the ground state of H(a) in this sector is the trial state |Ψk〉 = |ψk〉 ⊗ |0,ζ〉, where
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|ψk〉 should be chosen to be the ground state of Heff in the sector with ei πp̃
m = ei πk

m . By again
exploiting the connection to the Mathieu’s equation,9 we find that
〈q|ψk〉=ψk(q) = e−iδqχk(q), where now the function χk(q) should be chosen to be the eigen-
function in the lowest band of the operator− d2

dq2−λ2 cos(2mq) that also satisfies the periodicity
condition

χk(q+
π
m) = eik πmχk(q) . (168)

All of our previous results can now be carried over to this case. The only difference is that
there are now small changes in the asymptotic formula for the width |W0(λ)| of the lowest
band of the Mathieu operator, and the approximate form of the eigenfunction χk(q) in the
tight-binding regime of large λ. These quantities are now given by

|W0(λ)|= m2 2
19
4

π
1
2

�

λ

m

�
3
2

e−
λ
m

p
8
�

1+O(λ−
1
2 )
�

, (169)

and

χk(q) =
1
p

2m

∑

n∈Z
eikn πmχ0(q− n πm) , (170)

where now

χ0(q) =

�

mλ
p

2
π

�
1
4

e−
mλp

2
q2

. (171)

Note that the new factors of m in |W0(λ)| can be understood from the expression for |W0(λ)|
at m = 1 by making the change of variables q′ = mq in the Mathieu’s equation with m 6= 1.
Also, the factor of 1/

p
2m in the expression for χk(q) is again present to ensure approximate

normalization when integrated over the interval [0,2π), which is 2m times larger than the
period π/m of cos(2mq).

Using these new formulas we again predict (in the tight-binding regime) an exponentially
small splitting between the ground state energies Ek of H(a) in sectors with different values
of k,

|Ek1
− Ek2

|® constant× e−
`
ξm , (172)

where the new correlation length ξm is of the same order as the correlation length in the
m= 1 case. Finally, we find that the Berry phase γk associated with the full 2π rotation of the
in-plane magnetic field is given approximately by

γk = −k
π

m
+O(e−

`
ξm

π2
8 ) . (173)

The main difference compared to the integer case is the presence of the factor of 1/m, indi-
cating a fractional value for the Berry phase. We again find exponential suppression of the
corrections to this topological value. One important point for this Berry phase calculation is
that we now choose the phase of the state |ψk(B,τ)〉 according to the formula

|ψk(B,τ)〉= ei τk
m e−i τp̃

m |ψk(B, 0)〉 , (174)

and this choice will ensure that the states are single-valued along the path that we take through
the parameter space. In particular, with this choice we will again have |ψk(B,τ+π)〉= |ψk(B,τ)〉.

9Actually, the standard form of Mathieu’s equation has the potential cos(2q), which has a period of π. In our
case we instead have cos(2mq), with a period of π/m, but it is a simple matter to take this rescaling of the period
into account in our analysis.
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G Exact two-fold degeneracy of the domain wall model at δ = 1/2

Our main interest in this paper is domain wall configurations in which the central FM region
is surrounded by two SC regions with opposite signs of the superconducting mass∆(s). In this
case, the central FM region is described by our domain wall model with the parameter value
δ = 1

2 . In this appendix we show that in this situation the domain wall Hamiltonian H(a) has
an exact two-fold degeneracy of all of its eigenstates (and this holds for any value of the integer
m). We explain this symmetry structure in the particular case that the in-plane magnetic field
B points along the positive x-axis, as the Hamiltonian with a rotated B is unitarily equivalent
to this case (and so the structure of the energy spectrum will be the same).

We start by noting that, since H(a) commutes with ei πp
m , it also commutes with the Z2

symmetry operator Γ1 = eiπp = (ei πp
m )m, which satisfies Γ 2

1 = 1 since p has integer eigenvalues.
For m = 1 this is the fermion parity symmetry. Next, we identify a second operator Γ2 that
(i) commutes with H(a), (ii) squares to the identity, Γ 2

2 = 1, and (iii) anticommutes with Γ1,
{Γ1, Γ2}= 0. The existence of two operators Γ1 and Γ2 with these properties implies the two-fold
degeneracy of all eigenstates of H(a). Indeed, if |Ψ〉 is an eigenstate of H(a) with Γ1|Ψ〉= |Ψ〉,
then these properties imply that |Ψ′〉= Γ2|Ψ〉 is an eigenstate of H(a) with the same energy as
|Ψ〉, but with Γ1|Ψ′〉= −|Ψ′〉.

We define the operator Γ2 by its action on the operators q, p, bn, and b†
n that appear in the

mode expansions of the bosonic fields ϕ(s) and ϑ(s) in our model. As we mentioned above,
we also choose Γ2 to be anti-unitary. We define Γ2 in such a way that it squares to the identity
operator,

Γ 2
2 = 1 , (175)

and we define its actions on q, p, bn, and b†
n as:

Γ2qΓ2 = q , (176a)

Γ2pΓ2 = −p− 1 , (176b)

Γ2 bnΓ2 = bn ∀ n , (176c)

Γ2 b†
nΓ2 = b†

n ∀ n . (176d)

Therefore, Γ2 only acts nontrivially on p. However, it can also act on other expressions by
complex conjugation since it is anti-unitary. We also note that Γ2 p̃Γ2 = −p̃, where p̃ = p+ 1

2 at
δ = 1

2 . With these definitions one can easily see that Γ2ϕ(s)Γ2 = ϕ(s) and Γ2ϑ(s)Γ2 = −ϑ(s).
From Eq. (59) of the main text, this Γ2 operator is precisely the antiunitary time-reversal sym-
metry T̃ .

These relations in turn imply that Γ2φ↑(s)Γ2 = φ↓(s) and Γ2φ↓(s)Γ2 = φ↑(s). Finally, these
relations imply that the bosonized fermion operators R(s) and L(s) satisfy

Γ2R(s)Γ2 = L(s) , (177a)

Γ2 L(s)Γ2 = R(s) , (177b)

and so we find that Γ2 does indeed commute with the domain wall Hamiltonian H(a) at δ = 1
2 .

Finally, we investigate the interplay between Γ2 and Γ1. We have

Γ2Γ1Γ2 = Γ2eiπpΓ2 , (178)

= e−iπ(−p−1) ,

= −eiπp ,

= −Γ1 , (179)

and so Γ2 anticommutes with Γ1. This completes our demonstration of the three properties of Γ2
that we stated above. As we mentioned above, this then implies an exact two-fold degeneracy
of all of the eigenstates of the domain wall Hamiltonian H(a).
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H Ground state degeneracy from the perspective of the ’t Hooft
anomaly

In this Appendix we show that the ground state degeneracy due to the Majorana pair in each
corner can be viewed as a consequence of a mixed ’t Hooft anomaly between the generalized
time-reversal symmetry Us,πT and fermion parity symmetry Us,2π.

We begin with the partition function of the corner region in terms of the boson fields ϑ and
ϕ (we set v = 1 and keep a generic m), given by Z =

∫

DϕDϑeiS , where

S[ϑ,ϕ] =
1

2π

∫

d t

∫ `

0

ds
�

2∂x(ϑ+α)∂tϕ − K ′(∂xϑ)
2 −

1
K ′
(∂xϕ)

2 + 2πb cos(2ϕ)
�

, (180)

subject to the spatial boundary condition

ϑ(`)− ϑ(0)) =
�

p+
1
2

�

π

m
, p ∈ Z. (181)

The parameter α is rather unusual and absent from most literature on bosonization, which
we will explain and determine shortly. Recall that the first term arises from the insertion of
complete sets of conjugate coherent states |ϕ〉 and |π〉 ≡ |∂x(ϑ + α)〉, which gives the matrix
element

∏

x

〈ϕ(x , t + d t)|π(x , t)〉〈π(x , t)|ϕ(x , t)〉= exp

�

d t

∫

i∂x(ϑ(s) +α(s))∂tϕ(s)
π

ds

�

. (182)

Indeed, it is straightforward to verify that [ϕ(s),π(s′)] = iπδ(s− s′).
In the above we have used

∏

x

〈ϕ(x , t)|π(x , t)〉= exp

�∫

i∂x(ϑ(s) +α(s))ϕ(s)
π

ds

�

. (183)

and from this the parameter α(s) can be determined by noticing the Hilbert space constraint
of the compactification ϕ(s)∼ ϕ(s) + 2πm. This requires that

∫ `

0

d x
π
∂x(θ +α) ∈

Z
m

. (184)

Given the spatial boundary condition Eq. (181), we can choose

α=
Θx
2m

, Θ = π. (185)

Note that this procedure is essentially the same as the one adopted in Eq. (48).
After integrating the ϑ field, this leads to the action

S[ϕ] =

∫

d2 x
2π

�

Θ∂tϕ

m
−
(∂µϕ)2

K ′
+ 2πb cos(2ϕ)

�

. (186)

Notice that compared to the usual sine-Gordon model, we have an additional term withΘ = π.
After integrating over x ∈ [0,`), this is precisely a Θ-term in a 1d quantum field theory.

The partition function Z =
∫

eiS has two symmetries, a generalized time-reversal T̃ under
which ϕ→ ϕ, t →−t, and a translation ϕ→ ϕ +π (for m = 1 this is fermion parity Us,2π).
In particular, the former symmetry is only realized at Θ = 0,π in the presence of periodic
temporal boundary conditions. As pointed out in Ref. [90], such the theory Θ = π admits a
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’t Hooft anomaly between the two symmetries. To this end, we couple the spin up and down
fermions with a gauge field ±As, via ∂ ϕ→ ∂ ϕ − As, and we show that gauge invariance and
time-reversal symmetry are incompatible.

After integrating out spatially oscillatory modes, we have

S[q, As] =

∫

d t
2π

�

Θ(q̇− As/m)−
(mq̇− As)2

K ′
+ 2πβ cos(2mq)

�

, Θ = π. (187)

With the cosine term, the gauge group is lowered from U(1) to Z2m. Indeed this partition
function

Z[As] =

∫

dqeS[q,As] (188)

is gauge invariant, including the large gauge transformation
∫

d tq̇→
∫

d tq̇+ 2π,

∫

d tAs→
∫

d tAs + 2πm. (189)

However, in doing so, we have introduced a 1d Chern-Simons counter-term ∼
∫

d tAs, which
necessarily breaks time-reversal symmetry, since As is odd under time reversal.

We can alternatively keep time-reversal symmetry, by taking a different way of coupling to
the gauge field

S[q, As] =

∫

d t
2π

�

Θq̇−
(mq̇− As)2

K ′
+ 2πβ cos(2mq)

�

, Θ = π. (190)

However, this theory is not gauge invariant under the large gauge transformation above. A
simple analysis shows that the partition function

Z[As]→−Z[As] (191)

under such a transformation. Here the incompatibility ofZ2m and time-reversal of the quantum
theory is characteristic of a ’t Hooft anomaly.

In general, the ground state degeneracy due to the ’t Hooft anomaly can be proven by
contradiction. Suppose there is a unique ground state, and then due to time-reversal symmetry
of the partition function Z[As], the ground state must carry zero charge under the gauge field,
since the (temporal) gauge field As is odd under time-reversal. However, if so, the ground
state path integral could not admit a gauge anomaly, since being charge neutral it would not
respond to any gauge transformation. Therefore, the ground state must be degenerate.

In this special case of m = 1, the symmetry properties of Z[As] from Eq. (191) can be
captured by [90]

Z[As]∼ exp

�

i

∫

d tAs/2

�

+ exp

�

−i

∫

d tAs/2

�

, (192)

which indicates that the ground state is two-fold degenerate in the absence of the background
gauge field. Each ground state carries a fractional charge ±1

2 , and therefore, the gauge group
is represented projectively, or equivalently as a double cover. While classically the Z2 time-
reversal symmetry and the Z2 gauge symmetry combines to D4, at a quantum level the sym-
metry group is D8.

Recalling that spin-1/2 fermions are charged ±1 objects under As, we conclude that the
two ground states have spin S = ±1

4 . This indeed agrees with the results from the main text
using (41)

S =
1
2

∫ `

0

ds
∂xϑ

π
=

1
4

mod
1
2

. (193)
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