
SciPost Phys. 11, 089 (2021)

Analytic conformal bootstrap and Virasoro
primary fields in the Ashkin–Teller model

Nikita Nemkov 1? and Sylvain Ribault2†

1 Russian Quantum Center, Skolkovo, Moscow 143025, Russia
2 Université Paris-Saclay, CNRS, CEA, Institut de physique théorique

? nnemkov@gmail.com, † sylvain.ribault@ipht.fr

Abstract

We revisit the critical two-dimensional Ashkin–Teller model, i.e. the Z2 orbifold of the
compactified free boson CFT at c = 1. We solve the model on the plane by computing its
three-point structure constants and proving crossing symmetry of four-point correlation
functions. We do this not only for affine primary fields, but also for Virasoro primary
fields, i.e. higher twist fields and degenerate fields.
This leads us to clarify the analytic properties of Virasoro conformal blocks and fusion
kernels at c = 1. We show that blocks with a degenerate channel field should be com-
puted by taking limits in the central charge, rather than in the conformal dimension.
In particular, Al. Zamolodchikov’s simple explicit expression for the blocks that appear
in four-twist correlation functions is only valid in the non-degenerate case: degenerate
blocks, starting with the identity block, are more complicated generalized theta func-
tions.
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1 Introduction

After Belavin, Polyakov and Zamolodchikov worked out the basics of the conformal bootstrap
approach to two-dimensional CFT [1], the critical Ashkin–Teller model was one of the first
theories to be solved. The model differs from the compactified free boson by its twist sector,
whose correlation functions were exactly computed by Al. Zamolodchikov [2]. One may think
that there is little left to say on the subject. This would be quite wrong, as we will now argue.

Affine symmetry versus Virasoro symmetry

Per the conformal bootstrap’s basic doctrine, the model’s solution extensively relies on its affine
symmetry algebra. In practice, this means that only correlation functions of affine primary
fields are explicitly known. Other correlation functions are in principle determined by the
symmetry, which makes them accessible to pedestrian calculations on a case-by-case basis.
However, the model contains infinitely many Virasoro primary fields that are not affine primary
fields, and it would be very interesting to determine their correlation functions in general.

In particular, a special case of the Ashkin–Teller model is supposed to coincide with the
4-state Potts model [3]. The Q-state Potts model does not have affine symmetry for generic
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Q ∈ C, and solving it means computing correlation functions of Virasoro primary fields. To
compare it with the Ashkin–Teller model, we need to understand the latter’s Virasoro primary
fields.

Even in the free boson CFT, this issue has not been solved. There is an infinite series of Vira-
soro primary fields, called degenerate fields, which are affine descendants of the identity field.
Their correlation functions are not known. Nevertheless, boundary conditions that preserve
Virasoro symmetry only (and break affine symmetry) have been determined by Janik [4].

In the Ashkin–Teller model, in addition to degenerate fields, there is another infinite series
of Virasoro primary fields, called higher twist fields. Some correlation functions that involve
the first few higher twist fields were computed by Apikyan and Al. Zamolodchikov [5], using
the model’s affine symmetry. Their method is based on affine symmetry, and cannot work for
arbitrary higher twist fields.

We will develop a method that does not rely explicitly on the affine symmetry. Technically,
we will solve crossing symmetry equations, after formulating them in terms of fusion kernels
rather than conformal blocks. The relevant fusion kernels can be computed explicitly, which
will allow us to determine the structure constants of arbitrary Virasoro primary fields.

Subtleties of Virasoro conformal blocks and fusion kernels

In order to write crossing symmetry equations, we need to know the relevant Virasoro confor-
mal blocks or fusion kernels. The basic techniques for computing the blocks date back to the
1980s: BPZ differential equations [1], and Al. Zamolodchikov’s recursive representation [6].
However, these techniques work better at generic values of the central charge. For c = 1
and other rational values, there appear Virasoro representations with intricate structures, i.e.
infinite ladders of singular vectors. This leads to conformal blocks having multiple poles as
functions of the channel dimension, rather than simple poles. Worse, the recursive represen-
tation breaks down.

This would not be a big problem if our CFT only involved Verma modules of the Virasoro al-
gebra. For example, in the case of Liouville theory at c = 1, conformal blocks can be computed
by slightly perturbing the central charge [7], or by using c = 1 expressions deduced from the
Painlevé VI equation [8]. However, the Ashkin–Teller model and the free boson CFT also in-
clude degenerate representations, whose dimensions fall on the poles of conformal blocks. Of
course, conformal blocks must actually be finite, even when they involve degenerate represen-
tations. So the residues of the poles must vanish, which indeed occurs in particular correlation
functions. The problem is that when computing degenerate blocks as limits from the generic
case, the result depends on how we take limits of the various parameters.

We will demonstrate that degenerate blocks can be computed as limits of generic blocks if
c is generic, but not if c is rational. Therefore, to compute our degenerate conformal blocks at
c = 1, we will have to first find appropriate continuations to generic c, and then take the limit
c → 1. Degenerate fusion kernels can also be computed using the same procedure. This will
allow us to write and solve enough crossing symmetry equations for determining all structure
constants of the Ashkin–Teller model. In a number of cases, these structure constants can
alternatively be computed from the affine symmetry, which provides independent checks of
our ideas on conformal blocks.

Main results

As summarized in Table (90). the Virasoro primary fields of the Ashkin–Teller model come in
three sectors: vertex V , identity I (i.e. degenerate fields), and twist T . We have determined
all fusion rules and two- and three-point structure constants of these fields, in particular:
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• The fusion rules of degenerate Virasoro primary fields I × I (47), I × T (96), and T × T
(97).

• The chiral three-point structure constants of the types 〈IV V 〉 (72), 〈I I I〉 (79), 〈V T T 〉
(128), and 〈I T T 〉 (137).

Moreover, the behaviour of some four-point functions suggests that higher twist fields could
have a geometrical interpretation, see Eq. (146). On degenerate conformal blocks, our results
include:

• Conjecture 1 and Conjecture 2 for computing degenerate conformal blocks, at generic
and rational central charges respectively.

• Recursive representations (176) and explicit expressions as generalized theta functions
(177) for a class of degenerate blocks at c = 1.

Let us also mention some technical results on fusion kernels:

• The fusion kernels for four-point functions with one level 3 degenerate field at generic
central charge (190)-(193).

• The discrete fusion transformation (273) for conformal blocks that appear in four-point
functions of the type 〈V V T T 〉.

2 Basic structures of two-dimensional CFT

In the conformal bootstrap approach, a two-dimensional CFT is a set of correlation functions
that obey certain relations. We will review correlation functions and their properties, while
paying particular attention to the nontrivial signs that appear when fields have nonzero con-
formal spins. For a more detailed review, see [9].

2.1 Fields and correlation functions

Let V∆,∆̄(z) be a primary field on the Riemann sphere z ∈ (C∪∞), with the conformal dimen-
sions ∆ and ∆̄ for the left and right Virasoro algebras. We will assume that our fields have
integer conformal spins,

S(V∆,∆̄) =∆− ∆̄ ∈ Z . (1)

Correlation functions

∏n

i=1 Vi(zi)
�

=

∏n

i=1 V∆i ,∆̄i
(zi)

�

are single-valued functions of zi , and
invariant under field permutations,

V1(z1)V2(z2) = V2(z2)V1(z1) . (2)

Conformal symmetry determines how two- and three-point functions depend on the po-
sitions. Let us analyze these correlation functions in some detail. A two-point function
can be nonzero only if the two fields have the same left and right conformal dimensions,
〈V1V2〉 6= 0 =⇒ (∆1, ∆̄1) = (∆2, ∆̄2). By choosing an appropriate basis {Vi} of primary fields,
we can further assume




ViVj

�

6= 0 =⇒ i = j∗ , (3)
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for some involution i→ i∗ such that (∆i , ∆̄i) = (∆i∗ , ∆̄i∗). Often i∗ = i but for the free boson
it is convenient to choose this involution as the natural Z2 symmetry of the model. Then the
non-vanishing two-point functions are of the type

¬

Vi(z1)Vi∗(z2)
¶

=
Bi

�

�

�z2∆i
12

�

�

�

2 , (4)

where the zi-independent factor Bi = Bi∗ is called the two-point structure constant, and we
used the notation

�

�z∆
�

�

2 ≡ z∆z̄∆̄ . (5)

Thanks to the spin being integer, this two-point function is invariant under permuting the two
fields. It is also single-valued, in particular z12→ e2πiz12 generates a factor (−)4∆i−4∆̄i = 1. In
a unitary CFT, according to the axiom of reflection positivity, we must have

¬

Vi(z)Vi∗(z̄)
¶

≥ 0,

which implies (−)∆i−∆̄i Bi ≥ 0. Therefore, the two-point structure constant is positive for fields
of even spin, and negative for fields of odd spin.

In the case of three-point functions, we have

¬

V1(z1)V2(z2)V3(z3)
¶

=
δ123C123

�

�

�z∆1+∆2−∆3
12 z∆2+∆3−∆1

23 z∆3+∆1−∆2
13

�

�

�

2 , (6)

where C123 is a three-point structure constant, and δ123 ∈ {0, 1} a prefactor that imposes fusion
rules if need be. (Distinguishing this prefactor from the structure constant is conceptually
clearer, and leads to simpler expressions for the structure constant [10].) Our standard-looking
formula for the three-point function hides a subtlety: we have written z∆3+∆1−∆2

13 rather than

z∆3+∆1−∆2
31 , which changes the overall sign since

�

�z∆
�

�

2
= (−)∆−∆̄

�

�(−z)∆
�

�

2
. This will lead to the

absence of sign factors in the relation (10) between OPE coefficients and three-point structure
constants.

The three-point function (6) is manifestly single-valued, for example it is invariant un-
der z12 → e2πiz12. Its invariance under permutations is however less obvious, since the zi-
dependent factor picks the sign (−)S1+S2+S3 under odd permutations. For the three-point func-
tion to be invariant, we need the three-point structure constant to pick this sign as well,

Cσ(1)σ(2)σ(3) = |σ|S1+S2+S3 C123 , (7)

where |σ| is the parity of the permutation σ.

2.2 Conformal bootstrap

2.2.1 Operator product expansion

The crucial axiom that leads to nontrivial relations between correlation functions is the exis-
tence of an operator product expansion (OPE). In the case of primary fields, the OPE reads

V1(z1)V2(z2) =
∑

Vi∈S12

C i
12

�

�

�z∆i−∆1−∆2
12

�

�

�

2 �
Vi(z2) +O(z12)

�

, (8)

where the zi-independent constants C i
12 are OPE coefficients, and the set of primary fields S12

is the OPE spectrum. An OPE can be schematically written as a fusion rule for formal fields,

V1 × V2 ∼
∑

i∈S12

Vi , (9)
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where we omit the positions, OPE coefficients, and subleading terms. Inserting the OPE in a
three-point function, we obtain the expression of OPE coefficients in terms of two- and three-
point structure constants,

C3
12 =

C123∗

B3
. (10)

In the presence of spinful fields, this relation could in principle contain extra sign factors,
depending on the precise definitions of the structure constants and OPE coefficients. With our
conventions, such sign factors do not appear.

2.2.2 Decomposing four-point functions into conformal blocks

We can use OPEs to decompose n-point functions into three-point functions. To prove consis-
tency of a CFT on the sphere, it is enough to show that all possible decompositions of 4-point
functions agree. We will therefore focus on 4-point functions, starting with the s-channel de-
composition, which is obtained by inserting the OPE (8) of the first two fields,

® 4
∏

i=1

Vi(zi)

¸

=
∑

Vs∈S12∩S∗34

D(s)s|1234

�

�

�F (s)s|1234

�

�

�

2
, (11)

where we introduced four-point structure constants

D(s)s|1234 =
C12s∗Cs34

Bs
, (12)

and the s-channel conformal blocks F (s)s|1234 are implicitly defined by (11). In our nota-
tions for four-point structure constants and conformal blocks, do not confuse the superscript
(s) ∈ {(s), (t), (u)} which only indicates the considered channel, with the subscript s which
stands for the channel field with all its properties, including its conformal dimension. Substi-
tuting (8) into (11), we find the asymptotic behaviour of conformal block as z1→ z2,

F (s)s|1234(z1, z2, z3, z4) =z12→0
z∆s−∆1−∆2

12

�

z∆4−∆s−∆3
23 z∆s−∆3−∆4

34 z∆3−∆4−∆s
24 +O(z12)

�

. (13)

It is often convenient to work with functions of one variable instead of four positions by setting

(z1, z2, z3, z4) = (x , 0,∞, 1) , (14)

where the field at infinity is defined by V∆,∆̄(∞) = limz→∞ |z2∆|2V∆,∆̄(z). The conformal
blocks then behave as

F (s)s|1234(x) =x→0
x∆s−∆1−∆2 (1+O(x)) . (15)

If we inserted the OPE V2(z2)V3(z3) instead of V1(z1)V2(z2) in the correlation function (11),
we would obtain the t-channel decomposition instead of the s-channel decomposition, with
the t-channel four-point structure constants

D(t)t|1234 =
C23t∗Ct41

Bt
. (16)

Since the definitions of the s and t channels are related to each other by a permutation of the
four fields, we have the relations

D(t)s|3214 = D(s)s|1234 , F (t)s|3214 = F (s)s|1234 . (17)
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2.2.3 Crossing symmetry

The equality of the s- and t-channel decompositions is called crossing symmetry, and reads

∑

Vs∈S12∩S∗34

D(s)s|1234

�

�

�F (s)s|1234

�

�

�

2
=

∑

Vt∈S23∩S∗41

D(t)t|1234

�

�

�F (t)t|1234

�

�

�

2
. (18)

Given the spectrums Si j , crossing symmetry is a system of non-linear equations for the three-
point structure constants.

In the present paper it will be more convenient to use a different form of the crossing
symmetry equations. The s- and t-channel conformal blocks provide two bases of the same
space of solutions of conformal Ward identities. The change of bases is a linear relation called
the fusion relation,

F (s)
∆s|∆1,∆2,∆3,∆4

=
∑

∆t

F∆s ,∆t

�

∆2 ∆3
∆1 ∆4

�

F (t)
∆t |∆1,∆2,∆3,∆4

, (19)

where the zi-independent quantity F∆s ,∆t

�

∆2 ∆3
∆1 ∆4

�

is called the fusion kernel. Here we label

conformal blocks and the fusion kernel by conformal dimensions, in order to emphasize that
they only depend on these kinematic quantities. In contrast, fields are not always completely
determined by their left and right conformal dimensions. The fusion relation allows to elimi-
nate conformal blocks from the crossing symmetry equation (18) in favor of the fusion kernel.
Schematically

∀∆t , ∆̄t ,
∑

Vs∈S12∩S∗34

D(s)s F∆s ,∆t
F∆̄s ,∆̄t

=
∑

Vt∈(S23∩S∗41)∆t ,∆̄t

D(t)t , (20)

where (S23 ∩ S∗41)∆t ,∆̄t
denotes the subset of fields in the spectrum S23 ∩ S∗41 that have left

and right dimensions ∆t , ∆̄t . If this subset is made of only one field, then the right-hand side
reduces to the four-point structure constant D(t)t of that field. If this subset is empty, the right-
hand side is zero. We insist that Eq. (20) holds for any values of ∆t , ∆̄t , even if our model
does not contain any field with these dimensions. For example, although Liouville theory is
diagonal i.e. all its fields have ∆ = ∆̄, crossing symmetry equations with ∆t 6= ∆̄t play an
important role in analytically solving the theory [9].

2.3 Degenerate fields

2.3.1 Definition and fusion rules

A primary field that has a vanishing null vector is called a degenerate field. Correlation func-
tions of degenerate fields obey BPZ linear differential equations, and the fusion rules of de-
generate fields are particularly simple. Let us write these fusion rules for a central charge
c = 1. The natural variable for writing fusion rules is not the conformal dimension ∆, but the
momentum p such that

∆= p2 . (21)

At c = 1 degenerate fields have half-integer momentums k ∈ 1
2Z. We will denote Ik a degen-

erate field with momentum k, because in the free boson and orbifold CFTs, degenerate fields
are affine descendants of the identity field I .
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The chiral fusion rule for a degenerate field Ik with another primary field Vp is

Ik × Vp ∼
k
∑

i=−k

Vp+i , (k ∈ 1
2Z) , (22)

where the sum runs by increments of 1. For two degenerate fields, we have

Ik1
× Ik2

∼
k1+k2
∑

k=|k1−k2|

Ik . (23)

In particular, the left- and right-degenerate field I0,0 enjoys the trivial fusion rule

I0,0 × Vp,p̄ ∼ Vp,p̄ . (24)

We identify I ≡ I0,0 with the identity field: a field whose insertion in a correlation function
does not change that correlation function.

2.3.2 Role in solving Liouville theory

Crossing symmetry equations for four-point functions that involve degenerate fields are enough
for determining the three-point structure constants of Liouville theory [7,11], even though de-
generate fields are unphysical, i.e. they do not appear in OPEs. In the case c = 1, the Liouville
two- and three-point structure constants read

BL
p = 1 , C L

p1,p2,p3
=

∏

±,±,± G(1± p1 ± p2 ± p3)
∏3

i=1

∏

± G(1± 2pi)
. (25)

Here pi = p̄i are momentums of the fields (Liouville theory is diagonal), and G is Barnes’
G-function, whose properties we will shortly summarize.

Degenerate fields can also be used for constraining or even determining three-point struc-
ture constants in non-diagonal CFTs [12, 13]. Under the assumption that two independent
degenerate fields exist, it was found that non-diagonal structure constants are related to Liou-
ville theory structure constants by the geometric mean relation

CVp1,p̄1
Vp2,p̄2

Vp3,p̄3
= ±

Ç

C L
p1,p2,p3

C L
p̄1,p̄2,p̄3

. (26)

Due to the square root, this relation has a sign ambiguity, and does not fully determine the
non-diagonal structure constants. Moreover, due to the zeros of G(x) for x ∈ −N, the Liou-
ville structure constants themselves can be ambiguous for certain values of the momentums,
for example when all three momentums are integer. While we will not use the geometric
mean relation for solving the Ashkin–Teller model, we will find structure constants that can
be written using the same G-function.

2.3.3 Barnes’ G−function

At c = 1, structure constants and fusion kernels are expressed in terms of Barnes’ G-function.
This holds in the case of Liouville theory, and also of the Ashkin–Teller model, as we will see.
So let us review a few properties of this function.

Barnes’ G-function is an analytic function on the complex plane, with a zero of order k+1
at z = −k for any k ∈ N. It obeys in particular

G(z + 1) = Γ (z)G(z) , G(1) = 1 . (27)

9

https://scipost.org
https://scipost.org/SciPostPhys.11.5.089


SciPost Phys. 11, 089 (2021)

This property is the reason why Barnes’ G-function appears in conformal field theory at c = 1.
Due to the degenerate fusion rule (22), structure constants have nice properties under integer
shifts of momentums, so they are expressed as G-functions of momentums. The reason why
such integer shifts should produce Γ functions is because monodromies of BPZ equations for
correlation functions of degenerate fields are Γ functions of momentums.

Barnes’ G-function also obeys the duplication formula

G(2x + 1) =
22x2

(2π)x G(1
2)G(

3
2)

∏

±,±
G
�

x + 1± 1
4 ±

1
4

�

, (28)

and the identities

G(k+ 3
2) =k∈Z

(−)
k(k+1)

2 πk+ 1
2 G(1

2 − k) , (29)

G(1+ 2r) =
r∈ 1

4+
1
2Z
(−)2r2− 1

8π2r G(1− 2r) . (30)

3 Compactified free boson

The massless compactified free boson at c = 1 is one of the simplest two-dimensional CFTs.
It could even be called trivial, due to its abelian affine symmetry, although we will find a
few subtleties with signs of correlation functions. The theory becomes less trivial if we forget
about the affine symmetry, and consider it from the point of view of Virasoro symmetry only.
In particular this requires us to compute correlation functions of Virasoro primary fields that
are not affine primary fields. This will serve as a warm-up for the Ashkin–Teller model.

3.1 Chiral properties

3.1.1 Current and primary fields

The abelian affine symmetry algebra û1 is generated by a holomorphic current
J(z) =

∑

n∈Z z−n−1Jn obeying the following OPE and mode commutation relations

J(z)J(w) =
1

2(z −w)2
+O(1) , [Jn, Jm] =

n
2
δn,−m . (31)

At c = 1, the energy-momentum tensor is the normal-ordered product of the current with
itself, T = (JJ). The generators Ln of the corresponding Virasoro algebra are

Ln6=0 =
∞
∑

m=−∞
Jn−mJm , L0 = J2

0 + 2
∞
∑

m=1

J−mJm . (32)

An affine primary field, also known as a vertex operator, is defined by its OPE with the current,

J(z)Vp,p̄(w) =
p

z −w
Vp,p̄(w) +O(1) , (33)

or equivalently by the action of affine algebra generators,

J0Vp,p̄ = pVp,p̄ , Jn>0Vp,p̄ = 0 . (34)

Using Eq. (32), we have L0Vp,p̄ = J2
0 Vp,p̄, and a vertex operator is also a Virasoro primary field,

with the conformal dimension ∆= p2. This formally coincides with the definition (21) of the
momentum, which we can therefore identify with the û1 charge.

10

https://scipost.org
https://scipost.org/SciPostPhys.11.5.089


SciPost Phys. 11, 089 (2021)

3.1.2 Z2 automorphism

The abelian affine Lie algebra has the automorphism J →−J , which leaves the Virasoro alge-
bra invariant. The corresponding action on the û1 charge is the conjugation

p∗ = −p . (35)

Two conjugate charges correspond to the same conformal dimension and therefore to the same
Virasoro representation, although the affine representations differ.

3.1.3 Representations and characters

For p /∈ 1
2Z, the affine highest-weight representation generated by the affine primary field

Vp coincides with the Verma module of the Virasoro algebra with the conformal dimension
∆= p2. In particular, their characters agree,

bχp(q) = χp(q) =
qp2

q
1
24
∏∞

n=1(1− qn)
. (36)

For p ∈ 1
2Z, this identity of characters still holds, but the underlying representations no longer

coincide. For example, in the case p = 0, the Virasoro descendant field L−1V0 = 2J0J−1V0
vanishes. Therefore, the Virasoro representation generated by the affine primary field V0 is
not a Verma module, but a degenerate representation, i.e. the irreducible quotient of a Verma
module by its maximal submodule. The affine descendant J−1V0 is absent from that Virasoro
representation, and it generates another degenerate Virasoro representation. Actually, the
affine representation that is generated by Vk is an infinite sum of degenerate Virasoro repre-
sentations [14]. The corresponding character identity reads

k ∈ 1
2Z =⇒ bχk(q) =

∞
∑

k′=|k|

χ
degenerate
k′ (q) , (37)

where the degenerate Virasoro characters are

k ∈ 1
2N =⇒ χ

degenerate
k (q) =

qk2
− q(k+1)2

q
1
24
∏∞

n=1(1− qn)
. (38)

To summarize, the decomposition of the affine representation with momentum k ∈ 1
2Z into

Virasoro representations is given by character identity (37), rather than by the identity (36),
which is true but misleading in this case.

3.2 Primary fields and fusion rules

3.2.1 Primary fields and torus partition function

The compactified free boson depends on a parameter R ∈ C∗ called the compactification radius.
The affine primary fields have û1 charges of the type

p = p(n,w) =
nR+wR−1

2
, p̄ = p(n,−w) =

nR−wR−1

2
, (n, w) ∈ Z . (39)

Depending on the context, the corresponding affine primary fields may be written as
V(n,w) = Vp(n,w),p(n,−w)

= Vp(n,w),p̄(n,w)
. The conformal spin of a primary field is

S(V(n,w)) = nw ∈ Z . (40)
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Let us warn that the radius R seldom appears explicitly in our formulas: most often, R is hidden
in a dependence on the charge p.

The modular invariant torus partition function reads

Z(q) =
∑

(n,w)∈Z2

bχp(n,w)
(q)bχp(n,−w)

(q̄) . (41)

From the point of view of the Virasoro algebra, for any (n, w) 6= (0,0) we have two primary
fields V(n,w) and V(−n,−w) with the same left and right conformal dimensions. Assuming the
radius R is generic, these fields generate Verma modules. On the other hand, the identity field
I = V0,0 generates a degenerate Virasoro representation. In the affine representation generated
by I , there are infinitely many Virasoro primary fields Ik,k̄ with k, k̄ ∈ N.

Let us summarize the compactified free boson’s primary fields:

Sector Affine primary fields Virasoro primary fields

Identity I = I0,0 Ik,k̄ with k, k̄ ∈ N

Vertex V(n,w) with

�

n, w ∈ Z
(n, w) 6= (0,0)

(42)

3.2.2 Fusion rules

The affine fusion rules are dictated by conservation of momentum, and are simply

V(n1,w1)
b×V(n2,w2) ∼ V(n1+n2,w1+w2) . (43)

The Virasoro fusion rules for vertex operators are the same, except when we obtain the identity
field I0,0. In this case, the affine fusion rules omit infinitely many Virasoro primary fields that
are affine descendant fields. These primary fields should however be written in the Virasoro
fusion rules,

V(n,w) × V(−n,−w) ∼
∞
∑

k,k̄=0

Ik,k̄ . (44)

To complete the Virasoro fusion rules of the model, we should also write fusion products that
involve the Virasoro primary fields Ik,k̄. By affine symmetry, these can be deduced from the
trivial affine fusion product I b×V(n,w) ∼ V(n,w), which implies

Ik,k̄ × V(n,w) ∼ V(n,w) . (45)

Comparing with the chiral fusion rule for degenerate fields (22), we observe that only one of
the allowed (2k+1)(2k̄+1) terms is present. With a generic radius R, the other terms would
not have momentums of the type (p, p̄) = (p(n,w), p(n,−w)) (39).

In the fusion product Ik1
× Ik2

of two chiral degenerate fields, the Virasoro fusion rules (23)
would lead to min(2k1 + 1, 2k2 + 1) terms. However, we will now show that affine symmetry
forbids some of these terms, due to the Z2 symmetry. As an affine descendant of the identity,
Ik must be even or odd under Z2 symmetry J → −J , for example I1 ∝ J−1V0 is odd. In the
Virasoro fusion rule I1× I1 ∼ I0+ I1+ I2, we now see that the second term must drop out, and
that I2 must be even. Iterating, we find the Z2 conjugation rule

I∗k = (−)
k Ik , (46)
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and the fusion rules

Ik1,k̄1
× Ik2,k̄2

∼
k1+k2
∑

k
2
=|k1−k2|

k̄1+k̄2
∑

k̄
2
=|k̄1−k̄2|

Ik,k̄ . (47)

Here the sums run by increments of 2, whereas Virasoro symmetry would allow increments
of 1. For basic checks of the disappearance of some terms allowed by Virasoro symmetry, see
Appendix A.2.

3.3 Correlation functions of affine primary fields

3.3.1 N−point functions

Due to affine symmetry, N -point functions of affine primary fields should behave as
® N
∏

i=1

V(ni ,wi)(zi)

¸

∝ δ∑ni ,0δ
∑

wi ,0

∏

1≤i< j≤N

�

�

�z
2pi p j

i j

�

�

�

2
, (48)

where we use the notation (5), and where the proportionality coefficient should be zi-inde-
pendent. In this expression, the differences between the left and right exponents are

2pi p j − 2p̄i p̄ j = niw j + n jwi . (49)

Since these are integers, our expression is single-valued. However, since these integers are
not necessarily even, our expression is not manifestly invariant under field permutations. To
make it invariant, we should choose an appropriate zi-independent prefactor. We propose the
permutation-invariant expression

® N
∏

i=1

V(ni ,wi)(zi)

¸

= δ∑ni ,0δ
∑

wi ,0

∏

i< j

(−)wi n j

�

�

�z
2pi p j

i j

�

�

�

2
. (50)

3.3.2 Structure constants

Let us focus on the cases N = 2,3, and deduce the two- and three-point structure constants.
In the case N = 2, we have




V(n,w)(z1)V(−n,−w)(z2)
�

=
(−)nw

�

�z2∆
12

�

�

2 . (51)

Comparing with the general two-point function (4), we deduce the conjugation relation

(n, w)∗ = (−n,−w) , (52)

and the two-point structure constant

B(n,w) = (−)nw . (53)

In the case N = 3, we compare with the general formula (6) and obtain the three-point struc-
ture constant

∏

i< j(−)
wi n j . Using momentum conservation, we rewrite this in a way that is

manifestly invariant under cyclic permutations,

C(n1,w1)(n2,w2)(n3,w3) = (−)
n1w2+n2w3+n3w1 . (54)
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It is straightforward to check that it also has the expected behaviour under odd permutations
(7). Moreover, the relation C(0,0)(n,w)(−n,−w) = B(n,w) is compatible with V(0,0) being the identity
field. The three-point function therefore reads

® 3
∏

i=1

V(ni ,wi)(zi)

¸

= (−)n1w2+n2w3+n3w1
δn1+n2+n3,0δw1+w2+w3,0

�

�

�z∆1+∆2−∆3
12 z∆2+∆3−∆1

23 z∆3+∆1−∆2
13

�

�

�

2 . (55)

3.3.3 Crossing symmetry

The symmetry of our four-point function under field permutations guarantees that it is crossing
symmetric. Let us demonstrate how this works at the level of structure constants and conformal
blocks.

Due to momentum conservation, any four-point function of vertex operators contains only
one affine conformal block in any channel. Using our three-point structure constants (54), we
compute the four-point structure constants (12) and find

D(s)1+2|1234 =
C1,2,−1−2C1+2,3,4

B1+2
= (−)

∑

i< j wi n j , (56)

where we have used a schematic notation V1+2 for the unique field in the fusion of V1 and V2.
The affine s-channel conformal block is

ÒF (s)1+2|1234 =
∏

i< j

z
2pi p j

i j , (57)

where the zi-independent prefactor is determined by the normalization condition (13). To get
t-channel blocks and structure constants from s-channel expressions, it is enough to permute
the fields V1 and V3, and we find

D(t)2+3|1234 = D(s)2+3|3214 = (−)
S1+S2+S3 D(s)1+2|1234 , (58)

�

�

�

ÒF (t)1+2|1234

�

�

�

2
=
�

�

�

ÒF (s)2+3|3214

�

�

�

2
= (−)S1+S2+S3

�

�

�

ÒF (s)1+2|1234

�

�

�

2
. (59)

This leads to the rather trivial crossing symmetry equation

D(s)1+2|1234

�

�

�

ÒF (s)1+2|1234

�

�

�

2
= D(t)2+3|1234

�

�

�

ÒF (t)1+2|1234

�

�

�

2
. (60)

3.4 Correlation functions of Virasoro primary fields

After solving the free boson theory in terms of the affine symmetry algebra, let us now consider
the same problem in terms of the Virasoro algebra alone. The difference is only visible when
the Virasoro representations differ from the affine representations, which for generic R happens
only in the vacuum sector.

In principle, the correlation functions of Virasoro primary fields can be deduced from those
of affine primary fields using affine Ward identities. In practice, in order to derive explicit
formulas for correlation functions of arbitrary Virasoro primary fields, we will solve crossing
symmetry equations for four-point functions that involve a degenerate field of momentum
k = 1. The affine symmetry ensures that the equations are chirally factorized, and we will
solve chiral crossing symmetry equations, whose solutions are chiral structure constants.
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3.4.1 Structure constants from the affine algebra

Let us normalize the Virasoro primary fields in the vacuum sector Ik,k̄ such that their two-point
functions are one,

BIk,k̄
=



Ik,k̄ Ik,k̄

�

= 1 . (61)

This defines Ik,k̄ up to a sign ambiguity Ik,k̄ → −Ik,k̄, which we will later fix. The field Ik,k̄
is an affine descendant of the identity field I0,0, so its correlation functions can in principle
be computed using the affine symmetry. Let Ok be the affine creation operators such that

Ik,k̄ =OkŌk̄ I0,0, then
〈Ik,k̄Vp,p̄V−p,−p̄〉
〈I0,0Vp,p̄V−p,−p̄〉 factorizes into a chiral and an anti-chiral factor, and we can

write



Ik,k̄Vp,p̄V−p,−p̄

�

= fk,p fk̄,p̄BVp,p̄
. (62)

We will refer to the chiral factor fk,p as a chiral structure constant. By definition, this factor
obeys f0,p = 1. Similarly, we define chiral structure constants gk1,k2,k3

for the three-point
functions of degenerate fields,

¬

Ik1,k̄1
Ik2,k̄2

Ik3,k̄3

¶

=
�

�δk1+k2+k3∈2Z gk1,k2,k3

�

�

2
. (63)

A few chiral structure constants can be directly computed from affine Ward identities. To do
this, we should first determine the expressions Ik,k̄ = OkŌk̄ I0,0 of degenerate fields as affine
descendant fields. The affine creation operator Ok is determined up to a sign by requiring that
Ok I0,0 be a Virasoro primary field of dimension k2, normalized such that its two-point function
is one. We find

I1,0 =
p

2J−1 I0,0 , (64)

I2,0 = −
1

3
p

6

�

3J2
−2 − 4J−3J−1 + 4J4

−1

�

I0,0 , (65)

I3,0 =
1

3
p

5

�

−
4
45

J9
−1 +

8
15

J−3J6
−1 −

2
5

J2
−2J5
−1 −

4
5

J−5J4
−1 + 2J−4J−2J3

−1

− 2J−3J2
−2J2
−1 +

3
4

J4
−2J−1 −

3
4

J2
−4J−1 +

4
5

J−5J−3J−1

−
4
9

J3
−3 −

3
5

J−5J2
−2 + J−4J−3J−2

�

I0,0 . (66)

Notice that these expressions are compatible with the behaviour (46) of Ik,0 under the Z2
symmetry: I1,0, I3,0 are Z2-odd while I2,0 is Z2-even. Using the affine Ward identity

¬

J−1Vp1,p̄1
(z1)Vp2,p̄2

(z2)Vp3,p̄3
(z3)

¶

=
�

p2

z12
+

p3

z13

�

® 3
∏

i=1

Vpi ,p̄i
(zi)

¸

, (67)

we compute
¬

I1,0Vp,p̄V−p,−p̄

¶

=
p

2pBVp,p̄
so that f1,p =

p
2p . (68)

Using more complicated affine Ward identities, we compute

f2,p = −
1

3
p

6
p2(4p2 − 1) , (69)

g1,1,2 =

√

√2
3

. (70)

Such pedestrian calculations are however not feasible for arbitrary degenerate fields Ik,k̄, and
we will use another approach.
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3.4.2 Structure constants from degenerate crossing symmetry equations

Let us work out crossing symmetry equations for four-point functions with one degenerate
field of momentum k = 1 i.e. conformal dimension ∆ = 1. This is the simplest nontrivial
degenerate field that appears in the free boson CFT and in the Ashkin–Teller model.

Of course, we should in principle also check the crossing symmetry equations for four-
point functions with arbitrary degenerate fields. However, all the other degenerate fields can
be obtained from our k = 1 degenerate field, by repeatedly fusing it with itself. Therefore,
their crossing symmetry equations are in principle consequences of the crossing symmetry
equations that we will study.

In order to determine the chiral structure constant fk,p, we solve the crossing symmetry
equations (20) for the chiral four-point function




I1VpVp Ik

�

, which involves the fusion rule
(45) and the chiral structure constant fk,p (62):

f1,p fk,pF0,ε

�

p p
1 k

�

=

�

g1,k,k+ε fk+ε,p if ε ∈ {+,−} ,
0 if ε= 0 ,

(71)

where g1,k,k+ε will shortly be determined, see Eq. (81). The fusion kernels are given in Eq.
(198), and we find the solution

fk,p = 2−k(−1)
k(k−1)

2

√

√

√
Γ (1

2)Γ (1+ k)

Γ (1
2 + k)

G(1+ k)2

G(1+ 2k)

∏

±

G(1+ 2p± k)
G(1+ 2p)

. (72)

This is actually a polynomial function of p, as is manifest in the equivalent expression

fk,p = (−1)
k(k−1)

2

√

√

√
Γ (1

2)Γ (1+ k)

Γ (1
2 + k)

G(1+ k)2

G(1+ 2k)
pk

k−1
∏

i=1

(4p2 − i2)k−i . (73)

Special cases of this formula include

f0,p = 1 , (74)

f1,p =
p

2p , (75)

f2,p = −
1

3
p

6
p2(4p2 − 1) . (76)

In particular, this agrees with the determination (69) of f2,p from affine symmetry. This agree-
ment is only significant up to an overall sign, as the definition of our Virasoro primary field
I2,0 (65) allows us to flip its sign.

Moreover, fk,p obeys

fk,−p = (−)k fk,p , (77)

which is necessary for the three-point structure constant (62) to have the right behaviour under
field permutations, since (−)∆k = (−)k

2
= (−)k. The zeros of fk,p for p ∈ {0, 1

2 , . . . , k−1
2 } are

due to the affine primary field Vp becoming a degenerate Virasoro primary field Vp∝ Ip, such
that the fusion rule Ip × Ip (22) does not include Ik if k > 2p.

For a given value of the radius R, the momentum p takes discrete values pn,w (39). How-
ever, the chiral structure constants fk,p only depend on R, n, w through their polynomial de-
pendence on p.
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3.4.3 Case with three degenerate fields

In order to determine the chiral three-point structure constants gk1,k2,k3
(63), we use the cross-

ing symmetry equation (20) for the chiral four-point function



I1 Ik1
Ik2

Ik3

�

, which involves the
fusion rule (47) and the chiral structure constant gk1,k2,k3

(63):

∑

ε1=±
g1,k1,k1+ε1

gk1+ε1,k2,k3
Fε1,ε3

�

k1 k2
1 k3

�

=

�

g1,k3,k3+ε3
gk1,k2,k3+ε3

if ε3 ∈ {+,−} ,
0 if ε3 = 0 .

(78)

The relevant fusion kernels are given by Eq. (196). We derive the solution for gk1,k2,k3
from the

second crossing symmetry equation, and check it using the first crossing symmetry equation.
The result is

gk1,k2,k3
=

G(1+ k123)Γ (1+
1
2 k123)eG(1+ k3

12)eG(1+ k2
13)eG(1+ k1

23)
∏3

i=1 G(1+ 2ki)
q

Γ (1
2)Γ (

1
2 + ki)Γ (1+ ki)

, (79)

where we introduce the notations k3
12 = k1 + k2 − k3 and k123 = k1 + k2 + k3, as well as

eG(x) = G(x)Γ ( x
2 ) so that

eG(x + 1)
eG(x − 1)

=
1
2
Γ (x)2 . (80)

The chiral three-point structure constant is normalized so that g0,k,k = 1. And we have the
special case

g1,k,k+1 =

√

√ k+ 1
2k+ 1

. (81)

4 Ashkin–Teller model

4.1 Space of states and primary fields

The Ashkin–Teller model is a Z2 orbifold of the compactified free boson, where the Z2 is the
diagonal action of the affine algebra’s automorphism,

(J , J̄)→ (J , J̄)∗ = (−J ,−J̄) . (82)

As a result, the symmetry algebra of the orbifold CFT include combinations such as J2, J J̄ , J̄2,
but not the individual chiral currents J , J̄ .

4.1.1 Untwisted sector

For vertex operators Vp,p̄ with (p, p̄) 6= (0, 0), the effect of the orbifold is just the identification
Vp,p̄ = V−p,−p̄. The structure of the affine Verma modules is not affected. For example, to see
that the level one descendant state survives, just write it as J0J−1Vp,−p̄ rather than J−1Vp,−p̄.
The situation is more complicated in the vacuum sector, where J0V0,0 = 0 and J−1V0,0 is pro-
jected out. The behaviour of a Virasoro primary field Ik,k̄ under the action Z2 can be deduced
from Eq. (46), and it follows that Ik,k̄ survives if and only if k− k̄ ∈ 2Z, in other words if Ik,k̄
has even conformal spin. This determines the structure of the orbifold’s vacuum sector.

17

https://scipost.org
https://scipost.org/SciPostPhys.11.5.089


SciPost Phys. 11, 089 (2021)

4.1.2 Twisted sector

Together, the orbifold’s vacuum and vertex sectors constitute the untwisted sector. From the
torus partition function, it can be seen that the theory must also include a twisted sector,
generated by two affine primary fields called twist fields. We denote these fields as T ε with
ε= 0,1 mod 2. By definition, the monodromy of the currents J , J̄ around a twist field amounts
to the action of Z2, and we have the OPE

J(z)T ε(w) =
1

p
z −w

J− 1
2
T ε(w) +O

�p
z −w

�

. (83)

In the twist sector, the current is half-integer moded, J(z) =
∑

n∈Z+ 1
2

z−n−1Jn. Twist fieds are
affine primary fields in the sense that

Jn∈N+ 1
2
T ε = 0 . (84)

And the twist representation of the abelian affine Lie algebra is built by acting on a twist
field with the half-integer moded creation operators J− 1

2
, J− 3

2
, · · · . The commutation relations

between these modes are the same as in the untwisted sector (31), but with half-integer values
of the indices. Virasoro generators in the twisted sector are given by

Ln6=0 =
∑

m= 1
2+Z

Jn−mJm , L0 =
1
16
+ 2

∑

m∈ 1
2+N

J−mJm . (85)

Therefore, the twist fields T ε have the conformal dimensions (∆, ∆̄) = ( 1
16 , 1

16).
Just like the affine identity representation, the affine twist representation is reducible as

a representation of the Virasoro algebra, as it contains Virasoro primary fields that are affine
descendants. These are called higher twist fields. The first examples are [5]

T ε3
4 , 1

4
= 2J− 1

2
T ε , (86)

T ε5
4 , 1

4
=

2
3

�

J− 3
2
− 4J3

− 1
2

�

T ε , (87)

where we label higher twist fields by their left and right momentums. More generally, there is
one higher twist field for each pair of momentums (r, r̄) ∈

�1
4 +

1
2N
�2

. However, not all these
higher twist fields belong to the orbifold theory. Under the action (82) of Z2, a twist field
picks a sign that depends on the number (even or odd) of modes of J , J̄ in its expression as
a descendant of T ε. Since each J -mode adds a half-integer to the left conformal dimension,
the parity of the number of J -modes can be deduced from the difference between the left
conformal dimension of the higher twist field and the left conformal dimension of a lowest
twist field, schematically (−)#J = (−)2(∆−

1
16) and similarly (−)#J̄ = (−)2(∆̄−

1
16). We therefore

find that twist fields behave as
�

T εr,r̄
�∗
= (−)2r2−2r̄2

T εr,r̄ . (88)

Here the combination r2 − r̄2 is the conformal spin, which can take integer or half-integer
values. Projecting on Z2-invariant states therefore amounts to selecting states with integer
spins. (Compare with the identity sector, where spins of degenerate fields were integer to
start with, and the projection selected even spins.) Let us list the first few non-chiral twist
fields with integer spins, ordered by their total conformal dimension ∆+∆:

T ε1
4 , 1

4
= T ε , T ε3

4 , 3
4

, T ε5
4 , 3

4
, T ε5

4 , 5
4

, T ε7
4 , 1

4
, T ε9

4 , 1
4

, . . . (89)
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4.1.3 Summary

Let us summarize the primary fields of the Ashkin–Teller model, which can be compared with
the primary fields (42) of the compactified free boson:

Sector Affine primary fields Virasoro primary fields

Identity I = I0,0 Ik,k̄ with

�

k, k̄ ∈ N
k− k̄ ∈ 2Z

Vertex V(n,w) = V(−n,−w) with

�

n, w ∈ Z
(n, w) 6= (0, 0)

Twist T ε = T ε1
4 , 1

4
T εr,r̄ with











ε= 0,1 mod 2

r, r̄ ∈ 1
4 +

1
2N

r2 − r̄2 ∈ Z

(90)

This agrees with the known torus partition function [3,14,15].

4.2 Fusion rules

4.2.1 Vertex operators

The affine fusion rules of vertex operators are obtained from the free boson fusion rules (43)
by taking the action of Z2 into account,

V(n1,w1)
b×V(n2,w2) ∼ V(n1+n2,w1+w2) + V(n1−n2,w1−w2) . (91)

In words, momentum is now conserved only up to a sign. The Virasoro fusion rules are the
same as the affine fusion rules, except when the identity sector is involved, which happens
if (n1, w1) = ±(n2, w2). In that case, we obtain additionally a sum over all Virasoro primary
fields in the identity sector,

V(n,w) × V(n,w) ∼ V(2n,2w) +
∑

k,k̄∈N
k−k̄∈2Z

Ik,k̄ . (92)

The trivial fusion rule Ik,k̄×V(n,w) ∼ V(n,w) (45) is the same in the orbifold as in the free boson,
and the orbifold’s restriction k − k̄ ∈ 2Z does not affect the fusion rules (47) of the identity
sector.

4.2.2 Twist fields

When it comes to twist fields, affine fusion rules can be deduced from the four-point functions
(106) determined by Al. Zamolodchikov [2],

T ε1
b×T ε2 ∼

1
2

∑

n∈Z
w∈2Z+ε1+ε2
(n,w)6=(0,0)

V(n,w) +δε1,ε2
I . (93)

Here the prefactor 1
2 avoids counting the same field V(n,w) = V(−n,−w) twice. By permutation

symmetry of the fusion multiplicities, we can deduce the fusion rules

T εb×V(n,w) ∼ T ε+w . (94)
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Now let us work out the fusion rules for Virasoro primary fields in the twist sector. This is most
simple in the case

T εr,r̄ × V(n,w) ∼
∑

r ′,r̄ ′∈ 1
4+

1
2N

r ′2−r̄ ′2∈Z

T ε+w
r ′,r̄ ′ . (95)

The fusion of a degenerate field with a higher twist field is deduced from the fusion of the
identity field with the same higher twist field, and should therefore be chirally factorized. For
example, the chiral degenerate field I1 = J has a well-known OPE (83) with the twist field T ε,
from which we deduce the chiral fusion rule I1×T1

4
∼ T3

4
+T5

4
. Notice the absence of the term

T1
4
, which is allowed by Virasoro symmetry (22) but forbidden by affine symmetry. This leads

to the fusion rules

Ik,k̄ × T εr,r̄ ∼
k
∑

i
2
=−k

k̄
∑

ī
2
=−k̄

T ε|r+i|,|r̄+ī| . (96)

Notice that a given field T ε
|r+i|,|r̄+ī|

can never appear twice, because |r + i|= |r + i′| =⇒ i = i′

since r /∈ 1
2N.

By permutation symmetry of fusion multiplicities, we can deduce the fusion product of two
higher twist fields, and unpack the identity sector in the affine fusion rule (93):

T ε1
r1,r̄1
× T ε2

r2,r̄2
∼

1
2

∑

n∈Z
w∈2Z+ε1+ε2
(n,w)6=(0,0)

V(n,w) +δε1,ε2

∞
∑

k
2
=|r1±Zr2|

∞
∑

k̄
2
=|r̄1±Z r̄2|

Ik,k̄ , (97)

where we define the notation r1 ±Z r2 for r1, r2 ∈
1
4 +

1
2Z by

{r1 + r2, r1 − r2}= {r1 ±Z r2, r1 ∓Z r2} with

�

r1 ±Z r2 ∈ Z ,
r1 ∓Z r2 ∈ Z+

1
2 .

(98)

For example, 1
4 ±Z

3
4 = 1 and 1

4 ±Z
5
4 = −1. Notice that r2 − r̄2 ∈ Z =⇒ r ±Z r̄ ∈ 2Z, and this

implies |r1±Z r2|− |r̄1±Z r̄2| ∈ 2Z in Eq. (97), so that Ik,k̄ has even spin as it should. For some
basic checks of these fusion rules, see Appendix A.2.

4.3 Correlation functions of affine primary fields

We will mostly focus on four-point functions, as this is sufficient for proving consistency of
the model, and checking the three-point structure constants. Some higher-point correlation
functions were computed by Al. Zamolodchikov [16].

4.3.1 Vertex operators

There is a simple recipe for deducing correlation functions of vertex operators in the orbifold
from their free bosonic counterparts, based on the identifications

V orbifold
(n,w) =

(n,w)6=(0,0)

1
p

2

�

V free boson
(n,w) + V free boson

(−n,−w)

�

, V orbifold
(0,0) = V free boson

(0,0) . (99)

Only in this equation do we use superscripts for distinguishing the two CFTs: in the rest of
Section 4, vertex operators belong to the orbifold CFT. The numerical prefactors ensure that
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the orbifold vertex operators are normalized such that their two-point structure constants are
the same as in the free boson (53). The orbifold three-point structure constants are then

C(n1,w1)(n2,w2)(n3,w3) =







1p
2
(−)n1w2+n2w3+n3w1 if ∀i, (ni , wi) 6= (0,0) ,

1 else ,
(100)

where the only difference with the free boson’s structure constants (54) is the prefactor 1p
2
.

For an orbifold N -point function
¬

∏N
i=1 V(ni ,wi)(zi)

¶

, momentum conservation reads

∃(ηi) ∈ {+,−}N ,
N
∑

i=1

ηini =
N
∑

i=1

ηiwi = 0 , (101)

and the orbifold N -point function reads

® N
∏

i=1

V(ni ,wi)(zi)

¸

=
(−)

∑

i< j wi n j

2
N
2

∑

(ηi)∈{+,−}N
δ(
∑

ηi ni ,
∑

ηi wi),(0,0)

∏

i< j

�

�

�z
2ηiη j pi p j

i j

�

�

�

2
. (102)

In particular, let us focus on four-point functions. There are three inequivalent cases:

• For generic (ni , wi) such that
∑

ni =
∑

wi = 0, we have 2 solutions
(ηi) ∈ {(+,+,+,+), (−,−,−,−)}, and the four-point function reads

® 4
∏

i=1

V(ni ,wi)(zi)

¸

=
(−)

∑

i< j wi n j

2

∏

i< j

�

�

�z
2ηiη j pi p j

i j

�

�

�

2
. (103)

In any channel, this is just one conformal block, with a numerical prefactor that comes
from the two- and three-point structure constants (100).

• If the four fields coincide pairwise, we have 4 solutions for the signs (ηi), and we obtain

¬

V(n,w)(z1)V(n,w)(z2)V(n′,w′)(z3)V(n′,w′)(z4)
¶

=
(−)nw+n′w′

2

�

�

�z−2p2

12 z−2p′2

34

�

�

�

2∑

±

�

�

�

�

�

�

z13z24

z14z23

�±2pp′
�

�

�

�

�

2

. (104)

In the s-channel, the sum of the two terms is interpreted as the contribution of the
identity field V(0,0), with a prefactor (−)nw+n′w′ that comes from the two-point structure
constant (53), since the relevant three-point structure constant (100) is trivial. In the t-
and u-channels, each term is the contribution of one of the two fields V(n,w)±(n′,w′).

• If the four fields all coincide, we have 6 solutions for the signs (ηi), and we obtain

® 4
∏

i=1

V(n,w)(zi)

¸

=

�

�

�(z12z34)4p2
�

�

�

2
+
�

�

�(z13z24)4p2
�

�

�

2
+
�

�

�(z14z23)4p2
�

�

�

2

2
∏

i< j

�

�

�z2p2

i j

�

�

�

2 . (105)

In the s-channel, the first term is the contribution of the field V(2n,2w), while the second
and third terms are the contribution of the identity field V(0,0).
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4.3.2 Four-point function of twist fields

The four-point function of twist fields was computed by Al. Zamolodchikov [2]. In our nota-
tions, it reads

® 4
∏

i=1

T εi

¸

= δ∑εi ,0|F0(q)|2
∑

n∈Z
w∈2Z+ε1+ε2

(−)n(ε2+ε3)q∆(n,w) q̄∆(n,−w) , (106)

where the conformal dimensions ∆(n,w) =
1
4(nR+ wR−1)2 follow from Eqs. (21) and (39), q

is the nome associated to the cross-ratio of the four positions, and F0(q) is a known elliptic
function of q. (See Appendix A.1.4 for details.) Interpreting this expression as an s-channel
decomposition, we have already inferred the fusion rules (93), let us now infer the three-point
structure constants. Since the relevant s-channel conformal blocks are F (s)∆ (q) = F0(q)(16q)∆

(225), the four-point structure constants must be

D(s)(n,w)|ε1ε2ε3ε4
=

(n,w)6=(0,0)
2(−)n(ε2+ε3)16−∆(n,w)−∆(n,−w) , (107)

where the prefactor 2 comes from grouping the contributions of V(n,w) and V(−n,−w). Given the
two-point function of vertex operators (53), the four-point structure constants can be rewrit-
ten as combinations of two- and three-point structure constants (12), with the three-point
structure constants

Cε1ε2(n,w) =
(n,w)6=(0,0)

p
2(−)nε24−∆(n,w)−∆(n,−w) =

p
2(−)nε22−n2R2− w2

R2 . (108)

This expression has the right behaviour (7) under permutations, in particular
Cε1ε2(n,w)

Cε2ε1(n,w)
= (−)n(ε1+ε2) = (−)nw . (109)

In cases that involve the identity field V(0,0), three-point structure constants reduce to two-
point structure constants, consistently with the triviality of conjugation and two-point structure
constants in the twist sector,

ε∗ = ε , Bε = 1 . (110)

(This determines the two-point functions of twist fields via Eq. (4).)
To show that we have the correct three-point structure constants, it remains to check cross-

ing symmetry of mixed four-point functions.

4.3.3 Mixed correlation functions

As far as we know, four-point functions of two twist fields and two vertex operators have not
been considered in the literature. In this case, we even have to determine the conformal blocks,
see Appendix A. We consider the following four-point functions, and write the non-triviality
condition according to the fusion rules,




V(n1,w1)V(n2,w2)T
ε2 T ε1

�

6= 0 ⇐⇒ w1 +w2 + ε1 + ε2 ∈ 2Z . (111)

The s- and t-channel decompositions of these four-point functions are respectively predicted
by the fusion rules (91) and (94), and schematically represented as follows:

(n2, w2)

(n1, w1)± (n2, w2)

ε2

(n1, w1) ε1

(n2, w2)

ε2 +w2

(n1, w1)

ε2

ε1

(112)
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We denote the relevant s-channel conformal blocks as ÒF (s)1+2(x), ÒF
(s)
1−2(x). From Eq. (208), we

have

ÒF (s)1+2(x) = 16p1p2(1− x)−p2
1

�

1−
p

1− x

1+
p

1− x

�2p1p2

. (113)

The chiral t-channel conformal block agrees with the s-channel conformal block up to a nu-
merical prefactor. From Eq. (209), we have

ÒF (t) = 16−p1p2 ÒF (s)1+2(x) . (114)

However, we know that the orbifold’s twist representation is not chirally factorized: rather, it is
obtained from the product of a left-moving and a right-moving twist representation, by project-
ing on states with integer spins. At the level of t-channel conformal blocks, integer spins corre-

spond to integer powers of 1− x . Selecting integer powers of 1− x in
�

�
ÒF (t)

�

�

2
amounts to com-

bining it with its image under
p

1− x →−
p

1− x , equivalently under (p2, p̄2)→ (−p2,−p̄2),
and we find the non-chiral conformal block

G(t) = 1
2

�
�

�
ÒF (t)

�

�

2
+
�

�
ÒF (t)

�

�

2
(p2,p̄2)→(−p2,−p̄2)

�

. (115)

The violation of chiral factorization in the t-channel slightly modifies the crossing symmetry
equation (20), which now reads

1
2
bD(t) = |16p1p2 |2 bD(s)1+2 =

�

�16−p1p2
�

�

2
bD(s)1−2 . (116)

It is straightforward to check that these relations hold, if we compute the four-point struc-
ture constants from our two-and three-point structure constants (53), (100) and (108). In
particular, we have

1
2
bD(t) = (−)n2w1+n1ε1+n2ε14−p2

1−p̄2
1−p2

2−p̄2
2 . (117)

This check of crossing symmetry is sensitive to the signs of three-point structure constants. In
particular, in our derivation of the three-point structure constant (108), we could have chosen
the sign prefactor (−)nε1 rather than (−)nε2 . This would have been consistent with crossing
symmetry of twist four-point functions, but not of mixed four-point functions.

4.3.4 T-duality

The compactified free boson theory is invariant under inverting the radius of compactification
R→ 1

R , as a consequence of the chiral Z2 symmetry (J , J̄)→ (−J , J̄). This invariance is called
T-duality in the context of string theory. From the values of the momentums (39), we see that
T-duality exchanges the vertex sector indices n, w.

In the orbifold theory, the four-point function (106) is not invariant under R → 1
R , and

it may appear that T-duality is broken. In fact, while individual four-point functions of
twist fields are not invariant, the space of four-point functions is invariant. T-duality is not
broken, but it comes with a change of bases in the two-dimensional space of twist fields
(T0, T1)→ ( T0+T1

p
2

, T0−T1
p

2
), in addition to the exchange (n, w)→ (w, n).

4.4 Correlation functions of Virasoro primary fields

There are two types of Virasoro primary fields: degenerate fields, and higher twist fields.
Correlation functions that do not involve higher twist fields are obtained from the compactified
free boson theory using the recipe (99). We therefore focus on higher twist fields.
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4.4.1 Two- and three-point structure constants

The number of higher twist fields in a non-vanishing correlation function is always even: let us
therefore consider three-point functions with two higher twist fields. The third field is either a
vertex operator, or a degenerate field from the identity sector. Let us write the corresponding
three-point structure constants as

¬

T εr,r̄ T ε
′

r ′,r̄ ′V(n,w)

¶

= Cεε′(n,w)(−)r
2−r̄2 �

� fr,r ′,p

�

�

2
, (118)

¬

T εr,r̄ T εr ′,r̄ ′ Ik,k̄

¶

= (−)r
2−r̄2 �

�hr,r ′,k

�

�

2
, (119)

where Cεε′(n,w) (108) is an affine primary structure constant, p, p̄ are the left and right mo-
mentums of V(n,w), and fr,r ′,p, hr,r ′,k are chiral structure constant.

After factoring out the sign (−)r
2−r̄2

, we will find that the remaining factor
�

� fr,r ′,p

�

�

2

is chirally factorized, behaves trivially under permutations i.e. fr,r ′,p = fr ′,r,p, and obeys
fr,r ′,0 = δr,r ′ . As a result, the two-point structure constant for higher twist fields is

BTεr,r̄
= (−)r

2−r̄2
. (120)

The violation of chiral factorization by the sign (−)r
2−r̄2

can be traced back to sign ambigu-
ities due to half-integer current modes such as J− 1

2
. These ambiguities affect the correlation

functions of twist fields with half-integer spins such as T ε3
4 , 1

4
(86), which do not belong to the

orbifold CFT. As a result, we cannot factorize correlation functions of T ε3
4 , 3

4
= 4J− 1

2
J̄− 1

2
T ε1

4 , 1
4

into

correlation functions of T ε3
4 , 1

4
and T ε1

4 , 3
4
.

We can compute a few structure constants directly, using the affine Ward identities:

h 1
4 , 3

4 ,1 =
1
p

2
, (121)

h 1
4 , 5

4 ,1 =
1
p

2
, (122)

h 1
4 , 1

4 ,2 = −
1

27
p

6
, (123)

h 1
4 , 3

4 ,3 = −
3

216
p

5
. (124)

4.4.2 Chiral crossing symmetry with non-degenerate fields

To determine the structure constants (118), let us allow higher twist fields in the mixed four-
point function (111), which becomes

¬

V(n1,w1)V(n2,w2)T
ε2
r2,r̄2

T ε1
r1,r̄1

¶

. The s- and t-channel decom-
positions now look as follows:

(n2, w2)

(n1, w1)± (n2, w2)

T ε2
r2,r̄2

(n1, w1) T ε1
r1,r̄1

(n2, w2)

T ε2+w2
r,r̄

(n1, w1)

T ε2
r2,r̄2

T ε1
r1,r̄1

(125)
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For this four-point function, the crossing symmetry equation (20) reads

∑

±

bD(s)1±2

�

� fr1,r2,p1±p2

�

�

2 �
�Fp1±p2,r

�

�

2
=

�

bD(t)| fr1,r,p1
|2| fr2,r,p2

|2 if r2 − r̄2 ∈ Z ,
0 if r2 − r̄2 ∈ Z+ 1

2 ,
(126)

where the sign factors from the two-and three-point structure constants cancel, and we use the

abbreviated notation Fp,r = Fp,r

�

p2 r2
p1 r1

�

for the fusion kernel. We can factor out the affine

four-point structure constants bD(s)1±2, bD(t) using the relation (116). We would then like to write
a chiral relation between the fusion kernel and the chiral structure constants, rather than a
relation involving products of left-moving and right-moving quantities. There is however an
ambiguity due to the constraint r2 − r̄2 ∈ Z, which leaves us free to include sign factors of
the type (−)2r2− 1

8 in the chiral relation. For simplicity of later expressions, we include such a
factor, and write

fr1,r2,p1+p2
16−p1p2 Fp1+p2,r = fr1,r2,p1−p2

16p1p2 Fp1−p2,r = (−)2r2− 1
8 fr1,r,p1

fr2,r,p2
. (127)

Since no degenerate fields appear as s- or t-channel fields, the fusion kernel can be determined
as a limit of the general fusion kernel, and is given by Eq. (274). Using the G-function identity
(30), the solution for the chiral structure constants is

fr1,r2,p =
2
∏

i=1

πri−
1
4 G(3

2)

G(1+ 2ri)
×
∏

±,±

G(1+ p± r1 ± r2)

G(1+ p± 1
4 ±

1
4)

, (128)

or equivalently,

fr1,r2,p =
2
∏

i=1

πri−
1
4 G(3

2)

G(1+ 2ri)
×
∏

±

|r1±r2|−1
∏

r=1−|r1±r2|

(p+ r)|r1±r2|−|r| , (129)

where the product over r ∈ 1
2Z runs by increments of 1. This expression obeys the following

properties:

f 1
4 , 1

4 ,p = 1 , (130)

f 1
4 , 3

4 ,p = 2p , (131)

f 1
4 , 5

4 ,p =
2
3

p(4p2 − 1) , (132)

fr1,r2,p = fr2,r1,p , (133)

fr1,r2,0 = δr1,r2
, (134)

fr1,r2,−p = (−)2r2
1−2r2

2 fr1,r2,p . (135)

We insist that fr1,r2,p is defined up to sign factors of the type (−)2r2
i −

1
8 , because the combination

that appears in correlation functions is | fr1,r2,p|2 with r2
i − r̄2

i ∈ Z.

4.4.3 Chiral crossing symmetry with degenerate fields

Let us solve crossing symmetry equations for four-point functions



I1 IkTr1
Tr2

�

,

∑

ε1=±
g1,k,k+ε1

hr1,r2,k+ε1
Fε1,ε

�

k r1
1 r2

�

=

�

hr2,r2+ε,1hr1,r2+ε,k if ε ∈ {+,−} ,
0 if ε= 0 .

(136)
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The relevant fusion kernels are given in Eq. (199). We use the second equation to get the
k-dependence of hr1,r2,k, and guess an ansatz that we check using the first equation. We find
the solution

hr1,r2,k = 2k(−)r
2
1+r2

2−
1
8−

k
2πr1+r2−k−1

∏

±,± G(1+ k± r1 ± r2)

G(1+ 2k)
∏2

i=1 G(1+ 2ri)

∏

± Γ (
k+1±(r1±Zr2)

2 )
p

Γ (1+ 2k)
, (137)

where the notation r1 ±Z r2 was defined in Eq. (98). Special cases include

hr,r,0 = 1 , (138)

hr,r+ε,1 =
(−)2r+ 1

2

p
2

(ε= ±) , (139)

h 1
4 , 1

4 ,k = (−)
k
2 4k−k2 Γ ( k+1

2 )
2

π
p

Γ (2k+ 1)
(for k ∈ 2N) , (140)

h 1
4 , 1

4 ,2 = −
1

27
p

6
. (141)

In particular, we find agreement with the value (121)-(124) that were directly computed using
affine Ward identities. Moreover, we have

k < |r1 ±Z r2| =⇒ hr1,r2,k = 0 , (142)

i.e. the chiral structure constant hr1,r2,k vanishes whenever the fusion rule (97) is violated. In
general, structure constants do not necessarily have to know the fusion rules. In generalized
minimal models, some structure constants do, and some of them don’t [9,10]. In our case, the
chiral structure constant hr1,r2,k determines the contribution of the degenerate field to an OPE
of two twist fields, when we compute this contribution using affine symmetry. Affine symmetry
dictates that the field Ik is degenerate (i.e. its null vector vanishes), so affine symmetry has to
enforce the resulting fusion rules, and this is what we find here.

4.5 Examples of correlation functions of higher twist fields

From our structure constants, and the conformal blocks of Appendix A.1.4, let us assemble a
few four-point functions of higher twist fields (89). These four-point functions turn out to be
related to four-point functions of the affine primary twist fields T ε = T ε1

4 , 1
4
, via relations that

involve derivatives with respect to the radius R and the elliptic nome q. These relations make
crossing symmetry of the new four-point functions manifest.

4.5.1 Examples of the type
¬

T3
4 , 3

4
T T T

¶

From the structure constants (131) and the conformal blocks (227), we assemble the four-
point functions

®

T ε1
3
4 , 3

4

4
∏

i=2

T εi

¸

=

δ∑εi ,0

�

�

�

�

F0(q)
x1/2(1− x)1/2ϑ3(τ)2

�

�

�

�

2
∑

n∈Z
w∈2Z+ε1+ε2

(−)n(ε2+ε3) |qp(n,w) |2
�

�2p(n,w)

�

�

2
. (143)
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We notice that the summand can be rewritten as an R-derivative, thanks to the identity

|qp(n,w) |2
�

�2p(n,w)

�

�

2
= −

1
π Imτ

R
∂

∂ R
|qp(n,w) |2 , (144)

which follows from

R
∂

∂ R
p2
(n,w) = R

∂

∂ R
p̄2
(n,w) = 2

�

�p(n,w)

�

�

2
. (145)

This allows us to relate our four-point function to
¬

∏4
i=1 T εi

¶

(106),

®

T ε1
3
4 , 3

4

4
∏

i=2

T εi

¸

= −
�

�

�

�

1
x1/2(1− x)1/2ϑ3(τ)2

�

�

�

�

2 1
Imτ

R
∂

∂ R

® 4
∏

i=1

T εi

¸

. (146)

Since
¬

∏4
i=1 T εi

¶

is known to be crossing-symmetric, the crossing symmetry of our four-point

function reduces to the invariance of |ϑ3(τ)|
4 Imτ under the transformation x → 1 − x i.e.

τ→− 1
τ , which we denote S. This invariance follows from the identities

S ◦ ϑ3(τ) =
p

−iτϑ3(τ) , S ◦ Im(τ) =
1
|τ|2

Imτ . (147)

4.5.2 Examples of the type
¬

T5
4 , 3

4
T T T

¶

and
¬

T5
4 , 5

4
T T T

¶

From the structure constants (131), (132) and the conformal blocks (227), (228), we assemble
the four-point function

®

T ε1
5
4 , 3

4

4
∏

i=2

T εi

¸

=
4
3

1
x(1− x)ϑ3(τ)4

�

�

�

�

F0(q)
x1/2(1− x)1/2ϑ3(τ)2

�

�

�

�

2

×

δ∑εi ,0

∑

n∈Z
w∈2Z+ε1+ε2

(−)n(ε2+ε3) |qp(n,w) |2
�

�2p(n,w)

�

�

2
�

p2
(n,w) − q

∂

∂ q
logϑ′1(τ)

�

. (148)

This expression can again be represented as a differential operator acting on
¬

∏4
i=1 T εi

¶

. To
do this, we combine the R-derivative identity (144) with the identity

qp2
�

p2 − q
∂

∂ q
logϑ′1(τ)

�

= ϑ′1(τ)q
∂

∂ q
qp2

ϑ′1(τ)
, (149)

and we obtain the relation

®

T ε1
5
4 , 3

4

4
∏

i=2

T εi

¸

= −
4

3π

�

�

�

�

1
x1/2(1− x)1/2ϑ3(τ)2

�

�

�

�

2

×

ϑ′1(τ)F0(q)

x(1− x)ϑ3(τ)4

�

q
∂

∂ q

�

1
ϑ′1(τ)F0(q) Imτ

�

R
∂

∂ R

�

® 4
∏

i=1

T εi

¸

. (150)

In addition to an R-derivative, this relation also involves a q-derivative. In order to check that it
is crossing-symmetric, we need not only the identities (147), but also the following identities:

S ◦ ϑ′1(τ) = i(−iτ)3/2ϑ′1(τ) , S ◦ F0(q) =
1
p
−iτ

F0(q) , S ◦ q
∂

∂ q
= τ2q

∂

∂ q
. (151)

27

https://scipost.org
https://scipost.org/SciPostPhys.11.5.089


SciPost Phys. 11, 089 (2021)

The case of the higher twist field T ε5
4 , 5

4
is similar to the case of T ε5

4 , 3
4
, and is in fact a bit simpler

due to its left-right symmetry. In this case, the relation with
¬

∏4
i=1 T εi

¶

reads

®

T ε1
5
4 , 5

4

4
∏

i=2

T εi

¸

= −
16
9π

�

�

�

�

F0(q)ϑ′1(τ)

x1/2(1− x)1/2ϑ3(τ)6

�

�

�

�

2

×

�

�

�

�

q
∂

∂ q

�

�

�

�

2 1
�

�F0(q)ϑ′1(τ)
�

�

2
Imτ

R
∂

∂ R

® 4
∏

i=1

T εi

¸

. (152)

As before, crossing symmetry of this expression is readily verified from the transformation
properties (147), (151).

4.5.3 Interpretation

Our derivation of four-point functions of higher twist fields was purely technical, but perhaps
there is an underlying reason for their simplicity. By definition, higher twist fields are obtained
from basic twist fields by acting with modes of the currents J and J̄ . The R-derivatives that
appear in our relations can be interpreted in terms of the marginal operator J J̄ . And the q-
derivatives can be interpreted in terms of the energy-momentum tensor JJ , if we recall the
relation of twist correlators with correlators on a torus with modulus τ [5], together with the
torus Ward identities [17]. It would be interesting to further explore the interplay between
twist fields, target space geometry, and worldsheet geometry.

5 Degenerate Virasoro conformal blocks at c = 1

Let us study Virasoro conformal blocks whose channel dimensions are degenerate. If c = 1,
the momentums of degenerate representations are of the type k ∈ 1

2Z. In the Ashkin–Teller
model and compactified free boson, degenerate representations appear in the identity sector,
and we denoted the corresponding fields as Ik,k̄ with k, k̄ ∈ N.

Our strategy will be to take limits from non-degenerate conformal blocks, which can be
computed using general methods such as Zamolodchikov’s recursive representation. We will
show that appropriate limits exist, although this is far from trivial.

5.1 Analytic subtleties of conformal blocks

5.1.1 Conformal blocks as sums over states

Consider a four-point function of Virasoro primary fields
¬

∏4
i=1 V∆i

(zi)
¶

with (zi) = (0, z, 1,∞).
The corresponding s-channel blocks depend on the central charge c, on the four fields, and on
a Virasoro representation Rs. We assume that Rs is a highest-weight representation, i.e. it is
generated by a primary state of dimension ∆s. Then the blocks can be written as

FRs
(c|(∆i)|z) = z∆s−∆1−∆2

×
∑

Y,Y ′∈B(Rs)

z|Y |γY (∆1,∆2|∆s)G
−1
Y,Y ′(c|∆s)γY ′(∆3,∆4|∆s) , (153)

where we introduced the following objects:

• B(Rs) is a set of creation operators such that B(Rs)|∆s〉 is a basis of Rs, if |∆s〉 is
the primary state of dimension ∆s. We assume that the resulting basis is made of L0-
eigenvectors, i.e. [L0, Y ] = |Y |Y where |Y | ∈ N is the level, and ∆s + |Y | the conformal
dimension of Y |∆s〉.
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• γY (∆1,∆2|∆3) is a c-independent polynomial function of three conformal dimensions.

• G−1
Y,Y ′(c|∆s) is the inverse Gram matrix. The Gram matrix itself depends polynomially on

c and ∆s, and its inverse has poles.

In the special case where Rs = V∆s
is a Verma module, we have

B(V∆s
) = 1, L−1, L2

−1, L−2, L3
−1, L−1 L−2, L−3, . . . (154)

In this case, the object F∆s
≡ FV∆s

is called the Virasoro conformal block for the channel
dimension∆s: we will call it a generic block. This universal function can be computed using a
number of techniques, starting with Zamolodchikov’s recursive representation. (Directly using
Eq. (153) is not efficient.)

Our aim is to compute conformal blocks for degenerate representations, by relating them
to the well-known generic blocks F∆s

. A degenerate representation is a highest-weight repre-
sentations, i.e. a quotient of a Verma module by a submodule. So the basis B(Rs) is a subset
of B(V∆s

). The other ingredients of the expression (153) only depend on ∆s, so they are the
same for Rs as for V∆s

. Beware however that G−1
Y,Y ′(c|∆s) is the inverse of a submatrix of the

Gram matrix, which is not the same as a submatrix of the inverse Gram matrix. (The Gram
matrix of a degenerate representation is not invertible.)

5.1.2 Singularities of the inverse Gram matrix at level 2

In order to illustrate the analytic properties of conformal blocks, let us focus on the contri-
butions from states at level 2. This is the first nontrivial case, as the Gram matrix at level 1
happens to be c-independent. Let us introduce notations for the central charge and conformal
dimensions, which will also be convenient in the rest of Section 5. We write the central charge
as

c = 13− 6β2 − 6β−2 . (155)

The conformal dimension is written in terms of a momentum p, via a relation which generalizes
the c = 1 relation (21),

∆=
c − 1
24

+ p2 . (156)

The degenerate momentums are of the type

p(r,s) =
1
2

�

rβ − sβ−1
�

. (157)

For r, s ∈ N∗, these are the momentums of degenerate representations, and they become half-
integer as c→ 1 i.e. β → 1.

For ∆ = ∆(2,1) = −
1
2 +

3
4β

2, there exists a degenerate representation R〈2,1〉 =
V∆(2,1)
V∆(2,1)+2

,

which is the quotient of the Verma module by the submodule generated by the level 2 null vec-
tor χ〈2,1〉 = Y〈2,1〉|∆(2,1)〉, where Y〈2,1〉 = L−2 −β−2 L2

−1. In order to study the limit ∆→∆〈2,1〉,
we therefore write the level 2 Gram matrix in the basis B(2)(V∆) = (L−2, Y〈2,1〉), and rewrite
∆=∆〈2,1〉 + ε. We find

G(2) =

�

GL−2,L−2
GL−2,Y〈2,1〉

GY〈2,1〉,L−2
GY〈2,1〉,Y〈2,1〉

�

=

�

9
2 − 3β−2 + 4ε (2− 3β−2)ε
(2− 3β−2)ε 4(1− β−4)ε+ 8β−4ε2

�

. (158)
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The behaviour of the inverse Gram matrix crucially depends on whether c = 1 or not, because
GY〈2,1〉,Y〈2,1〉

behaves as O(ε) in general, and O(ε2) if c = 1. As a result, we have

�

G(2)
�−1

=
c 6=1

� 1
9
2−3β−2 +O(ε) O(1)

O(1) 1
4(1−β−4)ε +O(1)

�

, (159)

so that in this case

lim
ε→0

�

G(2)
�−1

L−2,L−2
=

c 6=1

1

limε→0 G(2)L−2,L−2

. (160)

This allows us to compute the inverse of the size one submatrix
�

limε→0 G(2)L−2,L−2

�

, which ap-

pears in the degenerate block FR〈2,1〉
, from the inverse matrix

�

G(2)
�−1

, which appears in the
generic block F∆. This no longer works if c = 1, in which case

G(2) =
c=1

�

3
2 + 4ε −ε
−ε 8ε2

�

,
�

G(2)
�−1

=
c=1

� 8
11 +O(ε) O

�1
ε

�

O
�1
ε

�

O
� 1
ε2

�

�

, (161)

so that

lim
ε→0

�

G(2)
�−1

L−2,L−2
=

c=1

8
11
6=

2
3
=

c=1

1

limε→0 G(2)L−2,L−2

. (162)

Ultimately, the reason why the level two Gram matrix behaves badly if c = 1 is the coincidence
of the degenerate dimensions for which null vectors appear at this level, ∆(2,1) =c=1

∆(1,2).

5.1.3 Degenerate blocks from generic blocks: two conjectures

Let us now discuss the polynomials γY (∆1,∆2|∆3) that appear in the conformal blocks (153).
By definition of fusion rules, the polynomial γY〈2,1〉

(∆1,∆2|∆s) has a zero at∆s =∆(2,1) when-
ever V∆2

∈ R〈2,1〉 × V∆1
. (This condition amounts to a second-order polynomial equation on

∆1,∆2 [9].) Of course, we assume that the degenerate blocks we want to compute are allowed
by fusion, which implies

γY〈2,1〉
(∆1,∆2|∆(2,1)) = γY〈2,1〉

(∆3,∆4|∆(2,1)) = 0 . (163)

If c 6= 1, when computing the level two contribution to the generic block F∆s
(c|(∆i)|z) (153) in

the limit∆s→∆(2,1), the zeros from the γY〈2,1〉
factors cancel the contributions of

�

G(2)
�−1

L−2,Y〈2,1〉
,

�

G(2)
�−1

Y〈2,1〉,L−2
,
�

G(2)
�−1

Y〈2,1〉,Y〈2,1〉
(159). We are left with the contribution of

�

G(2)
�−1

L−2,L−2
, which

agrees with the level two term of the degenerate block FR〈2,1〉
by Eq. (160). We conjecture that

this is true not only at level two, but at all levels; not only for the degenerate representation
R〈2,1〉, but for all degenerate representations:

Conjecture 1 If the central charge is irrational, and if the degenerate representation R〈r,s〉 is

allowed by fusion rules in the s-channel of
¬

∏4
i=1 V∆i

(zi)
¶

, then the corresponding degenerate
block is a limit of generic blocks,

FR〈r,s〉(c|(∆i)|z) = lim
∆→∆(r,s)

F∆(c|(∆i)|z) . (164)
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We know that the conjecture cannot hold if the central charge is rational, due to coincidences
of degenerate dimensions ∆(r,s) =∆(r ′,s′). (To be precise, by rational central charge we mean
β2 ∈Q.) To compute degenerate blocks at rational central charge, we propose to first continue
them to generic central charge, then take the limit lim∆→∆(r,s) , and then go back to rational
central charge:

Conjecture 2 Let c0 be a rational central charge, and R a degenerate representation that is
allowed in the s-channel of

¬

∏4
i=1 V∆i

(zi)
¶

. Let R(c) be any degenerate representation at generic

c that has the same number of states at each level as R. Let (∆(c)i ) be a continuation of (∆i) such

that R(c) is allowed in the s-channel of
D

∏4
i=1 V

∆
(c)
i
(zi)

E

. Then we have

FR(c0|(∆i)|z) = lim
c→c0

FR(c)(c|(∆
(c)
i )|z) . (165)

Let us motivate this conjecture, and in particular the assumption thatR(c) has the same number
of states at each level as R. To obtain the desired degenerate block FR(c0|(∆i)|z), we need to
reduce the basis B(V∆) to the smaller basis B(R), i.e. we need the terms from B(V∆)− B(R)
to vanish. For this we must do an excursion to irrational central charge.

We may worry that this excursion may deform B(R). However, this does not matter, be-
cause R is a quotient space, whose elements are only defined modulo null vectors. In our
level two example, we chose L−2 as the basis of B(2)(R〈2,1〉), but we could have chosen any
c-dependent vector that is not collinear to Y〈2,1〉. To get a basis of R, it only matters that we
have the right numbers of states at each level.

This justifies our assumption on R(c). In order to exploit Conjecture 1, we further assume
that fusion rules are obeyed at generic c, and this constrains the continued dimensions (∆(c)i ).

5.1.4 Scope and validity of the conjectures

Conjecture 1 is only the explict formulation of a well-known fact. From Zamolodchikov’s
recursive representation, it is easy to deduce that the limit exists, because the fusion rules
ensure Res∆=∆(r,s) F∆(c|(∆i)|z) = 0. Conjecture 1 has long been used for numerically comput-
ing conformal blocks and testing crossing symmetry in models such as Generalized Minimal
Models [7] or the Potts model [18], so there is little doubt that it is true.

Conjecture 2 is newer and less trivial. In this case, the very existence of the limit is already
a non-trivial statement. Moreover, Conjecture 2 only provides a particular prescription for
computing degenerate blocks from generic blocks. We do not claim that this prescription is
the only possibility. And it had better not be: given the intricate structures of degenerate
representations at rational c, it is in general not possible to find generic c representations
R(c) that satisfy our assumptions. Conjecture 2 is however good enough for the Ashkin–Teller
model, whose degenerate representations have relatively simple structures: all null vectors
descend from only one singular vector.

We however warn that it is not easy to find alternative prescriptions. For example, we may
be tempted to replace (165) with the simpler prescription of keeping all conformal dimensions
fixed i.e. c-independent,

FR(c0|(∆i)|z)
?
= lim

c→c0
F∆R

(c|(∆i)|z) . (166)

We have checked that this prescription fails in examples, by giving a finite but wrong limit.
However, depending on the case, it may fail at rather high level.
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Let us summarize our evidence for Conjecture 2. All our evidence is at c = 1. First of all,
in Section 5.2, we will apply the conjecture to the computation of conformal blocks of four
fields of dimension ∆ = 1

16 i.e. momentum p = 1
4 , and obtain consistent results which can be

compared to computations from affine symmetry to some extent. Then, in Section 5.3, we will
use Conjecture 2 for computing degenerate fusion kernels at c = 1. These fusion kernels are
then used for writing crossing symmetry equations in the Ashkin–Teller model. Our formulas
for the structure constants of that model therefore crucially depend on our conjectures. In
a number of examples, we can independently derive the same structure constants using the
model’s affine symmetry. All this provides evidence for the conjecture in the cases of the
following families of c = 1 Virasoro blocks:

F (s)
2k| 14 , 1

4 , 1
4 , 1

4
, F (s)k+ε|1,k,r1,r2

, F (s)k+ε|1,k,p,p , F (s)k1+ε|1,k1,k2,k3
, (167)

where we label blocks by their momentums, with k, ki ∈ N and ε ∈ {−1,0, 1} and ri ∈
1
4 +

1
2Z

and p ∈ C. This evidence is admittedly indirect, but it tests the conjecture at all levels, which
would be impossible with pedestrian calculations.

5.2 Four-point functions of twist fields

5.2.1 Virasoro blocks versus affine blocks

Let us go back to c = 1, and consider four-point functions of twist fields of the type 〈T T T T 〉,
i.e. four-point functions of fields of dimension 1

16 . The corresponding affine conformal blocks
were determined by Al. Zamolodchikov [2], see Eq. (225). Such blocks have an extremely
simple dependence on the momentum p, namely ÒFp ∝ (16q)p

2
. For generic values of p, the

Virasoro and affine representations coincide, and Al. Zamolodchikov’s blocks coincide with
Virasoro conformal blocks, ÒFp = Fp. The limit p → 0 of the blocks is perfectly smooth, and
yields the affine conformal block ÒF0.

From the point of view of the Virasoro algebra, the situation is more complicated. The
dimension p = p(1,1) = 0 corresponds to the identity field, which is allowed by its fusion rules
to appear in our four-point function. If the central charge was generic, ÒF0 would have to
coincide with the identity block F0 per Conjecture 1. However, the fusion rule (97) predicts
that the affine block is an infinite linear combination of degenerate Virasoro blocks of the type

ÒF0 =
∞
∑

k
2
=0

h2
1
4 , 1

4 ,k
Fk , (168)

where Fk is a degenerate Virasoro conformal block, and h 1
4 , 1

4 ,k is a chiral structure constant of

the Ashkin–Teller model, defined by Eq. (119). In particular, we expect that ÒF0 and F0 agree
up to level 3, but differ at levels 4 and higher.

5.2.2 Recursive representation

Let us use Conjecture 2 for computing the degenerate Virasoro block Fk at c = 1. The de-
generate representation with momentum k is the quotient of a Verma module with the Verma
submodule that is generated by the null vector at level 2k+1. At generic central charge, there
exist two degenerate representations with the same structure, namely R〈2k+1,1〉 and R〈1,2k+1〉.
According to the conjecture, it should not matter which degenerate representation we choose,
and we pick the second one. We should also continue the twist fields of dimension 1

4 in a way
that respects fusion rules at generic central charge. To satisfy this requirement, it is enough
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that the momentums of the four twist fields remain equal. For the simplicity of our calcula-
tions, we will choose their momentums to be p(0, 1

2 )
. This leads to

Fk

�

1
�

�(1
4 , 1

4 , 1
4 , 1

4)
�

�z
�

= lim
c→1

Fp(1,2k+1)

�

c
�

�

�(p(0, 1
2 )

, p(0, 1
2 )

, p(0, 1
2 )

, p(0, 1
2 )
)
�

�

�z
�

. (169)

Zamolodchikov’s recursive representation for Virasoro conformal blocks is

Fp

�

c
�

�

�(p(0, 1
2 )

, p(0, 1
2 )

, p(0, 1
2 )

, p(0, 1
2 )
)
�

�

�z
�

∝ (16q)p
2
Hp(q) , (170)

where we neglect p-independent factors, and the power series Hp(q) is defined recursively by

Hp(q) = 1+
∞
∑

r
2
=0

∞
∑

s=0

Rr,s(16q)rs

p2 − p2
(r,s)

Hp(r,−s)
(q) . (171)

With our choice of momentums, the first summation index r only takes even values, and the
residues Rr,s take the form [19](Appendix A.1)

Rr,s = −21−4rsp(0,0)p(r,s)

r
∏

r ′=1−r

s
∏

s′=1−s

p(−1)r
′
+1

(r ′,s′) . (172)

Let us investigate the behaviour of Hp(q) in the limit c → 1. Due to the relation
p(1−r ′,1−s′) = p(1,1) − p(r ′,s′) with lim p(1,1) = 0, the factors with r ′ 6= s′ in Rr,s cancel, and
only the diagonal r ′ = s′ contribute. We find

Rr,s ∼c→1
21−4rsp(r,s)p(1,1)R̃min(r,s) with R̃m =

4Γ (m+1
2 )

2

mΓ (1
2)2Γ (

m
2 )2

. (173)

Since limc→1 p(r,r) = 0, we have limc→1 Rr,s = 0, with a zero of order one if r 6= s and two
if r = s. In the recursive representation (171) of Hp(m,n)

(q) with m, n ∈ Z, we find that the
coefficients have the limits

lim
c→1

Rr,s16rs

p2
(m,n) − p2

(r,s)

= −
�

δm−n,r−s

r −m
+
δm−n,s−r

r +m

�

R̃min(r,s) . (174)

We can therefore define the finite limit

Hm,n(q) = lim
c→1

Hp(m,n)
(q) if (m, n) ∈ Z2 − (2N∗ ×N∗) . (175)

Moreover, since the recursive representation of Hp(m,n)
(q) is finite term by term, its limit Hm,n(q)

also has a recursive representation. We write this representation in the case m−n ∈ 2N, which
is enough for our purposes:

Hm,n(q) =
m−n∈2N

1−
∞
∑

r
2
=0

R̃r

�

1
r +m

+
1

r − n

�

qr(m−n+r)Hm−n+r,−r(q) , (176)

where we used the identities Hm,n(q) = H−m,−n(q) =
m−n∈2N

Hn,m(q), and R̃r was defined in

Eq. (173). This might be the first known instance of a recursive representation for conformal
blocks at rational central charge.
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5.2.3 Generalized theta functions

Using our recursive representation, we can compute the degenerate Virasoro conformal blocks
Fk

�

1
�

�(1
4 , 1

4 , 1
4 , 1

4)
�

�z
�

∝ (16q)k
2
H1,2k+1(q) with k ∈ 2N to any given order. Examining the

results, we infer an expression for these blocks to all orders,

qk2
H1,2k+1(q) = −

Γ (k+ 3
2)

2Γ (k+ 1)Γ (1
2)

∑

m∈Z

Γ (m− k+1
2 )

Γ (m+ 1+ k+1
2 )

mΓ (m+ k
2)

Γ (m+ 1− k
2)

q4m2
. (177)

In these expressions, the terms with |m|< k
2 vanish, due to the zeros of the polynomial

mΓ (m+ k
2)

Γ (m+ 1− k
2)
=

k
2−1
∏

i=0

(m2 − i2) . (178)

The first two examples are the four-twist identity block

H1,1(q) =
∑

m∈Z

q4m2

1− 4m2
= 1−

2
3

q4 −
2
15

q16 −
2
35

q36 −
2

63
q64 −

2
99

q100 − · · · , (179)

and the block for the degenerate field with a vanishing null vector at level 5,

q4H1,5(q) = −15
∞
∑

m=1

m2q4m2

(4m2 − 1)(4m2 − 9)
. (180)

We call these functions generalized theta functions, because they can be obtained by acting
with integro-differential operators on the theta function

∑

m∈Z q4m2
.

Finally, we have checked that the infinite linear combination (168) of degenerate blocks,
with the coefficients h2

1
4 , 1

4 ,k
given by Eq. (140), does reproduce the affine block ÒF0. In terms

of the factors Hm,n(q), this amounts to the identity

1=
∞
∑

k
2
=0

h2
1
4 , 1

4 ,k
(16q)k

2
H1,2k+1(q) , (181)

which we have checked numerically to high order. So we have reproduced a trivial affine
block as a combination of Virasoro structure constants and degenerate blocks, computed using
Conjecture 2. This provides evidence in favour of the conjecture.

5.3 Degenerate fusion kernels

In order to write crossing symmetry equations that involve a degenerate field with momentum
k = 1, we need to compute the corresponding fusion kernels. As in the case of c = 1 degenerate
conformal blocks, we will compute c = 1 degenerate fusion kernels by taking limits from
generic central charge. So we will first compute the relevant fusion kernels at generic c, which
do not appear in the literature.

5.3.1 Pentagon relation

The degenerate field with k = 1 has a vanishing null vector at level 3, and its continuation
to generic c must therefore be either V〈3,1〉 or V(1,3). We pick V〈3,1〉, whose fusion rules with a
primary field of momentum p are

V〈3,1〉 × Vp ∼
∑

ε∈{−1,0,1}

Vp+εβ . (182)

34

https://scipost.org
https://scipost.org/SciPostPhys.11.5.089


SciPost Phys. 11, 089 (2021)

A four-point function with V〈3,1〉 obeys a third-order BPZ equation, whose fusion kernel is not
that simple. To compute it, we will reduce the problem to the simpler case of the second-order
BPZ equation for four-point functions with V〈2,1〉, whose fusion rules are

V〈2,1〉 × Vp ∼
∑

η∈{+,−}

Vp+ η2 β
. (183)

This reduction is possible thanks to the fusion rule

V〈2,1〉 × V〈2,1〉 ∼ V〈3,1〉 + V〈1,1〉 , (184)

which implies that the corresponding fusion kernels obey the the Pentagon relation [9]:

〈2,1〉

p3 −
η3
2 β

p2

p1

〈3,1〉

p′1

p3

Fp3,〈2,1〉

〈2, 1〉

p3 −
η3
2 β

p2

p1

〈3,1〉

p3p′3

Fp′1,p′3

〈2,1〉

p3 −
η3
2 β

p2

p1

〈3, 1〉

p′3

〈2,1〉

Fp3,p′1+
η1
2 β

〈2,1〉

p3 −
η3
2 β

p2

p1

〈3, 1〉

〈2,1〉

p′1 +
η1
2 β

Fp′1,〈2,1〉
〈2, 1〉

p3 −
η3
2 β

p2

p1

〈3,1〉

p′1

p′1 +
η1
2 β

Fp′1+
η1
2 β ,p′3

(185)

This diagram depicts two equivalent sequences of fusion moves for five-point conformal blocks.
Each black line is a primary field, and each red arrow is a fusion kernel. In this notation, the
fusion relation (19) would read

∆1

∆2 ∆3

∆4

∆s

F∆s ,∆t

∆2 ∆3

∆4∆1

∆t

(186)
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In our Pentagon relation, we have three arbitrary momentums p1, p2, p3, two shifted momen-
tums

(i = 1,3) p′i = pi + εiβ with εi ∈ {−1,0, 1} , (187)

and two signs η1,η3 ∈ {+,−}, where the fusion rules of the degenerate fields V〈2,1〉 and V〈3,1〉
imply εi 6= 0 =⇒ ηi = −εi . In equation form, our Pentagon relation reads

Fp′1,p′3

�

p1 p2
〈3,1〉 p3

�

Fp3,〈2,1〉

�

p3 −
η3
2 β p′3

〈2, 1〉 〈3, 1〉

�

=
∑

η1=±

Fp3,p′1+
η1
2 β

�

p3 −
η3
2 β p2

〈2, 1〉 p′1

�

Fp′1,〈2,1〉

�

p′1 +
η1
2 β p1

〈2,1〉 〈3, 1〉

�

Fp′1+
η1
2 β ,p′3

�

p1 p2
〈2,1〉 p3 −

η3
2 β

�

. (188)

In this relation, the first fusion kernel is the most general fusion kernel for a four-point func-
tion of the type




V〈3,1〉Vp1
Vp2

Vp3

�

. The other four fusion kernels all correspond to four-point
functions with a degenerate field V〈2,1〉.

5.3.2 Degenerate fusion kernel at generic central charge

In the case of a four-point function of the type



V〈2,1〉Vp1
Vp2

Vp3

�

, the fusion kernel is given by
the well-known formula

Fp1+
η1
2 β ,p3+

η3
2 β

�

p1 p2
〈2,1〉 p3

�

=
Γ (1+ 2η1βp1)Γ (−2η3βp3)

∏

± Γ (
1
2 +η1βp1 ± βp2 −η3βp3)

. (189)

Using the Pentagon relation (188), we deduce the fusion kernel for a four-point function of
the type




V〈3,1〉Vp1
Vp2

Vp3

�

:

Fε1,ε3
=

ε1,ε3 6=0

Γ (1+ 2βε1p1)Γ (1+ β2 + 2βε1p1)Γ (−2βε3p3)Γ (−β2 − 2βε3p3)
∏

±,± Γ (
1
2 ±

1
2β

2 + βε1p1 ± βp2 − βε3p3)
, (190)

Fε1,0 =
ε1 6=0

Γ (β2)
Γ (2β2)

Γ (1+ 2βε1p1)Γ (1+ β2 + 2βε1p1)
∏

± Γ (β
2 ± 2βp3)

∏

±,± Γ (
1
2 +

1
2β

2 + βε1p1 ± βp2 ± βp3)
, (191)

F0,ε3
=
ε3 6=0

Γ (1− β2)
Γ (1− 2β2)

Γ (−2βε3p3)Γ (−β2 − 2βε3p3)
∏

± Γ (1− β
2 ± 2βp1)

∏

±,± Γ (
1
2 −

1
2β

2 ± βp1 ± βp2 − βε3p3)
, (192)

F0,0 =
1
π2

∏

±
Γ (1− β2 ± 2βp1)

∏

±
Γ (β2 ± 2βp3)

×
�

cos(πβ2) cos(π2βp2) + cos(π2βp1) cos(π2βp3)
�

, (193)

where we introduced the notation Fε1,ε3
= Fp1+ε1β ,p3+ε3β

�

p1 p2
〈3, 1〉 p3

�

.

5.3.3 c→ 1 limit

For generic momentums pi , it is straightforward to compute the limit of the fusion kernel
as c → 1 i.e. β → 1. There is only a cancellation of poles in F0,ε3

, which appears in

limβ→1
Γ (1−β2)
Γ (1−2β2) = −2.

Complications appear in the presence of degenerate fields, whose momentums become
integer as c → 1. The limit of the fusion kernel can then depend on how the momentums
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approach their c = 1 values. A degenerate field with momentum k at c = 1 has a null vector
at level 2k+ 1, therefore its continuation to c 6= 1 should be V〈2k+1,1〉 or V〈1,2k+1〉. We pick the
first possibility, and find that the momentum behaves as

βp(2k+1,1) = k+ (β2 − 1)(k+ 1
2) +O

�

(β2 − 1)2
�

. (194)

When it comes to a twist field of momentum r ∈ 1
4 +

1
2Z, the continuation that is compatible

with the degenerate fields’ fusion rules is p(2r,0), which behaves as

βp(2r,0) = r + (β2 − 1)r +O
�

(β2 − 1)2
�

. (195)

For vertex operators, we simply assume that the momentum is β-independent.

5.3.4 Degenerate fusion kernels at c = 1

The crossing symmetry equations for the chiral four-point functions



I1 Ik1
Ik2

Ik3

�

involve the

fusion kernels Fε1,ε3

�

k1 k2
1 k3

�

with kα ∈ N. We compute these kernels as limits of the generic

c expressions (190) and (191), given the behaviour (194) of the degenerate momentums. We
write the result under the assumptions kα ∈ N∗ and kα + kβ − kγ ≥ 0. Cancellations between
poles of Gamma functions lead to the finite expressions









F+,+ F−,+

F+,0 F−,0

F+,− F−,−









=











Γ (2)(1+2k1)Γ (2)(1+k1
23)

Γ (2)(2+2k3)Γ (2)(k3
12)

Γ (2)(1+k2
13)Γ (k123)Γ (k123+3)

Γ (2)(2k3+2)Γ (−1+2k1)Γ (2+2k1)

(−)k
2
13

Γ (2)(1+2k1)Γ (1+k1
23)

Γ (1+k123)Γ (1+k3
12)Γ (1+k2

13)
−(−)k

2
13
Γ (1+k3

12)Γ (1+k2
13)Γ (k123)(1+k123)

Γ (1+k1
23)Γ (2k1)Γ (2+2k1)

Γ (2)(1+2k1)Γ (2)(−1+2k3)
Γ (2)(k123)Γ (2)(k2

13)
Γ (2)(−1+2k3)Γ (2)(1+k3

12)
Γ (−1+2k1)Γ (2+2k1)Γ (2)(k1

23)











,

(196)

where we introduce the notation

Γ (2)(x) = Γ (x)Γ (x + 1) . (197)

The crossing symmetry equations for the chiral four-point function



I1VpVp Ik

�

involve the fu-

sion kernels F0,ε

�

p p
1 k

�

with k ∈ N∗ and p ∈ C. We compute these fusion kernels as c → 1

limits of generic c expressions, and find









F0,+

F0,0

F0,−









=









Γ (2)(k+1)
Γ (2k+2)2

∏

±
Γ (±2p)
Γ (−k±2p)

0

−2 Γ
(2)(2k−1)
Γ (k)2

∏

±
Γ (±2p)
Γ (k±2p)









. (198)

The crossing symmetry equations for the four-point function



I1 IkTr1
Tr2

�

involves the fusion

kernels Fε1,ε

�

k r1
1 r2

�

with k ∈ N∗ and r1, r2 ∈
1
4 +

1
2Z. We compute these fusion kernels as

c→ 1 limits of generic c expressions, and find




F+,ε F−,ε

F+,0 F−,0



=





Γ (2)(1+2k)Γ (2)(−1−2εr2)
∏

± Γ
(2)(k±r1−εr2)

Γ (2)(1+k+ε(r2±Zr1))Γ (2)(−1−2εr2)
Γ (−1+2k)Γ (2+2k)Γ (2)(−k−ε(r2∓Zr1))

Γ (2)(1+2k)
∏

± Γ (1±2r2)
∏

±,± Γ (1+k±r1±r2)
−

∏

± Γ (1±2r2)
∏

± Γ (1+k±(r1±Zr2))
Γ (−1+2k)Γ (2+2k)

∏

± Γ (1−k±(r1∓Zr2))



 , (199)

where we assume ε ∈ {+,−}, and we use the notation r1 ∓Z r2 defined in Eq. (98).
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6 Conclusion and outlook

Solving the compactified free boson and the Ashkin–Teller model from the point of view of
their affine symmetry algebra was not very difficult: building on earlier work, we only had
to determine the signs of structure constants, and to check crossing symmetry of four-point
functions of the type 〈V V T T 〉.

We have then focused on finer observables in the same model, namely correlation func-
tions of Virasoro primary fields. To compute them, we have developed a new flavour of the
conformal bootstrap method, and written equations that relate the sought-after chiral struc-
ture constants to Virasoro fusion kernels. The resulting structure constants are written using
the same Barnes’ G-function that appears in Liouville theory at c = 1, and also in the Vira-
soro fusion kernel at c = 1. However, the latter objects are not easily related to our structure
constants, because they tend to be singular when momentums take degenerate values.

From the point of view of Virasoro symmetry, we have completely solved the compactified
free boson and Ashkin–Teller model on the sphere. This means determining fusion rules and
structure constants of all Virasoro primary fields, and checking crossing symmetry of their
four-point functions. These solutions are based on a number of technical results on conformal
blocks and fusion kernels at c = 1 and beyond, which may be of more general interest.

As an outlook, let us now sketch three perspectives that are opened by our results or tech-
niques.

6.1 Towards a solution of the 4−tate Potts model

Although the Ashkin–Teller model with radius R = 2 is supposed to coincide with the 4-state
Potts model, we are not claiming that we have solved the latter model. To do this, we would
still need to organize the fields in representations of the symmetric group S4, and to show that
correlation functions are covariant under that symmetry.

At R = 2, the vertex sector momentums p(n,w) = n + w
4 become degenerate if w is even,

and coincide with twist sector momentums if w is odd. This allows the S4 symmetry to mix
the vertex sector with the degenerate and twist sectors. This also makes it clear that the S4
symmetry does not commute with the affine symmetry. Solving the Ashkin–Teller model from
the point of view of its Virasoro symmetry was therefore indeed necessary, but it is not yet suf-
ficient. The mixing of the sectors must imply nontrivial identities between structure constants,
and also between conformal blocks. Understanding these identities, and other properties of
the model that emerge at R= 2, is left for future work.

6.2 Degenerate conformal blocks at rational central charge

In order to compute the c = 1 conformal blocks and fusion kernels that we needed, we had
to face the wider issue of understanding degenerate conformal blocks at rational values of the
central charge. Our understanding is summarized in Conjecture 2, which passes a number of
tests at c = 1. For other rational central charges, and in particular for minimal models, the
conjecture’s assumptions are probably too restrictive, and we should find a way to relax them.

This would be well worth the effort, as there is no known efficient way of computing con-
formal blocks in minimal models. These conformal blocks do obey BPZ differential equations,
but the order of the equation depends on the particular block under consideration. It is not
possible to write BPZ equations in general, and much less to solve them. In contrast, Zamolod-
chikov’s recursive representation of conformal blocks is valid in generic cases, and can only
simplify in special cases. However, the recursive representation becomes singular at rational
central charges.
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Using Conjecture 2, we have found examples of recursive representations for conformal
blocks at c = 1. This raises the hope that recursive representations can be found at other
rational central charges. This improves on the more pessimistic assessments of previous works
[20, 21], which checked that the recursion had a finite limit as the central charge becomes
rational, but did not find hints that the limit could be written explicitly. We have even managed
to solve the recursion and find closed form expressions of the blocks as generalized theta
functions, although this may be specific to our examples.

6.3 Generalization to generic central charge

It would be interesting to continue the Ashkin–Teller model to generic central charge, and
obtain a simple, solvable, non-diagonal CFT. Of course, the R= 2 model has a known continu-
ation, namely the Q-state Potts model, but with its complicated spectrum and large multiplic-
ities, it does not count as a simple CFT.

Instead, we could start with the compactified free boson: this CFT can be continued to
generic central charge, although the radius becomes quantized [9]. The next step would be
to take its Z2 orbifold. If it was possible, this construction could even preserve the affine
symmetry.

An important piece of the puzzle may be the continuation of the dimension 1
16 of twist

fields. In the Q-state Potts model, the continuation is ∆(0, 1
2 )
= 8−4β2−3β−2

16 , and this is also
natural from the point of view of conformal blocks, as we saw in Section 5.2. On the other
hand, from their geometric definition, Z2 twist fields at generic central charge have the di-

mension c
16 =

13−6β2−6β−2

16 . Of course, it is not excluded that the model has several different
continuations.
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A Conformal blocks and four-point functions

In this appendix we recall how affine symmetry allows us to find conformal blocks of vertex
operators. Then we give a more detailed account of computing conformal blocks that involve
twist fields. In Section A.2 we will then study a few simple four-point functions, with the aim
of checking some basic features of the fusion rules.

A.1 Derivation of some conformal blocks

In order to compute conformal blocks, we will study chiral correlation functions. The fields
that appear in such correlation functions are labelled by their left-moving momentums.
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A.1.1 Vertex operators

Affine Ward identities for a correlation function of the vertex operators follow from the OPE
(33),

®

J(z)
∏

i

Vpi
(zi)

¸

=
∑

j

p j

z − z j

®

∏

i

Vpi
(zi)

¸

. (200)

Requirement that J(z) =
z→∞

O(z−2) leads to the neutrality condition
∑

i pi = 0. Combining

the Ward identities with relation

∂ Vp(w) = L−1Vp(w) = 2J0J−1Vp(w) , (201)

gives the Knizhnik–Zamolodchikov equation

∂ j

®

∏

i

Vpi
(zi)

¸

=
∑

i 6= j

pi p j

zi j

®

∏

i

Vpi
(zi)

¸

. (202)

The affine conformal block is then the unique solution that satisfies the normalization condition
(13),

ÒF(zi) =
∏

i< j

z
2pi p j

i j . (203)

The uniqueness of the solution corresponds to the fact that each intermediate channel contains
a single operator, according to fusion rules Vp1

b×Vp2
= Vp1+p2

.

A.1.2 Two vertex operators and two twist fields

From the OPE (83) of the current with the affine primary twist field, we deduce

¬

J(z)Vp1
(z1)Vp2

(z2)T1
4
(z3)T1

4
(z4)

¶

=
pz13z14

p1
z−z1
+pz23z24

p2
z−z2

p

(z − z3)(z − z4)

¬

Vp1
(z1)Vp2

(z2)T1
4
(z3)T1

4
(z4)

¶

. (204)

This chiral correlation function is completely determined by the analytic properties of J(z).
In particular, the denominator accounts for the branch cut stretching between the twist fields.
The numerator has poles at the positions of vertex operators.

With the particular positions (14), our chiral correlation function becomes

¬

J(z)Vp1
(x)Vp2

(0)T1
4
(∞)T1

4
(1)
¶

=
p2
z +

p1
p

1−x
z−xp

1− z

¬

Vp1
(x)Vp2

(0)T1
4
(∞)T1

4
(1)
¶

. (205)

From this relation we compute how J−1 acts on a vertex operator,

¬

�

J−1Vp1
(x)
�

Vp2
(0)T1

4
(∞)T1

4
(1)
¶

=
∮

z=x

dz
2πi(z − x)

¬

J(z)Vp1
(x)Vp2

(0)T1
4
(∞)T1

4
(1)
¶

=
�

p2

x
p

1− x
+

p1

2(1− x)

�

¬

Vp1
(x)Vp2

(0)T1
4
(∞)T1

4
(1)
¶

. (206)
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Combining this relation with Eq. (201) yields the first-order differential equation

∂x log
¬

Vp1
(x)Vp2

(1)T1
4
(∞)T1

4
(1)
¶

=
2p1p2

x
p

1− x
+

p2
1

1− x
. (207)

The solution that respects the normalization condition (15) is

ÒF (s)V1+2|V1V2T 1
4

T 1
4

= 16p1p2(1− x)−p2
1

�

1−
p

1− x

1+
p

1− x

�2p1p2

. (208)

Since the t-channel conformal block is a solution of the same first-order differential equation,
it is given by the same function albeit with a different normalization,

ÒF (t)T 1
4
|V1V2T 1

4
T 1

4

= (1− x)−p2
1

�

1−
p

1− x

1+
p

1− x

�2p1p2

. (209)

A.1.3 Two vertex operators and two higher twist fields

From the expression (86) of the higher twist field T3
4

as an affine descendent of the basic twist
field T1

4
, we deduce

F (s)V1+2|V1V2T 1
4

T 3
4

∝ 2

∮

z=1

dz

2πi
p

z − 1

¬

J(z)Vp1
(x)Vp2

T1
4
(∞)T1

4
(1)
¶

. (210)

Performing the integral and normalizing the result appropriately gives

F (s)V1+2|V1V2T 1
4

T 3
4

=
p2 +

p1p
1−x

p1 + p2
F (s)V1+2|V1V2T 1

4
T 1

4

. (211)

Conformal block with a second excited twist field T5
4

can in principle be computed from its
expression (87) as an affine descendent of T1

4
. However, it is technically simpler to use rela-

tion T5
4
= 2J− 3

2
T1

4
− 4

3 L−1T3
4
, which follows from that expression, together with the relation

L−1T3
4
= J− 3

2
T1

4
+ 2J3

−1/2T1
4
. Omitting details of the computation we present the result

F (s)V1+2|V1V2T 1
4

T 5
4

=

1
(p1 + p2)(4(p1 + p2)2 − 1)

�

p2(4p2
2 − 1) +

12p2
2 p1p

1− x
+

12p2p2
1

1− x
+

p1(4p2
1 − 1)

(1− x)
3
2

�

×F (s)V1+2|V1V2T 1
4

T 1
4

. (212)

A.1.4 Four twist fields

We now turn to the correlation functions of four twist fields. Our presentation follows [5]. Un-
like the vertex operators the twist fields are not eigenstates of J0. Instead they are interrelated
by the affine action. In particular from definition (86) one finds the following OPEs

J(z)T1
4
(w) =

T3
4
(w)

2
p

z −w
+O(

p
z −w) ,

J(z)T3
4
(w) =

T1
4
(w)

2(z −w)
3
2

+
2∂ T1

4
(w)

p
z −w

+O(
p

z −w) ,

(213)
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where we have used J 1
2
T3

4
= 1

2 T1
4

and relation J− 1
2
T3

4
= 2J2

− 1
2
T1

4
= L−1T1

4
= ∂ T1

4
. Let us

introduce four correlators

J0(z, x) = 〈J(z)T1
4
T1

4
T1

4
T1

4
〉 , F0(x) = 〈T1

4
T1

4
T1

4
T1

4
〉 ,

J1(z, x) = 〈J(z)T3
4
T1

4
T1

4
T1

4
〉 , F1(x) = 〈T3

4
T1

4
T1

4
T1

4
〉 .

(214)

Labels 0 and 1 refer to the correlation functions with the lowest and the first excited twist field
at position x , respectively. Analytic form of J0 and J1 as functions of z is fixed by OPEs (213)

J0(z, x) =
A0(x)

p

z(z − x)(z − 1)
, J1(z, x) =

A1(x)
z−x + B1(x)

p

z(z − x)(z − 1)
, (215)

with

A0(x) =

p

x(x − 1)
2

F1(x), A1(x) =

p

x(x − 1)
2

F0(x),

B1(x) = 2
Æ

x(x − 1)
�

∂F0(x) +
1
8

�

1
x
+

1
x − 1

�

F0(x)
�

.
(216)

We have two equations (215) relating four correlation functions (214) which therefore do not
fix the correlators unambiguously. This is due to the fact that fusion of two twist fields contains
a spectrum of vertex operators T1

4
× T1

4
=
∑

p Vp and hence one has many conformal blocks
satisfying these relations. To single out a conformal block with intermediate momentum p we
additionally impose

∮

0,x
dzJ0(z, x) = 2πipF0(x),

∮

0,x
dzJ1(z, x) = 2πipF1(x) . (217)

Now there are just enough equations to determine the solutions. Evaluating (217) explicitly
one obtains

4A0(x)K(x) = 2πipF0(x), 4B1(x)K(x) + 8A1(x)
K(x)
d x

= 2πipF1(x), (218)

where

K(x) =
1
2

∫ 1

0

d t
p

t(1− t)(1− x t)
(219)

is the complete elliptic integral of the first kind. After a straightforward algebra one obtains
equation for F0(x)

∂

∂ x
log

�

F0(x)x
1/8(1− x)1/8K1/2(x)

�

=
π2p2

4x(1− x)K2(x)
. (220)

Using identity

K(1− x)
d

d x
K(x)− K(x)

d
d x

K(1− x) =
π

4x(1− x)
, (221)

one can verify that

F0(x) =
16p2

e−πp2 K(1−x)
K(x)

x1/8(1− x)1/8
p

2K(x)/π
(222)
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is a solution to (220) with correct normalization (13). It is convenient to introduce elliptic
parameters

τ= i
K(1− x)

K(x)
, q = eiπτ (223)

and associated theta-constants defined by

ϑ′1(τ) = π
∑

n∈Z
(−)n(2n+ 1)q(n+

1
2 )

2
, ϑ2(τ) =

∑

n∈Z
q(n+

1
2 )

2
,

ϑ3(τ) =
∑

n∈Z
qn2

, ϑ4(τ) =
∑

n∈Z
(−)nqn2

.
(224)

Using relation K(x) = π
2ϑ

2
3(q) conformal block (222) can be rewritten as

ÒF (s)Vp|T 1
4

T 1
4

T 1
4

T 1
4

=
(16q)p

2

x1/8(1− x)1/8ϑ3(τ)
. (225)

The function F0(q) used in (106) is then

F0(q) =
1

x1/8(1− x)1/8ϑ3(τ)
. (226)

Note that here we have restored the full notation for affine conformal blocks. Having found
F0(x) it is straightforward to also compute F1(x)

ÒF (s)Vp|T 3
4

T 1
4

T 1
4

T 1
4

=
(16q)p

2

x5/8(1− x)5/8ϑ3(τ)3
. (227)

Conformal blocks with other combinations of excited twist fields can be obtained in a similar
way or using a more efficient technique [5]. Below we present several examples used in the
main text without a derivation

ÒF (s)Vp|T 5
4

T 1
4

T 1
4

T 1
4

=
(16q)p

2

x13/8(1− x)13/8ϑ3(τ)7
p2 − q ∂

∂ q logϑ′1(τ)

p2 − 1
4

, (228)

ÒF (s)Vp|T 3
4

T 3
4

T 1
4

T 1
4

=
(16q)p

2

x9/8(1− x)5/8ϑ3(τ)5
p2 − q ∂

∂ q logϑ2(τ)

p2 − 1
4

, (229)

ÒF (s)Vp|T 3
4

T 1
4

T 1
4

T 3
4

=
(16q)p

2

x5/8(1− x)9/8ϑ3(τ)5
p2 − q ∂

∂ q logϑ4(τ)

p2
. (230)

Note that the ordering of the twist fields differs from [5] due to a difference in conventions
for fixing their positions (14).

A.2 Examples of four-point functions

In order to do some basic checks of fusion rules, let us consider a few examples of four-point
functions, and work out their s-channel decompositions to the first few orders. In such low
order calculations, and in our particular examples, the subtleties of Section 5 are not relevant,
and we can compute degenerate conformal blocks from the c = 1 expression

F (s)∆s
(∆i|x) = x∆s−∆1−∆2

¦

1+ c1 x + c2 x2 +O(x3)
©

, (231)
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with the coefficients [9]

c1 =
(∆s +∆1 −∆2)(∆s +∆4 −∆3)

2∆s
, (232)

c2 =
1

(4∆s − 1)2

�

(∆s +∆1 −∆2)2
∆s + 2∆1 −∆2

�T �
2+ 1

4∆s
−3

−3 4∆s + 2

��

(∆s +∆4 −∆3)2
∆s + 2∆4 −∆3

�

, (233)

where we use the notation (∆)2 =∆(∆+ 1). To obtain t-channel blocks, we use the relation

F (t)∆t
(∆1,∆2,∆3,∆4|x) = F (s)∆t

(∆1,∆4,∆3,∆2|1− x) . (234)

(In this subsection, we write blocks as functions of conformal dimensions, not momentums.)

A.2.1 Identity sector

Let us consider four-point functions of the first nontrivial Virasoro primary field in the identity
sector, namely I1,1∝ J J̄ . Given the self-OPE (31) of the current, we must have

® 4
∏

i=1

J(zi)

¸

∝
1

z2
12z2

34

+
1

z2
23z2

14

+
1

z2
13z2

24

, (235)

or equivalently

¬

J(x)J(0)J(∞)J(1)
¶

∝
1
x2
+

1
(1− x)2

+ 1 =
x→0

1
x2

¦

1+ 2x2 +O(x3)
©

. (236)

According to the fusion rule (47), we expect s-channel contributions from the two chiral fields
I0 and I2. Since I2 has dimension 4, it should not affect the leading three terms in the expansion
near x → 0. And indeed we find that these terms are accounted for by the conformal block

F (s)0 (1, 1,1, 1|x) =
1
x2

¦

1+ 2x2 +O(x3)
©

. (237)

While conformal blocks are generally singular at ∆s = 0, the block we are now considering is
well-defined, provided we first set ∆i = 1 and then ∆s = 0.

A.2.2 Mixed identity-twist four-point functions

Let us consider a four-point function of the type



I1,1 I1,1T εT ε
�

. The left-moving factor of this
four-point function is the chiral four-point function

¬

J(x)J(0)T ε(∞)T ε(1)
¶

∝
1− 1

2 x

x2
p

1− x
=

x→0

1
x2

¦

1+ 1
8 x2 +O(x3)

©

=
x→1

1

2
p

1− x

¦

1+ 3(1− x) + 5(1− x)2 +O((1− x)3)
©

. (238)

In this four-point function, the OPEs determine the leading behaviour near the singularities
x = 0, 1,∞, which leaves the coefficient of the linear term undetermined in the numerator
1 − 1

2 x . We determine this coefficient by requiring the vanishing of the O(x) term in the
expansion near x = 0. Then that expansion agrees with the conformal block

F (s)0 (1,1, 1
16 , 1

16 |x) =
1
x2

¦

1+ 1
8 x2 +O(x3)

©

. (239)
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Near x = 1, the fusion rule (96) predicts two terms, corresponding to the higher chiral twist
fields T ε3

4
, T ε5

4
. The relevant conformal blocks are

F (t)9
16
(1,1, 1

16 , 1
16 |x) =

1
p

1− x

¦

1+ 2(1− x) + 3(1− x)2 +O((1− x)3)
©

, (240)

F (t)25
16
(1,1, 1

16 , 1
16 |x) =

1
p

1− x

¦

(1− x) + 2(1− x)2 +O((1− x)3)
©

. (241)

There exists a linear combination of these blocks that agrees with our four-point function. This
is a non-trivial check of the fusion rules.

The following chiral four-point function is determined (up to an overall constant factor)
by its behaviour near the singularities x = 0,1,∞:

¬

J(x)J(0)T ε1
4
(∞)T ε7

4
(1)
¶

∝
x2

(1− x)
7
2

=
x→0

1
x2

¦

1+ 7
2 x + 63

8 x2 +O(x3)
©

=
x→1

1

(1− x)
7
2

¦

1− 2(1− x) + (1− x)2 +O((1− x)3)
©

. (242)

According to the fusion rules, the expansion near x = 0 is the contribution of only one field I2
of dimension 4, whose conformal block is

F (s)4 (1, 1, 1
16 , 49

16 |x) =
1
x2

¦

1+ 7
2 x + 63

8 x2 +O(x3)
©

. (243)

Likewise, the expansion near x = 1 only involves the field T ε3
4
, whose conformal block

F (t)9
16
(1, 1, 1

16 , 49
16 |x) agrees with our four-point function up to the order O((1− x)2).

A.2.3 Mixed identity-vertex four-point functions

Let us consider the chiral four-point function

¬

J(x)J(0)V∆(∞)V∆(1)
¶

∝
1− x + 2∆x2

x2(1− x)
, (244)

where primary fields are labelled by their conformal dimensions. The behaviour at x = 0, 1,∞
determines this four-point function up to a polynomial of degree two, which we fix by requiring
that the expansion at x = 0 agrees with the conformal block

F (s)0 (1, 1,∆,∆|x) =
1
x2

¦

1+ 2∆x2 +O(x3)
©

. (245)

The next block that is predicted by the fusion rules corresponds to the field I2 whose dimension
is 4, which does not contribute at this order. The expansion near x = 1 is then found to agree
with the block

F (t)∆ (1, 1,∆,∆|x) =
1

1− x

¦

1+ 1
2∆(1− x) + 1

∆(1− x)2 +O((1− x)3)
©

. (246)

A.2.4 Vertex four-point functions

Let us consider the vertex four-point function (104) in the case (zi) = (x , 0,∞, 1),

¬

V(n,w)(x)V(n,w)(0)V(n′,w′)(∞)V(n′,w′)(1)
¶

∝
�

�

�x−2p2
�

�

�

2∑

±

�

�

�(1− x)±2pp′
�

�

�

2
. (247)
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According to the fusion rule (92), only the identity sector contributes in the s-channel. Up to
the order O(x2) in the expansion near x = 0, the only contributing fields are I0,0 and I1,1, and
the relevant conformal blocks are

F0(∆,∆,∆′,∆′|x) = x−2∆
¦

1+ 2∆∆′x2 +O(x3)
©

, (248)

F1(∆,∆,∆′,∆′|x) = x−2∆
¦

x + 1
2 x2 +O(x3)

©

. (249)

And our four-point function can indeed be written as a combination of such blocks, schemati-
cally

¬

V V V ′V ′
¶

∝ |F0(x)|
2 + 4pp′ p̄p̄′ |F1(x)|

2 +O(x3) . (250)

B Discrete fusion transformations of Virasoro blocks

B.1 The Virasoro fusion kernel at c = 1

B.1.1 Continuous fusion transformation

The s- and t-channel Virasoro conformal blocks are related by the fusion transformation

F (s)ps|1234 =

∫

C
dpt Fps pt

�

2 3
1 4

�

F (t)pt |1234 , (251)

where the fusion kernel Fps pt

�

2 3
1 4

�

only depends on the fields’ dimensions, and not on their

positions. The fusion kernel is much simpler at c = 1 than at generic c, and can be written
as [22]

Fps pt

�

2 3
1 4

�

= µ
C(ps|p1, p2, p3, p4)

C(pt | − p3, p2,−p1, p4)

4
∏

i=1

bG(ω+ + νk)
bG(ω+ +λk)

, (252)

where bG(z) = G(1+z)
G(1−z) , and we define

C(ps|p1, p2, p3, p4) =

∏

ε=± G(1+ 2εps)
∏

ε,ε′=± G(1+ εps + ε′p2 + εε′p1)G(1+ εps + ε′p3 + εε′p4)
. (253)

The parameters νk and λk in the arguments of bG-functions are defined as

ν1 = ps + p1 + p2, λ1 = p1 + p2 + p3 + p4, (254)

ν2 = ps + p3 + p4, λ2 = ps + pt + p1 + p3, (255)

ν3 = pt + p1 + p4, λ3 = ps + pt + p2 + p4, (256)

ν4 = pt + p2 + p3, λ4 = 0 , (257)

and we also introduce

σ =
1
2

4
∑

i=1

νi =
1
2

4
∑

i=1

λi . (258)

To define ω+ and µ in Eq. (252), we introduce the notations

ci = 2 cos(2πpi) , si = 2sin(2πpi) , (259)
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and the combinations

ω12 = c1c2 + c3c4, ω23 = c2c3 + c1c4, ω13 = c1c3 + c2c4, (260)

ω4 =
4
∏

i=1

ci +
4
∑

i=1

c2
i . (261)

Using these variables we define q13 as a solution of the quadratic equation

1
4

q2
13 −

1
4
(csct −ω13)

2 + c2
s + c2

t −ω12cs −ω23ct +ω4 − 4= 0 . (262)

Then the prefactor µ in (252) is

µ= −
ssst

q13
, (263)

while the quantity ω+ is defined by

e2πiω+ =
ssst + s2s4 + s1s3 + q13

2
∑4

i=1

�

e2πi(σ−νk) − e2πi(σ−λk)
�

. (264)

There are three ambiguities in the definition (252) of the fusion kernel:

1. The choice of a solution of the quadratic equation (262), which will not affect the fusion
transformation.

2. The integration contour C in (251) should be chosen as R+ iΛ with Λ sufficiently large
so that all singularities of the integrand lie below the contour.

3. The quantity ω+ is only defined modulo an integer. However, the identity

bG(z + 1) = −
π

sin(πz)
bG(z) , (265)

and the explicit forms of νi ,λi ensure that the fusion kernel is invariant under integer
shifts of ω+.

B.1.2 Discrete fusion transformation

Let us assume that the integrand of the fusion transformation (251) is meromorphic in pt ,
with simple poles on the real pt -line. Since the integrand is odd in pt , we have

F (s)ps
=

1
2

�∫

R+iΛ
−
∫

R−iΛ

�

dpt Fps pt
F (t)pt

= −πi
∑

k∈Poles

Res
pt=k

Fps pt
F (t)pt

. (266)

This is how the continuous fusion transformation can become discrete, in agreement with the
discrete fusion rules of the free boson and Ashkin–Teller models.

B.2 Discrete fusion of higher twist fields

In order to determine chiral structure constants of higher twist fields in Section 4.4, we need
some particular fusion transformations.
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B.2.1 Simplification of the fusion kernel

Consider the fusion transformation

F (s)p1+p2|p1p2r2r1
=

∫

C
Fp1+p2,pt

�

p2 r2
p1 r1

�

F (t)pt |p1p2r2r1
, (267)

which involves the fusion kernel (252) with momentums

(p3, p4) = (r2, r1) with r1, r2 ∈
1
4
+

1
2
N , ps = −p1 − p2 . (268)

With the help of the trigonometric identity

x + y + z = 0 ⇒ 2 cos x cos y cos z + 1= cos2 x + cos2 y + cos2 z , (269)

the quadratic equation (262) simplifies, and we find

q13 = 4i cos(2πpt) sin(2π(p1 + p2)) , ω+ = 0 , (270)

which leads to

µ= −i tan(2πpt) . (271)

This has simple poles for pt = r ∈ 1
4 +

1
2Z, with the residues

−2πi Res
pt=k

µ= 1 . (272)

Accepting for an instant that only these simple poles contribute, we obtain the discrete fusion
transformation

F (s)p1+p2
=

∑

r∈ 1
4+

1
2N

Fp1+p2,rF (t)r . (273)

We compute the fusion kernel with the help of the duplication formula (28),

Fp1+p2,r = 16p1p2

∏

±

G(1± 1
2)

G(1± 2r)

×
∏

±,±

G(1+ p1 + p2 ±
1
4 ±

1
4)

G(1+ p1 + p2 ± r1 ± r2)

2
∏

i=1

∏

±,±

G(1+ pi ± r ± ri)

G(1+ pi ±
1
4 ±

1
4)

. (274)

In the case r1 = r2 = pt =
1
4 , we recover the affine fusion kernel element Fp1+p2, 1

4
= 16p1p2 .

B.2.2 Cancellation of spurious poles

The fusion kernel has not only simple poles for pt ∈
1
4 +

1
2Z, but also higher order poles for

pt ∈
1
2Z. This is due to a factor 1

∏

± G(1±2pt )
, which appears as 1

∏

± G(1±2r) in Eq. (274). We may

therefore worry that the sum of residues includes contributions with half-integer momentums,
which correspond to degenerate fields. However, the fusion rules forbid such contributions.
The idea is that t-channel conformal blocks also have poles for pt ∈

1
2Z, whose contributions

have to cancel the contributions from the fusion kernel. Such cancellation of poles, due to an
interplay between structure constants and conformal blocks, are known to occur in analytically
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solvable CFTs [21]. In our case, let us demonstrate the cancellation mechanism in a simple
example. We recall the leading terms of the t-channel conformal block,

F (t)pt |p1p2r2r1
= (1− z)p

2
t−p2

1−r2
1

�

1+

∏2
i=1(p

2
t + p2

i − r2
i )

2p2
t

(1− z) + · · ·

�

. (275)

Due to the O(1− z) term of the conformal block, the fusion transformation’s integrand (267)
has a simple pole at pt = 0. Neglecting pt -independent factors from the fusion kernel, the
residue is

Res
pt=0

Fp1+p2,pt
F (t)pt

∝
1
2
(1− z)1−p2

1−r2
1

2
∏

i=1

(p2
i − r2

i )
∏

±
G(1+ pi ± ri)

2 + · · · (276)

This should be compared with the residue of the simple pole at pt = 1. We neglect the same
pt -independent prefactors, and focus again on the leading contribution as z→ 1,

Res
pt=1

Fp1+p2,pt
F (t)pt

∝−
1
4
(1− z)1−p2

1−r2
1

2
∏

i=1

∏

±,±
G(1+ pi ± 1± ri) + · · · (277)

It remains to use the identity
∏

± G(x±1) = (x−1)G(x)2, for seeing that the residue at pt = 0
cancels with the sum of the residues at pt = −1, 1.
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