
SciPost Phys. 11, 107 (2021)

Entanglement dynamics in Rule 54:
Exact results and quasiparticle picture

Katja Klobas? and Bruno Bertini

Rudolf Peierls Centre for Theoretical Physics, Oxford University,
Parks Road, Oxford OX1 3PU, United Kingdom

? katja.klobas@physics.ox.ac.uk

Abstract

We study the entanglement dynamics generated by quantum quenches in the quantum
cellular automaton Rule 54. We consider the evolution from a recently introduced class
of solvable initial states. States in this class relax (locally) to a one-parameter family of
Gibbs states and the thermalisation dynamics of local observables can be characterised
exactly by means of an evolution in space. Here we show that the latter approach also
gives access to the entanglement dynamics and derive exact formulas describing the
asymptotic linear growth of all Rényi entropies in the thermodynamic limit and their
eventual saturation for finite subsystems. While in the case of von Neumann entropy
we recover exactly the predictions of the quasiparticle picture, we find no physically
meaningful quasiparticle description for other Rényi entropies. Our results apply to
both homogeneous and inhomogeneous quenches.
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1 Introduction

The growth of entanglement is arguably the most universal phenomenon observed so far in
studies of quantum many-body dynamics. Whenever a quantum many body system with short-
range interactions is prepared in a non-equilibrium state with low entanglement and then let
to evolve unitarily, the entanglement among neighbouring spatial regions is observed to grow
linearly in time. For instance, this behaviour has been reported in conformal field theories, both
rational [1] and holographic [2], in free systems of fermions [3] and bosons [4], as well as
in interacting integrable [4,5] and non-integrable systems [6–11]. Remarkably, the growth of
entanglement has even been measured in cold-atom experiments [12–14]. In essence, the only
exceptions to this empirical rule are systems exhibiting localisation [15–17], confinement [18],
or when the dynamics is not purely unitary, for example if the evolution is monitored with
measurements [19–21].

Given such a universal phenomenology a natural direction for the theoretical research has
been to find an equally universal description and identify the seemingly very general emer-
gent laws describing it. Recent years have witnessed important progress in this direction with
the proposal of two alternative effective descriptions of the spreading of entanglement which
are believed to work in integrable and chaotic systems respectively. The first, known as the
quasiparticle picture [1], explains the growth of entanglement by imagining that correlations
are transported by quasiparticle excitations. These excitations, stable because of integrability,
are created when the system is driven out of equilibrium and are correlated with those cre-
ated nearby. During the evolution correlated quasiparticles move far apart, effectively spread-
ing correlations and entanglement throughout the system. The second effective description is
known as the membrane picture [22] and interprets the entanglement geometrically. In essence
it claims that the entanglement between two complementary regions is given by the tension
of the minimal spacetime surface that separates the two.

A quantitative verification of these pictures and their predictive power in genuinely inter-
acting systems, however, has proven to be a daunting task. This is ultimately due to the fact
that the out-of-equilibrium dynamics of interacting many-body quantum systems are generi-
cally too complicated to be characterised analytically and, moreover, the growth of entangle-
ment provides a great limitation to the most efficient numerical methods at our disposal to
treat quantum many-body systems [23]. For this reason, the benchmark provided by exact
solutions in minimal solvable cases is of rare value.

Surprisingly, such a benchmark has recently become available in the case of quantum
chaotic systems with the discovery of dual-unitary circuits [24]. In these systems one can ex-
ploit a duality between space and time to compute exactly the time-evolution of many relevant
quantities [9–11,25–30], including that of entanglement, by performing an evolution in space
(or in the “time-channel”) rather than in time. Up to very recently, however, no such solvable
benchmark was known for the case of interacting integrable models. The situation changed
recently, when Ref. [31] presented an exact characterisation of the growth of entanglement
in the quantum cellular automaton Rule 54, which can be considered one of the simplest ex-
amples of interacting integrable models (see also [32–38]). The result was again based on a
time-channel approach and lead to an exact characterisation of the growth of entanglement
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when the system is initialised in a particular class of initial states.
The objective of this paper is to extend the exact results presented in Ref. [31] to a larger

class of initial states. This is the second of two papers dedicated to this task. While in the first
part of our work [39], which in the following we will refer to as “Paper I”, we focussed on
the dynamics of local observables, here we consider the evolution of the entanglement. The
extension that we present bares a remarkable physical significance. Indeed, while the states
considered in Ref. [31] all relax (locally) to the Gibbs state with infinite temperature, here
we show that exact results can be obtained also for states relaxing to richer Gibbs ensembles
(characterised by an arbitrary chemical potential). This allows us, for instance, to study ex-
actly inhomogeneous quenches giving rise to a non-trivial (generalised) hydrodynamic regime
at late times [40, 41]. We use our exact results to test the predictions of the quasiparticle
picture for the von Neumann entanglement entropy, both for homogeneous [5] and inhomo-
geneous [42, 43] quenches, providing what is, to the best of our knowledge, the first exact
confirmation of this picture in the presence of either inhomogeneity or interactions. Using our
exact results we also argue that no consistent quasiparticle picture can be designed in the case
of Rényi entropies.

The rest of the paper is organised as follows. In Sec. 2 we introduce the time-channel
approach to the entanglement dynamics in generic systems. In Sec. 3 we specialise the treat-
ment to the case of Rule 54 and recall some of the results of Paper I that are necessary for
our discussion. Sec. 4 contains the derivation of our main results, i.e. exact formulae for the
stationary values eventually approached by the entropies of finite regions and for the rate of
entanglement entropies after a quench from a solvable state. In Sec. 5 we derive the predic-
tions of the quasiparticle picture for the cases of interest and compare them with our findings.
Finally Sec. 6 contains our conclusions. Some more technical points and proofs are reported
in the two appendices.

2 Entanglement dynamics in the time-channel

In this section we show that the time-channel description of the dynamics introduced in [44,
45] can also be applied to study of entanglement. As discussed in the aforementioned refer-
ences (see also Paper I), this approach is based on the simple idea of evolving a many-body
system in space, rather than in time, and can be applied whenever the time-evolution operator
is represented as a matrix product operator (MPO). This approach has a very general scope,
since essentially any evolution generated by a short-range Hamiltonian can be efficiently repre-
sented by a unitary MPO [46,47], but it does not generically give a computational advantage.
On the contrary, in certain special cases it leads to exact results. In particular, concerning the
entanglement dynamics, it provides exact results in dual-unitary quantum circuits [9–11, 24]
and in Rule 54 [31].

To describe the main ideas let us consider the setting described in Paper I: 2L qudits (with
d internal states) are arranged along a one-dimensional chain and driven out of equilibrium
through a standard quantum quench protocol [48,49]. Specifically, we prepare the system in
a two-site shift invariant product state denoted by |Ψ0〉 (note that here, differently from Paper
I, we do not consider more general matrix product states) and evolve it with a unitary MPO
(with bond dimension χ2), which we indicate by U. The regime of interest is L� t and we
will eventually take the thermodynamic limit L→∞.
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Making use of the graphical representation introduced in Paper I we depict initial state and
time-evolution operator as follows

|Ψ0〉=

2L

, (1)

U=

2L

, (2)

where we assumed periodic boundary conditions and, for the time being, the tensors

α

s

β

r

, α

s
β

r
,

s
,

s
, r, s = 1, . . . , d, α,β = 1, . . . ,χ , (3)

can be considered generic (the only constraints on them are that U must be unitary and |Ψ0〉
normalised). As discussed in Paper I, two remarks are in order at this point: (i) here we are
interested in MPOs describing local interactions and hence we should impose additional con-
straints on (3). However, since the upcoming discussion does not rely upon these constrains,
we ignore them for the sake of simplicity; (ii) the space-time staggering in (1) and (2) is
inessential and can be easily removed by appropriately merging tensors and local sites. Nev-
ertheless, here we keep it because it arises naturally in Rule 54 which is the case of interest in
this paper.

As a result of the unitary evolution, the state

|Ψt〉= Ut |Ψ0〉 , (4)

becomes increasingly more entangled as time advances. The growth of entanglement between
a finite region A and the rest of the system is quantitatively characterised by the Rényi entropies

S(α)A (t) =
1

1−α
log

�

tr
�

ραA (t)
��

, α ∈ R , (5)

where ρA(t) is the density matrix of the system reduced to the subsystem A. In particular, the
limit α→ 1 of (5) gives the von Neumann entropy or entanglement entropy

SA(t) = − tr [ρA(t) logρA(t)] , (6)

which is the standard measure of bipartite entanglement for pure states [50]. The latter, how-
ever, is not the only interesting member of the family. Although Rényi entropies for α 6= 1 are
not entanglement measures in the strict sense, they are attracting increasing attention. This is
because they characterise the spectrum of ρA(t) — the entanglement spectrum — which con-
tains non-trivial information about the system [51] (e.g. on its topological properties [52]).
Moreover, and perhaps more importantly, they have recently become experimentally accessi-
ble [12–14,53–55]. Even though physically very relevant, these quantities are notoriously hard
to compute. This is especially true when considering interacting integrable models, where, up
to very recently [31], they could be accessed only in the limit t � A. Indeed, as pointed out
in Ref. [56], in this limit one can assume that the state of the subsystem A is described by
a generalised Gibbs ensemble and compute the Rényi entropies using thermodynamic Bethe
ansatz (TBA) [57, 58]. The goal of this section is to derive an alternative representation for
these quantities, which, as we will see, for Rule 54 allows us to access the regime t < A.
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Let us start by looking more closely at the expression (5). Employing the diagrammatic
representation in (1) and (2), we can depict the reduced density matrix at time t as

ρA(t) = trĀ[U
t |Ψ0〉〈Ψ0|U−t] =

2t

2L

, (7)

where we introduced the symbols

=
∗

, =
∗

, (8)

for the complex conjugate of the tensors (24).
We now interpret the tensor network (7) as the result of an evolution in space rather than

in time. Specifically, by defining the space transfer matrices

W̃r1 r2
s1 s2
=

s1 s2

r1 r2

, W̃=
∑

s1,s2

W̃s1 s2
s1 s2
= , (9)

we can express the reduced density matrix (7) as the following MPO

ρA(t) =
∑

s j ,r j∈{0,1}

tr
�

W̃r1r2
s1s2
· · ·W̃r|A|−1r|A|

s|A|−1s|A| W̃
L−|A|/2

�
�

�s1s2 . . . s|A|
�


r1r2 . . . r|A|
�

� , (10)

where we conveniently consider the case of |A| even.
Inserting (10) in the definition (5) of Rényi entropies and taking α= n, with n> 1 integer,

we have

S(n)A (t) =
1

1− n
log tr

�

(W̃∗⊗n)|A|/2S†
2n(W̃

⊗n)L−|A|/2S2n

�

, (11)
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,

Figure 1: Pictorial representation of tr
�

ρA(t)3
�

in the folded picture. The portions
corresponding to A and Ā are connected together in a “staggered” fashion: this stag-
gering is implemented the operators S2n and S†

2n in (11).

where the operator S2n denotes a periodic shift by one in the space of the 2n replicas (of which
n correspond to forward (green) and n to backward (red) time-sheets). More precisely, S2n
acts on the tensor product of 2n copies of the qudit chain in the t direction as follows

S2n |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |i2n−1〉 ⊗ |i2n〉= |i2〉 ⊗ |i3〉 ⊗ · · · ⊗ |i2n〉 ⊗ |i1〉 , i j ∈ Z×2t
d , (12)

where {|i〉} is a basis of Cd2t
, which is the Hilbert space of a qudit chain of length 2t. The

operator S2n appears because the sites of A and Ā are contracted to different replicas in the
calculation of the Rényi entropies, see Fig. 1.

To simplify (11) further we use a simple property of W̃ (which is a special case of Property
1 in Paper I).

Property 1. Whenever the initial state is normalised and the time evolution operator unitary,
the spectrum of W̃ in (9) is given by {0,1} and the algebraic and geometric multiplicity of the
eigenvalue 1 are equal to one.

Proof. The unitarity of time-evolution implies

1= 〈Ψt |Ψt〉= tr
�

W̃L
�

=
∑

j

λL
j , (13)

where the second equality follows directly from the definition (9) and λ j are eigenvalues of
W̃. This equality holds for any L, therefore λ j ∈ {0, 1} and both the geometric and algebraic
multiplicity of the eigenvalue 1 have to be 1.

An immediate consequence of this is that we can write the thermodynamic limit of (11) as

S(n)A,th(t) := lim
L→∞

S(n)A (t) =
1

1− n
log

�

n〈L|S2n(W̃∗⊗n)|A|/2S†
2n|R〉n

n〈L|R〉n

�

, (14)

with

n〈L|= n⊗〈L| , |R〉n = |R〉⊗n , (15)

and 〈L| and |R〉 respectively denote the left and right fixed points (i.e. eigenvectors correspond-
ing to the eigenvalue 1) of W̃. We see that, in the thermodynamic limit, the n-th Rényi entropy
is expressed as a matrix element between n copies of left and right fixed points. This expression
further simplifies if one considers the entanglement of half of the system

lim
|A|→∞

S(n)A,th(t) =
2

1− n
log

��

�

�

�

〈L|S2n|R∗〉n n

〈L|R〉n n

�

�

�

�

�

. (16)
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Here we introduced the shorthand notation |R∗〉= |R〉∗ to denote the complex conjugate of |R〉
(similarly, 〈L∗|= 〈L|∗) and we implicitly used

〈L∗|S†
2n|R〉n n =

�

〈L|S2n|R∗〉n n

�∗
, (17)

which follows directly from the permutation symmetry of |R〉n and 〈L|n . Equation (16) implies
that the information about the asymptotic growth of entanglement is entirely encoded in the
fixed points. Note that in systems with a strict maximal speed vmax for the propagation of
signals — as it is the case for local quantum circuits — one does not need to consider the limit
|A| →∞ to obtain the simplified form (16): it is sufficient to take |A|> 2vmax t so that the two
boundaries are causally disconnected.

This approach can also be applied when the initial state is not homogeneous (i.e. invariant
under a small number of shifts), but is composed by the junction of two different homogeneous
pieces. Namely

|Ψ0〉=
R R R R R RL L L L L L

L L

, (18)

where we took L even. Quantum quenches from this kind of states are known as bipartitioning
protocols [59–62] and can be thought of as the sudden junction of two homogeneous leads
prepared in different states. In this case, the precise expression for the Rényi entropies depends
on the position of A with respect to the junction. For example, if the subsystem A is starting at
the site x ≥ 0 (i.e. on the right of the junction), we have

S(n)x ,A,th(t) =
1

1− n
log

� 〈LL|(W̃⊗n
R )

x/2S2n(W̃∗⊗n
R )|A|/2S†

2n|RR〉n n

〈LL|RR〉n n

�

. (19)

For the sake of simplicity in this paper we only consider the special case x = 0, i.e. when A
starts right at the junction, i.e.

S(n)A,th(t) =
1

1− n
log

� 〈LL|(S2n(W̃∗⊗n
R )|A|/2S†

2n|RR〉n n

〈LL|RR〉n n

�

. (20)

If, in addition, the system has a strict maximal velocity, and the subsystem large enough,
|A|> 2vmax t, the above expression reduces to

S(n)A,th(t) =
1

1− n
log

�




LL

�

�S2n

�

�R∗R
�

n n

〈LL|RR〉n n

�

+
1

1− n
log

��




LR

�

�S2n

�

�R∗R
�

n n

〈LR|RR〉n n

�∗�
. (21)

Note that the two terms on the r.h.s. can be directly interpreted as the entanglement produced
at the two boundary points between A and Ā. Indeed, the second term depends on the param-
eters of the right lead only, while the first depends on the parameters of both left and right
lead. Consistently, repeating the same construction in the case of open boundary conditions
and taking A to be semi-infinite one finds [31]

lim
|A|→∞

S(n)A,th(t)
�

�

�

obc
=

1
1− n

log
�




LL

�

�S2n

�

�R∗R
�

n n

〈LL|RR〉n n

�

. (22)

Indeed, in this case there is a single boundary point between A and Ā.
Our main goal will be to exploit the representations (16) and (21) to find the asymptotic

behaviour of Rényi entropies for large times. Since (21) reduces to (14) for

R
=

L
= ,

R
=

L
= , (23)

we can, without loss of generality, consider the inhomogeneous case (21) only.
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3 A solvable case: quantum cellular automaton Rule 54

The practical convenience of the representation (21) depends on the form of the fixed points
〈L| and |R〉. For instance, they become extremely useful when the fixed points are written as
matrix product states (MPS)s with a constant (i.e. time independent) bond dimension. This
kind of simplification arises for some particular choices of the tensors (3), i.e. for particular
systems and initial states [10,24,31].

Here we focus on one of such choices. Specifically, we consider the quantum cellular
automaton Rule 54, originally introduced in Ref. [63], which has been recently shown to offer
an exactly solvable benchmark for interacting integrable many-body dynamics, both in the
classical [64–70], and quantum [31, 71–75] realm (see also the recent review [76]). We can
interpret it as a local quantum circuit where the time-evolution operator is written in the form
(2) with tensors [31,70]

α

s

β

r

= δχ(s,β ,r),α, α

s
β

r
= δs,βδβ ,rδr,α, (24)

where d = χ = 2 and χ(s,β , r) = (s + β + r + sr)mod2. Note that, since Rule 54 can be
represented as a local quantum circuit, is has a strict maximal velocity vmax for the propagation
of signals. In particular, for our choice of units we have vmax = 2.

Next, we consider initial-states

�

�Ψϑ,ϕ

�

=

ϑ

(25)

with tensors of the form

s
= eiϕ1δs,0,

s

ϑ

=
p

1− ϑδs,0 +
p

ϑeiϕ2δs,1 , (26)

where the parameter ϑ ∈ [0, 1] will be referred to as the filling while ϕ1/2 ∈ [0, 2π] as the
phases.

In Paper I we prove that, choosing tensors of the form (24) and (26), the fixed points, 〈R|
and |L〉, are MPSs of bond dimension 3. The latter depend on the filling but are independent of
the phases. In fact, one can prove that fixed points are the same also when choosing different
phases at each spatial point (as long as ϑ is the same everywhere). Explicitly, we have

〈Lϑ|=
·
ϑ

, |Rϑ〉=
·
ϑ

, (27)
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where the “bulk” tensors are given by

00

ϑ

=







1− ϑ 1− ϑ −(1− ϑ)
ϑ ϑ 1− ϑ

ϑ −
ϑ2

1− ϑ
−ϑ






, 0 1

ϑ

= 1 0

ϑ

=





0 1− ϑ −(1− ϑ)
ϑ 0 0
ϑ 0 0



,

s r =





δr,0δs,0 0 0
0 δr,1δs,1 0
0 0 δr,1δs,1



 , 1 1 =





0 1 0
1 0 0
0 0 0



,

(28)

and boundary vectors are

· =





1
0
0



 , ·
ϑ

= −
1

1− ϑ





(1− ϑ)2

ϑ(1− ϑ)
−ϑ2



 , =
1
p

2





1
1
0



 . (29)

These choices give left and right fixed point fulfilling




Lϑ1

�

�Rϑ2

�

= · ·
ϑ1 ϑ2

= 1, ∀ϑ1,ϑ2. (30)

In the above diagrams we explicitly reported ϑ to signal the dependence on the filling. In the
following, however, whenever the choice of ϑ is unambiguous we will ease the notation by
removing it.

As proven in Paper I the state
�

�Ψϑ,ϕ

�

relaxes (locally) to a family of Gibbs states. In partic-
ular considering density matrix reduced to a finite subsystem A we have

ρA(t)' ρGE,A =
trĀ(e

−µ(ϑ)N )
tr(e−µ(ϑ)N )

, N = N+ + N−, (31)

where ' denotes the leading contribution for large times, N± are the number of left and right-
moving quasiparticles (solitons) explicitly given by [72,77]

N+ =
∑

x∈ZL

P−2x P−2x+1 +
∑

x∈Z2L

P+x P−x+1P+x+2 ,

N− =
∑

x∈ZL

P−2x−1P−2x +
∑

x∈Z2L

P+x P−x+1P+x+2 ,
P± :=

1±σ3

2
, (32)

and the chemical potential µ(θ ) reads as

e−µ(ϑ) =
ϑ

1− ϑ
⇒ ϑ =

1
1+ eµ(ϑ)

. (33)

This shows that ϑ in (25) sets the density of quasiparticles in the stationary state.
In fact, the states (25) can also be used to design solvable bipartitioning protocols. Indeed,

as proven in Paper I, considering initial states of the form
�

�ΨϑL,ϕL,ϑR,ϕR

�

=
�

�ΨϑL,ϕL

�

⊗
�

�ΨϑR,ϕR

�

, (34)

one finds 〈LL|=



LϑL

�

� and |RR〉=
�

�RϑR

�

(with both 〈Lϑ| and |Rϑ〉 of the form (27)). In this case
any finite subsystem A at finite distance from the junction relaxes to a family of generalised
Gibbs states. Namely

ρA(t)' ρGGE,A =
trĀ(e

−µL(ϑL,ϑR)N−−µR(ϑL,ϑR)N+)
tr(e−µL(ϑL,ϑR)N−−µR(ϑL,ϑR)N+)

, (35)
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where µR/L(ϑL,ϑR) is given by

e−µR/L(ϑL,ϑR) =
ϑR/L(1− ϑL/R)

(1− ϑR/L)2
. (36)

Importantly, in Rule 54 the relaxation happens with finite rate [31] (see also Paper I). In
particular, the finite-time corrections to (31) and (35) are exponentially small in t − 3|A|/2.

Finally, we recall (see e.g. Paper I) that ρGGE,A in Eq. (35) (and hence also its particular
case (31)) is conveniently expressed in terms of the following MPO

ρGGE,A =
1
ZA

· ·

|A|

, ZA = 1+ ϑL + ϑR. (37)

The bulk tensors , are diagonal in the two copies of the physical space, and the auxiliary
space is 3-dimensional,

0

0

=





1 0 0
e−µR(ϑL,ϑR) 0 0

1 0 0



 ,

0

1

=

1

0

= 0,

1

1

=





0 e−µR(ϑL,ϑR) 0
0 0 1
0 0 e−µL(ϑL,ϑR)



 , = (1− ϑL)(1− ϑR)

�

�

�

�

µL↔µR

.

(38)

The boundary tensors · , · are 3-dimensional (row and column) vectors and their explicit
expression is reported in Appendix A of Paper I.

4 Exact results for Rényi entropies

In this section we show that combining the representations (21) and (22) with the exact ex-
pressions (27) the problem of computing the growth of Rényi entropies is mapped into that
of contracting a certain tensor network. This can be done exactly in the asymptotic limit
1� t ≤ |A|/4. Moreover, using (37), we also show that also the stationary value reached by
the entropies for large times is characterised by a tensor network. As we shall see, the latter
is contracted exactly in the limit of large |A|. Let us begin by proving the latter statement.

4.1 Stationary values

As a consequence of (35) we have that for t > 3|A|/2 the Rényi entropies fulfil

S(α)A (t)' S(α)GGE,A =
1

1−α
log

�

tr
�

ραGGE,A

��

, (39)

where we recall that ' denotes equality up to exponentially small corrections and ρGGE,A the
GGE reduced to the subsystem A. Using the MPO representation of ρGGE,A (cf. Eq. (37)) we can
express Rényi entropies with index n (integer and larger than one) in terms of the following
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tensor network

trρn
GGE,A =

1
Zn

A

· ·
· ·
· ·
· ·
· ·

|A|

n

Tn

=
1
Zn

A
〈 · |⊗n T |A|/2n | · 〉⊗n . (40)

This immediately implies that for large |A| the Rényi entropy is dominated by the leading
eigenvalue Λn of the transfer matrix Tn (defined in the above diagram). Namely

S(n)GGE,A =
|A|

2(1− n)
log

�

Λn(ϑ1,ϑ2)
�

+O
�

|A|0
�

, (41)

where we used the fact that ZA does not grow with |A| (cf. Eq. (37)).
To find Λn we make use of the following relations

= , = , (42)

where we introduced the projector defined by

x

y

z

w
= δx ,yδy,zδz,w. (43)

The identities (42) imply that the eigenvalues of Tn coincide with the spectrum of the reduced
transfer matrix T̃n defined by applying the projector (43) on all the pairs of auxiliary legs

T̃n = . (44)

Therefore the non-zero eigenvalues of Tn are given by the spectrum of a 3× 3 matrix

Sp(Tn) = Sp(T̃n) = {0} ∪ Sp



ϑ̄n
1ϑ̄

n
2





1+ e−n(µ1+µ2) e−nµ1 e−nµ2

1+ e−nµ2 e−n(µ1+µ2) e−nµ2

1+ e−nµ1 e−nµ1 e−n(µ1+µ2)







 , (45)

where we use the shorthand notation ϑ̄1/2 = 1 − ϑ1/2. In particular, the leading eigenvalue
Λn(ϑ1,ϑ2) can be expressed as

Λn(ϑ1,ϑ2) =
(1− ϑ1)n(1− ϑ2)n

(1− ϑ(n)1 )(1− ϑ
(n)
2 )

, (46)
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where we defined ϑ(n)1,2 fulfilling

ϑ
(n)
1,2(1− ϑ

(n)
2,1)

(1− ϑ(n)1,2)2
=

�

ϑ1,2(1− ϑ2,1)

(1− ϑ1,2)2

�n

. (47)

Note that ϑ(n)1,2 can be understood as generalisations of the filling functions ϑ1,2 to the case
where chemical potentials µ1,2 are replaced by nµ1,2 (see Eq. (36)). We also remark that the
result obtained by substituting (46) in (41) agrees with the TBA prediction of Ref. [56].

The result (41) can be analytically continued to D = {z ∈ C : Re[z] > 0}. Indeed, the
function Λz(ϑ1,ϑ2) — obtained by replacing n in Eq. (46) with z ∈ C — is holomorphic and
bounded in D. Therefore, Carlson’s Theorem [78] ensures that it is the only analytic continu-
ation of {Λn(ϑ1,ϑ2)}n=1,2,3,... fulfilling

|Λz(ϑ1,ϑ2)| ≤ Ceτ|z|, z ∈D, |Λ1+i y(ϑ1,ϑ2)| ≤ Cec|y|, y ∈ R , (48)

with C ,τ ∈ R and c < π. As this is a requirement that we expect from physical grounds, we
choose Λz(ϑ1,ϑ2) as the relevant analytic continuation. In particular, in the limit z → 1 we
find

SGGE,A = −
|A|
2

2
∑

j=1

1+ 2ϑ3− j

1+ ϑ1 + ϑ2

�

ϑ j logϑ j + (1− ϑ j) log
�

1− ϑ j

��

+O(|A|0), (49)

which coincides with the expression of the Yang-Yang entropy in the state (35) [73]. In the
homogeneous case, when ϑ1 = ϑ2 = ϑ, Rényi entropies take a free-fermionic form (see e.g.
[56])

S(n)GE,A = −
|A|

1− n
log

�

(1− ϑ)n + ϑn
�

+O(|A|0). (50)

4.2 Asymptotic slopes

Let us consider the elementary building blocks

bn(ϑ1,ϑ2) :=
1

1− n
log

� 〈Lϑ1
|S2n|R∗ϑ2

〉n n

〈Lϑ1
|Rϑ2
〉n n

�

, (51)

where



Lϑ1

�

�,
�

�Rϑ2

�

are both of the form (27). Recalling (21) we see that bn(ϑ1,ϑ2) can be
interpreted as the n-th Rényi entropy generated at one of the boundaries of the subsystem A.
This means that, upon analytic continuation, evaluating (51) gives direct access to all Rényi
entropies (including von Neumann) for t ≤ |A|/4.

Considering the graphical representation (27) of the fixed points, we can express the matrix
element in (51) in terms of the following tensor network

¬

Lϑ1

�

�

�S2n

�

�

�R∗ϑ2

¶

n n
=

· · ·· · ·

2n

2t

ϑ1 ϑ1 ϑ1ϑ2 ϑ2 ϑ2

= 〈Un|T t
n |Dn〉 , (52)
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where we introduced

Tn=

2n

ϑ1 ϑ1 ϑ1ϑ2 ϑ2 ϑ2

, |Dn〉= · · · · · ·

2n

ϑ1 ϑ1 ϑ1ϑ2 ϑ2 ϑ2

, 〈Un|=

2n

. (53)

From the representation (52) we see that the asymptotic behaviour of (51) is determined
by the largest eigenvalue of the transfer matrix Tn. Therefore, we proceed by identifying its
spectrum. To this aim it is convenient to merge together the tensors , on two consecutive
rows and columns, i.e.

M x y
ab = a b

x

y

≡
r1 s1

r2 s2

z1 z2

w1 w2

,
x = 3z1 + z2, y = 3w1 +w2, x , y ∈ Z9,

a = 2r1 + r2, b = 2s1 + s2, a, b ∈ Z4,
(54)

so that Tn is rewritten in terms of n horizontally connected tensors M with periodic boundaries

Tn =

n

. (55)

Moreover, we also make a convenient local basis transformation

M̃ = =
−

, = P, − = P−1, (56)

where we defined

P =













































1
1 1

1 −
ϑ2

1− ϑ2
1 1

1 1 1 1

1 −
ϑ2

1− ϑ2
1 −

ϑ2

1− ϑ2

1 −
ϑ1

1− ϑ1

−
ϑ1

1− ϑ1
−

ϑ1

1− ϑ1
1 1

−
ϑ1

1− ϑ1

ϑ1ϑ2

(1− ϑ1)(1− ϑ2)
1 −

ϑ2

1− ϑ2













































. (57)

We denote by T̃n the transfer matrix in the new basis (defined as (55), with M replaced by M̃).
Since T̃n and Tn are related by a similarity transformation, their spectra coincide. To de-

termine them we make use of the following Lemma (proven in Appendix A).
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Lemma 1. For any k ≥ 1
x1

x2

x3

...

xk

x1

y1

y2

y3

...

yk

y1

=
� k
∏

j=1

δyk ,xk

�

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

. (58)

This lemma has the remarkable consequence that traces of powers of Tn can be obtained
by considering a simple 9× 9 matrix. Namely we have

tr
�

T k
n

�

= tr
�

T̃ k
n

�

=
∑

x1,x2,...,xk

n

· · ·

· · ·

· · ·

· · ·

· · ·

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

= k

n

n

n

n

n

...
= tr

�

τ̃k
n

�

, (59)

where we introduced the tensor

n

x

y

ab =
�

M̃ x y
ab

�n
. (60)

Explicitly, the matrix elements of τ̃n are expressed as

�

τ̃n

�

x1,x2
=

4
∑

a1,...,an=1

M̃ x1 x2
a1a2
· · · M̃ x1 x2

ana1
, (61)

which yields

τ̃n=



























(1− ϑ1)n(1− ϑ2)n 0 0 0 0 1 (1− ϑ2)n 0 1
ϑn

2(1− ϑ1)n 0 0 0 0 0 ϑn
2 0 0

0 0 0 0 1 0 0 1 0
0 ϑn

1 ϑn
1 0 0 0 0 0 0

0 0 0 ϑn
2 0 0 0 0 0

0 0 0 (1− ϑ2)n 0 0 0 0 0
0 (1− ϑ1)n (1− ϑ1)n 0 0 0 0 0 0
ϑn

1ϑ
n
2 0 0 0 0 0 0 0 0

ϑn
1(1− ϑ2)n 0 0 0 0 0 0 0 0



























. (62)
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Since the relation (59) holds for any k, the non-zero eigenvalues of Tn and τ̃n coincide. The
eigenvalues of the latter are easily obtained. In particular, it is straightforward to see that the
only three non-zero eigenvalues of τ̃n are the solutions to the following cubic equation

λ3 =
�

(1− ϑ1)
nλ+ ϑn

1

� �

(1− ϑ2)
nλ+ ϑn

2

�

. (63)

The main properties of this equation are studied in Appendix B and can be summarised as
follows

Lemma 2. For ϑ1,ϑ2 ∈ (0, 1) the solution of Eq. (63) with strictly larger magnitude is real and
positive. Its explicit expression reads as

λn(ϑ1,ϑ2)=
(1− ϑ1)n(1− ϑ2)n

3
+

3
È

∆n,1+
Ç

∆2
n,1 −∆

3
n,2 +

∆n,2

3
r

∆n,1+
q

∆2
n,1 −∆

3
n,2

, (64)

where

∆n,1 =
1
6
(1− ϑ1)

2n(1− ϑ2)
2n

2
∑

j=1

�

ϑ j

1− ϑ j

�n

+
1
2
ϑn

1ϑ
n
2+

1
27
(1− ϑ1)

3n(1− ϑ2)
3n ,

∆n,2 =
1
3
ϑn

1(1− ϑ2)
n +

1
3
ϑn

2(1− ϑ1)
n +

1
9
(1− ϑ1)

2n(1− ϑ2)
2n .

(65)

Putting all together and noting that 〈Lϑ1
|Rϑ2
〉n n = 1 (cf. (30)) we find that for t � 1, the

building block (51) displays a linear growth with slope given by

rn(ϑ1,ϑ2) := lim
t→∞

bn(ϑ1,ϑ2)
t

=
1

1− n
log[λn(ϑ1,ϑ2)]. (66)

For example, in the case of the min-entropy (i.e. n→∞) we find the following explicit result

r∞(ϑ1,ϑ2) =



















































































− log[(1− ϑ1)(1− ϑ2)],
ϑ1

1−ϑ1
≤ (1− ϑ1)(1− ϑ2),

ϑ2
1−ϑ2

≤ (1− ϑ1)(1− ϑ2),

− log[ϑ1/2
1 (1− ϑ2)1/2],

ϑ1
1−ϑ1

> ϑ
1/2
1 (1− ϑ2)

1/2,
ϑ2

1−ϑ2
≤ ϑ1/2

1 (1− ϑ2)
1/2,

− log[ϑ1/2
2 (1− ϑ1)1/2],

ϑ2
1−ϑ2

> ϑ
1/2
2 (1− ϑ1)

1/2,
ϑ1

1−ϑ1
≤ ϑ1/2

2 (1− ϑ1)
1/2,

− log[ϑ1/3
1 ϑ

1/3
2 ],

ϑ1
1−ϑ1

≥ ϑ1/3
1 ϑ

1/3
2 ,

ϑ2
1−ϑ2

≥ ϑ1/3
1 ϑ

1/3
2 .

(67)

Note that the above characterisation of the spectrum of Tn can also be used to find the lead-
ing corrections to (66). To do that, however, one would also need to find the eigenvector
associated to λn(ϑ1,ϑ2).

Substituting (66) in (21) we arrive at the main result of this paper

lim
t→∞

|A|/t=ζ≥4

S(n)A,th(t)

t
= rn(ϑL,ϑR) + rn(ϑR,ϑR). (68)
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Figure 2: Growth of the Rényi n-entropy after a homogeneous quench from the state
characterised by (ϑL,ϑR) = (0.65, 0.15), for typical values of n. Solid lines are the
asymptotic prediction obtained by neglecting the subleading corrections and taking
into account only the largest eigenvalue of the tensor network (52), while the dots
correspond to exact finite-time values in the L→∞ limit.

This equation provides a rigorous proof of the fact that Rényi entropies of large subsystems
grow linearly in the asymptotic regime and gives an exact expression for their slope. A com-
parison between the asymptotic result (68) and the exact numerical evaluation of (21) for
finite times is reported in Fig. 2.

We recall that (68) applies to the case of a bipartitioning protocol with two leads initially
prepared in different solvable states (25) and where the subsystem A starts at the junction. The
special case ϑL = ϑR = ϑ describes the growth of entanglement after a homogeneous quench
from a solvable state. A remarkable consequence of (68) is that the entanglement velocity

vE
n (ϑL,ϑR) := lim

t→∞
|A|/t=ζ≥4

S(n)A,th(t)

ts(n)GGE

=
rn(ϑL,ϑR)

s(n)GGE

+
rn(ϑR,ϑR)

s(n)GGE

, (69)

where s(n)GGE is the entropy density of the GGE (cf. (41)), depends non-trivially on n. See Fig. 3
for a representative example.

The result (66) can again be analytically continued to D = {z ∈ C : Re[z] > 0}. Indeed,
the function λz(ϑ1,ϑ2) — obtained by replacing n in (64) with z ∈ C — is holomorphic and
bounded in D. Specifically (see Appendix B)

|λz(ϑ1,ϑ2)| ≤ λRe[z](ϑ1,ϑ2)< 3 . (70)

Applying again Carlson’s Theorem [78] we then have that λz(ϑ1,ϑ2) is the only analytic con-
tinuation of {λn(ϑ1,ϑ2)}n=1,2,3,... which fulfils the physically sensible bounds

|λz(ϑ1,ϑ2)| ≤ Ceτ|z|, z ∈D, |λ1+i y(ϑ1,ϑ2)| ≤ Cec|y|, y ∈ R , (71)

with C ,τ ∈ R and c < π.
Considering now z = 1+δ with δ� 1 from (64) we find

λ1+δ(ϑ1,ϑ2) = 1+
δ

1+ ϑ1 + ϑ2

2
∑

j=1

�

ϑ j logϑ j + (1− ϑ j) log
�

1− ϑ j

��

+O(δ2), (72)
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Figure 3: Entanglement velocity (cf. (69)) as a function of the filling ϑ (note that here
we are considering a homogeneous case ϑL = ϑR = ϑ), for different Rényi indices n.

which gives the following result for the slope of the von Neumann entropy

r(ϑ1,ϑ2) := lim
z→1

rz(ϑ1,ϑ2)= −
1

1+ ϑ1 + ϑ2

2
∑

j=1

�

ϑ j logϑ j + (1− ϑ j) log
�

1− ϑ j

��

, (73)

or, equivalently

lim
t→∞

|A|/t=ζ≥4

SA,th(t)

t
= r(ϑL,ϑR) + r(ϑR,ϑR). (74)

5 The quasiparticle picture

In the famous work [1], Calabrese and Cardy proposed a simple picture that explains the
growth of entanglement in terms of correlated quasiparticles created by the quench. In the
simplest formulation one imagines that at t = 0 the quench produces pairs of quasiparticles
at every point in space and for t > 0 they begin to propagate with opposite velocities ±v.
Quasiparticles forming each pair are correlated or entangled, while those in different pairs are
uncorrelated. Then, one postulates that, for any time t, the entanglement between a given
subsystem A and its complement Ā is proportional to the number of correlated pairs shared
between A and Ā.

Considering a homogeneous quench this picture gives the following expression for the Von
Neumann entropy

SA,th =min(4vt, 2|A|)s , (75)

where by s we denoted the contribution to the entanglement of a pair multiplied by the density
of pairs. This expression can be immediately generalised to the case of Ns different species of
quasiparticles with a dispersion relation parametrised by λ ∈ [−Λ,Λ]

SA,th =
Ns
∑

n=1

∫ Λ

−Λ
dλmin((vn,λ − vn,−λ)t, |A|)sn,λ . (76)
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t

Figure 4: Time-evolution of |0〉⊗5 ⊗ |010〉 ⊗ |0〉 ⊗ |010〉 ⊗ |0〉⊗6. Up to the even-odd
staggering, the horizontal coordinate of a diamond corresponds to the physical site,
the vertical position indicates the time-step (increasing upwards). Black diamonds
correspond to |1〉s and white ones to |0〉s.

Here we took correlated pairs formed by particles with the same n and opposite λs, vn,λ is the
velocity of the quasiparticle labelled by (n,λ) and sn,λ the contribution of the pairs labelled by
(n,λ) to the density of entanglement entropy.

This picture can be generalised to describe inhomogeneous quenches by allowing the con-
tribution to the entanglement of a given pair to depend on the emission point [42] and the
quasiparticles to have a curved trajectory [43], namely

SA,th =
Ns
∑

n=1

∫ Λ

−Λ
dλ

∫

dx χA(Xn,λ(t, x))(1−χA(Xn,−λ(t, x)))sn,λ(x) , (77)

where Xn,λ(t, x) is the position at time t of the quasiparticle (n,λ) emitted in x at time 0.
Additional refinements accounting for initial states producing n-plets of correlated excita-
tions [79,80], and non-unitary non-interacting dynamics [81–83] have also been developed.

Interestingly, due to the simplicity of Rule 54 we can explicitly show that our solvable initial
states (25) consist precisely of pairs of oppositely-moving quasiparticles. This can be seen by
expressing them in the computational basis

�

�Ψϑ,ϕ

�

=
∑

s1,s3,...,sL

�

eiϕ1
p

1− ϑ
�L
�

eiϕ2

√

√ ϑ

1− ϑ

�s1+s2+...+sL

|0s10s20s3 · · ·0sL〉 . (78)

Each of the basis states that enter the above sum at position 2 j is either |0〉 or |1〉. This means
that the local configuration around 2 j is either |000〉 or |010〉. We now claim that the first
option implies no quasiparticle at position 2 j, while the second one corresponds to a pair of
oppositely-moving quasiparticles that have temporarily merged into one site.

This can be appreciated by noting that the time-evolution operator U is deterministic in
the computational basis, therefore each basis state is mapped into exactly one other. In the
sequence of bit-strings representing basis states, the freely-moving quasiparticles are given by
pairs of consecutive |1〉 on top of the background of |0〉. This is conveniently depicted by
introducing a staggered zig-zag lattice where even sites are displaced upwards with respect to
odd sites, and black and white diamonds correspond to |1〉 and |0〉 respectively. Due to the
staggering, a freely-moving quasiparticle in a row is graphically represented by one (and not
two) black fields. Figure 4 contains an illustration of the time-evolution of a representative
basis state included in the sum (78) with 2L = 18. One observes that each of the local states
|010〉 indeed corresponds to a pair of oppositely moving quasiparticles, and |000〉 behaves as
the empty space. Since in the initial state there cannot be more than one consecutive |1〉, all
quasiparticles appear as pairs.
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5.1 Von Neumann entropy: exact confirmation of the quasiparticle picture

The quasiparticle picture is believed to apply whenever the system possesses stable quasipar-
ticles [84]. In particular, this is the case for integrable models where the “entangling” quasi-
particles have been conjectured to coincide with the stable excitations on the stationary state
reached after the quench [5]. Using this identification one can make (76) and (77) predictive
by computing all the — yet unknown — functions featured in those equations by means of
TBA [57,58].

More specifically, let us consider (76) which depends on two unknown functions. The
first, vn(λ), is naturally identified with the velocity of the excitations — accessible in TBA [85]
— while the second, sn(λ), can be fixed by imposing the equality between the entanglement
and the thermodynamic entropy in the stationary state [5]. All this is particularly simple for
excitations on the stationary states (35) in Rule 54. Indeed, on these states there is only one
species of excitations and λ can take only two values (λ ∈ {±}) (for further details see Paper I,
the Supplemental Material of Ref. [73], and the review [76]). Therefore, the prediction (76)
is effectively of the form (75) with

v = vϑ =
2

1+ 2ϑ
, s = sϑ = −ϑ logϑ− (1− ϑ) log (1− ϑ) , (79)

where ϑ is precisely the filling characterising the Gibbs state (31). Namely, it is written in
terms of the chemical potential as in Eq. (33).

We then see that the limits

lim
t→∞

|A|/t=ζ≥4

SA,th

t
= 4vs, lim

t→∞
|A|/t=ζ≤2/3

SA,th

t
= 2sζ, (80)

computed with the quasiparticle picture agree with our exact results for all values of ϑ. To
the best of our knowledge this result, together with the special case (ϑ = 1/2) presented in
Ref. [31], provides the first rigorous confirmation of the quasiparticle picture in the presence
of interactions.

The same check can be performed in the case of bipartitioning protocols. In this case,
following [42,43], we impose

Ẋ±(x , t) = v±(x , t), s+(x) = s−(x) = sLΘ(−x) + sRΘ(x), (81)

where
sL/R = −ϑL/R logϑL/R−

�

1− ϑL/R

�

log
�

1− ϑL/R

�

, (82)

and v±(x , t) is the velocity of excitations on the locally quasistationary state at point (x , t) as
computed by Generalized Hydrodynamics [40, 41]. In particular, using the explicit result for
v±(x , t) reported in Paper I we have

X−(x , t) =











x − vL t, x < 0,
x
2 (1+

vL
vR
)− vL t, 0< x ≤ 2vRt,

x − vRt, x ≥ 2vRt,

(83)

and

X+(x , t) =











x + vL t, x < −2vL t,
x
2 (1+

vR
vL
) + vRt, −2vL t ≤ x ≤ 0,

x + vRt, x > 0,

(84)

where we introduced

vL/R =
2

1+ 2ϑL/R
. (85)
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Plugging it into (77), a simple (but tedious) calculation gives

SA,th =











































2vRvL

vR+ vL
t(sR+ sL) + 2vRtsR,

|A|
t
≥

vR(vR+ 3vL)
(vR+ vL)

,

2vRvL

vR+ vL
t(sL − sR) + 2|A|sR, vR ≤

|A|
t
≤

vR(vR+ 3vL)
(vR+ vL)

,

2vL

vR+ vL
|A|sL +

2vR

vR+ vL
|A|sR,

|A|
t
≤ vR,

(86)

where we took A= [0, |A|]. Noting that

vR(vR+ 3vL)
(vR+ vL)

< 4, vR ≥
2
3

, (87)

we have

lim
t→∞

|A|/t=ζ≥4

SA,th

t
=

2vRvL

vR+vL
(sR+ sL) + 2vRsR, lim

t→∞
|A|/t=ζ≤2

3

SA,th

t
=

2vL

vR+vL
sLζ+

2vR

vR+vL
sRζ, (88)

which, once again, agree with our exact results for all possible values of ϑL/R ∈ [0, 1]. To the
best of our knowledge, this is the first rigorous confirmation of the quasiparticle picture for
inhomogeneous quenches.

5.2 Rényi Entropies: no consistent quasiparticle description

In non-interacting systems the quasiparticle picture can be directly extended to Rényi entropies
with α 6= 1. As pointed out in Refs. [56, 86], however, in the presence of interactions this
extension becomes far less straightforward. The reason appears to be connected to the fact
that S(α)A have a stronger non-linear dependence on the state compared to the Von Neumann
entanglement entropy. This makes it harder to understand which excitations — or better the
excitations over which stationary state — are relevant for the quasiparticle picture. As a result,
a consistent extension of the quasiparticle picture for Rényi entropies in interacting systems
has not yet been found. Here we use our exact results to show that insisting on a quasiparticle
description for higher Rényi entropies one has to take excitations over a stationary state with
unclear physical meaning. For simplicity, we focus on the homogeneous quench (25) as it
contains all the basic elements of our reasoning.

Requiring the validity of the quasiparticle picture we find the following asymptotic formula
for the Rényi entropies

S(α)A,th =min(4vα(ϑ)t, 2|A|)s(α)(ϑ) , (89)

where now vα(ϑ) , sα(ϑ) are unknown functions. The density of Rényi entropy “carried” by a
quasiparticle pair can be fixed using the expression for the stationary-state Rényi entropy (50),
namely

s(α)(ϑ) = lim
t→∞

|A|/t=ζ≤2/3

S(α)A,th

2|A|
=

1
1−α

log[ϑα + (1− ϑ)α]. (90)

Using now the exact expression for the rate of entanglement spreading (66) we have that the
quasiparticle velocity must be given by

vα(ϑ) = lim
t→∞

|A|/t=ζ≥4

S(α)A,th

4ts(α)
= vE

α(ϑ,ϑ) =
log[λα(ϑ,ϑ)]

log[ϑα + (1− ϑ)α]
. (91)
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Figure 5: Comparison between the two effective n-dependent filling fractions (93)
and (94), for a few different choices of n. In the case of von Neumann entropy
(i.e. for n = 1), the effective filling fraction is just ϑ, while for n 6= 1 we get two
different predictions: ϑ(n)slope coming from the renormalised quasiparticle velocity and

ϑ(n) extracted from the stationary state. The two quantities agree for small ϑ or 1−ϑ,
while for the intermediate ϑ, the difference between the two increases with |n− 1|.

Now we note that

vα6=1(ϑ) 6=
2

1+ 2ϑ
, (92)

which means that the quasiparticles cannot be though of as excitations on the stationary
state (35), i.e. the state describing the expectation values of local observables at infinite times
after the quench. Nevertheless, one can interpret vα(ϑ) as the velocity excitations over the
stationary state with filling

ϑ
(α)
slope(ϑ) =

2− vα(ϑ)
2vα(ϑ)

. (93)

Indeed, since vα(ϑ) ∈ [2/3, 2], Eq. (93) is always in [0, 1] and hence describes a legitimate
filling.

The physical meaning of (93) is, however, unclear. In particular, for α 6= 1 the filling (93)
does not coincide with that of the macrostate that describes the stationary value of the α Rényi
entropy in TBA [56,86]. Indeed, in our case the latter has filling (cf. (46))

ϑ(α)(ϑ) =
ϑα

ϑα + (1− ϑ)α
. (94)

Even though (93) and (94) are close for small and large fillings they are different functions of
ϑ. See the representative example in Fig. 5.

6 Conclusions

In the paper we used a time-channel approach to find exact results for the entanglement dy-
namics in the quantum cellular automaton Rule 54, which is arguably the simplest example of
interacting integrable model. We showed that the entanglement dynamics from a class of solv-
able initial states is characterised by a certain tensor network and that, remarkably, the latter
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can be contracted exactly. We used our results to test the quasiparticle picture for the entangle-
ment spreading in Rule 54. In particular, we confirmed that the quasiparticle picture provides
quantitatively accurate predictions for the evolution of the von Neumann entanglement en-
tropy in the presence of interactions, both in homogeneous and inhomogeneous situations.
Therefore validating the predictions of both Ref. [5] and Ref. [43]. We also argued that our re-
sults seem to exclude a consistent quasiparticle interpretation for the evolution of other Rényi
entropies. Indeed, we showed that the potential quasiparticles responsible for the spreading
of Rényi entropies cannot be interpreted as excitations on a physically meaningful stationary
state.

An interesting direction for future research is to extend the techniques presented here to
the study of the various kinds of operator space entanglement [87, 88]. These include the
entanglement of local operators, of the reduced density matrix, and of the time evolving op-
erator. The latter is particularly relevant for the questions considered in this paper because
it gives access to the “line tension”, which is the function needed to obtain quantitative pre-
dictions from the membrane picture (see e.g. [89]). It would be interesting to also test these
predictions against our results, especially those concerning the Rényi entropies that do not
seem to be described by the quasiparticle picture.
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A Proof of Lemma 1

We begin by introducing the following shorthand notation. We call {M̃ x y}9x ,y=1 the set of 4×4

matrices with matrix elements given by the tensor M̃ , i.e.
�

M̃ x y
�

ab
:= M̃ x y

ab . (95)

In this new notation the statement of Lemma 1 reads as
�

M̃ x1 x2 M̃ y1 y2
�

⊗
�

M̃ x2 x3 M̃ y2 y3
�

⊗ · · · ⊗
�

M̃ xk x1 M̃ yk y1
�

=





k
∏

j=1

δx j ,y j





�

M̃ x1 x2)2 ⊗
�

M̃ x2 x3
�2 ⊗ · · · ⊗

�

M̃ x1 x2
�2

.
(96)

Before proving this statement in full generality, let us first consider k = 1. In this case one can
explicitly evaluate all the products of pairs of matrices M̃ x1 x1 M̃ y1 y1 and realise that the only
non-zero combination comes from x1 = y1 = 1, i.e.

M̃ x1 x1 M̃ y1 y1 = δx1,0δy1,0
1
16







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






, (97)
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and the property (58) holds. For k = 2 one can similarly check that the product of two tensors

�

M̃ x1 x2 M̃ y1 y2
�

⊗
�

M̃ x2 x1 M̃ y2 y1
�

(98)

is nonzero only for the following 5 combinations of indices

x1 y1 x2 y2

0 0 0 0
0 0 8 8
8 8 0 0
1 1 6 6
6 6 1 1

, (99)

which proves (58) for k = 2.
To prove the lemma for general k we show that for any two different cycles of indices

(x1, x2, x3, . . . , xk, x1) and (y1, y2, . . . , yk, y1) at least one of the matrix products
M̃ x j x j+1 · M̃ y j y j+1 is 0. This can be demonstrated by defining the 81× 81 adjacency matrix A
with elements that are 1 if the two pairs (x j , y j) and (x j+1, y j+1) are connected by a nonzero
matrix product, and 0 otherwise,

A(x1 y1),(x2 y2) :=

¨

1, M̃ x1 x2 · M̃ y1 y2 = 0,

0, otherwise.
(100)

If a pair of cycles (x1, x2, . . . , xk, x1) and (y1, y2, . . . , yk, y1) gives a nonzero value to the l.h.s.
of (58), all the matrix elements of A appearing in the following product have to be 1,

A(x1 y1),(x2 y2)A(x2 y2),(x3 y3) · · ·A(xk yk),(x1 y1) = 1, (101)

which is one of the contributions to the diagonal matrix element [Ak](x1,y1),(x1,y1).
Next, let us define a 9×9 reduced adjacency matrix Ã that contains only the elements where

x j and y j are the same
Ãx1,x2

:= A(x1,x1),(x2,x2). (102)

By explicit diagonalisation of A and Ã we find that they have the same non-zero eigenvalues,
which are the solutions of the following cubic equation

x3 = (x + 1)2. (103)

This implies
trAk = trÃk, ∀k, (104)

or, in other words, that only non-zero contributions to diagonal elements [Ak](x1,y1),(x1,y1) come
from elements with the same values of x j and y j

A(x1 y1),(x2 y2)A(x2 y2),(x3 y3) · · ·A(xk yk),(x1 y1) = δx1,y1
· · ·δxk ,yk

Ãx1,x2
Ãx2,x3

· · · Ãxk ,x1
. (105)

This completes the proof of the lemma.

B Proof of Lemma 2

To prove Lemma 2 we rewrite Eq. (63) as

p(λ, n) = 0, (106)
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where we defined the polynomial

p(λ, n) = λ3 + a2,nλ
2 + a1,nλ+ a0,n, (107)

with

a0,n = −ϑn
1ϑ

n
2 , a1,n = −

�

ϑn
1(1− ϑ2)

n + ϑn
2(1− ϑ1)

n
�

,

a2,n = −(1− ϑ1)
n(1− ϑ1)

n, a3,n = 1.
(108)

Since a3,n is positive and all {a j,n}2j=0 are negative for ϑ1,ϑ2 ∈ (0,1), Descartes’ rule of signs
(see e.g. Ref [90]) implies that Eq. (106) has only one real positive solution which we denote
by λn(ϑ1,ϑ2). Moreover, since a3,n is positive, we also have

p(λ, n)> 0, ∀λ > λn(ϑ1,ϑ2) , (109)

which implies
λ3 > |a0,n|+ |a1,n|λ+ |a2,n|λ2, ∀λ > λn(ϑ1,ϑ2) . (110)

Next, we recall that Rouché’s Theorem (see e.g. Ref. [91]) implies that whenever a polynomial

g(λ) =
m
∑

k=0

bkλ
k, (111)

has coefficients bk ∈ C fulfilling

|bm|Rm ≤
m−1
∑

k=0

|bk|Rk, (112)

for some R ∈ R, all the solutions to g(λ) = 0 are contained in the circle of radius R. Apply-
ing this to (110) we find that all solutions to Eq. (106) are contained in the circle of radius
λn(ϑ1,ϑ2). To conclude we should prove that the absolute values of the other two solutions
to Eq. (63) are strictly smaller than λn(ϑ1,ϑ2).

We proceed by contradiction. Let us assume that all solutions to Eq. (106) have the same
absolute value. Since the polynomial has real coefficients this means that the solutions are

{λn(ϑ1,ϑ2), λn(ϑ1,ϑ2)e
iθ , λn(ϑ1,ϑ2)e

−iθ}, (113)

for some θ ∈ R. This in turn implies that p(λ, n) must coincide with

(λ−λn(ϑ1,ϑ2))(λ−λn(ϑ1,ϑ2)e
iθ )(λ−λn(ϑ1,ϑ2)e

−iθ )

= λ3 − (1+ 2 cosθ )λn(ϑ1,ϑ2)λ
2 + (1+ 2cosθ )λn(ϑ1,ϑ2)

2λ−λn(ϑ1,ϑ2)
3.

(114)

We see that this cannot happen for any θ because either the coefficient of λ2 or that of λ
are positive, while both a2,n and a1,n are negative. We now assume that there is a single
additional solution to Eq. (106) with absolute value equal to λn(ϑ1,ϑ2). This implies that the
set of solutions reads as

{λn(ϑ1,ϑ2), −λn(ϑ1,ϑ2), −λn(ϑ1,ϑ2) + c}, (115)

with some c ∈ (0,λn(ϑ1,ϑ2)]. Therefore, p(λ, n) must coincide with

(λ−λn(ϑ1,ϑ2))(λ+λn(ϑ1,ϑ2))(λ+λn(ϑ1,ϑ2)− c)

= λ3 + (λn(ϑ1,ϑ2)− c)λ2 −λn(ϑ1,ϑ2)
2λ−λn(ϑ1,ϑ2)

2(λn(ϑ1,ϑ2)− c) .
(116)
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This is once again impossible because the coefficient of λ2 is positive, while a2,n is negative.
Therefore the only possibility is that all other solutions to Eq. (106) have absolute value strictly
smaller than λn(ϑ1,ϑ2). Finally, the explicit expression (64) is found using the general solution
of the cubic equation (one can immediately verify that Eq. (64) is indeed real, positive, and
fulfils Eq. (63) for all ϑ1,ϑ2 ∈ [0, 1]).

Let us now move on and prove (70). We begin recalling that λz(ϑ1,ϑ2) is obtained replac-
ing n in Eq. (64) with z ∈ D = {z ∈ C : Re[z] > 0} and solves Eq. (106) with n replaced by
z ∈D = {z ∈ C: Re[z]> 0}. Next, we observe that

1≥ a2,Re[z] ≥ |a2,z|, 2≥ a1,Re[z] ≥ |a1,z|, 1≥ a0,Re[z] ≥ |a0,z| . (117)

Combining these two facts we find

λRe[z](ϑ1,ϑ2)
3 = a0,Re[z] + a1,Re[z]λRe[z](ϑ1,ϑ2) + a2,Re[z]λRe[z](ϑ1,ϑ2)

2

≥ |a0,z|+ |a1,z|λRe[z](ϑ1,ϑ2) + |a2,z|λRe[z](ϑ1,ϑ2)
2 .

(118)

Using again Rouché’s Theorem we then have

|λz(ϑ1,ϑ2)| ≤ λRe[z](ϑ1,ϑ2) . (119)

Finally we observe that

33 > 1+ 2× 3+ 1× 32 ≥ a0,Re[z] + a1,Re[z]3+ a2,Re[z]3
2 , (120)

which implies
3> λRe[z](ϑ1,ϑ2) . (121)
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