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Abstract

We determine the 1-form symmetry group for any 4d N = 2 class S theory constructed
by compactifying a 6d N = (2, 0) SCFT on a Riemann surface with arbitrary regular
untwisted and twisted punctures. The 6d theory has a group of mutually non-local
dimension-2 surface operators, modulo screening. Compactifying these surface oper-
ators leads to a group of mutually non-local line operators in 4d, modulo screening and
flavor charges. Complete specification of a 4d theory arising from such a compactifica-
tion requires a choice of a maximal subgroup of mutually local line operators, and the
1-form symmetry group of the chosen 4d theory is identified as the Pontryagin dual of
this maximal subgroup. We also comment on how to generalize our results to compacti-
fications involving irregular punctures. Finally, to complement the analysis from 6d, we
derive the 1-form symmetry from a Type IIB realization of class S theories.

Copyright L. Bhardwaj et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 21-06-2021
Accepted 15-10-2021
Published 24-11-2021

Check for
updates

doi:10.21468/SciPostPhys.11.5.096

Contents

1 Introduction 2

2 Surface Operators and Outer Automorphisms in 6d (2,0) 5

3 Compactifications without Punctures 6
3.1 Untwisted Case 7
3.2 Including Closed Z2 Twist-lines 9
3.3 Including Closed S3 Twist-lines 12

4 Compactifications with Regular Punctures 14
4.1 Untwisted Regular Punctures 15
4.2 Z2-twisted Regular Punctures 17
4.3 S3-twisted Regular Punctures 23
4.4 Atypical Regular Punctures 36

5 Towards Irregular Punctures 38

6 1-Form Symmetries from Type IIB Realization 41
6.1 Class S from Type IIB 41
6.2 Line operators from IIB 42

1

https://scipost.org
https://scipost.org/SciPostPhys.11.5.096
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.11.5.096&amp;domain=pdf&amp;date_stamp=2021-11-24
https://doi.org/10.21468/SciPostPhys.11.5.096


SciPost Phys. 11, 096 (2021)

A Summary of Notation 45

References 46

1 Introduction

A massive vacuum of a 4d theory T is called confining if it preserves a non-trivial subgroup
of the 1-form symmetry group of T [1]. Motivated by confinement in 4d N = 1 theories
obtained by deforming 4d N = 2 theories that we will study in [2], we develop in this paper,
as a precursor, the tools to determine the 1-form symmetry of 4d N = 2 theories. More
specifically, we consider 4d N = 2 theories of Class S that can be obtained by compactifying
6d N = (2, 0) SCFTs on a Riemann surface [3]. We allow the Riemann surface to contain
closed twist lines and arbitrary regular punctures which can be either untwisted or twisted.

It is well-known that 6d N = (2,0) SCFTs are classified by a Lie algebra g of ADE-type,
and that they are relative QFTs [4–6], which for the purposes of this paper can be understood
as follows. The (2, 0) theory contains dimension-2 surface operators which are not mutually
local, i.e. there is an ambiguity in defining a correlation function containing two such surface
operators [7]. If there is no such ambiguity, then we call the theory an absolute QFT instead.
Fusion (OPE) of these surface operators lends the set of surface operators the structure of an
abelian group. Moreover, the surface operators can be screened by dynamical strings in the
theory. We denote the group of surface operators modulo screening by bZ .

Upon compactification to 4d, one can wrap these surface operators along various 1-cycles
on the Riemann surface to generate an abelian group L of line operators modulo screening in
4d. The non-locality of 6d surface operators descends to non-locality of these 4d line opera-
tors. In other words, we obtain a relative 4d theory upon such a compactification. To obtain
an absolute 4d theory T, one needs to choose a maximal subgroup ΛT ⊂ L of mutually local 4d
line operators.1 The group ΛT can be identified with the set of charges for the 1-form symme-
try group of T. In other words, the 1-form symmetry group of T is identified as the Pontryagin
dual bΛT of ΛT [1].

Special cases of the problem explored in this paper have been discussed previously in the
literature. For example, in the case where the Riemann surface Cg has no punctures and no
closed twist lines, the group L was already determined in [9] (see also the recent paper [8])
to be H1(Cg , bZ). For the case of g = A1 and arbitrary Cg with arbitrary number of regular
punctures, this problem was discussed in [10, 11]. Another situation where this problem has
been discussed arises whenever there exists a degeneration limit of Cg in which the 4d the-
ory can be identified as a weakly coupled 4d gauge theory. In such a situation, one finds
a canonical splitting L ' Le × Lm, where Le is associated to Wilson line operators and Lm
is associated to ’t Hooft line operators. In such a situation, the constraint of mutual locality
can also be understood as the constraint of Dirac quantization, and choosing a way of sat-
isfying Dirac quantization condition (i.e. a choice of ΛT ⊂ Le × Lm) can be interpreted as

1The choice of ΛT is only part of the full set of choices one needs to make in order to define an absolute 4d
N = 2 theory of Class S. For example, one can obtain a group L0 of dimension-0 and a group L2 of dimension-2
operators in the 4d theory by compactifying the 6d surface operators along the whole Riemann surface and along
a point on the Riemann surface respectively. Then the non-locality of the 6d surface operators descends to a non-
locality between elements of L0 and L2, and to choose an absolute 4d N = 2 theory, one also needs to choose
subgroups Λ0 and Λ2 of L0 and L2, such that there is no non-locality between elements of Λ0 and Λ2. See [8] for
a recent discussion.
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choosing a global form of the gauge group and possible discrete theta parameters [12] (see
also [1]). More recently work related to the higher form symmetry of 4d SCFTs and hologra-
phy was studied in [13]. In the context of non-Lagrangian 4d N = 2 SCFTs of Argyres-Douglas
type the 1-form symmetries were computed using the Type IIB realization using canonical sin-
gularities in [14, 15], using the general observations in [16–18], which are applicable more
generally to geometric engineering of SCFTs in string theory. Many recent papers have tackled
the problem of determining higher-form symmetries in lower-dimensional QFTs starting from
supersymmetric QFTs in six dimensions [8,16,19,20] (see also [21] for a related discussion),
and we expect many more interesting developments in this direction.

Our key proposal that lets us generalize the result of [9] is that a 6d surface operator
wrapping a cycle surrounding a regular puncture does not contribute to the set L of 4d line
operators (modulo screening and flavor charges). In the case of untwisted regular punctures,
any 6d surface operator can be wrapped around the puncture, and hence according to the
above proposal, untwisted regular punctures are invisible to the determination of L and 1-form
symmetry bΛT of a 4d N = 2 theory T obtained after choosing a polarization ΛT ⊂ L. On the
other hand, twisted regular punctures do have a non-trivial influence on the calculation of L.
This is because such a puncture lives at the end of a twist line which acts non-trivially on the 6d
surface operators, and hence only the 6d surface operators left invariant by this action can be
inserted along a loop surrounding the twisted regular puncture. Thus, according to the above
proposal, a twisted regular puncture is only invisible to the 6d surface operators invariant
under the action of the corresponding twist line. As we discuss in various examples throughout
the paper, a justification for the above proposal is that L obtained using it matches the L
obtained using the gauge theory analysis of [12] (see also [1]) whenever there exists a limit
of the compactification in which a weakly coupled 4d N = 2 gauge theory arises [3,23–36].

Let us now discuss a subtlety that arises due to the fact that one needs to take the area
of Cg to zero in passing from the 6d theory to the 4d N = 2 theory. One might worry that
the set L discussed might not be the true set of line operators modulo screening in the 4d
theory. However, this worry is alleviated by the fact that in order to define the 4d N = 2
theory one often needs to perform a non-trivial topological twist2 on Cg , due to which one
expects protected quantities to be independent of the area of Cg . The set L is such a protected
quantity as each element in the set can be represented by a BPS line operator in the 4d N = 2
theory, and the screenings can also be understood in terms of BPS particles. On the other
hand, in situations where one does not need to perform a non-trivial topological twist, one
expects that in general L should only be a subset of line operators (modulo screening) in the
4d N = 2 theory. An example where L does not capture the correct set of line operators is
discussed towards the end of section 3.2.

Many class S theories have known realizations in terms of local Calabi-Yau compactifica-
tions in Type IIB3 in terms of an ALE-fibration over the curve Cg,n. The defect group4 in those
cases are computed from the relative homology three-cycles of the non-compact Calabi-Yau,
or equivalently, the second homology of the link (i.e. the boundary five-fold). From the local
Higgs bundle realization of the ALE-fibration of the Calabi-Yau three-fold, we determine these
homology groups and confirm the defect group for the case of no punctures and for regular
untwisted and twisted punctures: The defect group L has a simple description, purely in terms
of the data on the boundary of the non-compact Calabi-Yau threefold, namely the boundary

2Note that when we refer to untwisted/twisted in this paper, we usually refer to the absence/presence of outer-
automorphism twist lines, not to the topologial twist.

3Although in principle any class S theory should have a IIB compactification associated to it, the precise con-
struction in particular in the case of non-diagonalizable Higgs fields and irregular punctures is – to our knoweldge
– not developed.

4This terminology was introduced in [22] where the defect group of 2-dimensional surface defects in 6d
N = (1,0) theories was computed.
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BF = S3/ΓADE → C fibration, where C is the Gaiotto curve, and the base of the ALE-fibration.
Then the defect group is simply given in terms of the 2-cycles of BF , which extend trivially to
the Calabi-Yau.

In fact, as we discuss in section 6.2, this approach can be viewed to provide a justifica-
tion for our key proposal that a 6d surface operator wrapping a cycle surrounding a regular
puncture does not contribute to L. Moreover, this approach might shed light on the irregular
punctures as, e.g. generalized AD theories have a realization in terms of Type IIB on canonical
singularities, from which in turn the 1-form symmetry can be computed [14,15].

Table 1: Summary of class S data and their impact on the defect group L. The contri-
bution is always squared, so we only list half of the contribution to L for each kind of
Class S datum. For example, the first entry describes that an untwisted handle of the
Riemann surface contributes bZ(G)× bZ(G) to L. The first four entries are universal
for any class S construction – including contributions from the genus, punctures and
twist-lines. Here bZ(G) is the Pontryagin dual of the center Z(G) of the simply con-
nected group G associated to the ADE-algebra g of the 6d (2, 0) theory. Inv(bZ(G), o)
is the subgroup of bZ(G) left invariant by the action of outer-automorphism o on bZ(G).
An o-twisted handle refers to a handle carrying a closed o-twist line wrapped along
either A or B cycle of the handle. An untwisted puncture does not contribute any-
thing to L. The entries after the double-line refer to the S3 twisted compactifications
of D4 (2, 0) theory, where open twist lines form a variety of irreducible configurations
(meson, baryon etc.) and this comprises a summary of our findings in section 4.3,
and we refer the reader there for a detailed discussion.

Class S Data Contribution to
p
L

untwisted handle bZ(G)

o-twisted handle Inv(bZ(G), o)

untwisted regular puncture 0

(open Z2 twist line of type o, open Z2 twist line of type o) bZ(G)/Inv(bZ(G), o)

(open b line, a-twisted handle) Z2

(open b line, open b′ line) 0

(meson, meson) Z2 ×Z2

(meson, b-twisted handle) Z2

(open b line, meson) Z2

(baryon, baryon) Z2 ×Z2

(meson, baryon) Z2 ×Z2

(baryon, b-twisted handle) Z2

(open b line, baryon) Z2

(open b line, mixed configuration) Z2
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Table 2: For the ADE Lie algebras g we denote by G the simply-connected Lie group,
and list the center Z(G), the Pontryagin dual group to the center bZ(G), and the biho-
momorphism 〈·, ·〉. E8 has a trivial center group, which has been denoted by 0 since
we use an additive notation for the group multiplication law throughout this paper.
We denote a generator of bZ(G) for g = An−1, E6, E7 as f ; a generator of bZ(G) for
g = D2n+1 as s; and generators of bZ(G) ' Z2 ×Z2 for g = D2n as s, c. We also define
v := s+ c for g= D2n.

g Z(G) bZ(G) 〈·, ·〉

An−1 Zn Zn 〈 f , f 〉= 1
n

D4n Z2 ×Z2 Z2 ×Z2 〈s, s〉= 0, 〈c, c〉= 0, 〈s, c〉= 1
2

D4n+1 Z4 Z4 〈s, s〉= 3
4

D4n+2 Z2 ×Z2 Z2 ×Z2 〈s, s〉= 1
2 , 〈c, c〉= 1

2 , 〈s, c〉= 0

D4n+3 Z4 Z4 〈s, s〉= 1
4

E6 Z3 Z3 〈 f , f 〉= 2
3

E7 Z2 Z2 〈 f , f 〉= 1
2

E8 0 0 −

We find that L can be roughly constructed from the various kinds of data on the Riemann
surface used for compactification. We collect this rough decomposition of L in Table 1 to be
used as a reference. It is important to note that the table only captures the group-structure
of L, while one of the key ingredients is the pairing on L capturing the mutual non-locality
of 4d line operators. This pairing is required to choose a polarization Λ and determine the
corresponding 1-form symmetry bΛ. The explicit form of the pairing can be found in the main
text.

The paper is organized as follows. In section 2 we review some properties of dimension-
2 surface operators and outer-automorphism discrete 0-form symmetries in 6d N = (2, 0)
SCFTs. In section 3 we discuss 1-form symmetry in absolute 4d N = 2 theories obtained by
compactifying 6d (2, 0) theories on a genus g Riemann surface in the presence of arbitrary
twists by outer-automorphism discrete 0-form symmetries, but without involving any punc-
tures. In section 4 we extend our analysis of previous section to includ arbitrary untwisted
and twisted regular punctures. In section 5 we sketch how our analysis can be extended to
include irregular punctures, giving explicit results for a specific class of irregular punctures
of An−1 (2,0) theories. Finally, in section 6 we argue from a Type IIB realization of class S
theories for the 1-form symmetries. Our notation is summarized in appendix A.

2 Surface Operators and Outer Automorphisms in 6d (2,0)

6d N = (2, 0) SCFTs are relative QFTs classified by a simple Lie algebra g of A, D, E type. Such
a theory contains surface defect operators of dimension 2. Modulo screening by dynamical
objects, these operators can be classified by the Pontryagin dual bZ(G) of the center Z(G) of the
simply connected group G associated to g, which are summarized in table 2. The Pontryagin
dual bZ(G) := Hom(Z

�

G),R/Z
�

of a finite abelian center group is isomorphic to the center
group itself.
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These surface operators are not all mutually local. Consider a correlation function con-
taining two surface operators α,β ∈ bZ(G). As α is moved around β , the correlation function
is transformed by a phase factor5

exp
�

2πi〈α,β〉
�

, (1)

with a bihomomorphism
〈·, ·〉 : bZ(G)× bZ(G) → R/Z . (2)

The bihomomorphism can be specified by providing its values on the generators of bZ(G) [8].
These are also listed in table 2.

The (2, 0) theory admits a discrete 0-form symmetry which can be identified with the group
of outer-automorphisms Og of g, which are

Og = Z2 , (3)

for g= An≥2, Dn≥5, E6, and
OD4

= S3 , (4)

namely the group formed by permutations of three objects. Og is trivial for E7 and E8. The
outer-automorphisms act on representations of g, and hence on bZ(G). For g = An, D2n+1, E6,
the non-trivial element of Og = Z2 acts by sending the generator of bZ(G) to its inverse. For
g = D2n and n ≥ 3, the non-trivial element of Og = Z2 acts by exchanging the two chosen
generators s, c of bZ(G)' Z2×Z2. For g= D4, we generate OD4

= S3 in terms of a Z3 and a Z2
subgroup of it. We choose generators a ∈ Z3 and b ∈ Z2, which act as follows

a : s→ v, v→ c, c→ s ,

b : s→ c, c→ s, v→ v .
(5)

Then the elements of S3 can be written as 1, a, a2, b, ab, a2 b. An important conjugation relation
we will use throughout the paper is bab = a2.

3 Compactifications without Punctures

In this section we consider compactifications of 6d (2, 0) theories on a Riemann surface Cg
of genus g without any punctures. If there are no other ingredients involved in the com-
pactification, such a compactification is called as an untwisted compactification. On the other
hand, we can also consider twisted compactifications which means the following. The outer-
automorphism 0-form symmetry in 6d (2,0) theory discussed in the last section is generated
by topological operators of codimension-1 in the 6d theory. Inserting such a topological op-
erators along a cycle of the Riemann surface gives rise to a “codimension-0 object” in the 4d
theory, which means that the resulting 4d theory itself is different from the 4d theory arising
when no such topological operators are inserted. We often refer to the locus of the topological
operator on Cg as a twist line, and when this locus is a 1-cycle on Cg we say that the twist line
is closed. In the presence of punctures this picture is enhanced by the alternative of open twist
lines. Open twist lines emanate and end at punctures and we discuss their effect in section 4.

Twisted and untwisted compactifications can equivalently be distinguished in the Higgs
bundle description of the compactification. Here the insertion of topological operators along
twist lines gives rise to an action on the Higgs field by an outer automorphism o across these.
The insertions alter the gauge group of the effective 4d N = 2 theory and have a geometric

5Notice (in the following equation) that we define the pairing with a negative sign as compared to the standard
choice, which can be found for example in [8].
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interpretation in the IIB dual description as we explain in more detail in section 6. In this
geometric picture we are further able to justify the key assumption that regular untwisted
punctures are irrelevant in determining the defect group, which we also argue for in the section
4.

3.1 Untwisted Case

Let us compactify a (2,0) theory on a Riemann surface Cg of genus g without any punctures
or twists. This gives rise to a relative 4d N = 2 theory with a set of line defects descending
from the elements of bZ(G) wrapped along various cycles of Cg . That is, the set L of 4d line
defects (modulo screening) can be identified with

H1(Cg , bZ)' H1(Cg ,Z)⊗ bZ . (6)

These line defects are not all mutually local. The violation of mutual locality between two
elements a⊗α, b⊗ β ∈ H1(Cg ,Z)⊗ bZ ' H1(Cg , bZ) is captured by the phase

exp
�

2πi〈α,β〉〈a, b〉
�

, (7)

where 〈a, b〉 is the intersection pairing on H1(Cg ,Z). This gives rise to a pairing on H1(Cg , bZ)
which is the natural combination of the intersection pairing and the bihomomorphism (2)

〈·, ·〉 : H1(Cg , bZ)×H1(Cg , bZ) → R/Z ,

〈a⊗α, b⊗ β〉= 〈a, b〉〈α,β〉 .
(8)

We can specify an absolute 4d N = 2 theory by choosing a maximal set of line operators

Λ ⊂ H1(Cg , bZ) , (9)

which are all mutually local, i.e. the phase (7) is trivial for any two elements in Λ. Such a set Λ
is also referred to as a ‘maximal isotropic subgroup’ or as a ‘polarization’ in what follows. The
1-form symmetry of the absolute 4d N = 2 theory can then be identified with the Pontryagin
dual bΛ of Λ.

Once we choose a set of A and B cycles on Cg , we can decompose

H1(Cg , bZ)' bZ g
A × bZ

g
B , (10)

where bZ g
A is the contribution of A-cycles, and bZ g

B is the contribution of B-cycles. Moreover,
bZ g

A and bZ g
B are maximal isotropic sublattices, and hence provide canonical choices of Λ once a

choice of A and B cycles has been made.

Example: When (2, 0) theory of type g is compactified on a torus, we obtain 4d N = 4 SYM
with gauge algebra g. Choosing an A-cycle and a B-cycle, we write

H1(T
2, bZ)' bZA× bZB . (11)

We assume without loss of generality that the A-cycle is much shorter than the B-cycle. Then,
bZA can be identified as the set of 4d Wilson line operators, and bZB can be identified as the set
of 4d ’t Hooft line operators. Choosing Λ = bZA, we obtain 4d N = 4 SYM with gauge group
G. On the other hand, choosing Λ = bZB, we obtain 4d N = 4 SYM with gauge group G/Z(G)
and all discrete theta parameters turned off. In these cases, we have 1-form symmetry

bΛ' Z(G) , (12)
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which matches with the 1-form symmetry obtained using the Lagrangian description of 4d
N = 4 SYM: when the gauge group is G, this is the electric 1-form symmetry; and then the
gauge group is G/Z(G), this is the magnetic 1-form symmetry.

Other choices of global forms of the gauge group and discrete theta angles are obtained
by choosing other polarizations. For concreteness, consider the case of g= su(4). In this case,
bZA ' bZB ' Z4. The PSU(4) theory with a discrete theta parameter n ∈ {0,1, 2,3} turned on is
obtained by choosing Λ to be the sublattice generated by the element (n, 1) ∈ Z4×Z4 ' bZA×bZB
(where we have represented Z4 as the additive group Z/4Z). Any such choice leads to the
1-form symmetry

bΛ' Z4 . (13)

If we choose the polarization Λ generated by elements (0,2) and (2,0) in Z4 × Z4, then we
obtain the SO(6)' SU(4)/Z2 theory with the discrete theta parameter turned off. In this case
the 1-form symmetry is

bΛ' Z2 ×Z2 . (14)

From the point of view of the Lagrangian description, the two Z2 factors are electric and
magnetic 1-form symmetries respectively. The remaining su(4) theory has SO(6) gauge group
and a discrete theta parameter turned on. This is obtained by choosing Λ to be generated by
the element (1, 2) ∈ Z4 ×Z4 ' bZA× bZB, and the 1-form symmetry group of the theory is

bΛ' Z4 . (15)

Example: Consider compactifying A1 (2,0) theory on Cg with g ≥ 2. In an S-duality frame, in
which A-cycles are much shorter than B-cycles, we obtain the following Lagrangian 4d N = 2
theory

so(4)so(3) su(2) su(2) so(4) · · · so(4) su(2) so(3)

1
2F 1

2F

(16)
where we have a total of 2g − 1 nodes. Each node describes a gauge algebra and an edge
between two nodes denotes a half-bifundamental6 between the two nodes. An edge connecting
an su(2) node to a node labeled 1

2F implies that the corresponding su(2) gauge algebra carries
an extra half-hyper charged in fundamental rep. If we choose Λ = (Z/2Z)gA, we obtain the
4d theory with all the gauge groups being simply connected. In this case, we have 1-form
symmetry

bΛ' Zg
2 , (17)

which can be easily matched with the above Lagrangian description with all the gauge groups
chosen to be the simply connected ones. A Z2 factor arises from each of the g number of so(n)
nodes (where n= 3,4 and the corresponding gauge group is Spin(n)). This Z2 is the subgroup
of center of Spin(n) that acts trivially on the fundamental representation of so(n) as defined
in the above footnote.

6Here, for ease of notation, we are using the convention that the fundamental representation of so(n) is the
n-dimensional vector representation. So, the fundamental representation for so(3) is not the fundamental repre-
sentation for su(2), but rather the adjoint representation. Similarly, the fundamental representation of so(4) is the
(2, 2) rep of su(2)⊕ su(2)' so(4).
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o

o ·αα

=⇒ o ·α= α

Figure 1: A closed Z2 twist line o is inserted along the B-cycle of a torus. An element
α ∈ bZ inserted along the A-cycle is acted upon by o as it crosses the closed twist
line. Since the A-cycle closes back to itself we deduce that only the elements α left
invariant by the action of o can be inserted along the A-cycle.

= =

αo o ·αooα

Figure 2: A closed Z2 twist line o is inserted along the B-cycle of a torus. An element
α ∈ bZ inserted along the B-cycle can be moved around and converted to the element
o ·α inserted along the B-cycle.

3.2 Including Closed Z2 Twist-lines

We can also consider twisted compactifications of 6d N = (2,0) on Cg (without punctures).
This involves wrapping the topological defects generating the outer-automorphism discrete
0-form symmetries along cycles on Cg . In this subsection we either consider those g for which
the outer-automorphism group is Z2, or the case g= D4 with twist lines valued only in the Z2
subgroup of the S3 outer-automorphism group generated by the element b (see section 2). We
can wrap the Z2 twist lines along some L ∈ H1(Cg ,Z2). Let us first discuss the case of g = 1.
Without loss of generality we can choose L to be the B-cycle of the torus.

Then, along the dual A-cycle, we can only wrap those elements of bZ which are left invariant
by the action of Z2 outer-automorphism o – see figure 1. Let us denote this subgroup of bZ by

Inv(bZ , o) := bZ |o = {z ∈ bZ : o · z = z} . (18)

For g= A2n−1, we can only wrap the element nf ∈ bZ ' Z2n and hence

Inv(bZ , o)' Z2 . (19)

Similarly, for g= Dn, only v can be wrapped and hence

Inv(bZ , o)' Z2 . (20)

For g = A2n and g = E6, no element in bZ can be wrapped and hence Inv(bZ , o) is trivial. For
g= E7, E8 the group of outer automorphisms is trivial.

On the other hand, along the B-cycle we can wrap any element α ∈ bZ , but moving it across
the twist line implies that α can be identified with the element o ·α ∈ bZ where o ·α is obtained
by applying the Z2 action on α. See figure 2. The set of 4d line operators descending from the
B-cycle, which we denote as

Proj(bZ , o) :=
bZ

〈g − o · g〉
, (21)
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can be obtained by modding out bZ by the identifications imposed by o, that is by modding out
bZ by the subgroup 〈g−o · g〉 ⊆ bZ generated by the element g−o · g ∈ bZ where g is a generator
of bZ . For g= Dn, the action of o implies that s ∼ c, which implies v ∼ 0, and consequently

Proj(bZ , o)' Z2 , (22)

whose non-trivial element can be identified either with s or with c. For g = An−1 and g = E6,
we have f ∼ − f , which implies that 2mf ∼ 0 for all m ∈ Z. Thus for g= A2n−1, we have

Proj(bZ , o)' Z2 , (23)

whose non-trivial element can be represented by any element of the form
(2m + 1) f ∈ bZ ' Z2n. For g = A2n and g = E6, we can write f = 2mf for m = n + 1
and m= 2 respectively, and hence Proj(bZ , o) is trivial.

Now, notice that Inv(bZ , o) and Proj(bZ , o) have a non-trivial mutual pairing which descends
from the mutual pairing (8) between bZA and bZB. For example, for g = Dn, the generator for
Inv(bZ , o)' Z2 is v ∈ bZA, and the generator for Proj(bZ , o)' Z2 can be taken to be s ∈ bZB. Then
the pairing between the generators is

〈v, s〉=
1
2

. (24)

Had we chosen the generator of Proj(bZ , o) to be c ∈ bZB instead, we would have obtained the
same pairing as above. For g = A2n−1, the generator for Inv(bZ , o) ' Z2 is nf ∈ bZA, and the
generator for Proj(bZ , o) ' Z2 can be taken to be some (2m+ 1) f ∈ bZB. The pairing between
the generators is

〈nf , (2m+ 1) f 〉=
1
2

, (25)

irrespective of the value of m.
An absolute 4d N = 2 theory is then specified by choosing

Λ ⊂ L' Inv(bZ , o)× Proj(bZ , o) , (26)

with Λ being maximally isotropic. The 1-form symmetry of the 4d N = 2 theory can then be
identified with bΛ.

For a general Cg with arbitrary g, the twist lines are specified by picking an element
L ∈ H1(Cg ,Z2). By Poincare duality, we can work with the dual element bL ∈ H1(Cg ,Z2).
Choose a set of A and B cycles on Cg . Then bL assigns values bL(Ai),bL(Bi) ∈ {0, 1} to all cycles
Ai , Bi . We can perform Sp(2g,Z) transformations to transform to a new set of A and B cycles
such that only bL(A1) = 1, while bL(Ai) = 0 for all i 6= 1 and bL(Bi) = 0 for all i. That is, in this
frame, which can always be chosen, the twist line L wraps only the cycle B1. See figure 3.

Now, combining the results discussed previously, we easily identify the set L of 4d line
operators (modulo screening). We find that the polarization is chosen as

Λ ⊂ L ' Inv(bZ , o)× Proj(bZ , o)× bZ g−1
A × bZ g−1

B , (27)

where the pairing is obvious from our previous discussion. The 1-form symmetry group of
such an absolute 4d N = 2 theory is identified as bΛ.

Example: Consider compactifying Dn+1 (2,0) theory on a torus, and wrap a Z2 twist line along
the B-cycle. We can write the set of line defects as

Inv(bZ , o)× Proj(bZ , o)' (Z/2Z)A× (Z/2Z)B . (28)
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BgB1

o

AgA1

Figure 3: A Riemann surface of genus g with a closed Z2 twist line o wrapped along
the B1 cycle.

First, assume that the A-cycle is much shorter than the B-cycle. This corresponds to first com-
pactifying Dn+1 (2, 0) theory on a circle with outer-automorphism twist, leading to 5d N = 2
SYM with sp(n) gauge algebra and discrete theta angle θ = 0 [37]. We further compactify
this 5d theory on another circle obtaining 4d N = 4 SYM with sp(n) gauge algebra. Choosing
Λ = (Z/2Z)A corresponds to picking the simply connected Sp(n) gauge group for the 4d the-
ory, and the 1-form symmetry bΛ ' Z2 can be identified as the electric 1-form symmetry from
the point of view of this Lagrangian 4d theory. Choosing Λ = (Z/2Z)B leads to gauge group
Sp(n)/Z2 with the discrete theta parameter turned off, and the 1-form symmetry bΛ ' Z2 can
be identified as the magnetic 1-form symmetry from the point of view of this Lagrangian 4d
theory.

Now, assume that the B-cycle is much shorter than the A-cycle. This corresponds to first
compactifying Dn+1 (2, 0) theory on a circle without outer-automorphism twist, leading to 5d
N = 2 SYM with so(2n+ 2) gauge algebra. We further compactify this 5d theory on another
circle with a Z2 outer-automorphism twist, leading to 4d N = 4 SYM with so(2n+ 1) gauge
algebra. Choosing Λ = (Z/2Z)A corresponds to picking the SO(2n+ 1) gauge group for the
4d theory with all discrete theta parameters turned off, and the 1-form symmetry bΛ' Z2 can
be identified as the magnetic 1-form symmetry from the point of view of this Lagrangian 4d
theory. Choosing Λ = (Z/2Z)B leads to the simply connected gauge group Spin(2n+ 1), and
the 1-form symmetry bΛ' Z2 can be identified as the electric 1-form symmetry from the point
of view of this Lagrangian 4d theory.

Non-example: Consider compactifying A2n (2, 0) theory on a torus, and wrap a Z2 twist line
along the B-cycle. Our proposal would predict the set L of 4d line defects (modulo screening)
to be

L' Inv(bZ , o)× Proj(bZ , o)' 0 , (29)

which is the trivial group. That is, all the 4d line defects are proposed to be screened. Cor-
respondingly, the 1-form symmetry of the resulting 4d theory is predicted to be trivial. These
predictions are incorrect as we now show.

The limit for which the A-cycle is much shorter than the B-cycle corresponds to first com-
pactifying the A2n (2,0) theory on a circle of radius R6 with an outer-automorphism twist,
thus leading to 5d N = 2 SYM with sp(n) gauge algebra with gauge coupling g2

Y M = R6 and
discrete theta angle θ = π [37]. Due to the presence of non-trivial discrete theta angle the
BPS instanton particle in this 5d theory transforms in the fundamental representation of sp(n).
Thus, the group of line operators (modulo screening) in this 5d theory is trivial. Moreover,
every possible ’t Hooft dimension-2 surface operator in the 5d theory which is local with the
above mentioned instanton BPS particle is screened. Thus, the group of surface operators
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−→

ab b a

−→

a2 b b a2

;

Figure 4: Resolving various S3 lines into a-lines and b-lines.

(modulo screening) in this 5d theory is also trivial.
Compactifying the above 5d theory further on a circle of finite non-zero radius R5, one

expects the 4d theory obtained to have no line defects (modulo screening), since there are no
line or surface defects (modulo screening) in the 5d theory as we saw above. This is so far
consistent with our above predictions.

However, as we send R5, R6→ 0 while keeping R6/R5 preserved, we obtain the 4d N = 4
theory having g = sp(n) with gauge coupling g2

Y M = R6/R5 and theta angle θ = π. This 4d
theory clearly has a Z2 ×Z2 group of 4d line operators (modulo screening). Thus, our above
predictions do not provide the correct answer in the limit when the torus is shrunk to zero
size.

From the point of view of the above 5d theory, this limit decouples the BPS instanton
particle responsible for screening the fundamental Wilson line, since the mass m of the BPS
instanton particle scales as m ∼ 1/R6 →∞. This means that the fundamental Wilson line is
not screened after taking this limit. Moreover, the ’t Hooft operator which was not mutually
local with the BPS instanton particle becomes available, and we recover the correct result
that the set of 4d line operators (modulo screening) is Z2 × Z2. There are 3 distinct choices
of polarization corresponding to choosing the 4d gauge group Sp(n) and Sp(n)/Z2 with a
discrete Z2 valued theta parameter. In each of the three cases, the true 1-form symmetry is
Z2, which is interpreted as an emergent 1-form symmetry from the point of view of the above
6d → 4d compactification.

The fact that our predicted result for L does not capture the true L is not surprising as
explained in the introduction. As discussed there, the predicted L is guaranteed to match
the true L only when a non-trivial topological twist is performed on Cg . When no non-trivial
topological twist is needed, the predicted L is only expected to be a subgroup of the true L. In
the presence of a non-trivial topological twist, the set of BPS particles would be protected as we
take the limit of zero area. When there is no topological twist, the set may not be protected, as
we saw in the example above where a 4d BPS particle (descending from the 5d BPS instanton
particle) was decoupled in the limit of zero area.

3.3 Including Closed S3 Twist-lines

An arbitrary S3 twist on Cg can be manufactured by combining a and b twist lines, which
are two elements of orders three and two respectively inside S3 (see section 2). An arbitrary
S3 twist is described as a trivalent network of topological lines valued in S3 obeying group
composition law. One can separate the a-dependent part out of each edge in this network.
That is, an edge carrying ab can be separated into b and a, and an edge carrying a2 b can be
separated into b and a2, while an edge carrying either of 1, a, a2, b is left alone without any
decomposition (See figure 4). Each trivalent vertex is similarly decomposed into a vertex for
b lines and a vertex for a, a2 lines. To decompose the vertices, we have to sometimes cross
an a or a2 line across a b line. Such a crossing transforms a to a2 and a2 to a. See figure 5.
After decomposing the vertices, the original network has been decomposed into a network of
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ab a2 b

a

−→

b b

a
a2

a

a2

Figure 5: An example of resolving a trivalent S3 vertex into an a-vertex and a b-
vertex. Notice that two b lines meet to form a trivial line (since b2 = 1), which has
not been displayed. The vertex formed by b lines can now be smoothened out.

b lines, with a network of a, a2 lines placed on top of the network of b lines such that any time
a line carrying a or a2 crosses a b line, it is transformed to an a2 or a line respectively.

The network of b lines can be smoothened, and hence is an element L ∈ H1(Cg ,Z2) along
which we wrap b lines. In the previous subsection, we have seen that we can always choose
L = 0 or L = B1. If we choose L = 0, then we can represent the network of a lines as
an element ` ∈ H1(Cg ,Z3) with the dual element being b` ∈ H1(Cg ,Z3). We can perform

Sp(2g,Z) transformations on cycles Ai , Bi to obtain a frame such that b`(A1) ∈ {0, 1}, b`(Bi) = 0
for all i, and b`(Ai) = 0 for all i 6= 1. If b`(A1) = 0, then we are back in the completely untwisted
case discussed earlier. If b`(A1) = 1, then we have an a line wrapping B1. We can see that there
is no element of bZ that can wrap A1. On the other hand, any element of bZ which wraps B1 can
be identified with the trivial element of bZ due to the action of a twist line. Thus, in this case,
an absolute 4d N = 2 theory is chosen by

Λ ⊂ L' bZ g−1
A × bZ g−1

B , (30)

with bZ ' Z2 ×Z2. The 1-form symmetry is identified with bΛ.
Now, let us choose L = B1. Since there is only a single b line, it is not possible to close

an a line that crosses b line. Using this fact, one can argue that the only possible network
of a, a2 lines can be represented as an element ` ∈ H1(Cg ,Z3) which does not wrap A1. Let

the dual element be b` ∈ H1(Cg ,Z3), which has the property that b`(B1) = 0. Now we can
perform Sp(2g − 2,Z) transformations on cycles Ai , Bi for i 6= 1 to obtain a frame such that
b`(Ai) ∈ {0, 1} for i = 1, 2, b`(Bi) = 0 for all i, and b`(Ai) = 0 for all i 6= 1,2. If b`(A1) = 1, then
in total we have the ab line wrapping B1 (where we are representing S3 as a multiplicative
group). But since ab is in the same conjugacy class as b, we can replace ab wrapping B1 by b
wrapping B1 by performing gauge transformation inside S3. Thus, we can always ensure that
b`(A1) = 0. Now if b`(A2) = 0, then we are back in the Z2 twisted case discussed before.

The only new case therefore is when b`(A1) = 0 and b`(A2) = 1, which has been represented
in figure 6. Consider the impact of twist lines on the elements of bZ wrapping B-cycles first.
Notice that s wrapped along the red cycle can be identified with v(B1) (i.e. v wrapped along the
cycle B1) by moving it to the left, and with c(B2) by moving it to the right. See figure 6. Thus
v(B1) = c(B2). Similarly, c wrapped along the red cycle can be identified with v(B1) by moving
it to the left, and with v(B2) by moving it to the right. See figure 6. Thus v(B1) = c(B2) = v(B2)
and we deduce that the B-cycles give rise to a group

Proj(bZ; a, b)' Z2 ×Z2 (31)

generated by s(B1), c(B2). Now, consider the impact of twist lines on the elements of bZ
wrapping A-cycles. We can have v(A1), but nothing can wrap A2 alone. Consider the cycle
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Ag
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B2B1 Bg

A′

Figure 6: A Riemann surface of genus g with a closed Z2 twist line b wrapped along
the B1 cycle and a closed Z3 twist line a wrapped along the B2 cycle. The cycle
A′ (which is homologically equivalent to A1 + A2) has been divided into two sub-
segments, denoted respectively by green and blue. The color is changed as A′ crosses
a twist line, indicating that an element of bZ wrapped along one sub-segment is in
general different from the element of bZ wrapped along the other sub-segment, due
to the action of outer-automorphism associated to the twist line.

A′ = A1+A2 which is denoted as partly blue and partly green in figure 6. We can wrap s along
the blue sub-segment of A′, and c along the green sub-segment of A′. This configuration is
consistent with the twist lines along B1 and B2. We label the 4d line operator obtained via this
configuration as s(A′). Thus, the A-cycles give rise to the group

Inv(bZ; a, b)' Z2 ×Z2 (32)

generated by v(A1), s(A′). It can be easily seen that the pairs of dual elements in
Inv(bZ; a, b)×Proj(bZ; a, b) are {v(A1), s(B1)}, {s(A′), c(B2)}. Thus, an absolute 4d N = 2 theory
is chosen by

Λ ⊂ Inv(bZ; a, b)× Proj(bZ; a, b)× bZ g−2
A × bZ g−2

B , (33)

with Inv(bZ; a, b) and Proj(bZ; a, b) given by (32) and (31) respectively. The 1-form symmetry
of this absolute 4d N = 2 theory is identified with bΛ.

4 Compactifications with Regular Punctures

Regular punctures are a special set of punctures defined by the condition that the Hitchin field
has (at most) a simple pole at the location of the puncture. These punctures can be either
untwisted or twisted. Twisted regular punctures arise at the ends of twist lines, and hence
the Hitchin field transforms by the action of the corresponding outer-automorphism as one
encircles a twisted regular puncture. On the other hand, untwisted punctures do not live at
the ends of non-trivial twist lines, and correpondingly the Hitchin field does not pick up the
action of any non-trivial outer automorphism as one encircles an untwisted regular puncture.
See figure 7.

Moreover, we need to consider a rather small, special subset of regular punctures sepa-
rately. The punctures in this subset are referred to as atypical punctures. In the presence of
atypical regular punctures, the number of simple factors in the gauge algebra arising in a de-
generation limit of the Riemann surface is not equal to the dimension of the moduli space of
the Riemann surface [25–27] (see also [23]). We call a regular puncture which is not atypical
as a typical puncture. An atypical regular puncture can be resolved into some number of typi-
cal regular punctures. Throughout this section until subsection 4.4, a regular puncture always
refers to a typical regular puncture.
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t

Twisted PunctureUntwisted Puncture

Figure 7: A twisted puncture lives at the end of a non-trivial twist line t, while an
untwisted puncture does not live at the end of a non-trivial twist line.

In this section, we consider compactifications of 6d N = (2,0) theories on a Riemann
surface Cg with an arbitrary number of (untwisted and twisted) regular punctures, and an
arbitrary number of closed twist lines (which do not have end-points).

4.1 Untwisted Regular Punctures

Let L be the set of 4d line operators (modulo screening) when a (2, 0) theory is compactified
on a Riemann surface Cg without any punctures, but possibly in the presence of closed twist
lines. The set L (and Dirac pairing on it) was determined in the last few subsections. Now,
insert n regular untwisted punctures on Cg . We propose that the set of 4d line operators
modulo flavor charges (and screening) can again be identified with L. Moreover, an absolute
4d N = 2 theory is obtained by choosing a maximal isotropic subgroup

Λ ⊂ L (34)

and the 1-form symmetry of such an absolute 4d N = 2 theory can be identified with bΛ. In
other words, regular untwisted punctures turn out to be irrelevant for the considerations of
this paper. In the rest of this section, we substantiate this proposal by studying some examples.

Sphere with 4 regular untwisted punctures: As a few examples, we can obtain the following
4d N = 2 gauge theories by compactifying (2,0) theories on a sphere with 4 regular untwisted
punctures:7

• su(n) + 2nF by compactifying An−1 (2,0) theory.

• so(8) + 2F+ 2S+ 2C, so(8) + 4S+ 2C, so(8) + 4S+ C+ F by compactifying D4 (2,0)
theory [29].

• so(9) + 3S+ F, so(10) + 4S, so(10) + 2S+ 4F by compactifying D5 (2,0) theory [29].

• so(11) + S+ 5F, so(11) + 3
2S+ 3F, so(12) + S+ 1

2C+ 4F, so(12) + S+ 6F,
so(12) + 3

2S+ 1
2C+ 2F by compactifying D6 (2,0) theory [29].

• su(4) + 2Λ2 + 4F, sp(2) + 6F by compactifying A3 (2, 0) theory [28].

For this case L is trivial, which is what is expected from the 4d gauge theory description as
it can be checked that the line operators (modulo screening and flavor charges) form a trivial
set in all of the above gauge theories. Consequently, the 1-form symmetry is also trivial for all
of these theories, and the gauge group must be the simply connected one.

7The notation gi +
∑

niRi denotes a 4d N = 2 gauge theory with gauge algebra g along with ni full hypers in
irrep Ri . If ni is half-integral, it means that there is an additional half-hyper in Ri along with bnic number of full
hypers in Ri . F denotes fundamental irrep for su(n) and sp(n), and vector irrep for so(n). S denotes spinor irreps
for so(n) and C denotes co-spinor irrep for so(2n). Λ2 denotes 2-index antisymmetric irrep for su(n) and sp(n).
See also appendix A.
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Torus with 1 regular untwisted puncture and twisted line: We can obtain the following 4d
N = 2 gauge theories by compactifying (2, 0) theories on a torus with 1 regular untwisted
puncture and a twisted line wrapped along a non-trivial cycle:8

• su(2n) + S2 +Λ2 by compactifying A2n−1 (2, 0) theory.

• su(2n+ 1) + S2 +Λ2 by compactifying A2n (2, 0) theory.

In the former case, we have
L' Z2 ×Z2 , (35)

which can be matched with the 4d gauge theory expectation. For a pure su(2n) gauge theory,
the set of Wilson lines (modulo screening) is Z2n with generator W being the Wilson line in
fundamental rep of su(2n). The set of ’t Hooft lines (modulo screening) is also Z2n with gen-
erator H. The Dirac pairing between W and H is 〈W, H〉= 1

2n . Now we add in the matter. The
hypermultiplets in S2 and Λ2 screen 2W , and thus the set of Wilson lines (modulo screening
and flavor charges) can be identified with Z2, generated by W . On the other hand, the ’t Hooft
lines must be mutually local with 2W , and hence the set of ’t Hooft lines (modulo screening
and flavor charges) can be identified with Z2, generated by nH. Thus, we verify the prediction
(35). Choosing the polarization Λ to be the Z2 generated by W leads to gauge group SU(2n).
Choosing Λ to be the Z2 generated by nH or W + nH leads to gauge group SU(2n)/Z2 with
discrete theta parameter turned off or on respectively. In all these cases, the 1-form symmetry
is

bΛ' Z2 . (36)

In the latter case, L is trivial. Correspondingly, the set of line operators in the gauge theory
(modulo screening and flavor charges) is trivial. The set of Wilson lines is trivial because 2W
is a generator of Z2n+1, and the set of ’t Hooft lines is trivial because they need to be mutually
local with W (as W is screened). There is no 1-form symmetry, and the gauge group must be
the simply connected SU(2n+ 1).

Torus with k regular untwisted punctures: 4d N = 2 su(n)k necklace quiver can be ob-
tained by compactifying An−1 (2, 0) theory on a torus with k regular untwisted punctures. In
this case,

L' bZA× bZB ' ZA
n ×Z

B
n , (37)

which can be verified from the 4d gauge theory description. For example, choosing all gauge
groups to be SU(n) corresponds to choosing one of the two Zn factors as the polarization. The
1-form symmetry is then predicted to be

bΛ' Zn , (38)

which can be identified as the diagonal subgroup of the Zk
n center of the gauge group SU(n)k.

Cg with n regular untwisted punctures: Consider compactifying A1 (2, 0) theory on Cg in

the presence of n regular untwisted punctures [3]. According to our proposal, we predict

L' Zg
2 ×Z

g
2 . (39)

There are a number of degeneration limits which lead to a variety of S-dual weakly-coupled
4d conformal gauge theories. The predicted answer for L and the pairing on it can be verified

8S2 denotes the 2-index symmetric representation of su(n). See also appendix A.
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= =

Figure 8: A configuration involving a closed Z2 twist line and an open Z2 twist line
is topologically equivalent to a configuration involving on an open Z2 twist line.

from the point of view of any of these 4d gauge theories. For example, one such degeneration
limit (which exists for n≥ 2) leads to the following 4d gauge theory

su(2)su(2) · · · su(2) so(4)

2F

n− 1

su(2) · · · so(4) su(2) so(3)

2g − 1

1
2F

(40)
where an edge between two su(2) gauge algebras denotes a full hyper in bifundamental, while
an between an su(2) and an so(n) gauge algebra denotes a half-hyper in bifundamental (see
earlier discussion for our slightly non-standard definition of fundamental of so(3) and so(4)).
The edge between a node labeled nF and a node labeled su(2) denotes that the correspond-
ing su(2) gauge algebras carries n extra hypers in fundamental representation, where n is
allowed to be a half-integer to account for half-hypers in fundamental. Choosing a particular
Λ' Zg

2 ⊂ L corresponds to choosing all the gauge groups to be simply connected. The 1-form
symmetry is predicted to be bΛ ' Zg

2 for this choice, which can be verified easily from the 4d
gauge theory description. A Z2 factor arises as the subgroup of the center of each Spin(n)
(where n= 3,4) gauge group that leaves the vector rep of Spin(n) invariant.

Example and Comparison with 6d (1,0) on T2: The last class of example has an alterna-

tive realization in terms of a 6d (1,0) on T2 [38,39]: For g = 1 and n= 2 the A1 theory on C1,2
has defect group L= Z2×Z2. We can alternatively think of this as the compactification of the
6d (1,0) theory that is the SU(2)−SU(2) conformal matter theory of rank 2, i.e. 2 M5-branes
probing C2/Z2. The 6d theory has a tensor branch geometry, which has two non-compact
curves, with SU(2) singularities, sandwiching a (−2)-curve, with SU(2) gauge group. The de-
fect group given by Z2, and the dimensional reduction of this on T2, results in LA = LB = Z2.
More generally, 2 M5-branes probing a Zk singularity results in a ‘hybrid’ class S theory, where
an A1-trinion is glued to an Ak−1 one (see (2.6) in [39]). The tensor branch-geometry changes
simply to SU(k) groups both on the non-compact curves as well as on the (−2)-curve, thus
leaving the defect group, and the expected 1-form symmetry unchanged.

4.2 Z2-twisted Regular Punctures

In this subsection we either consider those g for with the outer-automorphism group is Z2, or
the case g= D4 with twist lines valued only in the Z2 subgroup of the S3 outer-automorphism
group generated by the element b (see section 2).
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Figure 9: An element α ∈ bZ with the property o ·α= o can be moved across a regular
twisted puncture living at the end of an o twist line. Left: α crossing a Z2 twist line
o ending on the regular puncture. Center: A topological deformation creates a loop
of α around the regular puncture, and an α line passing nearby that does not cross
the twist line. Right: The loop of α surrounding the regular twisted puncture can be
collapsed using our main proposal.

Consider a (2, 0) theory compactified on Cg with Z2 twist lines, in the presence of both
untwisted9 and twisted regular punctures. Twisted regular punctures are the regular punctures
that appear at the ends of open Z2 twist lines. First thing to note is that if we have an open
twist line (i.e. a twist line with two end points), then we can always remove all the closed Z2
twist lines, since combining a closed twist line with an open twist line results in a single open
twist line, shown in figure 8.

Recall that in the last subsection we proposed that any element of bZ that can be inserted
on a loop surrounding an untwisted regular puncture does not contribute to the set of 4d
line defects (modulo flavor charges). Similarly, we propose that any element of bZ that can be
inserted on a loop surrounding a twisted regular puncture does not contribute to the set of 4d
line defects (modulo flavor charges) either. However, notice that the only elements of bZ that
can be inserted along a loop surrounding a single twisted regular puncture are those that are
left invariant by the Z2 outer-automorphism action. The set of such invariant elements was
denoted by Inv(bZ , o) earlier. So, according to this proposal, only the elements in the subset
Inv(bZ , o) can be moved across a twisted regular puncture, while the elements not in the subset
Inv(bZ , o) cannot be moved across a twisted regular puncture. See figure 9.

Now, in order to determine the set of 4d line defects, we collect all the twisted regular
punctures in one corner of Cg as shown in figure 10. From our above proposal we deduce
that the set of line operators LB

i originating from elements of bZ wrapping the cycle Bo
i can be

identified with bZ/Inv(bZ , o). Furthermore, we can parametrize the set of line operators LA
i,i+1

originating from the cycle Ao
i,i+1 with the elements of bZ inserted along the green sub-segment

of Ao
i,i+1. If we insert an element α of the subgroup Inv(bZ , o) along the green sub-segment, then

the element inserted along the blue sub-segment is also α. This configuration can be moved
across the twisted regular punctures and hence trivialized. Thus, LA

i,i+1 can also be identified

with bZ/Inv(bZ , o). Finally, notice that any element wrapped along
∑

i Bo
i can be unwrapped

on the other side of Cg , and hence any element wrapped along Bo
n can be written in terms of

elements wrapped along Bo
i for 1≤ i ≤ k− 1.

Thus, the set of 4d line operators (modulo screening and flavor charges) L can be written
as

L'
k−1
∏

i=1

LA
i,i+1 ×

k−1
∏

i=1

LB
i × bZ

g
A × bZ

g
B . (41)

9From this point onward, the reader should assume that an arbitrary number of untwisted regular punctures
are always present. We do not mention them in what follows since they do not enter in the computation of L and
1-form symmetry bΛ.
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k
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k−1,k
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Bg

Ag

Figure 10: A Riemann surface with 2k Z2 twisted regular punctures and k open
twist lines of type o, all collected in a corner of the genus g Riemann surface. From
this point onward, an arbitrary number of untwisted regular punctures are always
present, but are never displayed. Further we fix cycles associated with punctures and
twist lines to be oriented counterclockwise and omit orientations in future pictures.
Similarly we fix the orientation of the A, B cycles of the Riemann surface as shown
above going forward.

For g= A2n−1, we have
LA

i,i+1 ' LB
i ' Zn . (42)

We choose f wrapped along Bo
i as the generator gB

i of LB
i , and the element obtained by wrap-

ping f along the green sub-segment of Ao
i,i+1 to be the generator gA

i,i+1 of LA
i,i+1. Then, the

non-trivial pairings10 mod 1 are

〈gA
i,i+1, gB

i 〉=
1
n

, (43)

〈gA
i,i+1, gB

i+1〉= −
1
n

, (44)

along with the previously discussed pairing on bZ g
A × bZ

g
B .

For g= A2n, we have
LA

i,i+1 ' LB
i ' Z2n+1 . (45)

We choose f wrapped along Bo
i as the generator gB

i of LB
i , and the element obtained by wrap-

ping f along the green sub-segment of Ao
i,i+1 to be the generator gA

i,i+1 of LA
i,i+1. Then, the

non-trivial pairings are

〈gA
i,i+1, gB

i 〉=
2

2n+ 1
, (46)

〈gA
i,i+1, gB

i+1〉= −
2

2n+ 1
. (47)

10The pairing is a product of an intersection number and the value of the bihomomorphism (2). Intersections are
taken to be positive if complementing the direction of the first and second argument by a vector pointing outward
from the page results in a right handed basis.
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For g= Dn, we have
LA

i,i+1 ' LB
i ' Z2 . (48)

We choose s wrapped along Bo
i as the generator gB

i of LB
i , and the element obtained by wrap-

ping s along the green sub-segment of Ao
i,i+1 to be the generator gA

i,i+1 of LA
i,i+1. Then, the

non-trivial pairings are

〈gA
i,i+1, gB

i 〉=
1
2

, (49)

〈gA
i,i+1, gB

i+1〉=
1
2

. (50)

For g= E6, we have
LA

i,i+1 ' LB
i ' Z3 . (51)

We choose f wrapped along Bo
i as the generator gB

i of LB
i , and the element obtained by wrap-

ping f along the green sub-segment of Ao
i,i+1 to be the generator gA

i,i+1 of LA
i,i+1. Then, the

non-trivial pairings are

〈gA
i,i+1, gB

i 〉=
1
3

, (52)

〈gA
i,i+1, gB

i+1〉= −
1
3

. (53)

With these pairings, an absolute 4d N = 2 theory is chosen by a maximal isotropic subgroup

Λ ⊂ L'
k−1
∏

i=1

LA
i,i+1 ×

k−1
∏

i=1

LB
i × bZ

g
A × bZ

g
B . (54)

The 4d theory carries a 1-form symmetry bΛ. In the rest of this subsection, we substantiate our
proposal by discussing a few Lagrangian examples.

Sphere with 2 regular twisted punctures: The following 4d N = 2 theories can be produced
by compactifying (2,0) theories on a sphere with 2 regular twisted punctures and 2 regular
untwisted punctures:

• sp(n− 1) + 2nF by compactifying Dn (2,0) theory.

• sp(3)+3F+Λ3, sp(3)+ 11
2 F+ 1

2Λ3, so(8)+8F+S, so(7)+4F+S by compactifying D4
(2,0) theory [26].

• so(10) + S+ 6F, so(9) + S+ 5F by compactifying D5 (2,0) theory [26].

• so(12) + 1
2S+ 8F, so(11) + 1

2S+ 7F by compactifying D6 (2,0) theory [26].

• so(13) + 1
2S+ 7F by compactifying D7 (2,0) theory [26].

• su(4) + 3Λ2 + 2F, sp(2) + 2Λ2 + 2F by compactifying A3 (2, 0) theory [25].

In such a compactification, our proposal predicts that L is trivial, which can be verified by com-
puting the set of line operators (modulo screening and flavor charges) in all of the above gauge
theories. Hence, the 1-form symmetry is trivial and the gauge group in all these examples must
be the simply connected one.

Sphere with 4 regular twisted punctures: The following 4d N = 2 theories can be produced
by compactifying (2, 0) theories of type g 6= D4 on a sphere with 4 regular twisted punctures:
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• so(2n) + (2n− 2)F, so(2n− 1) + (2n− 3)F by compactifying Dn (2,0) theory.

• su(4) + 4Λ2, sp(2) + 3Λ2 by compactifying A3 (2,0) theory [25].

In both of these cases we have

L' LA
1,2 ×LB

1 ' Z2 ×Z2 , (55)

with the generators gA
1,2 and gB

1 having the pairing

〈gA
1,2, gB

1 〉=
1
2

, (56)

which can be verified from the perspective of Wilson-’t Hooft line operators in all of the above
mentioned 4d gauge theories. The 1-form symmetry bΛ for any choice of Λ ⊂ L is

bΛ' Z2 , (57)

which can also be easily verified. For any consistent choice of gauge group and discrete theta
parameters in the above gauge theories, the 1-form symmetry of the gauge theory is Z2.

Let us consider another example, which is of the 4d N = 2 quiver gauge theory

su(2n)su(n) · · · su(2n) su(n)

su(n)

k

su(n)

(58)

where an edge between two nodes denotes a bifundamental hyper between the corresponding
gauge algebras. This theory can be produced by compactifying A2n−1 (2,0) theory on a sphere
with 4 regular twisted punctures and k+3 regular untwisted punctures [25]. In this case, our
proposal predicts that

L' LA
1,2 ×LB

1 ' Zn ×Zn , (59)

with the generators gA
1,2 and gB

1 having the pairing

〈gA
1,2, gB

1 〉=
1
n

, (60)

which can be verified from the point of view of the 4d gauge theory as well. For example,
choosing one of the Zn factors in (59) as polarization leads to the choice of simply connected
gauge group for all gauge algebras involved in the 4d gauge theory. The 1-form symmetry

bΛ' Zn (61)

can then be identified from the gauge theory viewpoint as follows. Each bifundamental hyper
between two SU(2n) groups, only preserves the diagonal part of the two Z2n centers, while a
bifundamental hyper between an SU(n) group and an SU(2n) group preserves the diagonal
Zn of the obvious Zn ×Zn subgroup of the center Zn ×Z2n. Thus, in total, only a diagonal Zn
of the Zk+4

n subgroup of the Z4
n × Z

k
2n center of the total gauge group acts trivially on all the

matter content.
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Torus with 6 regular twisted punctures: The 4d N = 2 quiver

so(4n+ 2)sp(2n) sp(2n) so(4n+ 2) sp(2n)

so(4n+ 2)

(62)

can be constructed by compactifying D2n+1 (2,0) theory on a torus with 6 regular twisted
punctures [23]. Our proposal would predict that for this gauge theory we have

L' LA
1,2 ×LA

2,3 ×LB
1 ×LB

2 × bZA× bZB , (63)

with
LA

1,2 ' LA
2,3 ' LB

1 ' LB
2 ' Z2 (64)

and
bZA ' bZB ' Z4 . (65)

The non-trivial pairings on L are defined in terms of generators gA
i,i+1, gB

i , gA, gB of LA
i,i+1,LB

i ,
bZA, bZB respectively

〈gA
1,2, gB

1 〉=
1
2

, 〈gA
1,2, gB

2 〉=
1
2

, 〈gA
2,3, gB

2 〉=
1
2

, 〈gA, gB〉=
1
4

. (66)

Let us reproduce this result by explicitly studying the line operators of the 4d gauge theory.
Before accounting for the matter content, the Wilson lines for all the gauge algebra factors
form the group

ZW '
3
∏

i=1

(Z4)i ×
3
∏

i=1

(Z2)i , (67)

where (Z4)i is associated to gauge algebra so(4n+2)i , and (Z2)i is associated to gauge algebra
sp(2n)i . We choose generators W so

i for (Z4)i and W sp
i for (Z2)i . The matter content implies

that the set of Wilson lines (modulo screening) can be generated by W so
1 −W so

2 , W so
2 −W so

3 , W so
3 .

The first two generators are of order two, and the last generator is of order four. Thus, the
contribution of Wilson lines to the set of line operators (modulo screening and flavor charges)
is

LW ' Z2 ×Z2 ×Z4 , (68)

with the generators identified above. On the other hand, before accounting for the matter
content, the ’t Hooft lines for all the gauge algebra factors form the group

ZH '
3
∏

i=1

(Z4)i ×
3
∏

i=1

(Z2)i , (69)

where (Z4)i is associated to gauge algebra so(4n+2)i , and (Z2)i is associated to gauge algebra
sp(2n)i . We choose generators Hso

i for (Z4)i and Hsp
i for (Z2)i . The matter content requires us

to choose the subset LH of ZH which is mutually local with the matter content. We can choose
the generators for LH to be 2Hso

1 , 2Hso
2 ,

∑

i(H
so
i + Hsp

i ). The first two generators are of order
two, and the last generator is of order four. Thus, the contribution of ’t Hooft lines to the set
of line operators (modulo screening and flavor charges) is

LH ' Z2 ×Z2 ×Z4 , (70)
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Figure 11: Various kinds of irreducible configurations of open twist lines valued in
S3. We name these 1-8 as follows: open b line, open ab line, open a2 b line, meson,
baryon, anti-baryon, anti-mixed configuration, mixed configuration. These config-
urations are distinct except for the anti-mixed and mixed configuration, see figure
16.

with the generators identified above. We thus see that clearly

LW ×LH ' L (71)

and the generators can be identified as

gA
i,i+1 =W so

i −W so
i+1, gB

i = 2Hso
i , gA =W so

3 , gB =
∑

i

(Hso
i +Hsp

i ) . (72)

It is straightforward to check that the Dirac pairing between Wilson and ’t Hooft lines repro-
duces the pairing (66) with the above identification.

4.3 S3-twisted Regular Punctures

Now we consider incorporating more general regular twisted punctures in the D4 (2,0) theory.
We can have the following various irreducible configurations of twisted regular punctures as
shown in figure 11:

• Two punctures joined by a Z2 twist line implementing the transformation b ∈ S3 as one
crosses it. We refer to this configuration as the open b line.

• Two punctures joined by a Z2 twist line implementing the transformation ab ∈ S3 as one
crosses it. We refer to this configuration as the open ab line.

• Two punctures joined by a Z2 twist line implementing the transformation a2 b ∈ S3 as
one crosses it. We refer to this configuration as the open a2 b line.

• Two punctures joined by an oriented Z3 twist line implementing the transformation
a ∈ S3 as one crosses it in a particular direction (which is left to right in the fourth
configuration of figure 11). We refer to this configuration as a “meson”.

• Three punctures acting as sources of three a twist lines. The three twist lines meet at a
point and annihilate each other. We refer to this configuration as a “baryon”.
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ab a2 b b ab

a2 b

b

=

ab

a2 b

b

=

ab

(ab)(a2 b)(ab)

b

=

abb

Figure 12: A configuration involving three different types open Z2 twist lines can
be topologically deformed to a configuration involving only two different types of
open Z2 twist lines. Going from the third configuration to the last configuration
involves fusing the closed ab loop with the open a2 b line, which conjugates a2 b by
ab, resulting in an open b line.

ab ba a

ab

b

=

a

ab

a

=

b ab

=

b

a(ab)a−1

Figure 13: A configuration involving two different types open Z2 twist lines and
a meson can be topologically deformed to a configuration involving a meson and
open Z2 twist lines of a single type only. Going from the third configuration to the
last configuration involves fusing the closed a loop with the open ab line, which
conjugates ab by a, resulting in an open b line.

b

=

a

aa

a

aa

b

=

b babb

=

bbab

bab
a

a a

Figure 14: A baryon can be converted into an anti-baryon by passing it through a b
twist line.

• Three punctures acting as sinks of three a twist lines. The three twist lines originate
from a common point. We refer to this configuration as an “anti-baryon”.

• Two punctures emitting a2 b and b Z2 twist lines which combine to form an a twist line
which ends at a puncture. We refer to this configuration as a “mixed” configuration.

• A puncture emitting an a twist line which then splits into a2 b and b Z2 twist lines.
Each Z2 twist line ends on a puncture. We refer to this configuration as an “anti-mixed”
configuration.

There are plenty of redundancies when we try to combine the above configurations:

• Consider a situation where we have an open b line, an open ab line and an open a2 b
line. We can pass the open a2 b line through the ab line to convert the open a2 b line
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Figure 15: A configuration involving a baryon and an anti-baryon is topologically
equivalent to a configuration involving three mesons.

a

b a2 b

=

a

a2 b b

=

bab

ba2 b

=

a

ba2 b

Figure 16: An anti-mixed configuration is topologically equivalent to a mixed con-
figuration.

into an open b line. See figure 12. At the end of this process, we obtain a situation in
which we have two open b lines and one open ab line.

• Consider a situation where we have an open a line, an open b line and an open ab line.
We can pass the open ab line through the a line to convert the open ab line into an open
b line. See figure 13. At the end of this process, we obtain a situation in which we have
one open a line and two open b lines.

• Consider a situation where we have a baryon and an open b line. We can pass the baryon
through the b line to convert the baryon into an anti-baryon. See figure 14. At the end
of this process, we obtain a situation in which we have an anti-baryon and an open b
line.

• A baryon and an anti-baryon can be decomposed as three mesons. See figure 15.

• An anti-mixed configuration can be converted into a mixed configuration. See figure 16.
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Figure 17: Two mixed configurations can be converted into a meson and two different
kinds of open Z2 twist lines. Using figure 13, this is equivalent to a meson plus two
open b lines of the same type, since the last configuration can be further transformed
according to figure 13.

• Two mixed configurations can be decomposed as a meson and two open b lines. See
figure 17.

• A mixed configuration plus a meson is equivalent to a baryon plus an open b line. See
figure 18.

• A mixed configuration plus a baryon is equivalent to two mesons plus an open b line.
See figure 19.

Accounting for the above redundancies we can easily show that the only topologically distinct
possibilities for non-trivial S3 twist lines on Cg are as follows:

• k open b lines. This was discussed in the previous subsection.

• k open b lines plus a Z3 closed twist line.

• k open b lines plus k′ open ab lines. Inserting an additional Z3 closed twist line does
not lead to a topologically distinct scenario. See figure 20.

• l mesons.

• l mesons plus a Z2 closed twist line.

• k open b lines plus l mesons.

• p baryons.

• p baryons plus l mesons.
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a a
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b

a a

a= =

b
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aaa−1(a2 b)a

Figure 18: A mixed configuration plus a meson can be converted into a baryon plus
an open b line. We first convert the mixed configuration into an anti-mixed configu-
ration. Then we fuse the open a line internal to the meson with the junction for the
mixed configuration to create a combined junction for all the open twist lines. Then
we move a puncture living at the end of a2 b line over a puncture acting as sink for
a line. This converts the latter puncture into a puncture acting as source for a line
(due to conjugation). Then we move this puncture over the puncture living at the
end of a2 b line, thus converting the latter into a puncture living at the end of a b
line. Finally we can separate a full open b line from the junction leaving behind a
baryon.

a

ba2 b

=

a

aa

a

ba2 b

a

a a

=

ba2 b

a

a

a

=

a

a2 b

b

a

a

=

b

b

a

a a

=

a a b

Figure 19: A mixed configuration and a baryon can decomposed into two mesons
and an open b line.

• One baryon plus l mesons plus a Z2 closed twist line.

• One baryon plus k open b lines.

• One baryon plus k open b lines plus l mesons.

• One mixed configuration.

• One mixed configuration plus k open b lines.
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=

a

= =

Figure 20: A configuration involving a closed Z3 twist line and two different types
of open Z2 twist lines is topologically equivalent to a configuration involving only
the two different types of open Z2 twist line without the closed Z3 twist line. The
different types of Z2 twist lines are distinguished by different colors in the above
figure.
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Figure 21: Riemann surface of genus g with k open b lines and a closed a line. Each
cycle Ai

o is broken into green and blue sub-segments lying between two difference
kinds of twist lines the cycle crosses.

We now determine L for all of the above topologically distinct possibilities one-by-one.
First consider the case where we have k > 0 open b lines and a closed a line. We define cycles
Ao

i and Bo
i as shown in figure 21, and let the 4d line operators (modulo screening and flavor

charges) originating from them be LA
i and LB

i respectively. As before, LB
i ' Z2 which can be

generated by wrapping s along Bo
i . On the other hand, LA

i ' Z2 as well, and the generator
can be chosen to be s wrapped along the green sub-segment and c wrapped along the blue
sub-segment. We call the generators of LA

i and LB
i as gA

i and gB
i respectively. Then we can

write the set L of 4d line operators (modulo screening and flavor charges) as

L'
k
∏

i=1

LA
i ×

k
∏

i=1

LB
i × bZ

g−1
A × bZ g−1

B , (73)

with the non-trivial pairings being

〈gA
i , gB

i 〉=
1
2

, (74)

along with the pairing on bZ g−1
A × bZ g−1

B .
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Figure 22: Riemann surface of genus g with k open b lines and k′ open b′ lines with
b′ 6= b. The two different kinds of Z2 twisted open lines are displayed using different
colors.

Now consider the case where we have k > 0 open b lines and k′ > 0 open b′ := ab lines.
See figure 22. Then the line operators arising from Bb′

i can be generated by wrapping v along
Bb′

i . However, v wrapped along
∑

i Bb′
i is equivalent to v wrapped along

∑

i Bb
i , which in turn

can be trivialized as v can be moved across twisted regular punctures of type b. Similarly, s
wrapped along

∑

i Bb
i is trivial. Thus, we can write the set L of 4d line operators (modulo

screening and flavor charges) as

L'
k−1
∏

i=1

LA,b
i,i+1 ×

k−1
∏

i=1

LB,b
i ×

k′−1
∏

i=1

LA,b′

i,i+1 ×
k′−1
∏

i=1

LB,b′

i × bZ g
A × bZ

g
B , (75)

where LA,b
i,i+1 ' Z2 and LA,b′

i,i+1 ' Z2 are the sets of line operators descending from cycles Ab
i,i+1

and Ab′
i,i+1 respectively, and LB,b

i ' Z2 and LB,b′

i ' Z2 are the sets of line operators descending

from cycles Bb
i and Bb′

i respectively. Let the corresponding generators be gA,b
i,i+1, gA,b′

i,i+1, gB,b
i ,

gB,b′

i . We can define gA,b
i,i+1 by inserting s on the green sub-segment of Ab

i,i+1 and c on the blue

sub-segment of Ab
i,i+1; gA,b′

i,i+1 by inserting c on the green sub-segment of Ab′
i,i+1 and v on the

blue sub-segment of Ab′
i,i+1. Then the non-trivial pairings are

〈gA,b
i,i+1, gB,b

i 〉= 〈g
A,b
i,i+1, gB,b

i+1〉= 〈g
A,b′

i,i+1, gB,b′

i 〉= 〈gA,b′

i,i+1, gB,b′

i+1 〉=
1
2

, (76)

along with the pairing (8) on bZ g
A × bZ

g
B .

Now consider the situation containing l mesons only. See figure 23. Then the line operators
LB,a

i arising from the cycle Ba
i can be identified with Z2 × Z2, since no element of bZ can be

moved across a Z3 twisted puncture. We label the line operator in LB,a
i arising by wrapping
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Figure 23: Riemann surface of genus g with l mesons.

s along Ba
i as sB,a

i , and the line operator in LB,a
i arising by wrapping c along Ba

i as cB,a
i . We

choose sB,a
i and cB,a

i as the generators for LB,a
i . Finally,

∑

i sB,a
i =

∑

i cB,a
i = 0. Similarly, the

line operators LA,a
i,i+1 arising from the cycle Aa

i,i+1 can be identified with Z2 ×Z2. The element

of LA,a
i,i+1 arising by wrapping s along the green sub-segment of Aa

i,i+1 is called sA,a
i,i+1, and the

element of LA,a
i,i+1 arising by wrapping v along the green sub-segment of Aa

i,i+1 is called vA,a
i,i+1.

We choose sA,a
i,i+1 and vA,a

i,i+1 as the generators for LA,a
i,i+1. In total, we have

L'
l−1
∏

i=1

LA,a
i,i+1 ×

l−1
∏

i=1

LB,a
i × bZ g

A × bZ
g
B , (77)

with the non-trivial pairings being

〈sA,a
i,i+1, sB,a

i 〉= 〈s
A,a
i,i+1, sB,a

i+1〉= 〈v
A,a
i,i+1, cB,a

i 〉= 〈v
A,a
i,i+1, cB,a

i+1〉=
1
2

, (78)

along with the pairing on bZ g
A × bZ

g
B .

Now let us consider l mesons in the presence of a closed Z2 twist line of type b. See figure
24. Notice that now

∑

i sB,a
i =

∑

i cB,a
i 6= 0. Thus, we label the Z2 subgroup of LB,a

l generated

by sB,a
l as SB,a

l . Correspondingly, there is a new cycle Aa,b
l shown in figure 24 giving rise to a 4d

line operator, which is obtained by wrapping c along the green sub-segment and s along the
blue sub-segment of Aa,b

l . We label this set of line operators as LA,a,b
l ' Z2 and its generator

described above as cA,a,b
l . We choose the generator of the set of line operators Proj(bZ , o)' Z2

originating from cycle B1 shown in figure 24 to be c wrapping the cycle B1. Then, we obtain
that the total set of 4d line operators is

L'
l−1
∏

i=1

LA,a
i,i+1 ×

l−1
∏

i=1

LB,a
i ×LA,a,b

l ×SB,a
l × Inv(bZ , o)× Proj(bZ , o)× bZ g−1

A × bZ g−1
B , (79)

with non-trivial pairings (78), along with the pairing on bZ g−1
A × bZ g−1

B and the new pairings

〈sA,a
l−1,l , sB,a

l 〉= 〈c
A,a,b
l , sB,a

l 〉=
1
2

. (80)
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Figure 24: Riemann surface of genus g with l mesons and a closed b line.
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Figure 25: Riemann surface of genus g with k open b lines and l mesons.

Consider now l mesons with 2k 6= 0 Z2 twisted regular punctures of type b. We have
the constraint that

∑

i sB,a
i =

∑

i cB,a
i =

∑

i gB,b
i . Also we have a new cycle Ab,a

k,1 as shown

in figure 25 which contributes a group LA,b,a
k,1 ' Z2 of 4d line operators which is generated

by gA,b,a
k,1 which is obtained by wrapping c along the green sub-segment and s along the blue

sub-segment of Ab,a
k,1. In total, we have

L'
k−1
∏

i=1

LA,b
i,i+1 ×LA,b,a

k,1 ×
k
∏

i=1

LB,b
i ×

l−1
∏

i=1

LA,a
i,i+1 ×

l−1
∏

i=1

LB,a
i × bZ

g
A × bZ

g
B . (81)

The non-trivial pairings are those on bZ g
A × bZ

g
B , those given in (78), and those listed below

〈gA,b
i,i+1, gB,b

i 〉= 〈g
A,b
i,i+1, gB,b

i+1〉= 〈g
A,b,a
k,1 , gB,b

k 〉= 〈g
A,b,a
k,1 , sB,a

1 〉= 〈g
A,b,a
k,1 , cB,a

1 〉=
1
2

. (82)

Consider now the case involving p baryons. See figure 26. Let LA,a′

i,i+1 be the set of 4d

line operators arising from the cycle Aa′
i,i+1 and LB,a′

i be the set of 4d line operators arising

from the cycle Ba′
i . We can wrap any element of bZ ' Z2 × Z2 along Ba′

i which implies that

LB,a′

i ' Z2 × Z2. We choose the generators of LB,a′

i to be sB,a′

i and cB,a′

i , which are obtained
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Figure 26: Riemann surface of genus g with p baryons.
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Figure 27: Riemann surface of genus g with l mesons and p baryons.

by wrapping s and c respectively along Ba′
i . Similarly, LA,a′

i,i+1 ' Z2 ×Z2. The element of LA,a′

i,i+1

arising by wrapping s along the green sub-segment of Aa′
i,i+1 (which implies that v is wrapped

along the red sub-segment and c is wrapped along the blue sub-segment) is called sA,a′

i,i+1, and

the element of LA,a′

i,i+1 arising by wrapping v along the green sub-segment of Aa′
i,i+1 is called

vA,a′

i,i+1. We choose sA,a′

i,i+1 and vA,a′

i,i+1 as the generators for LA,a′

i,i+1. In total, we have

L'
p−1
∏

i=1

LA,a′

i,i+1 ×
p−1
∏

i=1

LB,a′

i × bZ g
A × bZ

g
B , (83)

with the non-trivial pairings being

〈sA,a′

i,i+1, sB,a′

i 〉= 〈sA,a′

i,i+1, sB,a′

i+1 〉= 〈v
A,a′

i,i+1, cB,a′

i 〉= 〈vA,a′

i,i+1, cB,a′

i+1 〉=
1
2

, (84)

along with the pairing on bZ g
A × bZ

g
B .

Consider now the case involving p baryons and l mesons. See figure 27. Along with the
previously discussed groups LA,a

i,i+1,LA,a′

i,i+1,LB,a
i ,LB,a′

i , we also have a group LA,a,a′

l,1 arising from

the cycle Aa,a′

l,1 shown in figure 27. We have LA,a,a′

l,1 ' Z2 × Z2. The element of LA,a,a′

l,1 arising

by wrapping s along the green sub-segment of Aa,a′

l,1 is called sA,a,a′

l,1 , and the element of LA,a,a′

l,1
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Figure 28: Riemann surface of genus g with l mesons, one baryon and a closed b
line.

arising by wrapping v along the green sub-segment of Aa,a′

l,1 is called vA,a,a′

l,1 . We choose sA,a,a′

l,1

and vA,a,a′

l,1 as the generators for LA,a,a′

l,1 . In total, we have

L'
l−1
∏

i=1

LA,a
i,i+1 ×LA,a,a′

l,1 ×
l
∏

i=1

LB,a
i ×

p−1
∏

i=1

LA,a′

i,i+1 ×
p−1
∏

i=1

LB,a′

i × bZ g
A × bZ

g
B , (85)

with
〈sA,a,a′

l,1 , sB,a
l 〉= 〈s

A,a,a′

l,1 , sB,a′

1 〉= 〈vA,a,a′

l,1 , cB,a
l 〉= 〈v

A,a,a′

l,1 , cB,a′

1 〉=
1
2

(86)

being the new non-trivial pairings.
We now consider the case having a single baryon, l mesons and a closed b line. See figure

28. The only cycle not discussed above is Aa′,b
1 which gives rise to a set of 4d line operators

LA,a′,b
1 ' Z2 whose generator cA,a′,b

1 is obtained by wrapping c along the green sub-segment of

Aa′,b
1 . Moreover, we can write cB,a′

1 =
∑l

i=1 sB,a
i + sB,a′

1 +
∑l

i=1 cB,a
i implying that the relevant

set of 4d line operators arising from Ba′
1 can be taken to be SB,a′

1 ' Z2 which is generated by

sB,a′

1 . In total, we have

L'
l−1
∏

i=1

LA,a
i,i+1 ×LA,a,a′

l,1 ×
l
∏

i=1

LB,a
i ×LA,a′,b ×SB,a′

1 × bZ g−1
A × bZ g−1

B , (87)

with
〈cA,a′,b

1 , sB,a′

1 〉=
1
2

(88)

being the only new non-trivial pairing not discussed previously.
We now consider the case having a single baryon and k open b lines. See figure 29. The

only cycle not discussed above is Ab,a′

k,1 which gives rise to a set of 4d line operators LA,b,a′

k,1 ' Z2

whose generator gA,b,a′

k,1 is obtained by wrapping c along the green sub-segment of Ab,a′

k,1 . More-

over, we can write cB,a′

1 = sB,a′

1 =
∑k

i=1 gB,b
i . In total, we have

L'
k−1
∏

i=1

LA,b
i,i+1 ×LA,b,a′

k,1 ×
k
∏

i=1

LB,b
i × bZ g

A × bZ
g
B , (89)
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Figure 29: Riemann surface of genus g with k open b lines and one baryon.
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Figure 30: Riemann surface of genus g with k open b lines, l mesons and one baryon.

with
〈gA,b,a′

k,1 , gB,b
k 〉=

1
2

(90)

being the only new non-trivial pairing not discussed previously.
Consider now the case involving a single baryon, k open b lines and l mesons. See figure

30. We can quickly deduce that

L'
k−1
∏

i=1

LA,b
i,i+1 ×LA,b,a

k,1 ×
k
∏

i=1

LB,b
i ×

l−1
∏

i=1

LA,a
i,i+1 ×LA,a,a′

l,1 ×
l
∏

i=1

LB,a
i × bZ g

A × bZ
g
B . (91)

There are no new non-trivial pairings.
Consider now the final case involving a single mixed configuration along with k ≥ 0 open

b lines. See figure 31. We have s(Ba′′
1 ) = c(Ba′′

1 ) =
∑k

i=1 gB,b
i . Thus Ba′′

1 contributes no new
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Figure 31: Riemann surface of genus g with k open b lines and one mixed configu-
ration.

4d line operators. Moreover, we can obtain a non-trivial 4d line operator gA,b,a′′

k,1 by wrapping

c along the green sub-segment of Ab,a′′

k,1 . In total, we have

L'
k−1
∏

i=1

LA,b
i,i+1 ×LA,b,a′′

k,1 ×
k
∏

i=1

LB,b
i × bZ g

A × bZ
g
B , (92)

with
〈gA,b,a′′

k,1 , gB,b
k 〉=

1
2

(93)

being the only new non-trivial pairing not discussed previously. L is trivial for k = 0.
We finish this subsection by discussing some Lagrangian examples. Some more examples

illustrating the results of this subsection appear in the next subsection on atypical punctures.

Sphere with 2 Z2 twisted regular punctures of type b and 2 Z2 twisted
regular punctures of type b′ 6= b: The 4d N = 2 theory g2 + 4F (carrying g2 gauge algebra
and 4 full hypers in irrep of dimension 7) can be constructed using a compactification of D4
(2, 0) theory on a sphere with 4 regular twisted punctures, 2 open Z2 twist lines of type b and
1 open Z3 twist line of type a as shown in figure 32 [24]. Combining the two open Z2 twist
lines, we obtain a configuration with 4 regular twisted punctures, 1 open Z2 twist line of type b
and 1 open Z2 twist line of type b′ 6= b. See figure 32. Using our results above, we would thus
conclude that L should be trivial. Indeed, this is easily verified from the Lagrangian g2 + 4F
description.

The 4d N = 2 gauge theories so(8) + 3F + 3S and so(7) + 2F + 3S can be obtained by
compactifying D4 (2,0) theory on a sphere with 4 regular twisted punctures, 2 open Z2 twist
lines of type b and 1 closed Z3 twist line of type a as shown in figure 33 [24]. We can move the
closed Z3 twist line such that it encircles 2 regular Z2 twisted punctures as shown in figure 33.
This corresponds to conjugating the enclosed open Z2 twist line b by a. Thus, we can remove
the closed a twist line if we convert this open Z2 twist line from type b to type b′. See figure
33. This is the same configuration that we obtained above, and hence we expect that L should
be trivial. Indeed, this is the case for the two 4d N = 2 gauge theories so(8) + 3F+ 3S and
so(7) + 2F+ 3S.
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b = b bb

a2 b
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Figure 32: Converting a configuration of open twist lines on a sphere discussed in
[24] to a configuration of open twist lines discussed in this paper.

b b =a b ba = a2 b b

Figure 33: Converting a configuration of open twist lines on a sphere discussed in
[24] to a configuration of open twist lines discussed in this paper.

a
Resolution aa2 b

b

Figure 34: Left: Compactification on a sphere involving a typical untwisted regular
puncture, a typical twisted regular puncture and an atypical twisted regular punc-
ture. The atypical punctures are denoted by a circle super-imposed on top of a cross,
while typical punctures are denoted by a cross only. Right: The atypical puncture is
resolved to two typical twisted regular punctures. The resolution results in a mixed
configuration.

4.4 Atypical Regular Punctures

Atypical regular punctures can be straightforwardly included in our analysis by resolving each
atypical regular puncture into typical regular punctures. See the beginning of Section 4 for the
definition of atypical regular punctures and further references which discuss them in detail.

Gauge theory fixtures of type (1,ω,ω2): We can obtain the 4d N = 2 gauge theory
sp(2) + 6F by compactifying D4 (2, 0) theory on a sphere with one typical untwisted regu-
lar puncture, one typical twisted regular puncture acting as the sink of an a twist line, and
one atypical twisted regular puncture acting as the source of an a twist line [27], as shown in
figure 34. The atypical puncture can be resolved into two Z2 twisted typical regular punctures.
After this resolution, we observe that we have a sphere with what we referred to as a “mixed”
configuration in section 4.3. Our analysis there suggests that we should have a trivial L, which
matches the result obtained using the sp(2) + 6F gauge theory description.

As another example, we can obtain the 4d N = 2 gauge theory

su(3)F su(2) sp(2) F

Λ2

(94)
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Figure 35: Left: Compactification on a sphere involving a typical untwisted regular
puncture and two atypical twisted regular punctures. Center: Each atypical puncture
is individually resolved into two typical twisted regular punctures. Right: After a
topological manipulation, we find two open Z2 twist lines of different types.

Resolution a2 b

b

a

a
= b

a

a

a

a

Figure 36: Left: Compactification on a sphere involving two typical twisted regular
punctures and one atypical twisted regular puncture. Center: The atypical puncture
is resolved into two typical twisted regular punctures. Right: After a topological
manipulation, described in Figure 19, we end up with an open b line and a meson.

by compactifying D4 (2,0) theory on a sphere with one typical untwisted regular puncture, one
atypical twisted regular puncture acting as the sink of an a twist line, and one atypical twisted
regular puncture acting as the source of an a twist line [27]. See figure 35. The atypical
puncture acting as the source can be resolved into two Z2 twisted typical regular punctures,
and the atypical puncture acting as the sink can be resolved into two Z2 twisted typical regular
punctures plus one untwisted typical regular puncture. See figure 35. After this resolution, we
observe that we have a sphere containing two different kinds of open Z2 twist lines: an open
b line and an open b′ := a2 b line. Thus, from our analysis in section 4.3 we expect to obtain a
trivial L, which matches the result obtained using the above gauge theory description, as the
reader can readily verify.

Gauge theory fixtures of type (ω,ω,ω): We can obtain the 4d N = 2 gauge theory

sp(3) + 2Λ2 by compactifying D4 (2,0) theory on a sphere with three twisted regular punc-
tures acting as sources of a twist lines, thus forming a “baryon-like” configuration [27]. See
figure 36. Two out of these three punctures are typical, while one of them is atypical. The
atypical puncture can be resolved into two Z2 twisted typical regular punctures. See figure
36. After this resolution, we observe that we have a sphere containing a configuration that
we dealt with in figure 19. From the result of that figure, we know that this is equivalent to a
sphere containing a meson-like configuration and an open b line. Thus, from our analysis in
section 4.3 we expect to obtain

L' Z2 ×Z2 , (95)

which matches the result obtained using the above gauge theory description, as the reader can
readily verify.

As another example, we can obtain the 4d N = 2 gauge theory with gauge algebra
sp(2)⊕sp(2) and hypermultiplet content 1

2(Λ
2, F)+(Λ2, 1)+ 7

2(1, F) by compactifying D4 (2,0)
theory on a sphere with three twisted regular punctures acting as sources of a twist lines, thus
forming a “baryon-like” configuration [27]. See figure 37. One out of these three punctures
is typical, while two of them are atypical. Each atypical puncture can be resolved into two Z2
twisted typical regular punctures. See figure 37. After this resolution, we can perform some
topological moves, as shown in figure 37, and reduce to a mixed configuration plus an open
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Figure 37: Before the arrow: Compactification on a sphere involving one typical
twisted regular puncture and two atypical twisted regular punctures. After the ar-
row: Each atypical puncture is resolved into two typical twisted regular punctures.
After some topological manipulations, we end up with an open b line and a mixed
configuration.

b line. Thus, from our analysis in section 4.3 we expect to obtain

L' Z2 ×Z2 , (96)

which matches the result obtained using the above gauge theory description, as the reader can
readily verify.

5 Towards Irregular Punctures

The analysis of this paper has focused on compactifications of 6d (2,0) theories involving only
regular (either untwisted or twisted) punctures. In this section, we discuss how our analysis
can be generalized to incorporate irregular punctures, which are the punctures where the
Hitchin field has poles of higher-order than simple poles.

A class of irregular punctures for An−1 (2,0) theory were discussed in [40]. The Hitchin
field at an irregular puncture of type Pk in this class can be written as

ϕ =
1

z1+ 1
n−k

diag(0, · · · , 0,Λ,Λω, · · · ,Λωn−k−1)dz

+
1
z

diag(m1, m2, · · · , mk, mk+1, mk+1, · · · , mk+1)dz + · · · , (97)

where 0 ≤ k ≤ n− 2 and the mass parameters satisfy
∑k+1

i=1 mi = 0. Here ω is an n-th root of
unity and Λ denotes the dynamically generated scale. For irregular puncture of type Pn−1, we
can instead write

ϕ =
1
z2

diag(Λ,Λ, · · · ,Λ,−(n− 1)Λ)dz +
1
z

diag(m1, m2, · · · , mn)dz + · · · , (98)

where
∑n

i=1 mi = 0.
We would now like to understand how these irregular punctures impact the determination

of 1-form symmetry. In particular, we would like to understand whether an element α of
bZ ' Zn can be moved across an irregular puncture of type Pk (where k can take values in
{0,1, · · · , n − 1}). To answer this question, we consider compactifying An−1 (2, 0) theory on
a sphere with two irregular punctures both of same type Pk. This leads to the 4d N = 2
asymptotically free gauge theory su(n)+2kF [40]. We know from the gauge theory viewpoint
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α

Figure 38: A line carrying α ∈ bZ can be deformed across an irregular puncture of
type Pk for 1≤ k ≤ n− 1.

W

H

Figure 39: A sphere two irregular punctures, both of type Pk. Two cycles W and H
on this punctured sphere have been displayed.

that L is trivial if k > 0, from which we can bootstrap that an element α of bZ ' Zn wrapped
along the cycle W displayed in figure 39 can be contracted to a trivial loop. In other words,
we learn that any element α of bZ ' Zn can be moved across an irregular puncture of type
Pk if 1 ≤ k ≤ n − 1, see figure 38. Thus, as far as considerations about 1-form symmetry
are concerned, an untwisted irregular puncture of type Pk for k > 0 behaves exactly like an
untwisted regular puncture, i.e. such an untwisted irregular puncture can be neglected when
determining the 1-form symmetry.

On the other hand, for k = 0, we obtain the 4d N = 2 pure su(n) gauge theory. This gauge
theory has

L= Zn ×Zn , (99)

with the firstZn factor arising from Wilson line operators, and the secondZn factor arising from
’t Hooft line operators. The Zn factor associated to Wilson line operators can be understood as
arising from 6d surface operators wrapping the cycle W shown in figure 39. This identification
can be made by observing that when W is very small, we first reduce the 6d theory to 5d N = 2
su(n) SYM and then reduce this 5d theory to the 4d N = 2 pure su(n) gauge theory due to the
presence of boundary conditions associated to the two irregular punctures. In this reduction
the 6d surface operators wrapping W become line operators in the 5d theory and hence can
be identified with the Wilson line operators of the 5d theory, and then subsequently as Wilson
line operators of the 4d theory. This means that no element α of bZ ' Zn wrapped along the
cycle W can be contracted to a trivial loop. Hence, an untwisted irregular puncture of type P0
does not allow any element α of bZ ' Zn to be moved across it, as shown in figure 40.

Now one can ask what is the interpretation of the Zn factor associated to ’t Hooft line
operators from the point of view of the compactification of the 6d theory. We propose that
this is associated to elements of bZ inserted along the oriented segment labeled H in figure 39.
One can then observe that

〈 f (W ), f (H)〉=
1
n

. (100)

That is, the pairing between elements of L obtained by wrapping generator f of bZ along W
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P0 P0

6=

α

α

Figure 40: A line carrying 0 6= α ∈ bZ cannot be deformed across an irregular puncture
of type P0.

and H is precisely the Dirac pairing between fundamental Wilson and ’t Hooft operators in the
gauge theory.

Notice that our above proposal for ’t Hooft line operators implies that a 6d surface operator
can end on the codimension-2 defect associated to an irregular puncture of type P0. This is
our first example of a puncture having this property. One would imagine that more general
irregular punctures discussed in [41–43] allow a subgroup of bZ to end on them, depending
on the type of puncture. We defer a more thorough analysis to a future work, but finish this
section by substantiating our proposal for the properties of punctures of type Pk by studying
the following example.

Example: Consider compactifying A1 (2,0) theory on Cg with n1 regular punctures, n2 punc-
tures of type P1 and n3 punctures of type P0. From our above analysis, we expect

L'
�

Zn3−1
2 ×Zg

2

�

A×
�

Zn3−1
2 ×Zg

2

�

B . (101)

In a particular degeneration limit, we obtain the following 4d N = 2 asymptotically free gauge
theory

su(2)su(2) · · · su(2)

so(3)

2F

n1 − 1

su(2) · · · so(4) su(2) so(4)

2g − 1

su(2)

su(2)

F su(2)

su(2)

F

· · ·

su(2)

su(2) su(2)

F

n2

su(2)

su(2)

··
·

su(2)

su(2)

su(2)

n3

1
2F

(102)

where a trivalent vertex denotes a half-hyper in trifundamental representation, and n2, n3
count the number of such half-trifundamentals. From the above gauge theory description one
can verify that L is indeed given by (101).
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6 1-Form Symmetries from Type IIB Realization

6.1 Class S from Type IIB

Class S theories can also have a realization in terms of a dual, Type IIB compactification, using
geometric field theory methods, developed for general N = 2 theories, predating class S [44].
Type IIB on a canonical singularity gives rise to N = 2 SCFTs, and more generally can provide
a way to engineer gauge theories. The Calabi-Yau X geometries that realize class S theories,
can be constructed as ALE-fibrations over a curve

C̃2/ΓADE ,→ X → Cg,n , (103)

where the resolutions parametrized for the ALE-fiber are encoded in a Higgs field ϕ. The
connection is made through the Higgs bundle, [45, 46]. The Higgs field ϕ is a meromorphic
1-form valued in the respective ADE Lie algebra g. We consider the 6d (2,0) theory of type
ADE on Cg,n, with the standard topological twist that retains N = 2 supersymmetry in 4d, i.e.
SO(5)→ SU(2)×U(1)R and SO(6)→ SO(4)×U(1)L twisting the U(1)L by combining it with
the U(1)R R-symmetry transformation. The scalars give rise to the (1,0) and (0, 1) forms ϕ
and ϕ̄. These define together with the gauge field components (along the curve) the Higgs
bundle, satisfying the Hitchin equations. The spectral equation defines the SW curve inside
the co-tangent bundle of Cg,n

det(ϕ −λ Id) = 0 . (104)

We assume that the Higgs bundle is diagonalizable, i.e. ϕ = diag(λ1, · · · ,λr). The spectral
data encodes a local Calabi-Yau, which defines an ALE-fibration over C . Each sheet is labeled
by a fundamental weight of g. For simplicity let us focus on the AN−1 case. There are N
sheets, associated to the Li , i = 1, · · · , N fundamental weights, with the simple roots realized
as αi = Li − Li+1. The Higgs field eigenvalues λi encode the volumes of the rational curve in
the ALE-fibration, where each simple root is associated to a rational curve P1

i , whose volume
is determined by

∫

P1
i

Ω= λi −λi+1 . (105)

When λi = 0 for all i, the full SU(N) symmetry is restored. More precisely, the spectral curve
allows us to construct three-cycles as follows: if bα are the branch points of the spectral curve,
where two sheets of the cover collide, we can construct an S3 by considering the ALE-fiber
over the line `α,β connecting two branch-points in C . At each of the branch-points a 2-sphere
collapses, and thus we obtain an S3. These three-spheres are Lagrangian and give rise in IIB
to the hypermultiplets in 4d. Other three-cycles with the topology of S2 × S1 are obtained by
considering the rational curves fibered over closed 1-cycles in the base, which correspond to
vectors.

Regular, untwisted punctures correspond to simple poles of ϕ. In the ALE-fibration, this
maps to sending the volumes of (some) P1s to infinity. The punctures are labeled by partitions
of N =

∑

nihi , where ni is the multipliticy of the box of height hi in the Young tableaux. The
flavor symmetry is GF = S(

∏

i U(ni)). E.g. the full punctures corresponding to the partition
1N the flavor symmetry is SU(N), corresponds to sending all N sheets to infinity with the same
rate, parameterized by the residue of the pole of ϕ.

Open and closed twist lines alter the global structure of the ALE geometry. Open twist
lines are inserted between punctures and closed twist lines are wrapped along a 1-cycle B
of the base C , both are labelled by an element o of the outer automorphism group. When
encircling a puncture or traversing a 1-cycle intersecting B the Higgs field is acted on the
by the outer automorphism o, see figure 41. In the ALE-fibration, rational curves P1 locally
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π

Σ o

Cg,n

Figure 41: The outer automorphism (106) acting on the spectral cover.

sweeping out distinct three-cycles are identified reducing the total number of 3-cycles in X .
The Poincaré dual of these three-cycles are used to expand the supergravity four-form and
construct the gauge bosons of the effective 4d theory. The gauge algebra of the theory is
therefore determined by the initial choice of ADE gauge group and twist line structure.

Example: Consider the 6d (2,0) A2n−1 theory compactified on the torus Cg = T2 with a
closed b twist line along the B cycle. The spectral cover Σ is a 2n-sheeted cover of the torus
T2. Each sheet can be thought of as associated to a fundamental weight Li , i = 1, · · · , 2n, and
the outer automorphism acts as

o : Li ←→ −L2n+1−i , (106)

which induces an action on the simple roots αi = Li − Li+1 ↔ α2n−i . The root αn is fixed.
There are n 3-cycles, one for each orbit of the outer automorphism on the P1 fibers which
determine the root system of the 4d gauge algebra. These 3-cycles intersect linearly with the
3-cycle corresponding to the fixed P1 lying at the end of this chain. The root originating from
this P1 is shorter than than the remaining n−1 roots and we find the roots system of type Bn.
Overall we find the gauge group to reduce from SU(2n) to Spin(2n+1) when introducing the
twist line, the center of Spin(2n+ 1) is Z2.

6.2 Line operators from IIB

The line operators in this context are realized in terms of wrapped D3-branes, on non-compact
three-cycles, modulo screening by particles, which are D3-branes wrapped on compact three-
cycles. To study these, consider the analog arguments as in [14, 16, 18]. In relative homol-
ogy, where ∂ X is the boundary link 5-fold of the Calabi-Yau three-fold, the line operators are
thereby realized in terms of

L=
H3(X ,∂ X ,Z)

H3(X ,Z)
. (107)

Chasing this through the long exact sequence in relative homology,

· · · −→ H3(X ,Z)
q
−→ H3(X ,∂ X ,Z)

∂
−→ H2(∂ X ,Z)

ι
−→ H2(X ,Z) −→ · · · , (108)

we find that

L=
H3(X ,∂ X ,Z)

H3(X ,Z)
=

H3(X ,∂ X ,Z)
Im(q)

= Im(∂ ) = Ker(ι) . (109)
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In particular we can write it as

L= {` ∈ H2(∂ X ,Z)| ` is a 2-cycle in ∂ X which becomes trivial in X } . (110)

The pairing on L governing the mutual non-locality of 4d line operators descends straightfor-
wardly from the linking pairing on H2(∂ X ,Z).

The boundary ∂ X receives contributions BF and Bk from the fibers and punctures respec-
tively

∂ XCg,n
= BF ∪

n
⋃

k=1

Bk , (111)

where the topology of Bk is given by

C̃2/ΓADE ,→ Bk → S1 , (112)

and the topology of BF is given by

S3/ΓADE ,→ BF → Cg,n . (113)

The contribution of (113) part of ∂ XCg,n
to H2(∂ XCg,n

,Z) is obtained by choosing an ele-

ment α ∈ H1(S3/ΓADE), which is then fibered over a loop L in Cg,n. We have

H1(S
3/ΓADE,Z)' bZ(G) , (114)

where G is the simply connected Lie group associated to the ADE Lie algebra g associated
to ΓADE. Moreover, an outer-automorphism of g acts on H1(S3/ΓADE,Z) in precisely the same
way as it acts on bZ(G). When the loop L crosses an outer-automorphism twist line o, α is
transformed to o · α. Moreover, any such element (α, L) ∈ H2(BF ,Z) ⊂ H2(∂ X ,Z) is clearly
trivial, when embedded into X since α is contractible when embedded into C2/ΓADE. Thus,
contributions of type (α, L) give rise to a non-trivial subgroup

LF ⊆ L , (115)

where L is defined in (110).
Now, notice that the above contributions of the kind (α, L) are precisely the contributions

we have been considering throughout the paper. Let us label the group of line operators
obtained using the earlier considerations in the paper as L0. Then we clearly have

L0 ⊆ LF . (116)

Thus, the only way for our previous calculation L0 and the Type IIB calculation L to match is
if

L0 = LF = L . (117)

In the rest of this subsection, we justify this equality.
First thing we need to show is that the contribution of all boundary components Bk to L is

trivial. Indeed, the only 2-cycles in Bk are the exceptional P1s in C̃2/ΓADE, but none of these
2-cycles is trivial when embedded into X , and hence do not contribute to L.

Next, we need to show that (L,α) and (L′,α) give rise to the same element in H2(∂ X ,Z) if
L′ is obtained from L by passing it over an untwisted regular puncture. Consider the limiting
configuration of L approaching an untwisted regular puncture k, say from the left in figure
42. We hit the boundary component Bk at a particular point p ∈ S1. The fiber component α

embeds into the fiber
�

C̃2/ΓADE

�

p of Bk at p via the inclusion map

ιp : S3/ΓADE ,−→
�

C̃2/ΓADE

�

p . (118)
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= = =

Figure 42: Consider an untwisted regular puncture and a boundary cycle
(L,α) ∈ H2(BF ,Z), with α ∈ H1(S3/ΓADE). We illustrate how the untwisted punc-
ture does not affect this contribution to the defect group. Left: A line L, associated
to (L,α). Right: A line L′ associated to (L′,α). Center-left: Limiting configuration
as L is moved towards an untwisted regular puncture. Center-right: Limiting config-
uration as L′ is moved towards the puncture.

= = =
oooo

Figure 43: Consider again (L,α), (L′,α) ∈ H2(BF ,Z) with α ∈ H1(S3/ΓADE). Left:
A line L associated to (L,α). Right: A line L′ associated to (L′,α) along the blue
subsegment and o · α along the green subsegment. Center-left: Limiting configura-
tion as L is moved towards an untwisted regular puncture. Center-right: Limiting
configuration as L′ is moved towards the puncture. The central equality only holds
for α= o ·α.

Similarly, the limiting configuration of L′ approaching an untwisted regular puncture k, say
from the right in figure 42, hits the boundary component Bk at a particular point p′ ∈ S1.

The fiber component α embeds into the fiber
�

C̃2/ΓADE

�

p′ of Bk at p′ via the inclusion map

described above. Since the two embeddings of α into
�

C̃2/ΓADE

�

p and
�

C̃2/ΓADE

�

p′ respectively

are homotopic to each other, we deduce that (L,α) = (L′,α) as elements of H2(∂ X ,Z).
Finally, we need to show that (L,α) and (L′,α) give rise to the same element in H2(∂ X ,Z)

if L′ is obtained from L by passing it over an twisted regular puncture, as long as α is left
invariant by the action of the outer-automorphism associated to the twist line emanating from
the twisted regular puncture. The argument proceeds exactly as in the untwisted case since
the twist line is immaterial if α is left invariant by the corresponding outer-automorphism
action. On the other hand, if α is not left invariant by the outer-automorphism, then L′ needs
to be divided into two sub-rays (denoted by blue and green respectively in figure 43) with α
inserted along the blue sub-ray and o ·α inserted along the green sub-ray. In particular, there
is no consistent limiting configuration as L′ approaches the puncture, and the above argument
fails. Thus, L and L′ give rise to different elements of H2(∂ X ,Z) (and hence L) if α is acted
upon by the twist line emanating from the regular puncture.

The above argument can be viewed as a justification of our key assumption used in the
earlier parts of the paper: If L is a loop surrounding a regular (untwisted or twisted) puncture
carrying an elementα ∈ bZ(G) left invariant by the twist line emanating from the puncture, then
such a loop is trivial in L. As an alternative approach one might consider arguing that closing
an untwisted regular puncture does not change the defect group. It would be interesting to
develop this point of view. Here we note, that in the geometric descriptions one could argue as
folllows: regular punctures characterize base points at which fibral P1’s both decompactify and
potentially braid upon. For line operators the decompactification of cycles is immaterial. We
can therefore rescale Higgs field with a factor of the base coordinate z preserving the braiding
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structure. This completely removes regular punctures. In other words, regular punctures can
be filled in from the perspective of line operators and do not contribute to the defect group.
It would be interesting to develop the precise dictionary, and to expand it to include irregular
punctures.

Generically the above procedure can be applied to any canonical singularity. E.g. even in
the case of general irregular punctures, which realize Argyres Douglas theories, that do not
necessarily admit a Lagrangian description. The theories of type AD[G, G′] have a realization
in terms of Type IIB on a canonical singularity and for AD[G, G′] theories, the 1-form symme-
tries are non-trivial only for G = AN with N > 1 and G′ = D, E type, see [14,18]. These results
should provide further insights into computing the one-form symmetry for irregular punctures
more generally.
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A Summary of Notation

• g: Mostly denotes the A,D,E Lie algebra denoting the 6d N = (2,0) theory under con-
sideration. Can also denote a simple gauge algebra (simply or non-simply laced) for a
4d N = 2 gauge theory depending on the context.

• G: The simply connected group associated to a simple Lie algebra g.

• Z(G): The center of a simply connected group G.

• bZ(G): The Pontryagin dual of the center of a simply connected group G. For a 6d
N = (2,0) theory associated to an A,D,E Lie algebra g, bZ(G) captures the group of
dimension-2 surface operators modulo screenings, also known as the defect group of the
6d theory.

• Cg : A Riemann surface of genus g which might carry punctures depending on the con-
text.

• L: The set of line operators (modulo screenings and flavor charges) for a relative 4d
N = 2 theory obtained by compactifying a 6d N = (2, 0) theory on a Riemann surface
Cg , possibly in the presence of twist lines and (untwisted and twisted) regular punctures.

• 〈·, ·〉: Often referred to as pairing. It takes two elements of bZ(G) or of L, and outputs an
element of R/Z which captures the phase associated to mutual non-locality of the defect
operators associated to the two elements.

• Λ: Often referred to as polarization or maximal isotropic subgroup. This is a maximal
subgroup of L such that the pairing 〈·, ·〉 on L restricted to this subgroup Λ vanishes. A
choice of such a Λ is correlated to the choice of an absolute 4d N = 2 theory.
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• bΛ: Pontryagin dual of polarization Λ. Captures the 1-form symmetry of the absolute 4d
N = 2 theory associated to a polarization Λ.

• F: Denotes fundamental representation for g = su(n), sp(n); vector representation for
g = so(n); representations of dimension 7,26,27,56 for g = g2, f4, e6, e7 respectively;
and the adjoint representation for g= e8.

• Λn: Denotes the n-index antisymmetric irreducible representation for g= su(n), sp(n).

• S2: Denotes the 2-index symmetric representation for g= su(n).

• S: Denotes the irreducible spinor representation for g= so(n).

• C: Denotes the irreducible cospinor representation for g= so(2n).

• nR: Denotes n full hypermultiplets transforming in a representation R.

• 2n+1
2 R: Denotes n full hypermultiplets and a half-hypermultiplet transforming in a pseu-

do-real representation R.
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